

RX Family

Comparison of the Differences Among the RIICHS Module, the RI3C Module, and the RIIC Module

Introduction

This application note is a reference material for confirming the differences among the following modules: the RIIC and RI3C modules of the RX26T Group, and the RIICHS module of the RX671 Group. The differences covered include general differences and register differences.

Target Devices

RX Family

If you want to use this application note for a device of another family, modify the content according to the specifications of the device and conduct thorough evaluation before use.

Contents

1.	Comparison of Differences Between the RIICHS Module and the RIIC Module	3
1.1	Comparison of General Differences	3
1.2	Comparison of Register Differences	7
2.	Comparison of the Differences Between the RI3C Module and the RIIC Module	10
2.1	Comparison of General Differences	10
2.2	Comparison of Register Differences	15
3.	Reference Documents	18

1. Comparison of Differences Between the RIICHS Module and the RIIC Module

1.1 Comparison of General Differences

Table 1.1 shows Comparison of General Differences Between the RIICHS Module and the RIIC Module.

Item	RIICHS	RIIC
Communication format	 I²C bus format System Management Bus format Master mode or slave mode selectable Automatic securing of the various setup times, hold times, and bus- free times for the transfer rate 	 I²C bus format System Management Bus format Master mode or slave mode selectable Automatic securing of the various setup times, hold times, and bus- free times for the transfer rate
Transfer rate	 I²C bus format Standard mode (Sm): 0 to 100 kbps Fast mode (Fm): 0 to 400 kbps Fast-mode plus (Fm+): 0 to 1 Mbps High-speed mode (Hs mode): 0 to 3.4 Mbps System Management Bus format: 10 to 100 kbps 	Fast-mode is supported (up to 400 kbps)
SCL clock	For master operation, the duty cycle of the SCL is selectable in the range from 4 to 96%.	For master operation, the duty cycle of the SCL is selectable in the range from 4 to 96%.
Issuing and detecting conditions	 Start, restart, and stop conditions are automatically generated. Start conditions (including restart conditions) and stop conditions are detectable. 	 Start, restart, and stop conditions are automatically generated. Start conditions (including restart conditions) and stop conditions are detectable.
Address detection	 Slave address (static address) (a maximum of 3 types) 7-bit and 10-bit address formats are supported. General call address Device ID Host address 	 Up to three different slave addresses can be set. 7-bit and 10-bit address formats are supported (along with the use of both at once). General call addresses, device ID addresses, and SMBus host addresses are detectable.

 Table 1.1
 Comparison of General Differences Between the RIICHS Module and the RIIC Module

• Hs mode master code

Item	RIICHS	RIIC
Acknowledgment	 For transmission, the acknowledge bit is automatically loaded. Transfer of the next data for transmission can be automatically suspended on detection of a not-acknowledge bit. 	 For transmission, the acknowledge bit is automatically loaded. Transfer of the next data for transmission can be automatically suspended on detection of a not-acknowledge bit.
	 For reception, the acknowledge bit is automatically transmitted. If a wait between the eighth and ninth clock cycles has been selected, software control of the value in the acknowledge field in response to the received value is possible. 	 For reception, the acknowledge bit is automatically transmitted. If a wait between the eighth and ninth clock cycles has been selected, software control of the value in the acknowledge field in response to the received value is possible.
Wait function	 In reception, the following periods of waiting can be obtained by holding the SCL line at the low level. Waiting between the eighth and ninth clock cycles Waiting between the ninth clock cycle and the first clock cycle of the next transfer 	 In reception, the following periods of waiting can be obtained by holding the SCL line at the low level. Waiting between the eighth and ninth clock cycles Waiting between the ninth clock cycle and the first clock cycle of the next transfer
SDA output delay function	Change timing of the output of transmitted data, including the acknowledge bit, can be delayed.	Change timing of the output of transmitted data, including the acknowledge bit, can be delayed.

Item	RIICHS	RIIC
Arbitration	 For multi-master operation Operation to synchronize the SCL in cases of conflict with the SCL signal from another master is possible. When issuing the start condition would create conflict on the bus, loss of arbitration is detected by testing for non-matching between the internal signal for the SDA line and the level on the SDA line. In master operation, loss of arbitration is detected by testing for non-matching between the signal on the SDA line and the level on the SDA line. In master operation, loss of arbitration is detected by testing for non-matching between the signal on the SDA line and the internal signal for the SDA line. Loss of arbitration due to detection of the start condition while the bus is busy is detectable (to prevent the issuing of double start conditions). When transmitting a not-acknowledge bit, loss of arbitration is detected by testing for non-matching between the internal signal for the SDA line and the level on the SDA line. Arbitration loss can be detected when data mismatch occurs during slave transmission. 	 For multi-master operation Operation to synchronize the SCL in cases of conflict with the SCL signal from another master is possible. When issuing the start condition would create conflict on the bus, loss of arbitration is detected by testing for non-matching between the internal signal for the SDA line and the level on the SDA line. In master operation, loss of arbitration is detected by testing for non-matching between the signal on the SDA line and the level on the SDA line. In master operation, loss of arbitration is detected by testing for non-matching between the signal on the SDA line and the internal signal for the SDA line. Loss of arbitration due to detection of the start condition while the bus is busy is detectable (to prevent the issuing of double start conditions). When transmitting a not-acknowledge bit, loss of arbitration is detected by testing for non-matching between the internal signal for the SDA line and the level on the SDA line. Arbitration loss can be detected when data mismatch occurs during slave transmission.
Timeout function	The internal timeout function is capable of detecting long-interval stop of the SCL.	The internal timeout function is capable of detecting long-interval stop of the SCL.
Noise cancellation	 Analog noise filter Digital noise filter 	The interface incorporates digital noise filters for both the SCL and SDA signals, and the width for noise cancellation by the filters is adjustable by software.

Item	RIICHS	RIIC
Interrupt sources	 4 types Occurrence of a communication error/event interrupt (EEI) Arbitration loss NACK detection Timeout detection Detection of a start condition (detection of a restart condition included) Detection of a stop condition Receive data full interrupt (RXI) Transmit data empty interrupt (TXI) Transmit end interrupt (TEI) 	 4 types Communication errors/ communication events Detection of arbitration loss Detection of NACK Detection of a timeout Detection of a start condition (detection of a restart condition included) Detection of a stop condition Receive data full (including matching with a slave address) Transmit data empty (including matching with a slave address) Transmit end
Low power consumption function	Ability to transition to module stop state	Ability to transition to module stop state
RIIC operating modes	 4 modes: Master transmit mode Master receive mode Slave transmit mode Slave receive mode 	 4 modes: Master transmit mode Master receive mode Slave transmit mode Slave receive mode
Event link function (output)	Occurrence of a communication error/event	 Four sources (RIIC0): Occurrence of a communication error/communication event Detection of arbitration loss Detection of NACK Detection of a timeout Detection of a start condition (detection of a restart condition included) Detection of a stop condition
	Receive data full	 Receive data full (slave address match included)
	Transmit data empty	 Transmit data empty (slave address match included)
	Transmit end	Transmit end

1.2 Comparison of Register Differences

Table 1.2 shows Comparison of Register Differences Between the RIICHS Module and the RIIC Module.

Register	Bit	RIICHS	RIIC
ICCR	—	Control register	I ² C bus control register 1
(RIICHS)			
(RIIC)		Register of the 32-bit length	
(1410)	SDAI	—	
	SCLI	_	SCL line monitoring bit
	SDAO	—	SDA output control/monitor bit
	SCLO	—	SCL output control/monitor bit
	SOWP	—	SCLO/SDAO write protect bit
	CLO	—	Additional SCL output bit
	IICRST	_	I ² C bus interface internal reset bit
	ICE	Bus interface enable bit (b31)	I ² C bus interface enable bit (b7)
ICCR2	_	—	I ² C bus control register 2
ICRCR		Reset control register	—
ICMMR	_	Operating mode monitor register	_
ICMR1	_	_	I ² C bus mode register 1
ICMR2	—	—	I ² C bus mode register 2
ICMR3	—	—	I ² C bus mode register 3
ICFER		Function enable register	I ² C bus function enable register
		Register of the 32-bit length	Register of the 8-bit length
	TMOE		Timeout function enable bit
	MALE	Master arbitration loss detection	Master arbitration loss detection enable
		enable bit (b0)	bit (b1)
	NALE	NACK transmission arbitration loss detection enable bit (b1)	NACK transmission arbitration loss detection enable bit (b2)
	SALE	Slave arbitration loss detection enable bit (b2)	Slave arbitration loss detection enable bit (b3)
	NACKE	—	NACK reception transfer suspension enable bit
	NFE		Digital noise filter enable bit
	SCLE	SCL synchronization enable bit (b8)	SCL synchronization enable bit (b6)
	SMBS	System Management Bus/I2C bus selection bit	_
	FMPE	Fast-mode plus enable bit	—
	HSME	Hs mode enable bit	—
ICSCR	_	Slave mode control register	—
ICRCCR	—	Reference clock control register	—
ICFBR	_	F/S mode bit rate register	—
ICHBR	—	Hs mode bit rate register	—

 Table 1.2
 Comparison of Register Differences Between the RIICHS Module and the RIIC Module

Register	Bit	RIICHS	RIIC
ICBFTR		Bus-free time setting register	—
ICOCR	—	Output signal control register	—
ICICR	_	Input signal control register	—
ICTOR	—	Timeout control register	—
ICACKR	—	Acknowledge bit control register	—
ICCSCR	—	Clock stretch control register	—
ICCGR	_	Condition generation request register	—
ICDR	_	Transmit/receive data register	—
ICSR1	_	—	I ² C bus status register 1
ICSR2	_	Status register 2	I ² C bus status register 2
		Register of the 32-bit length	Register of the <mark>8</mark> -bit length
	START	Start condition detection flag (b0)	Start condition detection flag (b2)
	STOP	Stop condition detection flag (b1)	Stop condition detection flag (b3)
	RDRF	—	Receive data full flag
	TEND	Transmission end flag (b8)	Transmission end flag (b6)
	TDRE		Transmit data empty flag
	AL	Arbitration loss flag (b18)	Arbitration loss flag (b1)
	TMOF	Timeout detection flag (b20)	Timeout detection flag (b0)
ICSER	_	Status detection enable register	I ² C bus status enable register
		Register of the 32-bit length	Register of the 8-bit length
	STDE	Start condition detection enable bit	—
	SPDE	Stop condition detection enable bit	—
	NAKDE	NACK detection enable bit	—
	TEDE	Transmission end detection enable bit	—
	ALE	Arbitration loss detection enable bit	—
	TMOE	Timeout detection enable bit	—
	SAR0E	—	Slave address register 0 enable bit
	SAR1E	—	Slave address register 1 enable bit
	SAR2E	—	Slave address register 2 enable bit
	GCAE	—	General call address enable bit
	DIDE	—	Device ID address detection enable bit
	HOAE	—	Host address enable bit
ICSIER		Status interrupt enable register	—
ICCSR		Communication status register	—
ICCSER	_	Communication status detection enable register	_
ICCSIER	_	Communication status interrupt enable register	—
ICBSR	—	Bus status register	—
ICSSR	—	Slave mode status register	-

Register	Bit	RIICHS	RIIC
SARy	—	Slave address register y (y = 0 to 2)	—
SARLy	—	—	Slave address register Ly (y = 0 to 2)
SARUy	—	—	Slave address register Uy (y = 0 to 2)
SAMRy		Slave address monitor register y (y = 0 to 2)	_
ICBCR	—	Bit count register	—
ICIMR	—	Internal status monitor register	—
ICIER	—	—	I ² C bus interrupt enable register
ICBRL	—	—	I ² C bus bit rate Low register
ICBRH	—	_	I ² C bus bit rate High register
ICDRT	—	—	I ² C bus transmit data register
ICDRR	_	—	I ² C bus receive data register
ICDRS	—	—	I ² C bus shift register

2. Comparison of the Differences Between the RI3C Module and the RIIC Module

2.1 Comparison of General Differences

Table 2.1 shows Comparison of General Differences Between the RI3C Module and the RIIC Module.

Table 2.1 Companyon of General Differences Detween the Nisc Module and the Nisc Module	Table 2.1	Comparison of Genera	I Differences Between	the RI3C Module and the RIIC Module
--	-----------	----------------------	-----------------------	-------------------------------------

Item	RI3C	RIIC
Operating mode	 Controller mode Primary controller Secondary controller Target mode 	 Master transmit mode Master receive mode Slave transmit mode Slave receive mode
Data handler (RI3C) Communication format (RIIC)	 Controller: — FIFO buffer transfer Target: — FIFO buffer transfer 	 I²C bus format System Management Bus format Master mode or slave mode selectable Automatic securing of the various setup times, hold times, and bus- free times for the transfer rate
Communication protocol (RI3C) Transfer rate (RIIC)	 SDR (I3C single data rate) mode Private message Broadcast message (common command code (CCC)) Direct message (common command code (CCC)) Elegacy I²C message Fast mode (Fm): 0 to 400 kbps Fast-mode plus (Fm+): 0 to 1 Mbps 	Fast-mode is supported (up to 400 kbps)
IBI	 Target interrupt request (TIR) Controller role request (CRR) (secondary controller only) Hot-Join event 	_
SCL clock	_	For master operation, the duty cycle of the SCL clock is selectable in the range from 4% to 96%.

RX Family

Item	RI3C	RIIC
Issuing and detecting conditions	_	 Start, restart, and stop conditions are automatically generated. Start conditions (including restart conditions) and stop conditions are detectable.
Address format	7-bit address	7-bit and 10-bit address formats are supported (coexistence of these formats is allowed).
Address detection (RI3C) Slave address (RIIC)	 Target address Static address Dynamic address Broadcast address (7Eh) 	 Up to three different slave addresses can be set. General call addresses, device ID addresses, and SMBus host addresses are detectable.
Acknowledgment		 For transmission, the acknowledge bit is automatically loaded. Transfer of the next data for transmission can be automatically suspended on detection of a not-acknowledge bit. For reception, the acknowledge bit is automatically transmitted. If a wait between the eighth and ninth clock cycles has been selected, software control of the value in the acknowledge field in response to the received value is possible.
Clock stall (RI3C) Wait function (RIIC)	The I3C bus can be stopped while the SCL line is driven Low.	 In reception, the following periods of waiting can be obtained by holding the SCL line at the low level. Waiting between the eighth and ninth clock cycles Waiting between the ninth clock cycle and the first clock cycle of the next transfer
SDA output delay function	_	Change timing of the output of transmitted data, including the acknowledge bit, can be delayed.

Item	RI3C	RIIC
Arbitration		 For multi-master operation Operation to synchronize the SCL in cases of conflict with the SCL signal from another master is possible. When issuing the start condition would create conflict on the bus, loss of arbitration is detected by testing for non-matching between the internal signal for the SDA line and the level on the SDA line. In master operation, loss of arbitration is detected by testing for non-matching between the signal on the SDA line and the level on the SDA line. In master operation, loss of arbitration is detected by testing for non-matching between the signal on the SDA line and the internal signal for the SDA line. Loss of arbitration due to detection of the start condition while the bus is busy is detectable (to prevent the issuing of double start conditions). When transmitting a not-acknowledge bit, loss of arbitration is detected by testing for non-matching between the internal signal for the SDA line and the level on the SDA line. Arbitration loss can be detected when data mismatch occurs during slave transmission.
Timeout function	—	The internal timeout function is capable of detecting long-interval stop of the SCL.
Noise cancellation	_	The interface incorporates digital noise filters for both the SCL and SDA signals, and the width for noise cancellation by the filters is adjustable by software.

Item	RI3C	RIIC
Interrupt sources	 7 types Response queue full (RESPI) Command queue empty (CMDI) IBI queue empty/full (IBII) Receive status queue full (RCVI) Receive data full interrupt (RXI) Transmit data empty interrupt (TXI) Communication error/ communication event (EEI) Detection of a start condition (detection of a restart condition included) Detection of a stop condition Detection of the HDR exit pattern Detection of a buffer access error Abort of a data transfer Data transfer error 	 4 types Receive data full (slave address match included) Transmit data empty (slave address match included) Communication error/ communication event Detection of a start condition (detection of a start condition included) Detection of a stop condition Detection of arbitration loss, Detection of a timeout,
Low power consumption	_	Ability to transition to module stop
Error detection	 Buffer access error Address header error Address NACK/dynamic address allocation NACK Receive overflow error/transmit underflow error Abort of a transfer Reception of NACK during an I²C write data transfer Timeout error 	-

Item	RI3C	RIIC
Event link function (output)	Occurrence of a communication error/event	 Four sources (RIIC0): Occurrence of a communication error/communication event Detection of arbitration loss, Detection of NACK Detection of a timeout Detection of a start condition
		(detection of a restart condition included) — Detection of a stop condition
	Receive data full	Receive data full (slave address match included)
	Transmit data empty	Transmit data empty (slave address match included)
		Transmit end

2.2 Comparison of Register Differences

Table 2.2 shows Comparison of Register Differences Between the RI3C Module and the RIIC Module.

Register	Bit	RI3C	RIIC	
ICMR	_	Mode register	—	
ICMR1	_	—	l ² C bus mode register 1	
ICMR2	_	—	l ² C bus mode register 2	
ICMR3	_	—	l ² C bus mode register 3	
ICCR	_	Control register	I ² C bus control register 1	
(RI3C)				
ICCR1		Register of the 32-bit length	Register of the 8-bit length	
(RIIC)	IBAINC	I3C broadcast address include bit	—	
	HJC	Hot-Join control bit	—	
	ABORT	Host controller abort bit	—	
	RESUME	Host controller resume bit	_	
	ICE	Bus interface enable bit (b31)	Bus interface enable bit (b7)	
	SDAI	—	SDA line monitor bit	
	SCLI	—	SCL line monitor bit	
	SDAO	—	SDA output control/monitor bit	
	SCLO	—	SCL output control/monitor bit	
	SOWP	—	SCLO/SDAO write protect bit	
	CLO	—	Additional SCL output bit	
	IICRST	—	I ² C bus interface internal reset bit	
ICCR2	—		I ² C bus control register 2	
ICCAR	_	Controller device address register	—	
ICRCR	_	Reset control register	—	
ICMMR	_	Operating mode monitor register	—	
ICISR	_	Internal status register	—	
ICISER	_	Internal status detection enable register	—	
ICISIER	_	Internal status interrupt enable register	—	
ICDCTIR	—	Device characteristics table index Register	—	
ICINCR	—	IBI notification control register —		
ICTCR	_	Target mode control register —		
ICSBR	_	Standard bit rate register —		
ICEBR	_	Extended bit rate register —		
ICBFTR	_	Bus-free time setting register —		
ICBATR	—	Bus available time setting register —		
ICBITR	 _	Bus idle time setting register	1_	
ICOCR	 _	Output signal control register	_	
ICTOR	—	Timeout control register		

Table 2.2	Comparison of Register	Differences	Between th	e RI3C Mod	lule and the	RIIC Module
-----------	------------------------	-------------	------------	------------	--------------	--------------------

Register	Bit	RI3C	RIIC	
ICSTCR	—	Clock stall control register	—	
ICTDLR	_	Target transmit/receive data length — register —		
ICCQR	_	Command queue register —		
ICRQR	—	Response queue register	—	
ICDR	_	Transmit/receive data register	—	
ICIQR	_	IBI queue register	—	
ICSQR	_	Receive status queue register	—	
ICQBTCR	—	Queue buffer threshold control register	—	
ICDBTCR	—	Data buffer threshold control register	—	
ICSQTCR	_	Receive status queue threshold control register	_	
ICSR2	_	Status register 2	I ² C bus status register 2	
		Register of the 32-bit length	Register of the 8-bit length	
	START	Start condition detection flag (b0)	Start condition detection flag (b2)	
	STOP	Stop condition detection flag (b1)	Stop condition detection flag (b3)	
	HDRXDF	HDR exit pattern detection flag	—	
	TMOF	Timeout detection flag (b20)	Timeout detection flag (b0)	
	AL	—	Arbitration loss flag	
	NACKF	—	NACK detection flag	
	RDRF	—	Receive data full flag	
	TEND	—	Transmission end flag	
	TDRE	—	Transmit data empty flag	
ICSER —		Status detection enable register	I ² C bus status enable register	
		Register of the 32-bit length	Register of the 8-bit length	
	STDE	Start condition detection enable bit	_	
	SPDE	Stop condition detection enable bit	—	
	HDRXDE	HDR exit pattern detection enable bit	—	
	TMOE	Timeout detection enable bit	—	
	SAR0E	_	Slave address register 0 enable bit	
	SAR1E	—	Slave address register 1 enable bit	
	SAR2E	—	Slave address register 2 enable bit	
	GCAE	—	General call address enable bit	
	DIDE	—	Device ID address detection enable bit	
	HOAE	_	Host address enable bit	
ICSIER	—	Status interrupt enable register	—	
ICCSR		Communication status register	_	
ICCSER	_	Communication status detection enable register	-	
ICCSIER	-	Communication status interrupt enable — register		

Register	Bit	RI3C RIIC		
ICBSR	—	Bus status register		
ICTDATRm	-	Target device address table register m (m = 0 to 3)	_	
ICEDATR	-	Extended target device address table register	—	
ICDAR0	_	Device address register 0	—	
ICTDCTRm	-	Target device address characteristics table register m (m = 0 to 3)	—	
ICDCTR	—	Device characteristics table register	—	
ICPIDLR	—	Provisioned ID Low register	—	
ICPIDHR	—	Provisioned ID High register	—	
ICDAMR0	—	Device address monitor register 0	—	
ICTEVR	_	Target event register	—	
ICASR	—	Activity state register	—	
ICMWLR	_	Maximum write length register	—	
ICMRLR	—	Maximum read length register	—	
ICTMR	—	Test mode register	—	
ICDSR	_	Device status register		
ICMWSR	—	Maximum write speed register		
ICMRSR	_	Maximum read speed register	—	
ICMTTR	—	Maximum read turnaround time register		
ICTSIR	—	Timing support information register	—	
ICBCR	—	Bit count register —		
ICQBSR	—	Queue buffer status register —		
ICDBSR	—	Data buffer status register	—	
ICSQSR	—	Receive status queue status register	—	
ICIMR	—	Internal status monitor register	—	
ICCECR	—	Controller error count register	—	
ICFER	—	—	I ² C bus function enable register	
ICIER	—	—	I ² C bus interrupt enable register	
ICSR1	—	—	I ² C bus status register	
SARLy	—	—	Slave address register Ly (y = 0 to 2)	
SARUy	—	— Slave address register Uy (y = 0 to 2		
ICBRL	—	—	I ² C bus bit rate Low-level register	
ICBRH	—	— I ² C bus bit rate High-level register		
ICDRT	_	—	I ² C bus transmit data register	
ICDRR	_	_	I ² C bus receive data register	
ICDRS	_	— I ² C bus shift register		

3. Reference Documents

User's Manuals: Hardware

RX671 Group User's Manual: Hardware (R01UH0899EJ)

RX26T Group User's Manual: Hardware (R01UH0979EJ)

If you use a product of a group for which none of the above manuals are applicable, refer to the applicable hardware manual ("User's Manual: Hardware" for the relevant group).

(The latest version can be downloaded from the Renesas Electronics website.)

Technical Update/Technical News

(The latest information can be downloaded from the Renesas Electronics website.)

Revision History

		Description	
Rev.	Date	Page	Summary
1.00	Sep.21.23	—	First edition issued

General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Precaution against Electrostatic Discharge (ESD)

A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.

2. Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power is supplied until the power reaches the level at which resetting is specified.

3. Input of signal during power-off state

Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements. Follow the guideline for input signal during power-off state as described in your product documentation.

4. Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible.

5. Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.
6. Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between V_{IL} (Max.) and V_{IH} (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed, and also in the transition period when the input level passes through the area between V_{IL} (Max.) and V_{IH} (Min.).

7. Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these addresses as the correct operation of the LSI is not guaranteed.

8. Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems. The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values, operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a systemevaluation test for the given product.

Notice

- Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information.
- 2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.
- 3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 4. You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export, manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.
- 5. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.
- Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document.

- 7. No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but not limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE, HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION ("Vulnerability Issues"). RENESAS ELECTRONICS DISCLAIMS ANY AND ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.
- 8. When using Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, "General Notes for Handling and Using Semiconductor Devices" in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.
- 12. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.
- This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
 Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas
- Electronics products.
- (Note1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries.
- (Note2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

(Rev.5.0-1 October 2020)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit: www.renesas.com/contact/.