Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010 Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)
Send any inquiries to http://www.renesas.com/inquiry.

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
 of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
 No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
 of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

μ PD I 720 INSTRUCTION SET

 μ PD1720 Instruction Set Table

		_	b	15 b ₁₄		0 0	-		0 1	···········		1 0			1 1	
Ъ1	b ₁₃ b ₁₂ b ₁₁ b ₁₀				0				1		2			3		
0	0	0	0	0	NOP IFCW IFC	w t		KIN KI	M M		-			ST	M.	Г
0	0	0	1	1	SPB SS BANK1 STC	P. N ₁	N	ORI	М,	I				MVRS	М,	r
0	0	1	0	2				MVI	М,	I	OUT	P,	r	IN	г,	Р
0	0	1	1	3	RPB RS BANKO RSC	P. N ₁	N	ANI	М,	I	CKSTP HALT	h		MVRD	r,	М
0	1	0	0	4	RT			Al	M,	I	MVSR	Mı	, M ₂	AD	r,	М
0	1	0	1	5	RTS			SI	М,	I	EXL	r,	М	su	r,	М
0	1	1	0	6	JMP	AD (pag	DR ge 0)	AIC	М,	I	LD	r,	М	AC	г,	М
0	1	1	1	7	CAL	AD (pag	DR (e 0)	\$IB	М,	I	LCDD	М,	D	SB	r,	М
1	0	0	0	8	SBK0 TPF TSF TCEF	P, N ₂	N	AIN	М,	1				ADN	r,	M
1	0	0	1	9	SBK1 TPT TST TCET	P, N ₂	N	SIN	М,	I	TTM TIP TGC			SUN	r,	M
1	0	1	0	A	TMF	М,	N	AICN	М.	I	TUL			ACN	r,	М
1	0	1	1	В	ТМТ	М,	N	SIBN	М,	I	PLL	М,	r	SBN	r,	М
1	1	0	0	С	SLTI	М,	I	AIS	М,	I	SLT	r,	M	ADS	r,	М
1	1	0	1	D	SGEI	М,	I	SIS	М,	I	SGE	r,	M	sus	r,	М
1	1	1	0	E	SEQI	М,	I	AICS	М,	1	SEQ	г,	М	ACS	r,	М
1	ı	1	1	F	SNEI	М,	I	SIBS	М,	I	SNE	r,	М	SBS	r,	М

List of \$\mu_1\$ of \$1 = 0 mondonome

 $\begin{aligned} \text{NOTE} \,:\, D_{\text{H}} \,:\, D_{\text{ata}} \,\, \text{memory address high (row address)} & [2 \,\, \text{bits}] \\ D_{\text{L}} \,:\, D_{\text{ata}} \,\, \text{memory address low (column address)} & [4 \,\, \text{bits}] \end{aligned}$

Rn: Register number [4 bits] I : Immediate data [4 bits]
N : Bit position [4 bits]

ADDR: Program memory address [10 bits]

--- : All ⁻1⁻

r : General register

One of addresses 00-0FH of BANKO

M : Data memory address

One of 00-3FH of BANKO and 00-1FH of BANKI

: Port, 0≤P≤2 : Bit position of status word 1 0≤N1≤7 N_1 N_2 : Bit position of status word 2 $0 \le N_2 \le 7$

() : Contents of register or memory

: Carry

Borrow

()n : Contents on bit n of register or memory

: Data to IF Control Word 0≤w≤0FH

: Trigger conditions 0≤ t ≤3 : Halt release conditions 0≤ h≤7

		Ope	rand	Function Operation		T	Machine code			
	Mnemonic	1ST	2ND	Function	Operation	Operation code				
	AD	г	М	Add memory to register	$r \leftarrow (r) + (M)$	1 1 0 1 0 0	Dн	$D_{t.}$	Rn	
	ADS	r	М	Add memory to register, then skip if carry	r ← (r) + (M) skip if carry	1 1 1 1 0 0	Di	D _L	Rn	
	ADN	г	М	Add memory to register, then skip if not carry	r ← (r) + (M) skip if not carry	1 1 1 0 0 0	D _H	DL	Rn	
	AC	г	М	Add memory to register with carry	$r \leftarrow (r) + (M) + c$	110110	Dн	D_{L}	Rn	
	ACS	r	М	Add memory to register with carry, then skip if carry	r ← (r) + (M) + c skip if carry	111110	Dн	DL	Rn	
Addition	ACN	г	М	Add memory to register with carry, then skip if not carry	$r \leftarrow (r) + (M) + c$ skip if not carry	111010	D _H	D _L	Rn	
Add	Al	М	J	Add immediate data to memory	M ← (M) + I	010100	D _H	D_L	I	
	AIS	М	ī	Add immediate data to memory, then skip if carry	M ← (M) + I skip if carry	011100	Dн	DL	I	
	AIN	М	I	Add immediate data to memory, then skip if not carry	M ← (M) +1 skip if not carry	011000	D _H	Đ _L	I	
	AIC	М	I	Add immediate data to memory with carry	$M \leftarrow (M) + I + c$	010110	D _H	DL	ī	
	AICS	М	ī	Add immediate data to memory with carry, then skip if carry	M ← (M) + I + c skip if carry	0 1 1 1 1 0	D _H	DL	1	
	AICN	М	I	Add immediate data to memory with carry, then skip if not carry	$M \leftarrow (M) + I + c$ skip if not carry	0 1 1 0 1 0	Dн	D _L	I	
	su	г	М	Subtract memory from register	$r \leftarrow (r) - (M)$	110101	Dн	DL	Rn	
	sus	r	М	Subtract memory from register, then skip if borrow	$r \leftarrow (r) - (M)$ skip if borrow	111101	Dн	DL	Rn	
	SUN	r	м	Subtract memory from register, then skip if not borrow	r ← (r) − (M) skip if not borrow	111001	Ďн	DL	Rn	
	SB	r	М	Subtract memory from register with borrow	$r \leftarrow (r) \rightarrow (M) - b$	1 1 0 1 1 1	D _H	DL	Rn	
	SBS	r	м	Subtract memory from register with borrow, then skip if borrow	$r \leftarrow (r) - (M) - b$ skip if borrow	111111	Dн	D _L	Rn	
action	SBN	г	М	Subtract memory from register with borrow, skip if not borrow	$r \leftarrow (r) - (M) - b$ skip if not borrow	111011	Dн	DL	Rn	
Substraction	SI	М	1	Subtract immediate data from memory	M ← (M) − I	0 1 0 1 0 1	Dн	DL	ł	
	SIS	М	1	Subtract immediate data from memory, then skip if borrow	M ← (M) − I skip if borrow	0 1 1 1 0 1	D _H	D _L	I	
	SIN	М	I	Subtract immediate data from memory, then skip if not borrow	M ← (M) − I skip if not borrow	011001	D _H	D _L	I	
	SIB	М	I	Subtract immediate data from memory with borrow	M ← (M) − I − b	010111	D _H	D _{1.}	I	
	SIBS	М	l	Subtract immediate data from memory with borrow, then skip if borrow	M ← (M) − I − b skip if borrow	011111	Dн	DL	I	
	SIBN	М	-	Subtract immediate data from memory with borrow, then skip if not borrow	$M \leftarrow (M) - 1 - b$ skip if not borrow	011011	Ďн	DL	1	

	Manage	Ope	rand	Parking	0	Machine code				
	Mnemonic	1ST	2ND	Function	Operation	Operation code				
	SEQ	г	М	Skip if register equals memory	r — M skip if zero	101110	D _H	DL	Rn	
	SNE	r	М	Skip if register not equals memory	r — M skip if not zero	101111	D _H	DL	Rn	
	SGE	r	М	Skip if register is greater than or equal to memory	r — M skip if not borrow(r) ≥ (M)	101101	D _H	DL	Rn	
Comparison	SLT	r	М	Skip if register is less than memory	r - M skip if borrow(r) < (M)	101100	D _H	DL	Rn	
Comp	SEQI	М	ı	Skip if memory equals immediate data	M — [skip if zero	0 0 1 1 1 0	Dн	DL	ī	
	SNEI	М	1	Skip if memory not equals immediate data	M — I skip if not zero	0 0 1 1 1 1	DH	DL	I	
	SGEI	GEI M I		Skip if memory is greater than or equal to immediate data	M - I skip if not borrow(M) ≥ I	001101	D _H	DL	I	
	SLTI	М	ı	Skip if memory is less than immediate data	M - 1 skip if borrow(M) < 1	001100	Dн	DL	I	
operation	ANI	М	ı	Logic AND of memory and immediate data	$M \leftarrow (M) \wedge I$	010011	D _H	Di	i	
	ORI	М	ī	Logic OR of memory and immediate data	M ← (M) ∨ I	010001	D _H	DL	3	
Logical	EXL	r	M	Exclusive OR Logic of memory and register	$r \leftarrow (r) \oplus (M)$	100101	D _H	DL	Rn	
	LD	r	М	Load memory to register	r ← (M)	100110	D _H	Di	Rn	
	ST	М	r	Store register to memory	M ← (r)	1 1 0 0 0 0	DH	DL	Rn	
-	MVRD	r	М	Move memory to destination memory referring to register in the same row	[D _H , R _n] (M)	110011	D _M	DL	Rn	
Transfer	MVRS	М	г	Move source memory referring to register to memory in the same row	$M \leftarrow [D_H, R_B]$	1 1 0 0 0 1	D _H	DL	Ra	
•	MVSR	Mı	M ₂	Move memory to memory in the same row	$[D_{H}, DL_1] \leftarrow [D_{H}, DL_2]$	100100	D _H	DLI	DL	
	м∨і	М	I	Move immediate data to memory	M ← 1	010010	D _H	DL	ī	
	PLL	М	г	Load NO~N3,N _F & memory to PLL registers	PLLR ← (N0~N3), N _F & (M)	101011	DH	DŁ	Rn	
test	ТМТ	М	N	Test memory bits, then skip if all bits specified are true	if M(N) = all "1", then skip	001011	Dн	DL	N	
Bit	TMF	М	N	Test memory bits, then skip if all bits specified are false	if M(N) = all *0*, then skip	001010	DH	DL	N	
Jump	ЈМР	AĐ	DR	Jump to the address specified	PC-ADDR	000110	ADDR(10 bits)		bits)	
<u>, </u>	CAL ADDR		DR	Call subroutine	Stack←(PC) +1, PC←ADDR	000111	ADDR(10 bits)		bits)	
Subroutine	RT			Return to main routine	PC←(stack)	000100	_	-		
้ง	RTS			Return to main routine, then skip unconditionary	PC←(stack), and skip	000101	-	-	-	
test	ТТМ			Test and reset timer F/F, then skip if it has not been set	if Timer F/F=1,then Timer F/F \leftarrow 0 if Timer F/F=0,then skip	101001	-	_	-	
F/F	TUL			Test and reset unlock F/F, then skip if it has not been set	if UL F/F=1, then UL F/F←0 if UL F/F=0, then skip	101010	_	-	-	
Timer	TIP			Test interval pulse, then skip if low	if IPG=0, then skip	101001	_	0000	0000	

ı	1	Up	erano				Mach	ine code	
	Mnemonia	1ST	2ND	Function	Operation	Operation code		me code	
	ss	N,		Set status word 1	(STATUS WORD 1) _N ←1	000001	-	0 N ₁	T -
	RS	N ₁		Reset status word 1	(STATUS WORD 1)N←0	000011	-	0 N ₁	-
	тѕт	N ₂		Test status word 2 ture	if (STATUS WORD 2) _N =all 1, then skip	0 0 1 0 0 1	-	0 N ₂	-
	TSF	N ₂		Test status word 2 false	if (STATUS WORD 2) _N = all 0, then skip	001000	-	0 N ₂	-
	STC			Set carry F/F	carry F F-1	000001	-	0010	-
	RSC			Reset carry F/F	carry F'F←0	000011	-	0 0 1 0	_
6.00	BANKO			Select BANKO	BANK F/F← 0	000011	-	1100	_
2				Select BANK1	BANK F/F1	000001	-	0 1 0 0	-
"	TCET			Test CE, skip if true	if CE=1, then skip	001001	-	0 0 1 0	-
	TCEF			Test CE, skip if false	if CE=0, then skip	001000	-	0 0 1 0	_
	SBKO			Skip if BANKO	if BANK F/F0=0, then skip	001000	-	1100	-
L	SBK1			Skip if BANK1	if BANK F/F0=1, then skip	001001	-	0100	_
	LCDD	М	D	Output segment pattern to LCD DIG "D" based on memory, or output memory to LCD DIG "D" directly	LCD(D)←SEGPLA←(M) or LCD(D)←(M)	100111	D _H	D	DL
	KI	М		Input key data to memory	M←K ₀₋₃	010000	Dii	DL	0000
	KIN	М		Input key data to memory, then skip if data are zero	$M \leftarrow K_{0-3}$, skip if $(M) = 0$	010000	D _H	Di	
utput	IN	г	Р	Input data on port to register	r⊷(Port (P))	110010	Ъ	-	Rn
Input / output	OUT	Р	г	Output contents of register to port	(Port(P))⊷(r)	100010	P	-	Rn
-	SPB	Р	N	Set port bits	(Port(f)) _N +-1	000001	P	0000	N
	RPB	Р	N	Reset port bits	(Port(P)) _N ←0	000011	Р	0000	N
	TPT	Р	N	Test port bits, then skip if all bits specified are true	if $(Port(P))_N = all \ 1s$, then skip	001001	Р	0000	N
	TPF	Р	N	Test port bits, then skip if all bits specified are false	if (Port(P)) _N = all 0s, then skip	001000	Р	0000	N
counter	IFCW	w		Set immediate data w to IFCW	IFCW← w	000000	1 0	0000	~
IF com	IFC	1		Trigger and/or reset IF counter	trigger⊷t ₁ , reset←t ₀	000000	0 1	0000	0 0 t
	TGC			Test IF counter gate, skip if close	if IF gate close, then skip	101001	00	_	-
_	CKSTP			Clock stop by CE	stop clock if CE ≈ 0	100011		1110	1110
Others	HALT	h	,	Halt the CPU, Restart by condition h	Halt	100011	0 0		h 1
	NOP			No operation		000000	-	-	-
	L	L							