
 Application Note

R11AN0473EU0210 Rev.2.10 Page 1 of 19
Nov.06.24

Renesas RA Family
Injecting Plaintext User Keys
Introduction
Cryptography is important because it provides the tools to implement solutions for authenticity, confidentiality,
and integrity, which are vital aspects of any security solution. In modern cryptographic systems, the security
of the system no longer depends on the secrecy of the algorithm used but rather on the secrecy of the keys.

There are different types of security engines across the various RA Family MCUs. The MCU’s hardware
user’s manual identifies the security engine that is provided in the MCU.

The security engines can operate in two different modes, called Compatibility mode and Protected mode.
The application note Renesas Security Engine Operational Modes (R11AN0498) explains the definition of
the two modes and their use cases. The key injection capabilities, in brief, are:

• Compatibility mode – both plaintext and secure key injection are supported. All security engines used in
RA Family MCUs support this mode.

• In the Protected mode, only secure key injection is supported. As such, the Protected mode does not
support the capabilities described in this application project. The current list of security engines that
support Protected mode comprises the Secure Crypto Engine 9 (SCE9) and the Renesas Secure IP
RSIP-E51A.

With this release, this application project demonstrates the following plaintext key injection processes:

• RSIP-E51A Compatibility mode AES-256 plaintext key injection using RA8M1 MCU
• SCE9 Compatibility mode AES-256 plaintext key injection using RA6M4 MCU
• SCE7 Compatibility mode AES-128 plaintext key injection using RA6M3 MCU. Compatibility mode

secure key injection for SCE5 and SCE5_B uses APIs identical to those of SCE7.

Required Resources
Target MCUs and Security Engines

MCUs with RSIP-E51A: RA8M1, RA8D1, RA8T1

MCUs with SCE9: RA4M2, RA4M3, RA6M4, RA6M5

MCUs with SCE7: RA6M1, RA6M2, RA6M3, RA6T1

MCUs with SCE5: RA4M1, RA4W1

MCUs with SCE5_B: RA6T2

Development tools and software
• e2 studio IDE v2024-10
• Renesas Flexible Software Package (FSP) v5.6.0
• SEGGER J-link® USB driver

The above three software components, the FSP, J-Link USB drivers, and e2 studio are bundled in a
downloadable platform installer available on the FSP webpage at renesas.com/ra/fsp.

Hardware
• EK-RA8M1, Evaluation Kit for RA8M1 MCU Group ((http://www.renesas.com/ra/ek-ra8m1)
• EK-RA6M4, Evaluation Kit for RA6M4 MCU Group (http://www.renesas.com/ra/ek-ra6m4)
• EK-RA6M3, Evaluation Kit for RA6M3 MCU Group (http://www.renesas.com/ra/ek-ra6m3)
• Workstation running Windows® 10 and Tera Term console or similar application.
• One USB device cable (type-A male to micro-B male)

http://www.renesas.com/fsp
http://www.renesas.com/ra/ek-ra8m1
http://www.renesas.com/ra/ek-ra6m4
http://www.renesas.com/ra/ek-ra6m3

Renesas RA Family Injecting Plaintext User Keys

R11AN0473EU0210 Rev.2.10 Page 2 of 19
Nov.06.24

Prerequisites and Intended Audience
This application note assumes you have some experience with the Renesas e2 studio IDE and Arm®
TrustZone® based development models with e2 studio. The application note assumes that you have some
knowledge of RA Family MCU security features. In addition, a prerequisite reading is the application note
Renesas Security Engine Operational Modes (R11AN0498).

The intended audience includes product developers, product manufacturers, product support, or end users
who are involved with any stage of the MCU plaintext key injection of the RA Family MCUs.

Renesas RA Family Injecting Plaintext User Keys

R11AN0473EU0210 Rev.2.10 Page 3 of 19
Nov.06.24

Contents

1. Root of Trust and its Protection ... 4
1.1 What is Root of Trust ... 4
1.2 Protecting the Root of Trust .. 4
1.3 Introduction to Secure Crypto Engine and Associated Keys... 4

2. Plaintext User Key Injection ... 6
2.1 Plaintext User Key Injection Features ... 6
2.1.1 Advantages of Key Wrapping over Key Encryption .. 7
2.1.2 Advantages of Key Wrapping using MCU HUK .. 7
2.2 Plaintext User Key Injection Use Cases .. 8

3. Example Project for RA6M4 (SCE9) with AES User Key Handling .. 9
3.1 FSP API Used in the Plaintext Key Wrap .. 11
3.2 Import and Compile the Example Project .. 11
3.3 Setting up the Hardware .. 11
3.4 Running the Example Project .. 12

4. Example Project for RA6M3 (SCE7) AES User Key Handling .. 14
4.1 Import and Compile the Example Project .. 14
4.2 FSP API Used in the Plaintext Key Wrap .. 14
4.3 Setting up the Hardware .. 14
4.4 Running the Example Project .. 14

5. Example Project for RA8M1 (RSIP) AES User Key Injection ... 15
5.1 Import and Compile the Example Project .. 15
5.2 FSP API Used in the Plaintext Key Wrap .. 15
5.3 Setting up the Hardware .. 16
5.4 Running the Example Project .. 16

6. Glossary .. 17

7. References .. 17

8. Website and Support ... 18

Revision History .. 19

Renesas RA Family Injecting Plaintext User Keys

R11AN0473EU0210 Rev.2.10 Page 4 of 19
Nov.06.24

1. Root of Trust and its Protection
1.1 What is Root of Trust
Roots of trust are highly reliable hardware, firmware, and software components that perform specific, critical
security functions (https://csrc.nist.gov/projects/hardware-roots-of-trust). In an IoT system, a root of trust
typically consists of identity and cryptographic keys rooted in the hardware of a device. It establishes a
unique, immutable, and unclonable identity to authorize a device in the IoT network.

• Secure boots are part of the services provided in the Root of Trust in many security systems. The
application is authenticated by Public Key Encryption. The associated keys are part of the system's Root
of Trust.

• Device Identity, which consists of Device Private Key and Device Certificate, is part of the Root of Trust
for many IoT devices.

1.2 Protecting the Root of Trust
From the above Root of Trust discussion, we can realize that leakage of the cryptographic user keys can
bring the secure system into a risky state. Protection of the Root of Trust involves key accessibility within the
cryptographic boundary only and unclonable keys. The Root of Trust should be locked from read and write
access from unauthorized parties.

The Renesas user key management system can provide all the above desired protection. In addition,
Renesas user key injection services provide several options from which users can select injection methods
that fit their existing architecture.

1.3 Introduction to Secure Crypto Engine and Associated Keys
The security engine (RSIP, SCE9, SCE7, SCE5, or SCE5_B) is an isolated subsystem within the MCU. The
security engine contains hardware accelerators for symmetric and asymmetric cryptographic algorithms, as
well as various hashes and message authentication codes. It also contains a True Random Number
Generator (TRNG), providing an entropy source for cryptographic operations. The security engine is
protected by an Access Management Circuit, which can shut down the security engine in the event of an
illegal external access attempt. Figure 1 shows the conceptual diagram of the security engine.

Refer to Table 1 for a list of cryptographic operations that are supported by each type of security engine.

Figure 1. Secure Crypto Engine
The Hardware Root Key (HRK) is not a single key that is physically stored. It is represented here to simplify
the description of the concepts. The SCE has its own dedicated internal RAM for operations that deal with
sensitive material such as plaintext keys. All crypto operations are physically isolated within the SCE. This
RAM is not accessible outside the security engine.

https://csrc.nist.gov/projects/hardware-roots-of-trust

Renesas RA Family Injecting Plaintext User Keys

R11AN0473EU0210 Rev.2.10 Page 5 of 19
Nov.06.24

The security engine has its own dedicated internal RAM, enabling all crypto operations to be physically
isolated within the security engine. This, combined with advanced key handling capability, means that it is
possible to implement applications where there is no plaintext key exposure on any CPU-accessible bus.

Secure key storage and usage is accomplished by storing application keys in wrapped format, encrypted by
the MCU’s Hardware Unique Key (HUK) and tagged with a Message Authentication Code (MAC). Since
wrapped keys can only be unwrapped by the security engine within the specific MCU that wrapped them, the
wrapping mechanism provides unclonable secure storage of application keys.

The security engine is packed full of cryptography features that users can leverage in higher-level solutions,
providing the option to use hardware acceleration to reduce both execution time and power consumption.
There are four different versions of SCEs for Renesas RA MCUs. All of the security engines offer AES,
TRNG, and secure key storage and usage. The SCE7 and SCE9 expand this by offering both RSA and ECC
for PKI solutions. The full complement of SCE9 Protected Mode crypto algorithms plus a selection of SCE7
crypto algorithms are NIST CAVP certified. Table 1 summarizes the different security engines and their
associated cryptographic functionalities.

Table 1. SCE Cryptographic Capabilities

 Functions RA8x1 RA6M4, RA6M5
RA4M2, RA4M3

RA6M1, RA6M2
RA6M3, RA6T1 RA6T2 RA4M1, RA4W1

 Cryptographic Isolation
 Security

Engines Security Engine RSIP-E51A SCE9 SCE7 SCE5_B SCE5

 Identity & Key Exchange (Asymmetric)
RSA Key Gen,

Sign/Verify Up to 4K Up to 4K Up to 2K - -

ECC Key Gen, ECDSA,
ECDH Up to 521 bit Up to 512 bit Up to 384 bit - -

Ed25519 EdDSA Y - - - -
DSA Sign/Verify - Y - -

 Privacy (Symmetric)

AES

ECB, CBC, CTR 128/192/256 128/192/256 128/192/256 128/256 128/256
GCTR 128/192/256 128/192/256 128/192/256 - -
XTS 128/256 128/256 128/256 - -
CCM, GCM,
CMAC, GMAC 128/192/256 128/192/256 128/192/256 128/256 128/256

 Data Integrity

Hash

GHASH Y Y Y - -

HMAC SHA224/256/
384/512 SHA224/256 SHA224/256 - -

SHA-2 (224/256) Y Y Y - -
SHA-2 (384/512) Y - - - -

TRNG HW Entropy,
SP800-90B Y Y Y Y Y

 Key Handling
Wrapped Confidentiality,

authenticity Y Y Y Y Y

Plaintext Legacy
compatibility Y Y Y Y Y

The features of the various Security Engines are:

• SCE5 provides hardware-accelerated symmetric encryption for confidentiality. The updated SCE5_B
uses enhanced secure key handling, leveraging an injected MCU-unique HUK.

• SCE7 adds asymmetric encryption and advanced hash functions for integrity and authentication.
• SCE9 expands upon the SCE7 by leveraging an injected MCU-unique HUK for secure key handling and

increasing RSA support up to RSA-4K.
• RSIP expands upon the SCE9 by adding advanced cryptographic algorithms like EdDSA, ECC

secp521r1, SHA384, and SHA512.

RA security engines use a Hardware Unique Key (HUK) to secure the storage of application keys. For RSIP-
E51A and SCE9, the MCU-unique HUK is a 256-bit random key. For SCE5_B, the HUK is a 128-bit random
key. These HUKs are injected at the Renesas factory, and they are never exposed outside the security
engine. This key is stored in a wrapped format using an MCU-unique key wrapping mechanism, ensuring

Renesas RA Family Injecting Plaintext User Keys

R11AN0473EU0210 Rev.2.10 Page 6 of 19
Nov.06.24

that even if an attacker were able to extract the stored key, another MCU would not be able to use it. The
MCU-unique HUK for SCE5 and SCE7 is a derived MCU-unique key. The derived HUK for SCE7 and SCE5
is never stored and is never exposed outside the security engine.

This application project uses the RA8M1, RA6M4, and RA6M3 MCUs to demonstrate the plaintext key
injection using the FSP Crypto API as well as the PSA Crypto API.

2. Plaintext User Key Injection
2.1 Plaintext User Key Injection Features
Plaintext user key refers to the fact that the user keys can be provided in plaintext format to the security
engine. When the plaintext key is injected, the security engine wraps the plaintext key with HUK and
provides the wrapped key outside the security engine for storage.

Figure 2. Plaintext Key Injection for SCE
This plaintext key injection process gives all security control of the keys to the product developer, which
enables the developer to benefit from any existing secure key provisioning infrastructure. However, we do
not recommend long-term storage of plaintext keys on the MCU. Therefore, the RA Family MCUs have the
capability to inject and securely store a plaintext key in a wrapped format by wrapping the key with the MCU
HUK.

Getting the plaintext user key into the MCU RAM or flash in preparation for injection is out of the scope of
this application project. Product developers can use their existing infrastructure to interface with the MCU
based on their specific environment.

Note: This plaintext key injection procedure should be performed in a secure environment.
Key wrapping with the security engine involves encryption using the MAC of the MCU-unique ID and user
key encrypted with the HUK. The encryption aspect ensures the confidentiality of the key. Wrapping with
MAC code adds integrity and authenticity. Finally, wrapping with the MCU HUK adds cloning protection.

Renesas RA Family Injecting Plaintext User Keys

R11AN0473EU0210 Rev.2.10 Page 7 of 19
Nov.06.24

2.1.1 Advantages of Key Wrapping over Key Encryption

Figure 3. Key Wrapping vs. Key Encryption
It is important to understand the difference between wrapping and encrypting for secure asset storage. We
will use symmetric encryption here to demonstrate.

When data is encrypted and sent to another recipient, if that recipient has the same key, they can decrypt the
data. This results in a confidential exchange of information. However, what if there was a problem with the
transmission of the encrypted data? If the recipient unknowingly receives corrupted information, the
decryption algorithm will generate garbage data with no indication that the original data has been corrupted.

Wrapping solves this problem for us by adding an integrity-checking mechanism to the encrypted output.

2.1.2 Advantages of Key Wrapping using MCU HUK

Figure 4. Key Wrapping Using the HUK
Using the MCU Hardware Unique Key to wrap the stored keys adds another protection feature – clone
protection.

Renesas RA Family Injecting Plaintext User Keys

R11AN0473EU0210 Rev.2.10 Page 8 of 19
Nov.06.24

• If the wrapped key is transmitted or copied to another MCU, that MCU’s HUK will not be able to unwrap
nor decrypt the information, maintaining the security of the key.

• MCU-wrapped keys can only be unwrapped by the MCU that wrapped them:
 The MCU’s HUK is used as part of the wrapping algorithm.
 Since the HUK is unique, no other MCU can unwrap the key.

Benefits

• Wrapped keys can be stored in non-secure memory.
• Even if all of the MCU contents are copied onto another device, the keys cannot be utilized or exposed.

2.2 Plaintext User Key Injection Use Cases
This section summarizes several common use cases for key injection.

Case 1: Plaintext Key Injection During Production Provisioning/Programming
In this case, user keys are injected into the MCU based on the customer’s existing or preferred method. The
injected plaintext key is then injected using an MCU application-level code using the Renesas RA Family
FSP. This use case enables the injection of pre-generated keys, which should be performed in a secure
environment. The FSP APIs used are demonstrated in the example projects included in this application
project.

Figure 5. Plaintext Key Injection During Production
Case 2: Plaintext Key Injection Over Secure Communication Path
It is possible to provide a secure communication path for plaintext key injection. In this use case, the plaintext
key is securely transmitted and injected into the MCU. The MCU secure application software then injects the
plaintext key, storing the key in a wrapped format. Solutions to support this use case are dependent on the
implementation of the communication path. Customers can leverage the MCU operations provided for Case
1 to implement this solution.

Renesas RA Family Injecting Plaintext User Keys

R11AN0473EU0210 Rev.2.10 Page 9 of 19
Nov.06.24

Figure 6. Plaintext Key Injection Over Secure Communication Path
Comparing Key Injection and MCU Key Generation
The following table summarizes the use case comparison between Key Injection and MCU Key Generation:

Table 2. Use Case Comparison with MCU-Generated Keys

Use Case Plaintext Key Injection MCU Key Generation (Wrapped Key)
Mass Production Provides scalability, Faster Provides scalability, Slower
Secure Environment Recommended Not required
Device Identity Supported Supported

3. Example Project for RA6M4 (SCE9) with AES User Key Handling
The hardware features of SCE9 are accessed through the FSP driver r_sce, which can access the key
injection APIs. For most application developments, developers can use the middleware Platform Security
Architecture (PSA) Crypto layer to interface with the SCE9. However, some SCE9 functionality does not map
to PSA Crypto APIs; therefore, r_sce key injection-related APIs must be used directly.

Figure 7. Crypto Stacks
Using PSA Crypto with TrustZone® needs some special handling compared with other drivers. Unlike other
FSP drivers, the PSA Crypto module cannot be added as a Non-Secure-Callable module. The reason for this
is that to achieve the security objective of controlling access to protected keys, both the PSA Crypto code
and the keys must be placed in the Secure region. The PSA Crypto API requires access to the keys directly
during initialization and later through a key handle. Therefore, the PSA Crypto module should reside in the
Secure region.

Renesas RA Family Injecting Plaintext User Keys

R11AN0473EU0210 Rev.2.10 Page 10 of 19
Nov.06.24

To provide services to the Non-Secure region, you need to create application-specific, user-defined Non-
Secure Callable (NSC) APIs in the Secure region. Proper security considerations can be implemented in the
Non-Secure Callable API to limit access to the NSC APIs.

The need for the Non-Secure region accessing cryptographic service in the Secure region varies from
application to application. You need to adjust the Non-Secure Callable API provided in this example project
based on your specific application. It is not advised to use the example as-is for a real-world secure
application.

Figure 8 is the high-level software block diagram of the example project provided in this application project.

Figure 8. Software Block Diagram
The Non-Secure Callable APIs are defined in aes_functions.h file. These APIs are explained as follows:

• BSP_CMSE_NONSECURE_ENTRY bool init_lfs(void)
Initializes the LittleFS system: formatted and mounted.

• BSP_CMSE_NONSECURE_ENTRY bool psacrypto_AES256CBC_example_NIST(void)
Allows the Non-Secure project to initiate new AES key creation by injecting a 256-bit AES plaintext key
(using a set of NIST vector) as a wrapped key. Once the plaintext user key is injected into the MCU, the
SCE9 driver is used to convert the plaintext key into wrapped key format by wrapping the plaintext key
using the HUK. The plaintext key will be erased immediately after the conversion. The wrapped AES key
is further imported into the PSA key storage system and stored in the data flash for user application
usage.
Then the example project uses this injected key to perform encryption and decryption operation.

Renesas RA Family Injecting Plaintext User Keys

R11AN0473EU0210 Rev.2.10 Page 11 of 19
Nov.06.24

3.1 FSP API Used in the Plaintext Key Wrap
The API shown below performs the initial AES256 key wrapping. This API supports both secure key and
plaintext key APIs. Notice that some arguments are ignored in plaintext key wrapping.

Figure 9. AES256 KeyWrap API

3.2 Import and Compile the Example Project
Follow the FSP User’s Manual section Importing an Existing Project into e2 studio to import the Secure and
Non-Secure Projects into the workspace and compile in the order shown below:

1. Expand the secure project plaintext_key_injection_ek_ra6m4_s and double-click
configuration.xml to launch the configurator. Click Generate Project Content, then build the
Secure project. The project should be built with no errors.
Note that there are third-party software warnings.

2. Expand the non-secure project plaintext_key_injection_ek_ra6m4_ns and double-click
configuration.xml to launch the configurator. Click Generate Project Content, then build the non-
secure project.

3.3 Setting up the Hardware
Establish the following connections:

• EK-RA6M4 jumper setting: J6 closed, J9 open. For other jumpers, keep the out-of-box setting.
• USB cable connected between J10 and the development PC to provide power and debugging capability

using the on-board debugger.

Initialize the MCU using Renesas Device Partition Manager
This step is optional but recommended. Prior to downloading the example application, we recommend
initializing the device to the Secure Software Development (SSD) state. Flash content that is not permanently
locked down will be erased during this process. This is particularly helpful if the device was previously used
in the Non-Secure Software Development (NSECSD) state or if certain flash blocks are locked up
temporarily.

Note: You need to power cycle the board prior to working with the Renesas Device Partition Manager
after a debug session if using J-Link as the connection interface.

Open the Renesas Device Partition Manager. With the e2 studio IDE, click the Run tab, then select
Renesas Debug Tools > Renesas Device Partition Manager.

Renesas RA Family Injecting Plaintext User Keys

R11AN0473EU0210 Rev.2.10 Page 12 of 19
Nov.06.24

Figure 10. Open Renesas Device Partition Manager
Next, check the Initialize device, choose J-Link as the connection method, then click Run.

Figure 11. Initialize RA6M4 Using Renesas Device Partition Manager

3.4 Running the Example Project
To run the application, right-click on plaintext_key_injection_ra6m4_ns and select Debug As >
Renesas GDB Hardware Debugging.

Note that prior to the application execution, the Implementation Defined Attribute Unit (IDAU) regions will be
set up to assume the values through the debugger interaction with the MCU bootloader.

Both the Secure and Non-Secure projects are now loaded, and the debugger should be paused in the
Reset_Handler() at the SystemInit() call in the Secure project.

Renesas RA Family Injecting Plaintext User Keys

R11AN0473EU0210 Rev.2.10 Page 13 of 19
Nov.06.24

Figure 12. Secure Project Reset Handler

Click Switch if the Confirm Perspective Switch window pops up. Click twice to run the project.

Next, launch J-Link RTT Viewer V7.98g or later.

Figure 13. Launch J-Link RTT Viewer

Select Existing Session as the connection type. Click on the button and scroll down to Renesas to find
the correct device, R7FA6M4AF. Also, the RTT Control Block for the Search Range should be set up. Set
the search range to 0x20000000 0x10000, and then click OK to start the RTT Viewer.

Note: The Search Size 0x10000 is based on this example application project. If your application uses the
RTT Viewer in the Non-Secure region and there is a large secure binary, you need to increase the
Search Size to cover the Non-Secure project SRAM regions.

If the host PC has more than one J-Link debugger connected to the PC, set the Serial No (by default, Serial
No is set to 0).

Figure 14. Configure the RTT Viewer for EK-RA6M4
Click OK and observe the following output.

Renesas RA Family Injecting Plaintext User Keys

R11AN0473EU0210 Rev.2.10 Page 14 of 19
Nov.06.24

Figure 15. RA6M4 Plaintext Key Injection Demonstration

4. Example Project for RA6M3 (SCE7) AES User Key Handling
See Figure 7 for the crypto stack used for this example project. From a high-level understanding, they are
identical.

4.1 Import and Compile the Example Project
Follow the FSP User’s Manual section Importing an Existing Project into e2 studio to import the example
project plaintext_key_injection_ek_ra6m3 to a workspace.

Expand the project plaintext_key_injection_ek_ra6m3 and double-click configuration.xml to
launch the configurator. Click Generate Project Content, then build the project. The project should be built
with no errors.

4.2 FSP API Used in the Plaintext Key Wrap
The API shown in this section performs the initial AES128 key wrapping (similar to the AES256 key wrapping
API). This API supports both secure key and plaintext key APIs. Notice that some arguments are ignored in
plaintext key wrapping.

Figure 16. AES128 KeyWrap API

4.3 Setting up the Hardware
Connect J10 from EK-RA6M3 to the development PC to provide power and debugging capability using the
onboard debugger.
4.4 Running the Example Project
To run the application, right-click on plaintext_key_injection_ek_ra6m3 and select Debug As >
Renesas GDB Hardware Debugging.

Click Switch if the Confirm Perspective Switch window pops up. Click twice to run the project.

Next, launch J-Link RTT Viewer V7.98g or later.

Renesas RA Family Injecting Plaintext User Keys

R11AN0473EU0210 Rev.2.10 Page 15 of 19
Nov.06.24

Figure 17. Launch J-Link RTT Viewer
Configure the RTT Viewer as shown in Figure 18.

Figure 18. Configure the RTT Viewer for EK-RA6M3
Click OK and observe the RTT Viewer output as shown in Figure 19.

Figure 19. Expected Execution Result of the RA6M3 Example Project

5. Example Project for RA8M1 (RSIP) AES User Key Injection
See Figure 7 for the crypto stack used for this example project. From a high-level understanding, they are
identical.

5.1 Import and Compile the Example Project
Follow the FSP User’s Manual section Importing an Existing Project into e2 studio to import the example
project plaintext_key_injection_ra8m1 to a workspace.

Expand the project plaintext_key_injection_ra8m1 and double-click configuration.xml to
launch the configurator. Click Generate Project Content, then build the project. The project should be built
with no errors.

5.2 FSP API Used in the Plaintext Key Wrap
The API shown below performs the initial AES256 key wrapping. This API supports both secure key and
plaintext key APIs. Notice that some arguments are ignored in plaintext key wrapping.

Renesas RA Family Injecting Plaintext User Keys

R11AN0473EU0210 Rev.2.10 Page 16 of 19
Nov.06.24

Figure 20. RSIP AES256 Key Wrap API

5.3 Setting up the Hardware
Connect J10 from EK-RA8M1 to the development PC to provide power and debugging capability using the
onboard debugger.
5.4 Running the Example Project
To run the application, right-click on plaintext_key_injection_ra8m1 and select Debug As >
Renesas GDB Hardware Debugging.

Click Switch if the Confirm Perspective Switch window pops up. Click twice to run the project.

Next, launch J-Link RTT Viewer V7.98g or later.

Figure 21. Launch J-Link RTT Viewer
Configure the RTT Viewer as shown in Figure 22.

Figure 22. Configure the RTT Viewer for EK-RA8M1

Renesas RA Family Injecting Plaintext User Keys

R11AN0473EU0210 Rev.2.10 Page 17 of 19
Nov.06.24

Click OK and observe the RTT Viewer output as shown in Figure 23.

Figure 23. Expected Execution Result of the RA8M1 Example Project

6. Glossary
Term Meaning
HSM A Hardware Security Module (HSM) is a physical computing device that safeguards

and manages digital keys and performs encryption and decryption functions for
digital signatures, strong authentication, and other cryptographic functions.

HRK Hardware Root Key is a secret key residing in the security engine that is common for
each MCU.

Unique ID A Unique Identification value, unique to each individual RA Family MCU, is stored inside
the MCU.

MAC Message Authentication Code is a short piece of information used to authenticate a
message to confirm that the message came from the stated sender (its authenticity) and
has not been changed. A cryptographic MAC protects both a message’s data integrity
and its authenticity by allowing verifiers (who also possess the secret key) to detect any
changes to the message content.

7. References
1. Renesas RA Family MCU Device Lifecycle Management Key Injection (R11AN0469)

2. Renesas RA Family MCU Secure Key Injection and Update (R11AN0496)

3. Renesas RA Family MCU Security Design with TrustZone® using Cortex-M33 (R11AN0467)

4. Renesas RA Family MCU Security Design with TrustZone® using Cortex-M85 (R11AN0897)

5. Renesas RA Family Security Engine Operational Modes Application Note (R11AN0498)

Renesas RA Family Injecting Plaintext User Keys

R11AN0473EU0210 Rev.2.10 Page 18 of 19
Nov.06.24

8. Website and Support
Visit the following URLs to learn about the RA family of microcontrollers, download tools and documentation,
and get support.

EK-RA6M4 Resources renesas.com/ra/ek-ra6m4
EK-RA6M3 Resources renesas.com/ra/ek-ra6m3
EK-RA8M1 Resources renesas.com/ra/ek-ra8m1
RA Product Information renesas.com/ra
Flexible Software Package (FSP) renesas.com/ra/fsp
RA Product Support Forum renesas.com/ra/forum
Renesas Support renesas.com/support

https://www.renesas.com/ra/ek-ra6m4
https://www.renesas.com/en/products/microcontrollers-microprocessors/ra-cortex-m-mcus/ek-ra6m3-evaluation-kit-ra6m3-mcu-group
https://www.renesas.com/en/products/microcontrollers-microprocessors/ra-cortex-m-mcus/ek-ra8m1-evaluation-kit-ra8m1-mcu-group
https://www.renesas.com/ra
http://www.renesas.com/fsp
https://www.renesas.com/ra/forum
https://www.renesas.com/support

Renesas RA Family Injecting Plaintext User Keys

R11AN0473EU0210 Rev.2.10 Page 19 of 19
Nov.06.24

Revision History

Rev. Date
Description
Page Summary

1.00 Dec.2.20 - First release document.
1.10 Dec.20.20 - Added missing graph.
1.20 Nov.11.21 - Minor updates.
1.30 Dec.07.21 - Fix Wrap Key API Call bug.
1.40 Nov.11.22 - Changed the document title from “Installing and Utilizing the

Cryptographic User Keys using SCE9” to “Injecting Plaintext
User Keys” and added SCE7 support.

2.00 Jan.10.24 - Updated to FSP v5.1.0.
2.10 Nov.06.24 - Updated to FSP v5.6.0.

General Precautions in the Handling of Microprocessing Unit and Microcontroller
Unit Products
The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the
products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Precaution against Electrostatic Discharge (ESD)

A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps

must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be

adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity.

Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and

measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor

devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.
2. Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of

register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset

pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins

in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power reaches the

level at which resetting is specified.
3. Input of signal during power-off state

Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O

pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal

elements. Follow the guideline for input signal during power-off state as described in your product documentation.
4. Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are

generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of

the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal

become possible.
5. Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program

execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator

during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal

produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.
6. Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL

(Max.) and VIH (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the

input level is fixed, and also in the transition period when the input level passes through the area between VIL (Max.) and VIH (Min.).
7. Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these

addresses as the correct operation of the LSI is not guaranteed.
8. Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems.

The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms

of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values,

operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-

evaluation test for the given product.

© 2024 Renesas Electronics Corporation. All rights reserved.

Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products

and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your
product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use
of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights,
or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this
document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics
or others.

4. You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export,
manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.

5. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any
and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.

6. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for
each Renesas Electronics product depends on the product’s quality grade, as indicated below.
 "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home

electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key

financial terminal systems; safety control equipment; etc.
Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas
Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to
human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space
system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics
disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product
that is inconsistent with any Renesas Electronics data sheet, user’s manual or other Renesas Electronics document.

7. No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics
hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but
not limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS
ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING
RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE,
HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION (“Vulnerability Issues”). RENESAS ELECTRONICS DISCLAIMS ANY AND
ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT
PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH
RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO
THE IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.

8. When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General Notes for
Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by
Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas
Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such
specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific
characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability
product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics
products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily
injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as
safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for
aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are
responsible for evaluating the safety of the final products or systems manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas
Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of
controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these
applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance
with applicable laws and regulations.

11. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is
prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations
promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.

12. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or
transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

13. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
14. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas

Electronics products.

(Note1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled
subsidiaries.

(Note2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.
(Rev.5.0-1 October 2020)

Corporate Headquarters Contact information
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

 For further information on a product, technology, the most up-to-date
version of a document, or your nearest sales office, please visit:
www.renesas.com/contact/.

Trademarks
Renesas and the Renesas logo are trademarks of Renesas Electronics
Corporation. All trademarks and registered trademarks are the property
of their respective owners.

https://www.renesas.com/
https://www.renesas.com/contact/

	1. Root of Trust and its Protection
	1.1 What is Root of Trust
	1.2 Protecting the Root of Trust
	1.3 Introduction to Secure Crypto Engine and Associated Keys

	2. Plaintext User Key Injection
	2.1 Plaintext User Key Injection Features
	2.1.1 Advantages of Key Wrapping over Key Encryption
	2.1.2 Advantages of Key Wrapping using MCU HUK

	2.2 Plaintext User Key Injection Use Cases

	3. Example Project for RA6M4 (SCE9) with AES User Key Handling
	3.1 FSP API Used in the Plaintext Key Wrap
	3.2 Import and Compile the Example Project
	3.3 Setting up the Hardware
	3.4 Running the Example Project

	4. Example Project for RA6M3 (SCE7) AES User Key Handling
	4.1 Import and Compile the Example Project
	4.2 FSP API Used in the Plaintext Key Wrap
	4.3 Setting up the Hardware
	4.4 Running the Example Project

	5. Example Project for RA8M1 (RSIP) AES User Key Injection
	5.1 Import and Compile the Example Project
	5.2 FSP API Used in the Plaintext Key Wrap
	5.3 Setting up the Hardware
	5.4 Running the Example Project

	6. Glossary
	7. References
	8. Website and Support
	Revision History
	General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products
	Notice

