
 Application Note

R11AN0570EU0140 Rev.1.40 Page 1 of 54
Oct.01.24

Renesas RA Family
RA6 MCU Advanced Secure Bootloader Design using
MCUboot and Code Flash Dualbank Mode
Introduction
MCUboot is a secure bootloader for 32-bit MCUs. It defines a common infrastructure for the bootloader,
defines system flash layout on microcontroller systems, and provides a secure bootloader that enables easy
software updates. MCUboot is an operating system and hardware independent and relies on hardware
porting layers from the operating system it works with. The Renesas Flexible Software Package (FSP)
integrates an MCUboot port starting from FSP v3.0.0. Users can benefit from using the FSP MCUboot
Module to create a Root of Trust (RoT) for the system and perform secure booting and fail-safe application
updates.
MCUboot is maintained by Linaro on the GitHub mcu-tools page: https://github.com/mcu-tools/mcuboot.
There is a \docs folder that holds the documentation for MCUboot in .md file format. This application note
refers to the above-mentioned documents wherever possible and is intended to provide additional
information that is related to using the Renesas FSP MCUboot Module.

For RA Family RA6M4, RA6M5, and RA6E1 MCU Groups, the internal code flash has a dual bank feature,
which can be used to simplify and accelerate firmware updates. This dual bank feature is supported by FSP
v3.6.0. This application note demonstrates a secure bootloader design using this dual bank feature for a
Non-TrustZone environment based on RA6M4.

Example projects using the EK-RA6M4 evaluation kit are provided in this application project. Users can
review the flash layout for RA6E1 and RA6M5 and port the application to RA6E1 and RA6M5. In addition,
steps on how to master an application to use with the bootloader and how to update it to a new application
are provided. Users can follow these steps to recreate the reference bootloader and link the example
application projects included in this application project to use the bootloader.

If you are interested in a secure bootloader design using the MCUboot module with RA6 internal flash in
linear mode, please refer to the application project R11AN0497 (Search | Renesas Electronics Corporation).

Required Resources
Development tools and software
• The e2 studio IDE v2024-07
• Renesas Flexible Software Package (FSP) v5.5.0
• SEGGER J-link® USB driver

The above three software components, the FSP, J-Link USB drivers, and e2 studio, are bundled in a
downloadable platform installer available on the FSP webpage at renesas.com/ra/fsp.

• Python v3.9 or later- https://www.python.org/downloads/
• Renesas Flash Programming (RFP) v3.16.00 or later

https://www.renesas.com/us/en/software-tool/renesas-flash-programmer-programming-gui

Hardware
• EK-RA6M4, Evaluation Kit for RA6M4 MCU Group http://www.renesas.com/ra/ek-ra6m4
• Workstation running Windows® 10
• Two USB device cables (type-A male to micro-B male)
• One USB to TTL Serial 3.3-V UART Converter

Prerequisites and Intended Audience
Users of this application project should have some experience with the Renesas e2 studio. Users should
read the MCUboot Port section of the FSP User’s Manual as well as the MCU Hardware User’s manual

https://github.com/mcu-tools/mcuboot
https://www.renesas.com/us/en/search?keywords=R11AN0497EU
http://www.renesas.com/fsp
https://www.python.org/downloads/
https://www.renesas.com/us/en/software-tool/renesas-flash-programmer-programming-gui
http://www.renesas.com/ra/ek-ra6m4

Renesas RA Family RA6 MCU Advanced Secure Bootloader Design using MCUboot and
Code Flash Dualbank Mode

R11AN0570EU0140 Rev.1.40 Page 2 of 54
Oct.01.24

Flash Memory section prior to working with this application project. Users should also have some
knowledge of cryptography. Prior knowledge of Python usage is also helpful.

The intended audience includes product developers, product manufacturers, product support, or end users
who are involved with designing application systems involving the usage of a secure bootloader.

Using this Application Note
Section 1 is an overview of the code flash dual bank feature of RA6M4 and RA6M5 MCUs. Users who are
familiar with the MCU dual bank features can skip this section.

Section 2 covers the general flow of architecting a system using the FSP MCUboot module. For example,
memory configuration for a code flash dual bank-based bootloader using MCUboot is introduced in this
section.

Section 3 covers the introduction to the example projects included in this application project. Users should
review this section to understand how to use the example projects.

Section 4 covers the steps to create a secure bootloader using the code flash dual bank feature and
MCUboot module. Users who will customize the bootloader should review this section to understand how the
bootloader is structured.

Section 5 provides the steps to configure and sign an application to use the bootloader created in section 4.
The examples of projects included are used in this section.

Section 6 provides instructions on how to debug and boot the primary application project and update it to a
new image. Users who will use the dual bank feature for the first time should review this section as it
includes information about:

• Debugging and booting the primary application
• Downloading a new image using the primary image downloader
• Booting the new image

Section 7 covers the production support of provisioning the new MCU with the bootloaders and the initial
application.

Section 8 provides instructions on how to run the included example projects. Users who are familiar with
bootloader design using MCUboot can go to this section for a quick evaluation of the included example
projects.

Renesas RA Family RA6 MCU Advanced Secure Bootloader Design using MCUboot and
Code Flash Dualbank Mode

R11AN0570EU0140 Rev.1.40 Page 3 of 54
Oct.01.24

Contents

1. Code Flash Dual Bank Feature .. 5
1.1 RA6M4 and RA6E1 MCU Group Code Flash Configuration ... 5
1.2 RA6M5 MCU Group Code Flash Configuration .. 8
1.3 Option-Setting Memory ... 11
1.3.1 Code Flash Bank Mode ... 12
1.3.2 Startup Bank Selection .. 12
1.3.3 Bank Swap .. 13
1.3.4 Code Flash Block Protection ... 13

2. Using the Code Flash Dual Bank Feature with MCUboot Overview 14
2.1 MCUboot Functionalities Overview ... 14
2.2 Using MCUboot for Code Flash Dual Bank Mode ... 15
2.2.1 Use Direct XIP Firmware Update Mode .. 15
2.2.2 Memory Configuration Overview with Dual Bank and MCUboot .. 15
2.3 Designing Bootloader and Initial Primary Application Overview ... 16
2.4 Migrating an Existing Code Flash Linear Mode MCUboot-Based System.. 16

3. Guidelines for Using the Example Projects Included .. 16
3.1 Example Projects with Bootloader ... 17
3.2 Example Projects without Bootloader.. 17

4. Creating the Bootloader Project using Code Flash Dual Bank Mode 17
4.1 Include the MCUboot Module in the Bootloader Project ... 17
4.2 Configure the Memory Configuration and Authentication Method .. 21
4.3 Configure the MbedTLS Crypto Only Module and the Flash Driver .. 23
4.4 Add the Boot Code .. 25
4.5 Compile the Bootloader Project ... 26
4.6 Configure the Python Signing Environment .. 26
4.7 Prepare for Production Support ... 27

5. Configuring and Signing an Application Project ... 29
5.1 Configure the Application Project to Use the Bootloader .. 30
5.2 Signing the Application Image ... 30
5.3 Preparation for Production Support ... 32

6. Booting the Primary Application and Updating to a New Image ... 33
6.1 Prepare a Secondary Image ... 33
6.2 Set Up the Hardware ... 36
6.3 Erase the MCU .. 36
6.3.1 Use the Renesas Flash Programmer .. 37
6.3.2 Use the SEGGER J-Flash Lite .. 38

Renesas RA Family RA6 MCU Advanced Secure Bootloader Design using MCUboot and
Code Flash Dualbank Mode

R11AN0570EU0140 Rev.1.40 Page 4 of 54
Oct.01.24

6.3.3 Use Renesas Device Partition Manager ... 39
6.4 Start the Debug Session ... 41
6.5 Program the New Application Using the Primary Application Downloader ... 43
6.6 Boot the New Application .. 45

7. Production Support Considerations ... 46
7.1 Protect the Bootloader using Flash Block Protection .. 46
7.2 Provision the Bootloaders and the Initial Application to MCU ... 48

8. Compile and Exercise the Included Example Bootloader and Application Projects 51
8.1 Using USB as the Download Interface .. 51
8.2 Using the UART as the Download Interface ... 51

9. References .. 52

10. Website and Support ... 53

Revision History .. 54

Renesas RA Family RA6 MCU Advanced Secure Bootloader Design using MCUboot and
Code Flash Dualbank Mode

R11AN0570EU0140 Rev.1.40 Page 5 of 54
Oct.01.24

1. Code Flash Dual Bank Feature
For RA6M4, RA6E1, and RA6M5 MCU groups, the internal flash memory can operate in linear mode or dual
bank mode. In linear mode, the code flash memory is used as one area. In dual bank mode, the code flash
memory is divided into two areas. In code flash dual bank mode, the bank swap function can be used to boot
into a new application for a system that includes a bootloader.

1.1 RA6M4 and RA6E1 MCU Group Code Flash Configuration
Using the 1-Mbyte product as an example, the code flash memory in linear mode for RA6M4 includes the
blocks shown in Figure 1.

Figure 1. RA6M4 and RA6E1 Code Flash Memory in Linear Mode
Upper Bank Address in Code Flash Linear Mode
In code linear mode, the upper bank starting address is half of the code flash size. For example, for the 1-
Mbyte RA6M4 and RA6E1 MCU used in this example project, the starting address of the upper bank address
is 0x80000. The upper bank linear mode address is used when downloading the upper bank bootloader
using MCUboot in code flash dual bank mode.

Renesas RA Family RA6 MCU Advanced Secure Bootloader Design using MCUboot and
Code Flash Dualbank Mode

R11AN0570EU0140 Rev.1.40 Page 6 of 54
Oct.01.24

Using the 1-Mbyte product as an example, the code flash memory in dual bank mode includes the blocks
shown in Figure 2. The default configuration is highlighted in the red box.

Figure 2. RA6M4 and RA6E1 Code Flash Memory in Dual Bank Mode

Renesas RA Family RA6 MCU Advanced Secure Bootloader Design using MCUboot and
Code Flash Dualbank Mode

R11AN0570EU0140 Rev.1.40 Page 7 of 54
Oct.01.24

Table 1 is a summary of the code flash blocks in linear and dual bank mode. The upper bank address in dual
bank mode is 0x200000, regardless of the code flash size. This address should be used with the application
image downloader.

Table 1. RA6M4 and RA6E1 Code Flash

Product
Code Flash Range Address
Linear Dual

1-Mbyte
product

0x0000_0000 to 0x000F_FFFF Lower side bank:
0x0000_0000 to 0x0007_FFFF
Upper side bank:
0x0020_0000 to 0x0027_FFFF

768-Kbytes
product

0x0000_0000 to 0x000B_FFFF Lower side bank:
0x0000_0000 to 0x0005_FFFF
Upper side bank:
0x0020_0000 to 0x0025 FFFF

512 Kbytes
product

0x0000_0000 to 0x0007_FFFF Lower side bank:
0x0000_0000 to 0x0003_FFFF
Upper side bank:
0x0020_0000 to 0x0023_FFFF

Figure 3 is the code flash block structure for the RA6M4 and RA6E1. The code flash erasing and
programming minimum unit is the code flash block size. The block numbering scheme is used in the block
protection design.

Figure 3. RA6M4 and RA6E1 Code Flash Block Structure

Renesas RA Family RA6 MCU Advanced Secure Bootloader Design using MCUboot and
Code Flash Dualbank Mode

R11AN0570EU0140 Rev.1.40 Page 8 of 54
Oct.01.24

1.2 RA6M5 MCU Group Code Flash Configuration
Using the 2-Mbyte product as an example, the code flash memory in linear mode for the RA6M5 includes the
blocks shown in Figure 4.

Figure 4. RA6M5 Code Flash Memory in Linear Mode
Upper Bank Address in Code Flash Linear Mode
In code linear mode, the upper bank starting address is half of the code flash size. For example, for the 2-
Mbyte RA6M5 MCUs, the starting address of the upper bank address is 0x100000. The upper bank linear
mode address is used when downloading the upper bank bootloader when using MCUboot in code flash
dual bank mode.

Using the 2-Mbyte product as an example, the code flash memory for the RA6M5 in dual bank mode
includes the blocks shown in Figure 5. The default configuration is highlighted in the red box.

Renesas RA Family RA6 MCU Advanced Secure Bootloader Design using MCUboot and
Code Flash Dualbank Mode

R11AN0570EU0140 Rev.1.40 Page 9 of 54
Oct.01.24

Figure 5. RA6M5 Code Flash Memory in Dual Bank Mode

Renesas RA Family RA6 MCU Advanced Secure Bootloader Design using MCUboot and
Code Flash Dualbank Mode

R11AN0570EU0140 Rev.1.40 Page 10 of 54
Oct.01.24

Table 2 is a summary of the code flash blocks in linear and dual bank mode for the RA6M5. The upper bank
address in dual bank mode is 0x200000, regardless of the code flash size. This address should be used with
the application image downloader.

Table 2. RA6M5 Code Flash

Product
Code Flash Range Address
Linear Dual

2-Mbytes product 0x0000_0000 to 0x001F_FFFF Lower side bank:
0x0000_0000 to 0x000F_FFFF
Upper side bank:
0x0020_0000 to 0x002F_FFFF

1-MByte product 0x0000_0000 to 0x000F_FFFF Lower side bank:
0x0000_0000 to 0x0007_FFFF
Upper side bank:
0x0020_0000 to 0x0027_FFFF

Figure 6 is the code flash block structure for RA6M5. The code flash erase and programming minimum unit
is the code flash block size. The block numbering scheme is used in the block protection design.

Figure 6. RA6M5 Code Flash Block Structure

Renesas RA Family RA6 MCU Advanced Secure Bootloader Design using MCUboot and
Code Flash Dualbank Mode

R11AN0570EU0140 Rev.1.40 Page 11 of 54
Oct.01.24

1.3 Option-Setting Memory
The description in this section applies to both RA6M4 and RA6M5. The Option-Setting Memory of the
RA6M4 and RA6M5 MCUs determines the state of the MCU after a reset. Several property settings that
relate to the code flash mode are described in this section.

Figure 7. Option-Setting Memory

Renesas RA Family RA6 MCU Advanced Secure Bootloader Design using MCUboot and
Code Flash Dualbank Mode

R11AN0570EU0140 Rev.1.40 Page 12 of 54
Oct.01.24

1.3.1 Code Flash Bank Mode
The register that configures the code flash bank mode is in the Option-Setting Memory of the MCU. As
shown in Figure 7, the Dual Mode Select dual bank select register DUALSEL is located at 0x0100A110.

The DUALSEL register defines whether the code flash is in linear or dual bank mode. For a blank MCU, the
code flash is in linear mode. The user application can change this configuration. With current FSP support,
this register is set up at compile time by configuring the property under the BSP tab (refer to Figure 35).

Figure 8. Register Configuration for Code Flash Dual Bank Mode

1.3.2 Startup Bank Selection
The description in this section applies to RA6E1, RA6M4, and RA6M5 Family MCUs. Bank 0 is the lower
bank for a blank RA6M4 or RA6M5 MCU as defined by the Bank Select registers shown in Figure 9.

Figure 9. Bank 0 is Default at Address 0x00000000

Renesas RA Family RA6 MCU Advanced Secure Bootloader Design using MCUboot and
Code Flash Dualbank Mode

R11AN0570EU0140 Rev.1.40 Page 13 of 54
Oct.01.24

Only secure developers can program BANKSEL_SEC and BANKSEL_SEL registers. The BANKSEL_SEC
register is for secure developers, and the BANKSEL register is for non-secure developers.

BANKSEL_SEL controls whether the BANKSEL or BANKSEL_SEC setting is applied. When BANKSEL_SEL
is 0xFFFFFFF8, the setting in BANKSEL is used. When BANKSEL_SEL is 0xFFFFFFFF, the setting in
BANKSEL_SEC is used. For Non-Trust Zone-based Flat projects, BANKSEL_SEL selects the corresponding
bits in the BANKSEL_SEC register.

1.3.3 Bank Swap
Startup bank selection provides a way to safely update the program by selecting a bank area to be started in
dual mode during a reset.

 BANKSWP[2:0] BANKSWP[2:0]
 bits are 111b bits are 000b

Figure 10. Example of Startup Bank Selection (For Products with 1 Mbyte of Code Flash Memory)
Bank selection can be changed at runtime through the FSP API. The BANKSWP bits in the BANKSEL
register can be changed at the application level. The FSP flash driver provides the
R_FLASH_HP_BankSwap() API to facilitate this action. This API is automatically called from the FSP
MCUboot module. The swap will take effect after the next reset.

1.3.4 Code Flash Block Protection
The RA6M4 and RA6M5 MCUs implement a security function to protect the code flash against illicit
tampering with or reading out of data in flash memory. The registers that define this security function reside
in the Option-Setting Memory. The code flash memory can be temporarily or permanently protected from
programming/erasure operations.

The registers that support the temporary code flash block protection reside in the Option-Setting Memory:

Figure 11. Registers Related to Temporary Code Flash Block Protection
Only secure developers can program the BPS_SEC and BPS_SEL registers. The BPS_SEC register is for
secure developers, and the BPS register is for non-secure developers. The applied setting value is
determined by the value of the corresponding bit in the BPS_SEL register. BPS_SEL controls whether the
BPS or BPS_SEC setting is applied. When BPS_SEL is 0xFFFFFFF8, the setting in BPS is used. When

Renesas RA Family RA6 MCU Advanced Secure Bootloader Design using MCUboot and
Code Flash Dualbank Mode

R11AN0570EU0140 Rev.1.40 Page 14 of 54
Oct.01.24

BPS_SEL is 0xFFFFFFFF, the setting in BPS_SEC is used. For Non-Trust Zone-based Flat projects,
BSP_SEL selects the corresponding bits in the BSP_SEC register. The BPS and BPS_SEC registers
invalidate the programming and erasure to the code flash memory. When a BPS/BPS_SEC bit is 0, the
programming and erasure to the corresponding block are invalid.

These registers can be set by configuring the BSP stack in the RA configurator, as shown in Figure 84 and
Figure 85.

The registers that support the permanent code flash block protection reside in the Option-Setting Memory:

Figure 12. Registers Related with Permanent Code Flash Block Protection
Only secure developers can program the PBPS_SEC and PBPS_SEL registers. The PBPS_SEC register is
for secure developers, and the PBPS register is for non-secure developers. The applied setting value is
determined by the set value of the corresponding bit in the PBPS_SEL register. PBPS_SEL controls whether
the BPS or BPS_SEC setting is applied. When PBPS_SEL is 0xFFFFFFF8, the setting in PBPS is used.
When PBPS_SEL is 0xFFFFFFFF, the setting in PBPS_SEC is used. For Non-Trust Zone-based Flat
projects, PBSP_SEL selects the corresponding bits in the PBSP_SEC register. The PBPS and PBPS_SEC
registers invalidate the programming and erasure to the code flash memory. When a PBPS/PBPS_SEC bit is
0, the programming and erasure to the corresponding block are invalid.

Setting of these registers can be achieved by configuring the BSP Properties in the RA configurator as
shown in Figure 86 and Figure 87.

2. Using the Code Flash Dual Bank Feature with MCUboot Overview
MCUboot evolved out of the Apache Mynewt bootloader, which was created by runtime.io. MCUboot was
then acquired by JuulLabs in November 2018. The MCUboot Github repo was later migrated from JuulLabs
to the mcu-tools github project. In year 2020, MCUboot was moved under the Linaro Community Project
umbrella as an open-source project.

2.1 MCUboot Functionalities Overview
MCUboot handles the firmware authenticity check after start-up, and the firmware switch part of the firmware
update process. Downloading the new version of the firmware is out-of-scope for MCUboot. Typically,
downloading the new version of the firmware is a functionality that is provided by the application project itself.
This application project provides an example of downloading a new image using the XModem protocol from
the application project.

The functionality of MCUboot during booting and updating follows the process below:

The bootloader starts when the CPU is released from reset. If there are images in the Secondary App
memory marked as to be updated, the bootloader performs the following actions:

1. The bootloader authenticates the Secondary image.
2. Upon successful authentication, the bootloader switches to the new image based on the update method

selected. Available update methods supported by FSP are overwrite, swap, and direct XIP.
3. The bootloader boots the new image.

If there is no new image in the Secondary App memory region, the bootloader authenticates the Primary
applications and boots the Primary image.

The authentication of the application is configurable in terms of the authentication methods and whether the
authentication is to be performed with MCUboot. If authentication is to be performed, the available methods
are RSA or ECDSA. The firmware image is authenticated by hash (SHA-256) and digital signature validation.

https://github.com/mcu-tools/mcuboot

Renesas RA Family RA6 MCU Advanced Secure Bootloader Design using MCUboot and
Code Flash Dualbank Mode

R11AN0570EU0140 Rev.1.40 Page 15 of 54
Oct.01.24

The public key used for digital signature validation can be built into the bootloader image or provisioned into
the MCU during manufacturing. In the examples included in this application project, the public key is built into
the bootloader images.

There is a signing tool included with MCUboot: imgtool.py. This tool provides services for creating root
keys, managing key values, and signing and packaging an image with version controls. Read the MCUboot
documentation to understand and use these operations.

2.2 Using MCUboot for Code Flash Dual Bank Mode
The FSP supports overwrite, swap, and direct XIP (execute-in-place) update mode. For flash dual bank
mode, only direct XIP mode is supported. The benefits of using code flash dual bank mode in a system
including a bootloader are concurrent download of new images and faster switching to the new image, in
addition to the safety features provided by the MCUboot module as explained in section 2.2.1.

2.2.1 Use Direct XIP Firmware Update Mode
When using direct XIP mode with code flash in linear mode, the active image slot alternates with each
firmware update. If this update method is used, then two firmware update images must be generated: one of
them is linked to be executed from the primary slot memory region, and the other is linked to be executed
from the secondary slot. Direct XIP is supported in FSP versions 3.6.0 and later.

• Advantages:
• Faster boot time, as there is no overwrite or swap of application images needed.
• Fail-safe and resistant to power-cut failures.

• Disadvantages:
• Added application-level complexity to determine which firmware image needs to be downloaded.
• Encrypted image support is not available.

For an overview and usage of other update modes, refer to R11AN0497 and the MCUboot design page:

https://github.com/mcu-tools/mcuboot/blob/master/docs/design.md

When using direct XIP mode with code flash in dual bank mode, both primary and secondary images are
linked to be executed from the primary slot memory region.

Note: For Direct XIP mode, downgrade prevention is supported from the MCUboot side. When using flash
dual bank mode, the update image needs to have a version number higher than the current primary
image.

2.2.2 Memory Configuration Overview with Dual Bank and MCUboot
The FSP MCUboot module with Flash Dual Bank mode needs a bootloader for both the lower bank and the
upper bank, as shown in Figure 13. In addition, the memory allocation for the bootloader and application
image must be identical.

Figure 13. Memory Architecture Using Flash Dual Bank Mode and MCUboot

https://github.com/mcu-tools/mcuboot/blob/master/docs/imgtool.md
https://github.com/mcu-tools/mcuboot/blob/master/docs/design.md

Renesas RA Family RA6 MCU Advanced Secure Bootloader Design using MCUboot and
Code Flash Dualbank Mode

R11AN0570EU0140 Rev.1.40 Page 16 of 54
Oct.01.24

2.3 Designing Bootloader and Initial Primary Application Overview
A bootloader is typically designed with the initial primary application. The following general guidelines apply
to designing the bootloader and the initial primary application:

• Develop the bootloader and analyze the MCU memory resource allocation needed for the bootloader
and the application. The bootloader memory usage is influenced by the application image update mode,
signature type, and whether to validate the Primary Image as well as the cryptographic library used.

• Develop the initial primary application, perform the memory usage analysis, compare it with the
bootloader memory allocation for consistency, and adjust it as needed.

• Determine the bootloader configurations in terms of image authentication and new image update mode.
This may result in the adjustment of the memory allocated definition in the bootloader project.

• Sign the application image. The signing command is output to the <bootloader
project>\Debug\>bootloader project>.bld file. The application image can use a Build Variable
to access this .bld file. The IDE tools use the signing command to sign the application and generate a
binary file for downloading to the MCU.

• Test the bootloader and the initial primary application.

The above guidelines are demonstrated in the walk-through sections in this application note.

2.4 Migrating an Existing Code Flash Linear Mode MCUboot-Based System
Users can follow the general steps below to migrate an MCUboot-based application system from code flash
linear mode to code flash dual bank mode:

1. Updates for the bootloader project:
A. Update the code flash mode from linear mode to dual mode in the BSP tab, as shown in Figure

35.
B. Update the application image code flash memory allocation if needed. See section 4.2 for details.

2. Updates for the application projects:
A. For image downloader implementation, the image download address needs to be updated. Refer

to the \src\header.h in the example application project to understand where the updates need to
happen.

B. For development purposes, the debug configuration for the primary application needs to be
updated. Refer to the debug configuration for the app_primary_usb project under the
\example_projects_with_bootloader folder to perform the update.

C. For production support, the scripts to generate the .srec file using the signed image need to be
updated. Refer to section 5.3 to understand the updates needed.

3. Guidelines for Using the Example Projects Included
Unzip ra6-advanced-mcuboot-flash-dual-bank.zip to unpack the example projects included in this
application project.

Figure 14. Example Projects Included

Renesas RA Family RA6 MCU Advanced Secure Bootloader Design using MCUboot and
Code Flash Dualbank Mode

R11AN0570EU0140 Rev.1.40 Page 17 of 54
Oct.01.24

3.1 Example Projects with Bootloader
Folder \example_projects_with_bootloader includes a bootloader, which supports the flash dual
bank feature, as well as example applications using USB or UART as the communication channel to
download new application images that are configured to use the bootloader included in this folder. Users with
experience working with the MCUboot module can follow section 8 to directly exercise these example
projects. The corresponding subfolders are:

• ra_mcuboot_ra6m4_dualbank: Bootloader, which enables dual bank and direct XIP update mode.
• app_primary_usb: Primary application, which is configured to work with the bootloader and

implements XModem over USB VCOM to download a new application image. FreeRTOS is used with
two threads; one thread blinks the three LEDs on EK-RA6M4, while the other thread downloads the new
application image concurrently.

• app_secondary_usb: Secondary application, which implements the same functionality as
app_primary_usb except only the blue and green LEDs are blinked.

• app_primary_uart: Primary application, which is configured to work with the bootloader and
implements XModem over UART to download a new application image. FreeRTOS is used with two
threads; one thread blinks the three LEDs on EK-RA6M4, while the other thread downloads the new
application image concurrently.

• app_secondary_uart: Secondary application, which implements the same functionality as
app_primary_uart except only the blue and green LEDs are blinked.

3.2 Example Projects without Bootloader
Folder \example_projects_without_bootloader includes standalone example projects that a user
can configure to use the bootloader project, following section 5. Note that these application projects do not
run correctly if the flash dual bank mode is not enabled because the image downloader routine included
assumes the location of the new image is in the upper bank of the RA6M4 code flash. The subfolders are:

• app_primary_usb: Same functionality as
\example_projects_with_bootloader\app_primary_usb, except it is not configured to work
with the bootloader.

• app_primary_uart: Same functionality as
\example_projects_with_bootloader\app_primary_uart, except it is not configured to work
with the bootloader.

A user can also use a customized application project that implements image downloading and follow

section 5 to use the bootloader.

4. Creating the Bootloader Project using Code Flash Dual Bank Mode
This section demonstrates the creation process of the bootloader project utilizing MCUboot and the Flash
Dual Bank Mode with the RA6M4 running in non-TrustZone mode.

4.1 Include the MCUboot Module in the Bootloader Project
Follow the below steps to start the bootloader project creation and include the MCUboot module in the
project:

1. Launch e2 studio and start a new C/C++ Project. Click File > New > C/C++ Project.

Figure 15. Start a New Project

Renesas RA Family RA6 MCU Advanced Secure Bootloader Design using MCUboot and
Code Flash Dualbank Mode

R11AN0570EU0140 Rev.1.40 Page 18 of 54
Oct.01.24

2. Choose Renesas RA->Renesas RA C/C++ Project. Click Next.

Figure 16. Choose Renesas RA C/C++ Project
3. Provide the project name ra_mcuboot_ra6m4_dualbank in the next screen. Click Next.
4. In the next screen, choose EK-RA6M4 for Board and click Next.

Figure 17. Select the Board

5. When the following screen appears, select Flat (Non-TrustZone) Project.

Figure 18. Choose Flat Project as Project Type

Renesas RA Family RA6 MCU Advanced Secure Bootloader Design using MCUboot and
Code Flash Dualbank Mode

R11AN0570EU0140 Rev.1.40 Page 19 of 54
Oct.01.24

6. Choose Executable for Build Artifact Selection and No RTOS. Click Next.

Figure 19. Choose to Build Executable and No RTOS

7. Choose Bare Metal – Minimal for the Project Template in the next screen and click Finish to establish
the initial project.

Figure 20. Choose the Project Template

8. When the following prompt opens, click Open Perspective.

Figure 21. Choose Open the FSP Configuration Perspective

The project is then created and the bootloader project configuration is displayed.
9. Select the Pins tab and uncheck Generate data for RA6M4 EK.

Figure 22. Uncheck Generate data for RA6M4 EK Pin Configuration

Renesas RA Family RA6 MCU Advanced Secure Bootloader Design using MCUboot and
Code Flash Dualbank Mode

R11AN0570EU0140 Rev.1.40 Page 20 of 54
Oct.01.24

Use the pull-down menu to switch from RA6M4 EK to R7FA6M4AF3CFB.pincfg for the Select Pin
Configuration option, then select the Generate data check box and enter g_bsp_pin_cfg. Note that
here, we choose to use this configuration, which has fewer peripherals/pins configured since the
bootloader does not use the extra peripheral or GPIO pins configured in the RA6M4 EK configuration.
This also reduces some memory usage for the bootloader project.

Figure 23. Select g_bsp_pin_cfg and Generate data g_bsp_pin_cfg

10. Once the project is created, click the Stacks tab on the RA configurator. Add New Stack -> Bootloader
-> MCUboot.

Figure 24. Add the MCUboot Port

11. Next, configure the General properties of MCUboot. We will resolve the errors in the configurator in the
following steps.
For the MCUboot module, configure the Update Mode to Direct XIP and Number of Images Per
Application to 1.

Figure 25. General Configuration for MCUboot Module

Renesas RA Family RA6 MCU Advanced Secure Bootloader Design using MCUboot and
Code Flash Dualbank Mode

R11AN0570EU0140 Rev.1.40 Page 21 of 54
Oct.01.24

The properties configured are:

• Custom mcuboot_config.h: The default mcuboot_config.h file contains the MCUboot Module
configuration that the user selected from the RA configurator. The user can create a custom version of
this file to achieve additional bootloader functionalities that are available in MCUboot.

• Upgrade Mode: This property configures the application image upgrade method. The available options
are Overwrite Only, Overwrite Only Fast, Swap, and Direct XIP. Only Direct XIP is supported for flash
dual bank operation.

• Validate Primary Image: When enabled, the bootloader will perform a hash or signature verification,
depending on the verification method chosen, in addition to the MCUboot magic number-based sanity
check. When disabled, only a sanity check is performed based on the MCUboot magic number.

• Number of Images Per Application: This property allows the user to choose one image for Non-
TrustZone-based applications and two images for TrustZone-based applications. Set this property to 1.

• Downgrade Prevention (Overwrite Only): This property applies to Overwrite upgrade mode only.
When this property is Enabled, new firmware with a lower version number will not overwrite the existing
application.

Note: For Direct XIP mode, download grade prevention is supported from the MCUboot side. When using

flash dual bank mode, the update image needs to have a version number higher than the current
primary image.

4.2 Configure the Memory Configuration and Authentication Method
Configure the Signing Options and Flash Layout of the MCUboot module. For the EK-RA6M4, the default
memory for the code flash dual bank mode is shown in Figure 26. This default memory map is used for the
example bootloader design.

Figure 26. MCUboot Dual Bank Memory Map
Follow Figure 27 to update the properties for the Flash Layout to match with the MCUboot Dual Bank
memory map.

Renesas RA Family RA6 MCU Advanced Secure Bootloader Design using MCUboot and
Code Flash Dualbank Mode

R11AN0570EU0140 Rev.1.40 Page 22 of 54
Oct.01.24

Figure 27. Configure the Flash Layout and Signing Options
Explanation of the Above Configurations:
• Bootloader Flash Area: Size of the flash area allocated for the bootloader, with a boundary of 0x8000

since 0x8000 is the minimum erase size for RA6M4 code flash.
• Image 1 Header Size: Size of the code flash reserved for the application image header. It must meet

minimum VTOR alignment requirements based on the number of interrupts implemented on the RA6M4.
For the RA6M4, this property should be set to a minimum of 0x200 to support all interrupts.

• Image 1 Flash Area Size: Size of application image 1, including the header and trailer. For the RA6M4,
this size needs to be on a boundary of 0x8000, which is the smallest flash erase size.

• Scratch Flash Area Size: This property is only needed for Swap mode. This property is not used for the
flash dual bank bootloader design.

• Signature Type: Signing algorithm selection. The choices are:
• NONE: Select this option for bootloaders that do not support signature verification.
• ECDSA P-256: Select this option for this example bootloader design.
• RSA 2048 and RSA 3072: Typically, this option is not used as the time used in the authentication is

much longer than the ECDSA P-256.
• Application images using MCUboot must be signed to work with MCUboot. At a minimum, this

involves adding a hash and an MCUboot-specific constant value in the image trailer.
• Custom: Use the default --confirm for this bootloader design. Switching to a new image is always

confirmed, and the new image will be booted after a subsequent system reset. Reverting the image with
Direct XIP is not supported with the current FSP version.

• Encryption Scheme: Encryption is disabled in this example implementation.

Renesas RA Family RA6 MCU Advanced Secure Bootloader Design using MCUboot and
Code Flash Dualbank Mode

R11AN0570EU0140 Rev.1.40 Page 23 of 54
Oct.01.24

4.3 Configure the MbedTLS Crypto Only Module and the Flash Driver
Follow the steps below to configure the MbedTLS module and the flash driver:

1. Right-click on Add Crypto Stack and select the MbedTLS (Crypto Only) module.

Figure 28. Select MbedTLS Crypto Only Module

2. Click on Add Requires Flash stack and select Flash (r_flash_hp) stack.

Figure 29. Add the Flash Driver
3. Next, set the Code Flash Programming to Enabled. As Data Flash Programming is not used in the

bootloader, select Disabled for the Data Flash Programming to reduce the bootloader memory
footprint.

Figure 30. Configure the Flash Driver

Renesas RA Family RA6 MCU Advanced Secure Bootloader Design using MCUboot and
Code Flash Dualbank Mode

R11AN0570EU0140 Rev.1.40 Page 24 of 54
Oct.01.24

4. Configure the following properties of the MbedTLS (Crypto Only) module:

Figure 31. Configure the MbedTLS (Crypto Only) Module
5. Disable RSA to save some memory usage.

Figure 32. Disable RSA

Renesas RA Family RA6 MCU Advanced Secure Bootloader Design using MCUboot and
Code Flash Dualbank Mode

R11AN0570EU0140 Rev.1.40 Page 25 of 54
Oct.01.24

6. Set up the Stack and Heap used by the bootloader based on the authentication mode. Set the following
values in the BSP tab:

Figure 33. Configure the BSP Stack and Heap Usage
7. Add the Example Production Key module. DO NOT use the example key for production support. Users

can reference the R11AN0567 section “Using Custom Signing Key and Encryption Key” for a method to
create a customized user signing key.

Figure 34. Add the Example Production Key module
8. Enable the Dual Bank Mode under the BSP tab.

Figure 35. Enable Flash Dual Bank Mode

4.4 Add the Boot Code
Save configuration.xml and click Generate Project Content. Then, expand the Developer
Assistance->HAL/Common->MCUboot->Quick Setup and drag Call Quick Setup to the top of the
hal_entry.c of the bootloader project.

Add the following function call to the top of the hal_entry() function:

mcuboot_quick_setup();

Renesas RA Family RA6 MCU Advanced Secure Bootloader Design using MCUboot and
Code Flash Dualbank Mode

R11AN0570EU0140 Rev.1.40 Page 26 of 54
Oct.01.24

4.5 Compile the Bootloader Project
In the RA configurator, click Generate Project Content, then compile the project.

Figure 36. Compile the Bootloader ra_mcuboot_ra6m4_dualbank
There are warnings from third-party code.

4.6 Configure the Python Signing Environment
Signing the application image can be done using a post-build step in e2 studio, using the image signing tool
imgtool.py, which is included with MCUboot. This tool is integrated as a post-build tool in e2 studio to sign
the application image. If this is NOT the first time you have used the Python script signing tool on your
computer, you can skip to section 5.

If this is the first time you are using the Python script signing tool on your system, you will need to install the
dependencies required for the script to work. Navigate to the ra_mcuboot_ra6m4_dualbank > ra > mcu-
tools > MCUboot folder in the Project Explorer, right click and select Command Prompt. This will open a
command window with the path set to the \mcu-tools\MCUboot folder.

Figure 37. Open the Command Prompt
We recommend upgrading the pip prior to installing the dependencies. Enter the following command to
update pip:

python -m pip install --upgrade pip

Next, in the command window, enter the following command line to install all the MCUboot dependencies:

pip3 install --user -r scripts/requirements.txt

This will verify and install any required dependencies.

Renesas RA Family RA6 MCU Advanced Secure Bootloader Design using MCUboot and
Code Flash Dualbank Mode

R11AN0570EU0140 Rev.1.40 Page 27 of 54
Oct.01.24

Review the Signing Command
The signing command for the application image will be automatically generated when the bootloader is
compiled. In the Project Explorer, open the
ra_mcuboot_ra6m4_dualbank\Debug\ra_mcuboot_ra6m4_dualbank.bld file. The signing
command is under the section <image>.

The application image uses a Build Variable to link with the .bld file. This process is explained in detail in
the section 5.1. The application image has access to the .bld file, and the signing command will be
automatically executed when the application image is compiled.

Figure 38. Signing Command in the .bld File

4.7 Prepare for Production Support
For production support, generate a .srec file of the bootloader to be loaded to the upper bank. This can be
done by configuring a custom Builder within e2 studio for the bootloader project.

This application project includes a bat file, process_bootloader.bat, which runs a script using
srec_cat.exe to generate a .srec file, ra_mcuboot_ra6m4_dualbank_offset.srec, which offsets the
bootloader offset to the RA6M4 flash linear mode upper bank address at 0x80000.

Note that for MCUs with different code flash sizes, the upper bank address needs to be updated accordingly.
As explained in sections 1.1 and 1.2, this address is at half of the code flash size.

Since the option-setting memory is located outside of the bank range, this process also truncates the
bootloader to the bank size, which is 0x80000.

srec_cat Debug\ra_mcuboot_ra6m4_dualbank.srec -crop 0 0x80000 -offset 0x80000 -o
ra_mcuboot_ra6m4_dualbank_offset.srec

Figure 39. Process the Bootloader to Load to the Upper Bank: process_bootloader.bat
Follow the steps below to configure the custom Builder in the bootloader project just created:

1. Unzip ra6-advanced-mcuboot-flash-dual-bank.zip and copy
\ra_mcuboot_ra6m4_dualbank\process_bootloader.bat as well as srec_cat.exe, located in
the same folder, to the project root folder of the bootloader project just created.

2. Right-click on the bootloader project, open the Properties page, and navigate to the Builders page.
Click New to start creating the customized Builder.

Figure 40. Create a New Custom Builder Entry

Renesas RA Family RA6 MCU Advanced Secure Bootloader Design using MCUboot and
Code Flash Dualbank Mode

R11AN0570EU0140 Rev.1.40 Page 28 of 54
Oct.01.24

3. Select Program in the next screen, then click OK:

Figure 41. Select the Type of the Builder as Program

4. Next, provide the new Builder name Process Bootloader and click Browse Workspace to select
process_bootloader.bat file as the Location of the Builder. Also, click Browse Workspace to set
the Working Directory as shown below. Then, click Apply.

Figure 42. Configure the Custom Builder

Renesas RA Family RA6 MCU Advanced Secure Bootloader Design using MCUboot and
Code Flash Dualbank Mode

R11AN0570EU0140 Rev.1.40 Page 29 of 54
Oct.01.24

5. Click OK, then Apply and Close at the next screen.

Figure 43. Custom Builder
6. Recompile the bootloader project and notice that ra_mcuboot_ra6m4_dualbank_offset.srec is

created under the bootloader project root directory.

Figure 44. Rebuild the Bootloader with the Custom Builder

5. Configuring and Signing an Application Project
Developing an initial application to use a bootloader starts with developing and testing the application and
the bootloader independently. Using the bootloader with an existing application or developing a new
application to use the bootloader involves the following common steps:

• Adjust the memory map of the bootloader to allow the application and bootloader to fit the available MCU
memory area.

• Configure the application to use the bootloader.
• Sign the application image.
• Developing an application to use a bootloader typically requires the application to have the capability to

download a new application. This application project demonstrates how to download a new application
using the USB and UART interfaces as examples. Users typically have custom methods to download
new application images.

Renesas RA Family RA6 MCU Advanced Secure Bootloader Design using MCUboot and
Code Flash Dualbank Mode

R11AN0570EU0140 Rev.1.40 Page 30 of 54
Oct.01.24

5.1 Configure the Application Project to Use the Bootloader
Users can follow FSP User’s Manual section Tutorial: Your First RA MCU Project – Blinky to establish a new
project. This application note uses the included example project as the initial application project and guides
the user through the procedures to configure the example project to use the bootloader established in
section 4.

Note that the steps described in this section can be applied to other existing application projects to configure
the application project to use the bootloader. Be sure to consider the size the application project. When using
the bootloader with a different application project, the Image 1 Flash Area Size property should be adjusted
accordingly.

Import the desired application projects under folder \example_projects_without_bootloader to the
workspace where the bootloader is created. For example, if the intended firmware update channel is USB,
import app_primary_usb into the workspace.

Note: In this section’s illustrations, the USB interface is used. The procedure for using the UART interface is
similar to using USB.

Right-click on the application project folder app_primary_usb in the Project Explorer and select
Properties. Select C/C++ Build > Build Variables, click Add and set the Variable name to
BootloaderDataFile, and check the Apply to all configurations box. Change the Type to File and enter
the path to the .bld file for the bootloader project ra_mcuboot_ra6m4_dualbank:

• Set ${workspace_loc:ra_mcuboot_ra6m4_dualbank}/Debug/ra_mcuboot_ra6m4_dualbank.bld for
the value.

Figure 45. Configure the Build Variable to Use the Bootloader
Click OK, then Apply and Apply and Close in the next screen.

5.2 Signing the Application Image
Note: If you rebuild the bootloader project after changing any of the signing and signature Properties of the

MCUboot module, you will need to Generate Project Content again to bring in the updated .bld file.
When using Direct XIP mode, each application can define a version number. This is achieved by defining an
Environment Variable: MCUBOOT_IMAGE_VERSION.

For applications that support signature verification, the signing key can be configured using Environment
Variable MCUBOOT_IMAGE_SIGNING_KEY. If there is no signature verification, then it is not necessary to
set Environment Variable MCUBOOT_IMAGE_SIGNING_KEY.

Open the Properties page of the project app_primary_usb, under Environment, click Add and configure
MCUBOOT_IMAGE_VERSION.

Renesas RA Family RA6 MCU Advanced Secure Bootloader Design using MCUboot and
Code Flash Dualbank Mode

R11AN0570EU0140 Rev.1.40 Page 31 of 54
Oct.01.24

Figure 46. Configure the Application Version
Similarly, add the new variable for MCUBOOT_IMAGE_SIGNING_KEY.

Figure 47. Configure the Private Signing Key
Note that the private key used for signing the application image is indicated in the signing command.
${workspace_loc:ra_mcuboot_ra6m4_dualbank}/ra/mcu-tools/MCUboot/root-ec-p256.pem
is used for the example bootloaders. This key is used for testing purpose only. For real world use case and
production support, users MUST change this to the private key of their choice.

Renesas RA Family RA6 MCU Advanced Secure Bootloader Design using MCUboot and
Code Flash Dualbank Mode

R11AN0570EU0140 Rev.1.40 Page 32 of 54
Oct.01.24

Figure 48 is the result of the above configuration. Click Apply and Close.

Figure 48. Configure the Application Image version number and Signing Key
To be able to recompile the project whenever the Environment Variables are updated, it is recommended
add a Pre-build step to always delete the .elf file, as shown in Figure 49, so the application project is
always recompiled.

Figure 49. Configure the Pre-build Command
At this point, a user can click Generate Project Content and compile the newly created application project
and ensure that \Debug\app_primary_usb.bin.signed is generated.

5.3 Preparation for Production Support
For production support, a .srec file based on the signed application image needs to be generated.
This .srec file offsets the application to the start address of the primary application, 0x10000 based on
Figure 26.

srec_cat Debug\app_primary_usb.bin.signed -binary -offset 0x10000 -o
app_primary_usb_singed_offset.srec

Figure 50. Create app_primary_usb_signed_offset.srec
Follow steps similar to section 4.7 to add the custom Builder and compile the primary application:

1. Copy \example_projects_with_bootloader\app_primary_usb\srec_cat.exe and
process_signed_binary_primary.bat to the root of project app_primary_usb.

2. Follow section 4.7 to create the new Builder. The finished configuration should look like Figure 51.

Renesas RA Family RA6 MCU Advanced Secure Bootloader Design using MCUboot and
Code Flash Dualbank Mode

R11AN0570EU0140 Rev.1.40 Page 33 of 54
Oct.01.24

Figure 51. Configure the Custom Builder for the Primary Application
3. Click Generate Project Content and compile the app_primary_usb project. Ensure that

app_primary_usb_signed_offset.srec is generated under the root of the app_primary_usb
project.

Figure 52. Signed Primary Image Offset to the Primary Slot

6. Booting the Primary Application and Updating to a New Image
To update the application, the primary application needs to provide an image downloader. A new image will
also need to be prepared to test the image downloader function.

6.1 Prepare a Secondary Image
In this project, a secondary image is created to test the downloading functionality of the primary application.
The new application can be created by either modifying the existing application or creating a new application
project. If a new application project is used, the user needs to establish the linkage to the bootloader by

Renesas RA Family RA6 MCU Advanced Secure Bootloader Design using MCUboot and
Code Flash Dualbank Mode

R11AN0570EU0140 Rev.1.40 Page 34 of 54
Oct.01.24

following section 5. The newly created application project must also provide a method to download the new
application to the upper bank.

In this application project, we will import the initial application project to the same workspace, rename the
new project, and perform minor updates.

Right-click in the white space in the Project Explorer area and select Import and choose Rename & Import
Existing C/C++ Project into Workspace.

Figure 53. Import the Initial Application
Once the Import window opens, name the project app_secondary_usb, check Select root directory, and
click Browse:

Figure 54. Name the New Application
Browse into the Workspace folder and select app_primary_usb.

Renesas RA Family RA6 MCU Advanced Secure Bootloader Design using MCUboot and
Code Flash Dualbank Mode

R11AN0570EU0140 Rev.1.40 Page 35 of 54
Oct.01.24

Figure 55. Select to Initial Primary Application
Click Finish. The new application project will be created with the following attributes:

• When importing the primary application, the Build Variable and Environment Variables are
automatically imported.

• The custom Builder “Process Signed Binary Primary” is also imported. For a clean project, a user must
manually remove this Builder and the corresponding support files from the secondary project.

• Unlike in normal XIP Mode operation, the linker script symbol XIP_SECONDARY_SLOT_IMAGE must
be undefined in Dual Bank mode. By default, XIP_SECONDARY_SLOT_IMAGE is undefined in the
linker script symbol, so no action needs to be taken here.

Change the Enviroment variable for the Secondary Image version, shown in Figure 56.

Figure 56. Change MCUBOOT_IMAGE_VERSION Variable

Renesas RA Family RA6 MCU Advanced Secure Bootloader Design using MCUboot and
Code Flash Dualbank Mode

R11AN0570EU0140 Rev.1.40 Page 36 of 54
Oct.01.24

Update Existing Application to a New Application
To demonstrate the application update, update the application to blink the blue and green LED only.

Perform the following code updates in blinky_thread_entry.c:

Change below section of code in blinky_thread_entry:
/* Update all board LEDs */

 for (uint32_t i = 0; i < leds.led_count; i++)

 {

 /* Get pin to toggle */

 uint32_t pin = leds.p_leds[i];

 /* Write to this pin */

 R_BSP_PinWrite((bsp_io_port_pin_t) pin, pin_level);

}

To:
/* update the blue led */

 R_BSP_PinWrite(leds.p_leds[0], pin_level);

 /* update the green led */

 R_BSP_PinWrite(leds.p_leds[1], pin_level);

Figure 57. Update the LED Control
Save the updated source file, click Generate Project Content, then compile the new project.

If you create a new application project and would like to debug the new project with the bootloader, follow the
instructions in section 5. When debugging an update image with the bootloader, you can treat the update
image as the primary application.

6.2 Set Up the Hardware
If using app_primary_usb as the initial application project:

• Connect J10 (USB Debug) using a USB micro to B cable from the EK-RA6M4 to the development PC to
provide power and debug connection using the on-board debugger.

• USB FS device mode jumper setting: connect pin 2, 3 on J12, connect jumper J15.
• Connect J11 (USB FS) using a USB micro to B cable from the EK-RA6M4 to the development PC to

provide USB Device connection.

If using app_primary_uart as the initial application project:

• Connect J10 using a USB micro to B cable from the EK-RA6M4 to the development PC to provide power
and debug connection using the on-board debugger.

• Connect the three pins in Table 3 on the UART to USB converter to the EK-RA6M4.

Table 3. Connection through the UART Interface

UART to USB Converter RA6M4
RX P101 (TX)
TX P100 (RX)
GND GND

6.3 Erase the MCU
When MCUboot is used in flash dual bank mode, the code flash mode needs to start in linear mode. Erasing
the MCU Option-Setting Memory settings will configure the code flash mode to linear mode. Erasing the
entire MCU memory is recommended. The MCU can be erased through a variety of methods. A user can
erase the MCU flash using the Renesas Device Partition Manager, Renesas Flash Programmer, or third-
party tools like JFlash Lite.

Renesas RA Family RA6 MCU Advanced Secure Bootloader Design using MCUboot and
Code Flash Dualbank Mode

R11AN0570EU0140 Rev.1.40 Page 37 of 54
Oct.01.24

Note: If the MCU is in code flash dual bank mode, restore to linear mode before proceeding to the rest of
the application note sections. The rest of the operations assume the device starts in code flash linear
mode. They will not work if the device is already in code flash dual bank mode.

6.3.1 Use the Renesas Flash Programmer
The Renesas Flash Programmer (RFP) can detect the flash mode when a new RFP project is created.

Note: Prior to connecting with the RFP, power cycle the development board.
Connect the EK-RA6M4 to the PC through the J10 USB Debug. Launch RFP and create a new RFP project.
Click File -> New Project.

Figure 58. Create a New RFP Project
Configure the Microcontroller selection and the Tool used for communication. Then, click Connect.

Figure 59. Configure the New Project
Once the connection is successfully established, the user can open the Block Settings page to check the
Code Flash configurations.

If RA6M4 flash is in code flash linear mode, Blocks Settings are presented as in Figure 60.

Figure 60. Flash in Linear Mode
If the RA6M4 flash is in flash dual bank mode, Block Settings are presented as in Figure 61.

Renesas RA Family RA6 MCU Advanced Secure Bootloader Design using MCUboot and
Code Flash Dualbank Mode

R11AN0570EU0140 Rev.1.40 Page 38 of 54
Oct.01.24

Figure 61. Flash in Dual Bank Mode
Whether the MCU is in flash dual bank mode or flash linear mode, the Initialize Device command can erase
the entire flash, including the Config Area, and thus return the MCU to code flash linear mode.

Figure 62. Initialize Device Command
If the Initialize Device is successful, the message in Figure 63 will be presented in the status window.

Figure 63. Initialize Device Succeeded

6.3.2 Use the SEGGER J-Flash Lite
J-Flash Lite is a free, simple graphical user interface which allows downloading into flash memory of target
systems. J-Flash Lite is part of the J-Link Software and Documentation package that is installed when the J-
Link software & documentation pack is installed.
To use J-Flash Lite, connect the USB Debug port J10 to the PC and launch J-Flash Lite. Select the Device
and debug Interface and communication speed.

Figure 64. Launch the J-Flash Lite
Click OK. In the next screen, select Erase Chip.

https://www.segger.com/downloads/jlink/
https://www.segger.com/downloads/jlink/

Renesas RA Family RA6 MCU Advanced Secure Bootloader Design using MCUboot and
Code Flash Dualbank Mode

R11AN0570EU0140 Rev.1.40 Page 39 of 54
Oct.01.24

Figure 65. Erase the MCU using J-Flash Lite
Note that when using Segger J-Flash Lite 7.98b or earlier, the Erase operation needs to be performed twice
if the device is already in dual bank mode. This may be fixed in later J-Flash Lite versions.

6.3.3 Use Renesas Device Partition Manager
Power cycle the evaluation board EK-RA6M4 after a debug session to use the Renesas Device Partition
Manager. Within e2 studio, navigate to Run -> Renesas Debug Tools -> Renesas Device Partition
Manager. Select J-Link as the connection method and select action Initialize device back to factory
default.
Click Run. The MCU will be erased.

Renesas RA Family RA6 MCU Advanced Secure Bootloader Design using MCUboot and
Code Flash Dualbank Mode

R11AN0570EU0140 Rev.1.40 Page 40 of 54
Oct.01.24

Figure 66. Erase the MCU using Renesas Device Partition Manager

Renesas RA Family RA6 MCU Advanced Secure Bootloader Design using MCUboot and
Code Flash Dualbank Mode

R11AN0570EU0140 Rev.1.40 Page 41 of 54
Oct.01.24

6.4 Start the Debug Session
Follow the steps below to start the debug session:

1. Disable flash content caching from the Debugger setting.
Right-click on project app_primary_usb -> Debug As -> Debug Configurations, navigate to
Debugger -> Debug Tool Settings, and uncheck Allow caching of flash contents. Otherwise, when
debugging bootloader applications, the memory window may show wrong information when debugging
bootloader applications.

Figure 67. Disable Flash Content Caching

Renesas RA Family RA6 MCU Advanced Secure Bootloader Design using MCUboot and
Code Flash Dualbank Mode

R11AN0570EU0140 Rev.1.40 Page 42 of 54
Oct.01.24

2. Configure the load image and symbols properties.
Open the Debug Configurations: app_primary_usb -> Debug As -> Debug Configurations.
Make sure app_primary_usb Debug_Flat is selected and select the Startup tab.
Click Add…, then Workspace, navigate to the ra_mcuboot_ra6m4_dualbank project, and select the
ra_mcuboot_ra6m4_dualbank.elf file from the debug folder. Click OK.

Figure 68. Add the Bootloader Project to Debug Configuration

3. Change the Load type of the Program Binaries for the app_primary_usb project to Symbols only by
clicking on the cell for Load type and selecting Symbols only from the drop-down menu.

Figure 69. Select to load Symbols only for the Application Project

4. Follow similar steps to add the signed primary image and the upper bank bootloader. Choose Image
only as the Load type for the upper bank bootloader and choose Raw Binary as the Load type for the
primary application image.

Figure 70. Add the Signed Primary Image and Upper Bank Bootloader

5. Click Debug. The debugger should hit the reset handler in the bootloader.

Figure 71. Start the Application Execution

Renesas RA Family RA6 MCU Advanced Secure Bootloader Design using MCUboot and
Code Flash Dualbank Mode

R11AN0570EU0140 Rev.1.40 Page 43 of 54
Oct.01.24

6. Choose Remember my decision and click Switch if prompted to switch the perspective.

Figure 72. Switch the Perspective

7. Click Resume to run the project.
The program should now be paused in the main at the hal_entry() call in the bootloader.

Figure 73. Start the Application Execution

8. Click to run again.
The red, blue, and green LEDs on the EK-RA6M4 should now be blinking while the blinky application is
running.

6.5 Program the New Application Using the Primary Application Downloader
Follow the steps below to program the new application created in section 6.1:

1. Open Tera Term and choose the USB Serial Port (the COM number may be different for your setup).
Then click OK.

Figure 74. Open the COM Port
Note: When using the UART interface, select the Serial Terminal and set the Speed to 115200. Skip this

step if using the USB interface.

Renesas RA Family RA6 MCU Advanced Secure Bootloader Design using MCUboot and
Code Flash Dualbank Mode

R11AN0570EU0140 Rev.1.40 Page 44 of 54
Oct.01.24

Figure 75. Configure the Baud Rate if using the UART Interface

The menu in Figure 76 will be displayed on the Tera Term.

Figure 76. Tera Term Menu

2. Select option 1 to print the image slot information.

Figure 77. Print the Image Slot Information

3. Select option 2 to download the secondary image using the primary image downloader.

Figure 78. Choose Option 2 to Download the New Image using XModem

Renesas RA Family RA6 MCU Advanced Secure Bootloader Design using MCUboot and
Code Flash Dualbank Mode

R11AN0570EU0140 Rev.1.40 Page 45 of 54
Oct.01.24

4. Open the Transfer interface of the Tera Term.

Figure 79. Start Transfer from Tera Term

5. Choose \app_secondary_usb\Debug\app_secondary_usb.bin.signed, then click Open.

Figure 80. Choose the Signed Secondary Image

The secondary image is then downloaded and programmed to the upper bank.

Figure 81. Download the New Image via XModem

6.6 Boot the New Application
The system will automatically reboot after the new image is downloaded.

Figure 82. The New Image is Booted

Renesas RA Family RA6 MCU Advanced Secure Bootloader Design using MCUboot and
Code Flash Dualbank Mode

R11AN0570EU0140 Rev.1.40 Page 46 of 54
Oct.01.24

Select option 1 to read the swapped memory layout.

Figure 83. The Slot Layout After the New Image is Booted
Note that even though the secondary image is booted, it cannot be debugged as the symbol downloaded to
the debugger is for the primary image.

Also, if you want to perform further updates, the new image must have a version higher than the current
image in the primary slot.

7. Production Support Considerations
This section describes one possible production flow. Users may adapt this procedure to their own needs
wherever possible.

7.1 Protect the Bootloader using Flash Block Protection
The secure bootloader protects the system's Root of Trust. The application should protect it from alteration.
Based on Figure 36, the bootloader is located in the first 64-KB region. Based on Figure 3, the blocks that
need to be protected are blocks 0 to 7 for the lower bank and 70 to 77 for the upper bank.

Users can set up these blocks to be temporarily protected in the ra_mcuboot_ra6m4_dualbank project
under the BSP tab. If these blocks are protected temporarily, the block protection setting can be reset by
performing the MCU erase operations described in section 6.3.

Figure 84. Temporary Protection of the Lower Bank Bootloader Area

Renesas RA Family RA6 MCU Advanced Secure Bootloader Design using MCUboot and
Code Flash Dualbank Mode

R11AN0570EU0140 Rev.1.40 Page 47 of 54
Oct.01.24

Figure 85. Temporary Protection of the Upper Bank Bootloader Area
Users can set up these blocks to be permanently protected in the ra_mcuboot_ra6m4_dualbank project
under the BSP tab.

Note: If these blocks are protected permanently, these areas cannot be erased and reprogrammed through
the lifetime of the MCU. Users need to be very cautious when setting up permanent protection. The
MCU erase operations are described in section 6.3 will not be able to erase these blocks.

Figure 86. Permanent Protection of the Lower Bank Bootloader Area

Renesas RA Family RA6 MCU Advanced Secure Bootloader Design using MCUboot and
Code Flash Dualbank Mode

R11AN0570EU0140 Rev.1.40 Page 48 of 54
Oct.01.24

Figure 87. Permanent Protection of the Upper Bank Bootloader Area
The included example bootloader does not include the block settings to enable block protection. Users can
enable them prior to field deployment.

7.2 Provision the Bootloaders and the Initial Application to MCU
Users can combine the .srec files generated from the above sections into one .srec file and program it to
the MCU during production.

The three images to be combined are:

• Bootloader for the Lower Bank: ra_mcuboot_ra6m4_dualbank.srec
• Bootloader for the Upper Bank: ra_mcuboot_ra6m4_dualbank_offset.srec
• Application for the Lower Bank: app_primary_usb_signed_offset.srec

The following command assumes the user executes from the location of the srec_cat.exe and has all
three input files exist under the same folder as the srec_cat.exe. Use the following command to generate
one combined .srec from the above three .srec files:

srec_cat ra_mcuboot_ra6m4_dualbank.srec ra_mcuboot_ra6m4_dualbank_offset.srec
app_primary_usb_signed_offset.srec -o combined.srec

To download combined.srec, users can use RFP or J-Flash Lite, as shown in Figure 88 and Figure 91.

Note: Prior to download combined.srec, users need to erase the MCU first and follow the instructions in
section 6.3.

Renesas RA Family RA6 MCU Advanced Secure Bootloader Design using MCUboot and
Code Flash Dualbank Mode

R11AN0570EU0140 Rev.1.40 Page 49 of 54
Oct.01.24

• Download (*.srec) file using J-Flash Lite.

Figure 88. Load combined.srec file using J-Flash Lite

• Download (*.srec) file using Renesas Flash Programmer (RFP).

Launch RFP and create a new RFP project. Click File > New Project.

Figure 89. Create a New RFP Project

Configure the Microcontroller selection and the Tool used for communication. Then, click Connect.

Figure 90. Configure the New Project

Renesas RA Family RA6 MCU Advanced Secure Bootloader Design using MCUboot and
Code Flash Dualbank Mode

R11AN0570EU0140 Rev.1.40 Page 50 of 54
Oct.01.24

Select a program file and execute the command.

Figure 91. Selecting combined.srec file and execute the command

If the download (*.srec) file is successful, the message in Figure 92 will be presented in the status window.

Figure 92. Download combined.srec file succeeded

Once the device is deployed to the field, the application update can be achieved using the image downloader
implemented in the application project.

Renesas RA Family RA6 MCU Advanced Secure Bootloader Design using MCUboot and
Code Flash Dualbank Mode

R11AN0570EU0140 Rev.1.40 Page 51 of 54
Oct.01.24

8. Compile and Exercise the Included Example Bootloader and Application
Projects

8.1 Using USB as the Download Interface
For the USB interface, three projects are needed:

• ra_mcuboot_ra6m4_dualbank
• app_primary_usb
• app_secondary_usb

Users can follow the steps below to run the example projects in the folder \ra6-advanced-mcuboot-
flash-dual-bank\example_projects_with_bootloader:

1. Follow the instructions in section 6.2 to set up the hardware.
2. Import the above-mentioned three projects to a Workspace.
3. Open the configuration.xml file from project ra_mcuboot_ra6m4_dualbank.
4. Click Generate Project Content.
5. Compile the project ra_mcuboot_ra6m4_dualbank.
6. Open the configuration.xml file from project app_primary_usb.
7. Click Generate Project Content.
8. Compile the app_primary_usb.
9. Open the configuration.xml file from project app_secondary_usb.
10. Click Generate Project Content.
11. Compile the app_secondary_usb project.
12. Erase the entire chip following the instructions in section 6.3.
13. Debug the application from project app_primary_usb in the e2 studio environment.
14. Resume the program execution twice. All three LEDs should be blinking.
15. Stop the debug session and power cycle the EK-RA6M4.
16. Open Tera Term with the enumerated COM port (USB Serial Device).
17. Use Tera Term to send the \app_secondary_usb\Debug\app_secondary_usb.bin.signed to

the MCU following the instructions in section 6.6. This will take about 30 seconds.
18. The system will be reset automatically after download.
19. Blue and green LEDs should be blinking.
20. Enter menu item 1 to confirm that the image with version 1.1.0 is located in the primary slot (lower bank)

and the image with version 1.0.0 is located in the secondary slot (upper bank).

8.2 Using the UART as the Download Interface
For the UART interface, three projects are needed:

• ra_mcuboot_ra6m4_dualbank
• app_primary_uart
• app_secondary_uart

Users can follow the steps below to run the example projects in the folder \ra6-advanced-mcuboot-
flash-dual-bank\example_projects_with_bootloader:

1. Follow the instructions in section 6.2 to set the hardware.
2. Import the above-mentioned three projects to a workspace.
3. Open the configuration.xml file from project ra_mcuboot_ra6m4_dualbank.
4. Click Generate Project Content.
5. Compile the project ra_mcuboot_ra6m4_dualbank.
6. Open the configuration.xml file from project app_primary_uart.
7. Click Generate Project Content.
8. Compile app_primary_uart.
9. Open the configuration.xml file from project app_secondary_uart.

Renesas RA Family RA6 MCU Advanced Secure Bootloader Design using MCUboot and
Code Flash Dualbank Mode

R11AN0570EU0140 Rev.1.40 Page 52 of 54
Oct.01.24

10. Click Generate Project Content.
11. Compile the app_secondary_uart project.
12. Erase the entire chip following the instructions in section 6.3.
13. Debug the application from project app_primary_uart in the e2 studio environment.
14. Resume the program execution twice. All three LEDs should be blinking.
15. Stop the debug session and power cycle the EK-RA6M4.
16. Open the Tera Term with the enumerated COM port and set up the baud rate as 115200.
17. Use Tera Term to send the \app_secondary_uart\Debug\app_secondary_uart.bin.signed to

the MCU by following section 6.6. This will take about 50 seconds.
18. The system will reset automatically after download.
19. Blue and green LEDs should be blinking.
20. Enter menu item 1 to confirm that the image with version 1.1.0 is located in the primary slot (lower bank)

and the image with version 1.0.0 is located in the secondary slot (upper bank).

9. References
1. Renesas RA Family MCU Securing Data at Rest using Security MPU Application Project (R11AN0416)
2. Renesas RA Family RA6 Series MCU Basic Secure Bootloader Design using MCUboot with Code Flash

Linear Mode Application Project (R11AN0497)
3. Renesas RA Family RA2 Series MCU Secure Bootloader Design using MCUboot Application Project

(R11AN0516)
4. Renesas RA Family RA6 Series MCU Advanced Secure Bootloader Design using MCUboot with

Encrypted Image and QSPI (R11AN0567)

https://www.renesas.com/document/apn/securing-data-rest-utilizing-renesas-security-mpu?language=en&r=1168086
https://www.renesas.com/document/apn/securing-data-rest-utilizing-renesas-security-mpu?language=en&r=1168086

Renesas RA Family RA6 MCU Advanced Secure Bootloader Design using MCUboot and
Code Flash Dualbank Mode

R11AN0570EU0140 Rev.1.40 Page 53 of 54
Oct.01.24

10. Website and Support
Visit the following URLs to learn about the RA family of microcontrollers, download tools and documentation,
and get support.

EK-RA6M4 Resources renesas.com/ra/ek-ra6m4
RA Product Information renesas.com/ra
Flexible Software Package (FSP) renesas.com/ra/fsp
RA Product Support Forum renesas.com/ra/forum
Renesas Support renesas.com/support

https://www.renesas.com/ra/ek-ra6m4
https://www.renesas.com/ra
http://www.renesas.com/fsp
https://www.renesas.com/ra/forum
https://www.renesas.com/support

Renesas RA Family RA6 MCU Advanced Secure Bootloader Design using MCUboot and
Code Flash Dualbank Mode

R11AN0570EU0140 Rev.1.40 Page 54 of 54
Oct.01.24

Revision History

Rev. Date
Description
Page Summary

1.00 Mar.21.22 - First release document
1.10 Nov.11.22 - Updated Operation Flow based on e2 studio 2022-10 or later.

Used FSP v4.0.0. Document title changed from “RA6 Secure
Bootloader Update using MCUboot and Flash Dual Bank” to
“RA6 Secure Firmware Update using MCUboot and Flash
Dual Bank”

1.11 Nov.23.22 - Corrected typo, added Figure 56 and included RA6E1.
1.20 Feb.28.24 - Minor documentation updates and migration to FSP v5.0.0
1.30 May.17.24 - Added bat files.
1.40 Oct.01.24 - Update to FSP v5.5.0

General Precautions in the Handling of Microprocessing Unit and Microcontroller
Unit Products
The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the
products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Precaution against Electrostatic Discharge (ESD)

A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps

must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be

adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity.

Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and

measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor

devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.
2. Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of

register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset

pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins

in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power reaches the

level at which resetting is specified.
3. Input of signal during power-off state

Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O

pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal

elements. Follow the guideline for input signal during power-off state as described in your product documentation.
4. Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are

generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of

the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal

become possible.
5. Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program

execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator

during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal

produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.
6. Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL

(Max.) and VIH (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the

input level is fixed, and also in the transition period when the input level passes through the area between VIL (Max.) and VIH (Min.).
7. Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these

addresses as the correct operation of the LSI is not guaranteed.
8. Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems.

The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms

of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values,

operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-

evaluation test for the given product.

© 2024 Renesas Electronics Corporation. All rights reserved.

Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products

and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your
product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use
of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights,
or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this
document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics
or others.

4. You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export,
manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.

5. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any
and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.

6. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for
each Renesas Electronics product depends on the product’s quality grade, as indicated below.
 "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home

electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key

financial terminal systems; safety control equipment; etc.
Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas
Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to
human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space
system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics
disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product
that is inconsistent with any Renesas Electronics data sheet, user’s manual or other Renesas Electronics document.

7. No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics
hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but
not limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS
ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING
RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE,
HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION (“Vulnerability Issues”). RENESAS ELECTRONICS DISCLAIMS ANY AND
ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT
PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH
RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO
THE IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.

8. When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General Notes for
Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by
Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas
Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such
specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific
characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability
product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics
products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily
injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as
safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for
aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are
responsible for evaluating the safety of the final products or systems manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas
Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of
controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these
applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance
with applicable laws and regulations.

11. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is
prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations
promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.

12. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or
transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

13. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
14. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas

Electronics products.

(Note1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled
subsidiaries.

(Note2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.
(Rev.5.0-1 October 2020)

Corporate Headquarters Contact information
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

 For further information on a product, technology, the most up-to-date
version of a document, or your nearest sales office, please visit:
www.renesas.com/contact/.

Trademarks
Renesas and the Renesas logo are trademarks of Renesas Electronics
Corporation. All trademarks and registered trademarks are the property
of their respective owners.

https://www.renesas.com/
https://www.renesas.com/contact/

	1. Code Flash Dual Bank Feature
	1.1 RA6M4 and RA6E1 MCU Group Code Flash Configuration
	1.2 RA6M5 MCU Group Code Flash Configuration
	1.3 Option-Setting Memory
	1.3.1 Code Flash Bank Mode
	1.3.2 Startup Bank Selection
	1.3.3 Bank Swap
	1.3.4 Code Flash Block Protection

	2. Using the Code Flash Dual Bank Feature with MCUboot Overview
	2.1 MCUboot Functionalities Overview
	2.2 Using MCUboot for Code Flash Dual Bank Mode
	2.2.1 Use Direct XIP Firmware Update Mode
	2.2.2 Memory Configuration Overview with Dual Bank and MCUboot

	2.3 Designing Bootloader and Initial Primary Application Overview
	2.4 Migrating an Existing Code Flash Linear Mode MCUboot-Based System

	3. Guidelines for Using the Example Projects Included
	3.1 Example Projects with Bootloader
	3.2 Example Projects without Bootloader

	4. Creating the Bootloader Project using Code Flash Dual Bank Mode
	4.1 Include the MCUboot Module in the Bootloader Project
	4.2 Configure the Memory Configuration and Authentication Method
	4.3 Configure the MbedTLS Crypto Only Module and the Flash Driver
	4.4 Add the Boot Code
	4.5 Compile the Bootloader Project
	4.6 Configure the Python Signing Environment
	4.7 Prepare for Production Support

	5. Configuring and Signing an Application Project
	5.1 Configure the Application Project to Use the Bootloader
	5.2 Signing the Application Image
	5.3 Preparation for Production Support

	6. Booting the Primary Application and Updating to a New Image
	6.1 Prepare a Secondary Image
	6.2 Set Up the Hardware
	6.3 Erase the MCU
	6.3.1 Use the Renesas Flash Programmer
	6.3.2 Use the SEGGER J-Flash Lite
	6.3.3 Use Renesas Device Partition Manager

	6.4 Start the Debug Session
	6.5 Program the New Application Using the Primary Application Downloader
	6.6 Boot the New Application

	7. Production Support Considerations
	7.1 Protect the Bootloader using Flash Block Protection
	7.2 Provision the Bootloaders and the Initial Application to MCU

	8. Compile and Exercise the Included Example Bootloader and Application Projects
	8.1 Using USB as the Download Interface
	8.2 Using the UART as the Download Interface

	9. References
	10. Website and Support
	Revision History
	General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products
	Notice

