
 Application Note

R01AN6374EJ0202 Rev.2.02 Page 1 of 84
Dec.13.24

RL78/G22,RL78/G23,RL78/G24
Firmware Update Module
Introduction
This application note describes the firmware update module for the RL78/G22 and RL78/G23,RL78/G24.
The module is referred to below as the firmware update module.

By using the module, users can easily incorporate firmware update functionality into their applications. This
application note explains the specifications of the firmware update module and how to incorporate its API
functions into user applications.

The release package associated with this application note includes a demo project. You can confirm the
basic operation of the firmware update functionality by following the steps described in section 5, Demo
Project, to build an environment to run the demo.

Operation Confirmation Devices
RL78/G22 (R7F102GGE)
RL78/G23 (R7F100GSN)
RL78/G24 (R7F101GLG)

When using this application note with other Renesas MCUs, careful evaluation is recommended after making
modifications to comply with the alternate MCU.

Related Application Notes
Application notes related to this application note are listed below. Refer to them in conjunction with this
application note.

• RL78 Family Board Support Package Module Using Software Integration System (R01AN5522)
• RL78 Family Renesas Flash Driver RL78 Type01 User’s Manual (R20UT4830)
• RL78 Smart Configurator User’s Guide: e2 studio (R20AN0579)
• Smart Configurator User’s Guide: RL78 API Reference (R20UT4852)

Target Compliers
• CC-RL V1.11.00 from Renesas Electronics
• IAR C/C++ Compiler for Renesas RL78 version 5.10.1 from IAR Systems
• IAR Assembler for Renesas RL78 version 5.10.1 from IAR Systems

For details of the environments on which operation has been confirmed, refer to 6.1, Confirmed Operation
Environments.

RL78/G22,RL78/G23,RL78/G24 Firmware Update Module

R01AN6374EJ0202 Rev.2.02 Page 2 of 84
Dec.13.24

Contents

1. Overview ...6
1.1 About the Firmware Update Module .. 6
1.2 Configuration of Firmware Update Module .. 7
1.3 Firmware Update Operation .. 8
1.3.1 Partial Update Method (buffer side is internal flash) .. 9
1.3.1.1 Operation of Partial Update Method (buffer side is internal flash) ... 9
1.3.2 Full Update Method (without buffer side) ... 10
1.3.2.1 Operation of Full Update Method (without buffer side) .. 10
1.3.3 Full Update Method (buffer side is external flash) ... 11
1.3.3.1 Operation of Full Update Method (buffer side is external flash)... 11
1.4 Initial State of Firmware Update .. 12
1.4.1 Initial State of Partial Update Method Settings Utilizing Renesas Image Generator.......................... 12
1.4.2 Initial State of Full Update Method Settings Utilizing Renesas Image Generator 12
1.4.3 Initial State of Partial Update Method Settings Utilizing Bootloader .. 13
1.4.4 Initial State of Full Update Method Settings Utilizing Bootloader ... 13
1.5 Package Contents ... 14
1.6 API Overview... 16

2. API Information ...17
2.1 Hardware Requirements ... 17
2.2 Software Requirements ... 17
2.3 Supported Toolchains ... 17
2.4 Header Files .. 17
2.5 Integer Types .. 17
2.6 Compile Settings ... 18
2.7 Sample Project Code Sizes ... 19
2.7.1 Sample Project for RL78/G23-128p FPB .. 19
2.7.2 Sample Project for RL78/G24-64p FPB .. 20
2.7.3 Sample project for RL78/G22-48p FPB ... 20
2.8 Arguments ... 21
2.9 Return Values.. 21
2.10 Implementation Examples of APIs ... 22

3. API Functions ...24
3.1 R_FWUP_Open Function .. 24
3.2 R_FWUP_Close Function ... 24
3.3 R_FWUP_IsExistImage Function .. 24
3.4 R_FWUP_EraseArea Function.. 25
3.5 R_FWUP_GetImageSize Function .. 25
3.6 R_FWUP_WriteImage Function .. 25

RL78/G22,RL78/G23,RL78/G24 Firmware Update Module

R01AN6374EJ0202 Rev.2.02 Page 3 of 84
Dec.13.24

3.7 R_FWUP_VerifyImage Function ... 26
3.8 R_FWUP_ActivateImage Function .. 26
3.9 R_FWUP_ExecImage Function... 26
3.10 R_FWUP_SoftwareReset Function ... 27
3.11 R_FWUP_SoftwareDelay Function ... 27
3.12 R_FWUP_GetVersion Function... 27
3.13 R_FWUP_WriteImageHeader Function .. 28
3.14 R_FWUP_WriteImageProgram Function .. 28
3.15 Wrapper Functions .. 29
3.15.1 r_fwup_wrap_com.c, h .. 29
3.15.1.1 r_fwup_wrap_disable_interrupt Function ... 29
3.15.1.2 r_fwup_wrap_enable_interrupt Function ... 29
3.15.1.3 r_fwup_wrap_software_reset Function .. 29
3.15.1.4 r_fwup_wrap_software_delay Function ... 30
3.15.2 r_fwup_wrap_flash.c, h ... 31
3.15.2.1 r_fwup_wrap_flash_open Function .. 31
3.15.2.2 r_fwup_wrap_flash_close Function ... 31
3.15.2.3 r_fwup_wrap_flash_erase Function ... 31
3.15.2.4 r_fwup_wrap_flash_write Function .. 32
3.15.2.5 r_fwup_wrap_flash_read Function .. 32
3.15.2.6 r_fwup_wrap_bank_swap Function ... 32
3.15.2.7 r_fwup_wrap_ext_flash_open Function ... 33
3.15.2.8 r_fwup_wrap_ext_flash_close Function .. 33
3.15.2.9 r_fwup_wrap_ext_flash_erase Function .. 33
3.15.2.10 r_fwup_wrap_ext_flash_write Function .. 34
3.15.2.11 r_fwup_wrap_ext_flash_read Function .. 34
3.15.3 r_fwup_wrap_verify.c, h .. 35
3.15.3.1 r_fwup_wrap_sha256_init Function ... 35
3.15.3.2 r_fwup_wrap_sha256_update Function .. 35
3.15.3.3 r_fwup_wrap_sha256_final Function ... 35
3.15.3.4 r_fwup_wrap_verify_ecdsa Function ... 36
3.15.3.5 r_fwup_wrap_get_crypt_context Function ... 36

4. Demo Project ..37
4.1 Demo project Structure ... 37
4.2 Operating environment preparation ... 38
4.2.1 Installing TeraTerm ... 38
4.2.2 Installing the Python execution environment ... 38
4.2.3 Installing the OpenSSL execution environment ... 38
4.2.4 Installing the Flash Writer .. 39
4.2.5 USB serial conversion board ... 39

RL78/G22,RL78/G23,RL78/G24 Firmware Update Module

R01AN6374EJ0202 Rev.2.02 Page 4 of 84
Dec.13.24

4.3 Execution environment preparation ... 40
4.3.1 Generating Keys for Signature Generation and Verification .. 40
4.3.2 Preparing the execution environment for Renesas Image Generator.. 40
4.4 Sample Project for RL78/G23-128p FPB .. 41
4.4.1 Partial Update Method (buffer face is internal flash) .. 42
4.4.1.1 Build Demo Project .. 42
4.4.1.2 Create initial and updated images ... 44
4.4.1.3 Program Initial Image .. 45
4.4.1.4 Update Firmware ... 45
4.4.2 Full Update Method (buffer face is external flash) ... 46
4.4.2.1 Build Demo Project .. 46
4.4.2.2 Create initial and updated images ... 48
4.4.2.3 Program Initial Image .. 49
4.4.2.4 Update Firmware ... 49
4.5 Sample Project for RL78/G22-48p FPB .. 50
4.5.1 Full Update Method (without buffer side) ... 51
4.5.1.1 Build Demo Project .. 51
4.5.1.2 Create initial and updated images ... 52
4.5.1.3 Program Initial Image .. 53
4.5.1.4 Update Firmware ... 53
4.6 How to debug the demo project... 54

5. Renesas Image Generator ...63
5.1 Image Generation Methods ... 63
5.1.1 Initial Image Generation Method ... 65
5.1.2 Update Image Generation Method .. 65
5.2 Image File.. 66
5.2.1 Update Image File ... 66
5.2.2 Initial Image File .. 68
5.3 Parameter File ... 69
5.3.1 Contents of Parameter File.. 69

6. Appendices ...72
6.1 Confirmed Operation Environments .. 72
6.2 Operating Environment for Demo Project .. 73
6.2.1 Operation Confirmation Environment for RL78/G23 .. 73
6.2.1.1 Memory map of demo project for partial update method ... 75
6.2.1.2 Memory map of demo project for full update method .. 76
6.2.2 Operation Confirmation Environment for RL78/G24 .. 77
6.2.2.1 Memory map of demo project for partial update method ... 78
6.2.2.2 Memory map of demo project for full update method .. 79
6.2.3 Operation Confirmation Environment for RL78/G22 .. 80

RL78/G22,RL78/G23,RL78/G24 Firmware Update Module

R01AN6374EJ0202 Rev.2.02 Page 5 of 84
Dec.13.24

6.2.3.1 Memory map of demo project for full update method .. 81
6.3 Open source license information used in the demo project ... 82

7. Notes...83
7.1 Notes on Transition from Bootloader to Application. ... 83
7.2 Security measures for the bootloader area ... 83

Revision History ...84

RL78/G22,RL78/G23,RL78/G24 Firmware Update Module

R01AN6374EJ0202 Rev.2.02 Page 6 of 84
Dec.13.24

1. Overview
1.1 About the Firmware Update Module
A firmware update is a process in which a device overwrites its own firmware, the software that controls the
device’s hardware, with a new version of the firmware (called the “update image” in this document) obtained
through unspecified means. Firmware updates may be applied to fix bugs, add new functions, or improve
performance.

The firmware update module is middleware that, when firmware update functionality is added to the user’s
system, provides the following functionality as its components:

• Functionality for importing the update image to the MCU via a communication interface
• Functionality for validating the update image (ECDSA NIST P-256 and SHA256 are used for validation.)
• Functionality for programming the update image to the on-chip flash memory (self-programming)
• Functionality for activating the update image

Generally, a firmware update system comprises two programs: an application program providing firmware
update functionality and a bootloader providing secure boot functionality used to validate the first program.

The bootloader functionality is essential to the proper functioning of the firmware update. It guarantees that
the sequence of processing that composes the firmware update, including validation of the update image, is
legitimate.

The firmware update module for the RL78 Family provides functionality for the following three firmware
update methods.

• Partial update method (buffer side is internal flash)
• Full update method (without buffer side)
• Full update method (buffer side is external flash)

A tool (Renesas Image Generator) for creating firmware images is provided as a utility. Renesas Image
Generator can generate the following types of images for use by the firmware update module.

• Initial image: An image file containing the bootloader and application program that is programmed using
Flash Writer at the time of initial system configuration (extension: mot).

• Update image: An image file containing the firmware update (extension: rsu).

RL78/G22,RL78/G23,RL78/G24 Firmware Update Module

R01AN6374EJ0202 Rev.2.02 Page 7 of 84
Dec.13.24

1.2 Configuration of Firmware Update Module
Figure 1.1 shows the configuration of the modules in the bootloader and application program incorporating
the firmware update module, and Table 1.1 lists the modules used in the bootloader and application
program.

The update image received by the communication interface is self-programmed to the on-chip flash memory
of the target device via the firmware update module and the flash memory driver.

Figure 1.1 Configuration of Modules in Sample Bootloader and Application Program

Table 1.1 List of External Modules Used in Sample Bootloader and Application Program

Function Module Name Notes
BSP r_bsp Automatic generation by smart configurator
UART r_Config_UART1 : RL78/G22

r_Config_UART2 : RL78/G23
Automatic generation by smart configurator

PORT r_Config_PORT Automatic generation by smart configurator
FLASH RFD RL78 Type01 Implemented in wrapper
CSI RL78_Serial Implemented in wrapper
Serial Flash r_qspi_flash_mx25l Implemented in wrapper
Crypt Library Tinucrypt Implemented in wrapper

RL78/G22,RL78/G23,RL78/G24 Firmware Update Module

R01AN6374EJ0202 Rev.2.02 Page 8 of 84
Dec.13.24

1.3 Firmware Update Operation
The RL78 family firmware update module provides two methods: once storing the firmware to be updated
(update image) on the buffer side and once writing it directly to the main side. The buffer plane can be set in
the internal flash memory or external flash memory.

• Main plane: Area for storing the image used for booting
• Buffer plane: Area for storing the image to be applied as an update

The method of writing the update image directly to the main plane allows all of the internal flash memory to
be used as the main plane, but since there is no buffer plane, it is not possible to restore the firmware to its
pre-update state in the event of an update failure.

RL78/G22,RL78/G23,RL78/G24 Firmware Update Module

R01AN6374EJ0202 Rev.2.02 Page 9 of 84
Dec.13.24

1.3.1 Partial Update Method (buffer side is internal flash)
The update image is stored temporarily in the buffer plane in the on-chip flash memory, and, after it is
validated, it is self-programmed to the main plane. This method allows the application program to contain the
firmware update functionality. This means that if the firmware update fails before self-programming to the
main plane occurs, the pre-update image in the main plane can be launched to retry the firmware update.
The size that can store the application program is half the size of the remaining internal flash memory minus
the bootloader.

1.3.1.1 Operation of Partial Update Method (buffer side is internal flash)
This method divides the on-chip flash memory into a main plane and a buffer plane and then temporarily
stores the update image in the buffer plane. Firmware is updated by storing the update image on the buffer
plane and copying it from the buffer plane to the main plane.

Figure 1.2 Operation of Partial Update Method (buffer side is internal flash)

[1] Program and verify update image.

The previous update image (application program) stored in the main plane is used to program the update
image to the buffer plane and verify it.

[2] Copy update image.

If verification is successful, the system is reset, the main plane is erased by the bootloader, and the
updated image is copied from the buffer plane to the main plane.

[3] Activate update image.

The buffer plane is erased by the bootloader.
(The demo program does not erase the buffer side. If you need to erase the image before updating for
rollback measures, please add a process to erase the buffer side image.)

RL78/G22,RL78/G23,RL78/G24 Firmware Update Module

R01AN6374EJ0202 Rev.2.02 Page 10 of 84
Dec.13.24

1.3.2 Full Update Method (without buffer side)
The update image is self-programmed to the main plane, after which it is validated. This method requires the
bootloader to contain the firmware update functionality. This means that if the firmware update fails, the
bootloader functionality can be used to retry the firmware update. The functionality of the application program
cannot be used until the firmware update succeeds.
The size that can store the application program is the remaining size of the internal flash memory minus the
bootloader.

1.3.2.1 Operation of Full Update Method (without buffer side)
This method of writing the update image directly to the main plane allows all of the internal flash memory to
be used as the main plane, but since there is no buffer plane, it is not possible to restore the firmware to its
pre-update state in the event of an update failure.

Figure 1.3 Operation of Full Update Method (without buffer side)

[1] Erase previously update image.

The previous update image (application program) stored in the main plane configures the data indicating
updates to the main plane and then applies a reset. After this, the bootloader runs and erases the initial
image from the main plane.

[2] Program update image.

The bootloader downloads the update image from an external source and programs it to the main plane.
The programmed update image is verified, and if verification is successful, the update image is activated.

RL78/G22,RL78/G23,RL78/G24 Firmware Update Module

R01AN6374EJ0202 Rev.2.02 Page 11 of 84
Dec.13.24

1.3.3 Full Update Method (buffer side is external flash)
The update image is stored temporarily in the buffer plane in the on-chip flash memory, and, after it is
validated, it is self-programmed to the main plane. This method allows the application program to contain the
firmware update functionality. This means that if the firmware update fails before self-programming to the
main plane occurs, the pre-update image in the main plane can be launched to retry the firmware update.
The size that can store the application program is the size remaining after subtracting the bootloader from
the internal flash memory, since only the main plane is provided in the internal flash memory.

1.3.3.1 Operation of Full Update Method (buffer side is external flash)
The update image is stored once in the buffer plane, with the main plane set in the internal flash and the
buffer plane set in the external flash.

Figure 1.4 Operation of Full Update Method (buffer side is external flash)

[1] Program and verify update image.

The previous update image (application program) stored in the main plane is used to program the update
image to the buffer plane and verify it.

[2] Copy update image.

If verification is successful, the system is reset, the main plane is erased by the bootloader, and the
updated image is copied from the buffer plane to the main plane.

[3] Activate update image.

The buffer plane is erased by the bootloader.
(The demo program does not erase the buffer side. If you need to erase the image before updating for
rollback measures, please add a process to erase the buffer side image.)

RL78/G22,RL78/G23,RL78/G24 Firmware Update Module

R01AN6374EJ0202 Rev.2.02 Page 12 of 84
Dec.13.24

1.4 Initial State of Firmware Update
To set the firmware update system using the firmware update module to the initial state, build the system by
writing the initial image generated by the Renesas Image Generator to the built-in flash memory with a flash
writer or similar device.

As an alternative method, it is also possible to build the system by first writing only the bootloader with a
flash writer, etc., and then writing the updated image of the application program with the bootloader function.

1.4.1 Initial State of Partial Update Method Settings Utilizing Renesas Image Generator

The following figure shows the construction of the initial state of the partial update method using the
Renesas Image Generator.

Figure 1.5 Initial Firmware Update Settings Utilizing Renesas Image Generator (Example of Partial
Update Method)

[1] Program the initial image

The initial image is programmed to the on-chip flash memory using a tool such as Flash Writer.

1.4.2 Initial State of Full Update Method Settings Utilizing Renesas Image Generator

The following figure shows the construction of the initial state of the full update method using the Renesas
Image Generator.

Figure 1.6 Initial Firmware Update Settings Utilizing Renesas Image Generator (Example of Full
Update Method)

[1] Program the initial image

The initial image is programmed to the on-chip flash memory using a tool such as Flash Writer.

RL78/G22,RL78/G23,RL78/G24 Firmware Update Module

R01AN6374EJ0202 Rev.2.02 Page 13 of 84
Dec.13.24

1.4.3 Initial State of Partial Update Method Settings Utilizing Bootloader
The following figure shows the construction of the initial state of the dual-bank method using the bootloader.

Figure 1.7 Initial Firmware Update Settings Utilizing Bootloader (Example of Partial Update Method)

[1] Program bootloader.

The bootloader is programmed to the on-chip flash memory using a tool such as Flash Writer.

[2] Program initial image.

The initial image is downloaded from an external source and programmed to the main plane using the
functionality of the bootloader. The programmed firmware is verified, and if verification is successful,
processing ends.

1.4.4 Initial State of Full Update Method Settings Utilizing Bootloader

Figure 1.8 Initial Firmware Update Settings Utilizing Bootloader (Example of Full Update Method)

[1] Program bootloader.

The bootloader is programmed to the on-chip flash memory using a tool such as Flash Writer.

[2] Program initial image.

The initial image is downloaded from an external source and programmed to the main plane using the
functionality of the bootloader. The programmed firmware is verified, and if verification is successful,
processing ends.

RL78/G22,RL78/G23,RL78/G24 Firmware Update Module

R01AN6374EJ0202 Rev.2.02 Page 14 of 84
Dec.13.24

1.5 Package Contents
The firmware update module package contains several files, including software and tools. These are listed in
the table below.

Table 1.2 Folder Structure of Firmware Update Module Package

Folder Name Description
r01an6374xx0202-rl78g23-fwupdate.zip\
├─Demos Sample projects
│ └─rl
│ ├─modules Drivers and libraries
│ │ ├─3rd_party
│ │ │ └─tinycrypt Crypto library
│ │ ├─etc
│ │ │ └─base64 Base64 decode
│ │ ├─flash Flash driver
│ │ ├─rl78_serial Serial driver
│ │ └─r_qspi_flash_mx25l MX23L driver
│ ├─rl78g22-fpb RL78/G22-48p FPB
│ │ └─linear
│ │ ├─e2_ccrl CCRL
│ │ │ ├─boot_loader Bootloader
│ │ │ └─fwup_leddemo LED illumination application
│ │ └─iar IAR
│ │ ├─boot_loader Bootloader
│ │ └─fwup_leddemo LED illumination application
│ ├─rl78g23-fpb RL78/G23-128p FPB
│ │ └─linear
│ │ ├─e2_ccrl CCRL
│ │ │ ├─boot_loader Bootloader
│ │ │ ├─fwup_leddemo LED illumination application
│ │ │ └─fwup_main User applications including firmware update
│ │ └─iar IAR
│ │ ├─boot_loader Bootloader
│ │ ├─fwup_leddemo LED illumination application
│ │ └─fwup_main User applications including firmware update
│ └─rl78g24-fpb RL78/G24-64p FPB
│ └─linear
│ ├─e2_ccrl CCRL
│ │ ├─boot_loader Bootloader
│ │ ├─fwup_leddemo LED illumination application
│ │ └─fwup_main User applications including firmware update
│ └─iar IAR
│ ├─boot_loader Bootloader
│ ├─fwup_leddemo LED illumination application
│ └─fwup_main User applications including firmware update
├─Modules Firmware update module
│ ├─r_config Configuration files
│ └─r_fwup Source code

RL78/G22,RL78/G23,RL78/G24 Firmware Update Module

R01AN6374EJ0202 Rev.2.02 Page 15 of 84
Dec.13.24

Folder Name Description
└─RenesasImageGenerator Renesas Image Generator
 ├─image-gen.py Python program for Renesas Image Generator

└─RL78_xxxx_ImageGenerator_PRM.csv Parameter file for demo project

RL78/G22,RL78/G23,RL78/G24 Firmware Update Module

R01AN6374EJ0202 Rev.2.02 Page 16 of 84
Dec.13.24

1.6 API Overview
Table 1.4 lists the API functions included in the firmware update module.

Table 1.3 API Functions

Function Function Description
R_FWUP_Open Opens the module.
R_FWUP_Close Performs processing to close the module.
R_FWUP_IsExistImage Confirms the existence of an image in the specified area.
R_FWUP_EraseArea Erases the specified area.
R_FWUP_GetImageSize Obtains the size of the image.
R_FWUP_WriteImage Writes the image (header portion + program portion).
R_FWUP_VerifyImage Validates the image.
R_FWUP_ActivateImage Activates a new image.
R_FWUP_ExecImage Launches a new image.
R_FWUP_SoftwareReset Applies a software reset.
R_FWUP_SoftwareDelay Applies a software delay.
R_FWUP_GetVersion Returns the version number of the module.
R_FWUP_WriteImageHeader Writes the header portion of the image.
R_FWUP_WriteImageProgram Writes the program portion of the image.

Note: Special purpose refers to the use of FreeRTOS. If you are considering to use Rev2.0x firmware update
module on bare metal without FreeRTOS, please skip this section.

RL78/G22,RL78/G23,RL78/G24 Firmware Update Module

R01AN6374EJ0202 Rev.2.02 Page 17 of 84
Dec.13.24

2. API Information
2.1 Hardware Requirements
The MCU used must support the following functions:

• Flash memory

2.2 Software Requirements
The module is dependent upon the following drivers:

• Board support package (r_bsp)
• Renesas Flash Driver RL78 Type01 (RFD)
• UART Driver (r_Config_UART1)
• PORT Driver (r_Config_PORT)
• Macronix International MX25/66L family serial NOR Flash Memory control software (r_qspi_flash_mx25l)
• Clock-synchronized single-master control software using CSI mode for serial array units (rl78_serial)

2.3 Supported Toolchains
The module has been confirmed to work with the toolchains listed in 6.1, Confirmed Operation Environments.

2.4 Header Files
All API calls and their supporting interface definitions are located in r_fwup_if.h.

2.5 Integer Types
The driver uses ANSI C99. These types are defined in stdint.h.

RL78/G22,RL78/G23,RL78/G24 Firmware Update Module

R01AN6374EJ0202 Rev.2.02 Page 18 of 84
Dec.13.24

2.6 Compile Settings
The configuration option settings of the module are contained in r_fwup_config.h.

The names of the options and descriptions of their setting values are listed in Table 2.1.

Table 2.1 Configuration Settings

Configuration options in r_fwup _config.h
FWUP_CFG_UPDATE_MODE Update method

0: Not available for RL78
1: Partial Update Method Method (buffer side is internal
flash)
2: Full Update Method (without buffer side)
3: Full Update Method (buffer side is external flash)

FWUP_CFG_FUNCTION_MODE Specifies how the module is used.
0: Bootloader
1: Application program

FWUP_CFG_MAIN_AREA_ADDR_L Specifies the start address of the main plane.
FWUP_CFG_BUF_AREA_ADDR_L Specifies the start address of the buffer plane (in on-chip

flash memory).
FWUP_CFG_AREA_SIZE Specifies the size of the main plane and buffer plane.
FWUP_CFG_CF_BLK_SIZE Specifies the block size of the on-chip code flash.
FWUP_CFG_CF_W_UNIT_SIZE Specifies the writing unit for the on-chip code flash.
FWUP_CFG_EXT_BUF_AREA_ADDR_L Specifies the start address of the buffer plane in external

flash memory.
FWUP_CFG_EXT_BUF_AREA_BLK_SIZE Specifies the block size or sector size of the external flash

memory.
FWUP_CFG_DF_ADDR_L Start address of data flash.
FWUP_CFG_DF_BLK_SIZE Block size of data flash.
FWUP_CFG_DF_NUM_BLKS Block count of data flash.

Specify 0 if there is no data flash.
FWUP_CFG_FWUPV1_COMPATIBLE

FWUP V1 Compatibility Setting (For Special Purpose)
0: Disable
1: Enable (For Special Purpose)

FWUP_CFG_SIGNATURE_VERIFICATION Verification method
0: ECDSA + SHA256
1: SHA256

FWUP_CFG_PRINTF_DISABLE Log display setting
0: Enable
1: Disable

RL78/G22,RL78/G23,RL78/G24 Firmware Update Module

R01AN6374EJ0202 Rev.2.02 Page 19 of 84
Dec.13.24

2.7 Sample Project Code Sizes
The table below shows the ROM size, RAM size, and maximum stack size of this module.

The values in the table below are confirmed under the following conditions.

Module revision: Firmware update module for RL78 v2.0.0

Compiler version: Renesas Electronics C Compiler Package for RL78 Family V1.11
IAR C/C++ Compiler for Renesas RL78 version 5.10.1

Configuration options: Configuration option settings are listed in each FPB

CC-RL
Optimization level: size & execution speed (-Odefault)
Delete variables/functions that have never been referenced (-optimize=symbol_delete)
IAR
Optimization level: High (balanced)

2.7.1 Sample Project for RL78/G23-128p FPB
Configuration settings for the RL78/G23-128p FPB sample project:

FWUP_CFG_UPDATE_MODE 1：Single bank with buffer. (default)

FWUP_CFG_SIGNATURE_VERIFICATION 0：ECDSA. (default)

Table 2.2 ROM, RAM, and Stack Code Size for boot_loader

Items Category
Memory Used (byte)

Renesas Compiler IAR Compiler
boot_loader ROM 21230 30358

RAM 1343 3660
Stack 516 3152

Table 2.3 ROM, RAM, and Stack Code Size for fwup_main

Items Category
Memory Used (byte)

Renesas Compiler IAR Compiler
fwup_main ROM 18142 28095

RAM 837 3658
Stack 516 2198

RL78/G22,RL78/G23,RL78/G24 Firmware Update Module

R01AN6374EJ0202 Rev.2.02 Page 20 of 84
Dec.13.24

2.7.2 Sample Project for RL78/G24-64p FPB
Configuration settings for the RL78/G24-64p FPB sample project:

FWUP_CFG_UPDATE_MODE 1：Single bank with buffer. (default)

FWUP_CFG_SIGNATURE_VERIFICATION 0：ECDSA. (default)

Table 2.4 ROM, RAM, and Stack Code Size for boot_loader

Items Category
Memory Used (byte)

Renesas Compiler IAR Compiler
boot_loader ROM 21541 30648

RAM 1343 3669
Stack 516 3152

Table 2.5 ROM, RAM, and Stack Code Size for fwup_main

Items Category
Memory Used (byte)

Renesas Compiler IAR Compiler
fwup_main ROM 18920 28392

RAM 837 3667
Stack 516 2198

2.7.3 Sample project for RL78/G22-48p FPB
Configuration settings for the RL78/G22-48p FPB sample project:

FWUP_CFG_UPDATE_MODE 2：Single bank without buffer.

FWUP_CFG_SIGNATURE_VERIFICATION 1：SHA256

Table 2.6 ROM, RAM, and Stack Code Size for boot_loader

Items Category
Memory Used (byte)

Renesas Compiler IAR Compiler
boot_loader ROM 11807 15915

RAM 767 2054
Stack 402 1956

RL78/G22,RL78/G23,RL78/G24 Firmware Update Module

R01AN6374EJ0202 Rev.2.02 Page 21 of 84
Dec.13.24

2.8 Arguments
The return values of the API functions are shown below. This enumeration is located in r_fwup_if.h, as are
the prototype declarations of the API functions.

typedef enum fwup_area
{
 FWUP_AREA_MAIN = 0,
 FWUP_AREA_BUFFER,
 FWUP_AREA_DATA_FLASH
} e_fwup_area_t;

typedef enum e_fwup_delay_units
{
 FWUP_DELAY_MICROSECS = 0,
 FWUP_DELAY_MILLISECS,
 FWUP_DELAY_SECS
} e_fwup_delay_units_t;

2.9 Return Values
The return values of the API functions are shown below. This enumeration is located in r_fwup_if.h, as are
the prototype declarations of the API functions.

typedef enum fwup_err
{
 FWUP_SUCCESS = 0, // Normally terminated.
 FWUP_PROGRESS, // Firmware update is in progress.
 FWUP_ERR_FLASH, // Detect error of flash module.
 FWUP_ERR_VERIFY, // Verify error.
 FWUP_ERR_FAILURE, // General error.
} e_fwup_err_t;

RL78/G22,RL78/G23,RL78/G24 Firmware Update Module

R01AN6374EJ0202 Rev.2.02 Page 22 of 84
Dec.13.24

2.10 Implementation Examples of APIs
The following is an example implementation of a bootloader and application program for each firmware
update method.
For details, please refer to the source code of the demo project included in this application note package.

Figure 2.1 Bootloader Implementation Example for Partial/Full Update Method (with buffer side)

RL78/G22,RL78/G23,RL78/G24 Firmware Update Module

R01AN6374EJ0202 Rev.2.02 Page 23 of 84
Dec.13.24

Figure 2.2 Application Program Implementation Example for Partial/Full Update Method
(with buffer side)

Figure 2.3 Bootloader Implementation Example for Full Update Method(without buffer side)

RL78/G22,RL78/G23,RL78/G24 Firmware Update Module

R01AN6374EJ0202 Rev.2.02 Page 24 of 84
Dec.13.24

3. API Functions
3.1 R_FWUP_Open Function

Table 3.1 R_FWUP_Open Function Specifications

Format e_fwup_err_t R_FWUP_Open (void)
Description Performs processing to open the firmware update module.

Implements processing to open the flash module.
Parameters None
Return
Values

FWUP_SUCCESS Normal end
FWUP_ERR_FLASH Flash module error

Special
Notes

3.2 R_FWUP_Close Function

Table 3.2 R_FWUP_Close Function Specifications

Format void R_FWUP_Close (void)
Description Performs processing to close the firmware update module.

Implements processing to close the flash module.
Parameters None
Return
Values

None

Special
Notes

3.3 R_FWUP_IsExistImage Function

Table 3.3 R_FWUP_IsExistImage Function Specifications

Format bool R_FWUP_IsExistImage(e_fwup_area_t area)
Description Confirms the existence of an image in the specified area.
Parameters area: Main plane (FWUP_AREA_MAIN) or buffer plane (FWUP_AREA_BUFFER)
Return
Values

true Image exists.
false Image does not exist.

Special
Notes

Verify that the magic code is written correctly.

RL78/G22,RL78/G23,RL78/G24 Firmware Update Module

R01AN6374EJ0202 Rev.2.02 Page 25 of 84
Dec.13.24

3.4 R_FWUP_EraseArea Function

Table 3.4 R_FWUP_EraseArea Function Specificationss

Format e_fwup_err_t R_FWUP_EraseArea(e_fwup_area_t area)
Description Erases the specified area.
Parameters area: Main plane (FWUP_AREA_MAIN) or buffer plane (FWUP_AREA_BUFFER), Data

Flash (FWUP_AREA_DATA_FLASH)
Return
Values

FWUP_SUCCES Normal end
FWUP_ERR_FLASH Flash module error

Special
Notes

Erasure of the main plane can only be performed by the bootloader.

3.5 R_FWUP_GetImageSize Function

Table 3.5 R_FWUP_GetImageSize Function Specificationss

Format uint32_t R_FWUP_GetImageSize(void)
Description Returns the size of the image in bytes.

This function obtains the byte size of the image based on the RSU header address
information shown in Figure 4.1. Therefore, first write the RSU header address information to
code flash using the R_FWUP_WriteImage function or the R_FWUP_WriteImageProgram
function.

Parameters None
Return
Values

0 Acquisition in progress
1 or more Image size

Special
Notes

3.6 R_FWUP_WriteImage Function

Table 3.6 R_FWUP_WriteImage Function Specifications

Format e_fwup_err_t R_FWUP_WriteImage(e_fwup_area_t area, uint8_t *p_buf, uint32_t buf_size)
Description Writes an image (header portion + program portion) to the specified area.

Continue calling this function until the total size of the image is reached.
The image size is obtained by R_FWUP_GetImageSize().

Parameters area: Main plane (FWUP_AREA_MAIN) or buffer plane (FWUP_AREA_BUFFER)
p_buf: Image (header + program) buffer
buf_size: Buffer size*1

Return
Values

FWUP_SUCCES Writing of all images is completed.
FWUP_PROGRESS Writing of all images not completed (Writing of the

specified number of images completed)
FWUP_ERR_FLASH Flash module error
FWUP_ERR_FAILURE Illegal parameter

Special
Notes

1. Specify a multiple of the code flash write unit (for example, 64, 128, or 256).
 This size also applies to data flash.

When FWUP_CFG_FWUPV1_COMPATIBLE is enabled, the magic code in the RSU header
area used for processing is "Renesas" for FWUP V1.

RL78/G22,RL78/G23,RL78/G24 Firmware Update Module

R01AN6374EJ0202 Rev.2.02 Page 26 of 84
Dec.13.24

3.7 R_FWUP_VerifyImage Function

Table 3.7 R_FWUP_VerifyImage Function Specifications

Format e_fwup_err_t R_FWUP_VerifyImage(e_fwup_area_t area)
Description Verifies an image using the cryptographic library embedded in the module.
Parameters area: Main plane (FWUP_AREA_MAIN) or buffer plane (FWUP_AREA_BUFFER)
Return
Values

FWUP_SUCCES Verification successful
FWUP_ERR_VERIFY Verification failed
FWUP_ERR_FAILURE Illegal parameter

Special
Notes

3.8 R_FWUP_ActivateImage Function

Table 3.8 R_FWUP_ActivateImage Function Specifications

Format e_fwup_err_t R_FWUP_ActivateImage(void)
Description Activates a new image.

• partial update method
 Bootloader: Copies the buffer plane image to the main plane.
 User program: Returns FWUP_SUCCESS without doing anything.

• full update method
 Returns FWUP_SUCCESS without doing anything.

Parameters None
Return
Values

FWUP_SUCCESS Normal end
FWUP_ERR_FLASH Flash module error

Special
Notes

3.9 R_FWUP_ExecImage Function

Table 3.9 R_FWUP_ExecImage Function Specifications

Format void R_FWUP_ExecImage(void)
Description Runs the program in a valid image.
Parameters None
Return
Values

None

Special
Notes

Disable interrupts when transitioning from the bootloader to the application.

RL78/G22,RL78/G23,RL78/G24 Firmware Update Module

R01AN6374EJ0202 Rev.2.02 Page 27 of 84
Dec.13.24

3.10 R_FWUP_SoftwareReset Function

Table 3.10 R_FWUP_SoftwareReset Function Specifications

Format void R_FWUP_SoftwareReset(void)
Description Execute software reset processing.
Parameters None
Return
Values

None

Special
Notes

3.11 R_FWUP_SoftwareDelay Function

Table 3.11 R_FWUP_SoftwareDelay Function Specifications

Format uint32_t R_FWUP_SoftwareDelay(uint32_t delay, e_fwup_delay_units_t units)
Description Execute software delay processing.
Parameters delay: Delay time

units: Unit (µs, ms, or sec.)
Return
Values

0 Normal end
Other Abnormal end

Special
Notes

3.12 R_FWUP_GetVersion Function

Table 3.12 R_FWUP_GetVersion Function Specifications

Format uint32_t R_FWUP_GetVersion(void)
Description Returns the version number of the module.
Parameters None
Return
Values

Version number

Special
Notes

RL78/G22,RL78/G23,RL78/G24 Firmware Update Module

R01AN6374EJ0202 Rev.2.02 Page 28 of 84
Dec.13.24

3.13 R_FWUP_WriteImageHeader Function
This function is an API for special use where header information and program information must be written
separately. Normally, use the R_FWUP_WriteImage function.

Table 3.13 R_FWUP_WriteImageHeader Function Specifications

Format e_fwup_err_t R_FWUP_WriteImageHeader
(e_fwup_area_t area, uint8_t FWUP_FAR *p_sig_type, uint8_t FWUP_FAR *p_sig,
uint32_t sig_size)

Description Writes a signature that the bootloader uses for verification to the header of the image in the
designated area.

Parameters area: Main plane (FWUP_AREA_MAIN) or buffer plane (FWUP_AREA_BUFFER)
p_sig_type: Signature type character string “hash-sha256” or “sig-sha256-ecdsa”
p_sig: Signature
sig_size: Length of signature (Should be set to 64.)

Return
Values

FWUP_SUCCES Write completed
FWUP_ERR_FLASH Flash module error
FWUP_ERR_FAILURE Illegal parameter

Special
Notes

When FWUP_CFG_FWUPV1_COMPATIBLE is enabled, the magic code in the RSU header
area used for processing is "Renesas" for FWUP V1.

3.14 R_FWUP_WriteImageProgram Function
This function is an API for special use where header information and program information must be written
separately. Normally, use the R_FWUP_WriteImage function.

Table 3.14 R_FWUP_WriteImageProgram Function Specifications

Format e_fwup_err_t R_FWUP_WriteImageProgram
(e_fwup_area_t area, uint8_t *p_buf, uint32_t offset, uint32_t buf_size)

Description Writes the program portion of the image to the specified area.
Continue calling this function until the total size of the image is reached.
The image size is obtained by R_FWUP_GetImageSize().
This function writes a program by offset based on the address information in the RSU header
shown in Figure 4.1. Therefore, be sure to set 0x100 bytes of data from the offset (0x200) in
Table 4.3 in the first call to this function.
(Specify 0x200 for the offset argument and 0x100 or more for the buf_size argument.)

Parameters area: Main plane (FWUP_AREA_MAIN) or buffer plane (FWUP_AREA_BUFFER)
p_buf: Buffer for program portion of image
offset: Offset*1
buf_size: Buffer size*2

Return
Values

FWUP_SUCCES Writing of all images is completed.
FWUP_PROGRESS Writing of all images not completed (Writing of the

specified number of images completed)
FWUP_ERR_FLASH Flash module error
FWUP_ERR_FAILURE Illegal parameter

Special
Notes

1. The offset must be 0x200 or greater.
2. Specify a multiple of the code flash write unit (for example, 64, 128, or 256).

This size also applies to data flash.

RL78/G22,RL78/G23,RL78/G24 Firmware Update Module

R01AN6374EJ0202 Rev.2.02 Page 29 of 84
Dec.13.24

3.15 Wrapper Functions
This module implements the flash driver and cryptographic operations in a wrapper function. The process is
implemented in the following comment section of the source file. Please refer to the demo project for the
implementation method.

/**** Start user code ****/

/**** End user code ****/

3.15.1 r_fwup_wrap_com.c, h
3.15.1.1 r_fwup_wrap_disable_interrupt Function

Table 3.15 r_fwup_wrap_disable_interrupt Function Specifications

Format void r_fwup_wrap_disable_interrupt (void)
Description Disable Interrupt
Parameters None
Return
Values

None

Special
Notes

3.15.1.2 r_fwup_wrap_enable_interrupt Function

Table 3.16 r_fwup_wrap_enable_interrupt Function Specifications

Format void r_fwup_wrap_enable_interrupt (void)
Description Enable Interrupt
Parameters None
Return
Values

None

Special
Notes

3.15.1.3 r_fwup_wrap_software_reset Function

Table 3.17 r_fwup_wrap_software_reset Function Specifications

Format void r_fwup_wrap_software_reset (void)
Description Software reset
Parameters None
Return
Values

FWUP_SUCCES : Normal end
FWUP_ERR_FLASH : Flash module error

Special
Notes

RL78/G22,RL78/G23,RL78/G24 Firmware Update Module

R01AN6374EJ0202 Rev.2.02 Page 30 of 84
Dec.13.24

3.15.1.4 r_fwup_wrap_software_delay Function

Table 3.18 r_fwup_wrap_software_delay Function Specifications

Format uint32_t r_fwup_wrap_software_delay (
uint32_t delay,
e_fwup_delay_units_t units)

Description Software delay
Parameters delay：Delay time

uinits: unit (us,ms,sec)
FWUP_DELAY_MICROSECS

 FWUP_DELAY_MILLISECS
 FWUP_DELAY_SECS

Return
Values

0 : normal end
Other : Abnormal end

Special
Notes

RL78/G22,RL78/G23,RL78/G24 Firmware Update Module

R01AN6374EJ0202 Rev.2.02 Page 31 of 84
Dec.13.24

3.15.2 r_fwup_wrap_flash.c, h
3.15.2.1 r_fwup_wrap_flash_open Function

Table 3.19 r_fwup_wrap_flash_open Function Specifications

Format e_fwup_err_t r_fwup_wrap_flash_open (void)
Description Open the internal flash.
Parameters None
Return
Values

FWUP_SUCCES : Normal end
FWUP_ERR_FLASH : Flash module error

Special
Notes

3.15.2.2 r_fwup_wrap_flash_close Function

Table 3.20 r_fwup_wrap_flash_close Function Specifications

Format void r_fwup_wrap_flash_close (void)
Description Close the internal flash.
Parameters None
Return
Values

None

Special
Notes

3.15.2.3 r_fwup_wrap_flash_erase Function

Table 3.21 r_fwup_wrap_flash_erase Function Specifications

Format e_fwup_err_t r_fwup_wrap_flash_erase (
uint32_t addr,
uint32_t num_blocks)

Description Erase the internal flash in block units.
Parameters addr : erase address

num_blocks : erase block
Return
Values

FWUP_SUCCES : Normal end
FWUP_ERR_FLASH : Flash module error

Special
Notes

RL78/G22,RL78/G23,RL78/G24 Firmware Update Module

R01AN6374EJ0202 Rev.2.02 Page 32 of 84
Dec.13.24

3.15.2.4 r_fwup_wrap_flash_write Function

Table 3.22 r_fwup_wrap_flash_write Function Specifications

Format e_fwup_err_t r_fwup_wrap_flash_write(
uint32_t src_addr,
uint32_t dest_addr,
uint32_t num_bytes)

Description Erase the internal flash in block units.
Parameters src_addr: Pointer to write data

dest_addr: Write address
num_bytes: Write size (bytes)

Return
Values

FWUP_SUCCES : Normal end
FWUP_ERR_FLASH : Flash module error

Special
Notes

3.15.2.5 r_fwup_wrap_flash_read Function

Table 3.23 r_fwup_wrap_flash_read Function Specifications

Format e_fwup_err_t r_fwup_wrap_flash_read (
uint32_t buf_addr,
uint32_t src_add,
uint32_t size)

Description Reads the internal flash.
Parameters buf_addr: Address of the buffer to store the read data

src_addr: Read address
size: Read size

Return
Values

FWUP_SUCCES : Normal end
FWUP_ERR_FLASH : Flash module error

Special
Notes

3.15.2.6 r_fwup_wrap_bank_swap Function

Table 3.24 r_fwup_wrap_bank_swap Function Specifications

Format e_fwup_err_t r_fwup_wrap_bank_swap (void)
Description Execute a bank swap.
Parameters None
Return
Values

FWUP_SUCCES : Normal end
FWUP_ERR_FLASH : Flash module error

Special
Notes

Only models with dual banks

RL78/G22,RL78/G23,RL78/G24 Firmware Update Module

R01AN6374EJ0202 Rev.2.02 Page 33 of 84
Dec.13.24

3.15.2.7 r_fwup_wrap_ext_flash_open Function

Table 3.25 r_fwup_wrap_ext_flash_open Function Specifications

Format e_fwup_err_t r_fwup_wrap_ext_flash_open (void)
Description Open the external flash.
Parameters None
Return
Values

FWUP_SUCCES : Normal end
FWUP_ERR_FLASH : Flash module error

Special
Notes

3.15.2.8 r_fwup_wrap_ext_flash_close Function

Table 3.26 r_fwup_wrap_ext_flash_close Function Specifications

Format void r_fwup_wrap_ext_flash_close (void)
Description Close the external flash.
Parameters None
Return
Values

None

Special
Notes

3.15.2.9 r_fwup_wrap_ext_flash_erase Function

Table 3.27 r_fwup_wrap_ext_flash_erase Function Specifications

Format e_fwup_err_t r_fwup_wrap_ext_flash_erase (
uint32_t offsetadd,
uint32_t num_sectors)

Description Erase the external flash in sector units.
Parameters offsetadd: Starting address of the sector to be erased

num_sectors: Number of sectors
Return
Values

FWUP_SUCCES : Normal end
FWUP_ERR_FLASH : Flash module error

Special
Notes

RL78/G22,RL78/G23,RL78/G24 Firmware Update Module

R01AN6374EJ0202 Rev.2.02 Page 34 of 84
Dec.13.24

3.15.2.10 r_fwup_wrap_ext_flash_write Function

Table 3.28 r_fwup_wrap_ext_flash_write Function Specifications

Format e_fwup_err_t r_fwup_wrap_ext_flash_write (
uint32_t src_addr,
uint32_t dest_addr,
uint32_t num_bytes);

Description Writes data to external flash.
Parameters src_addr: Pointer to write data

dest_addr: Write address
num_bytes: Write size (bytes)

Return
Values

FWUP_SUCCES : Normal end
FWUP_ERR_FLASH : Flash module error

Special
Notes

3.15.2.11 r_fwup_wrap_ext_flash_read Function

Table 3.29 r_fwup_wrap_ext_flash_read Function Specifications

Format e_fwup_err_t r_fwup_wrap_ext_flash_read (
uint32_t buf_addr,
uint32_t src_addr,
uint32_t size);

Description Reads the external flash.
Parameters buf_addr: Address of the buffer to store the read data

src_addr: Read address
size: Read size

Return
Values

FWUP_SUCCES : Normal end
FWUP_ERR_FLASH : Flash module error

Special
Notes

RL78/G22,RL78/G23,RL78/G24 Firmware Update Module

R01AN6374EJ0202 Rev.2.02 Page 35 of 84
Dec.13.24

3.15.3 r_fwup_wrap_verify.c, h
3.15.3.1 r_fwup_wrap_sha256_init Function

Table 3.30 r_fwup_wrap_sha256_init Function Specifications

Format int32_t r_fwup_wrap_sha256_init (void *vp_ctx);
Description Start hash value calculation.
Parameters vp_ctx: pointer to the context of the cryptographic library
Return
Values

0 : normal end
Other : Abnormal end

Special
Notes

3.15.3.2 r_fwup_wrap_sha256_update Function

Table 3.31 r_fwup_wrap_sha256_update Function Specifications

Format int32_t r_fwup_wrap_sha256_update (
void *vp_ctx,
const uint8_t *p_data,
uint32_t datalen)

Description Calculates hash values for a specified range.
Parameters vp_ctx: pointer to the context of the cryptographic library

p_data: starting address
datalen: data length (bytes)

Return
Values

0 : normal end
Other : Abnormal end

Special
Notes

3.15.3.3 r_fwup_wrap_sha256_final Function

Table 3.32 r_fwup_wrap_sha256_final Function Specifications

Format int32_t r_fwup_wrap_sha256_final (
uint8_t *p_hash,
void *vp_ctx)

Description Finishes computing the hash value and returns the hash value.
Parameters p_hash: Pointer to the buffer to store the calculated hash value

vp_ctx: pointer to the context of the cryptographic library
Return
Values

0 : normal end
Other : Abnormal end

Special
Notes

RL78/G22,RL78/G23,RL78/G24 Firmware Update Module

R01AN6374EJ0202 Rev.2.02 Page 36 of 84
Dec.13.24

3.15.3.4 r_fwup_wrap_verify_ecdsa Function

Table 3.33 r_fwup_wrap_verify_ecdsa Function Specifications

Format int32_t r_fwup_wrap_verify_ecdsa (
uint8_t *p_hash,
uint8_t *p_sig_type,
uint8_t *p_sig,
uint32_t sig_size)

Description Perform verification with ECDSA.
Parameters p_hash: Pointer to the buffer where the hash value is stored

p_sig_type: signature type
p_sig: signature
sig_size: signature size

Return
Values

0 : normal end
Other : Abnormal end

Special
Notes

3.15.3.5 r_fwup_wrap_get_crypt_context Function

Table 3.34 r_fwup_wrap_get_crypt_context Function Specifications

Format void * r_fwup_wrap_get_crypt_context (void);
Description Returns a pointer to the context of the cryptographic library.
Parameters None
Return
Values

Void * Pointer to cryptographic library context

Special
Notes

RL78/G22,RL78/G23,RL78/G24 Firmware Update Module

R01AN6374EJ0202 Rev.2.02 Page 37 of 84
Dec.13.24

4. Demo Project
The demo project is a sample program that shows how to implement firmware update functionality using the
serial communications interface (SCI).

4.1 Demo project Structure
The demo project comprises the module, modules dependent on it, and a main() function that implements
the firmware update demonstration. Versions of the demo project for the devices and compilers listed in 1.5
are provided.

The firmware update demo consists of the following projects.

 partial update method folder structure: Under \ w_buffer \ \

full update method folder structure: Under \ wo_buffer \ \

: Device name

: Compiler (ccrx/gcc/iar)

• boot_loader: Bootloader
This program runs first after a reset. It verifies that the user program has not been tampered with and
then, if verification is successful, launches the user program.

• fwup_main: Application program

An application program (initial firmware) that downloads updated firmware and performs signature
verification.

• fwup_leddemo: Application program (for update)

This is an application program (for updating) that blinks an LED.

RL78/G22,RL78/G23,RL78/G24 Firmware Update Module

R01AN6374EJ0202 Rev.2.02 Page 38 of 84
Dec.13.24

4.2 Operating environment preparation
To run the firmware update demo project, you need to install the tools (see 4.2.1 to 4.2.4) on your Windows
PC. Also, use a USB serial conversion board (see 4.2.5) that connects the Windows PC and the target
board.

4.2.1 Installing TeraTerm
Used to transfer the firmware update image via serial communication from a Windows PC to the target
board. In the demo project, we have checked the operation with TeraTerm 4.105.

After installation, set the serial port communication settings as shown in Table Table 4.1

Table 4.1 Communication Specifications

Item Description
Communication system Asynchronous communication
Bit rate 115,200 bps
Data length 8 bits
Parity None
Stop bit 1 bit
Flow control CTS/RTS

4.2.2 Installing the Python execution environment
Used by Renesas Image Generator (image-gen.py) to create initial and update images.

Renesas Image Generator uses ECDSA to generate signature data. In the demo project, environment
operation is confirmed with Python 3.9.0.

Install Python 3.9.0 or higher.

In addition, since the Python encryption library (pycryptodome) is used, after installing Python, execute the
following pip command from the command prompt to install the library.

4.2.3 Installing the OpenSSL execution environment
OpenSSL is used to generate the keys needed to generate and verify ECDSA signature data for initial and
update images.

Download the OpenSSL installer from the following URL and install it. There is no problem with the Light
version.

 https://slproweb.com/products/Win32OpenSSL.html

pip install pycryptodome

https://slproweb.com/products/Win32OpenSSL.html

RL78/G22,RL78/G23,RL78/G24 Firmware Update Module

R01AN6374EJ0202 Rev.2.02 Page 39 of 84
Dec.13.24

4.2.4 Installing the Flash Writer
A flash writer is required to write the initial image.

The demo project uses Renesas Flash Programmer v3.11.01.

 Renesas Flash Programmer (Programming GUI) | Renesas

4.2.5 USB serial conversion board
Used to transfer the firmware update image via serial communication from a Windows PC to the target
board.

For details on how to connect with the target board, refer to the operation confirmation environment (6.2) of
the relevant target board.

Use Pmod USBUART (manufactured by DIGILENT).

 https://reference.digilentinc.com/reference/pmod/pmodusbuart/start

https://www.renesas.com/us/en/software-tool/renesas-flash-programmer-programming-gui
https://reference.digilentinc.com/reference/pmod/pmodusbuart/start

RL78/G22,RL78/G23,RL78/G24 Firmware Update Module

R01AN6374EJ0202 Rev.2.02 Page 40 of 84
Dec.13.24

4.3 Execution environment preparation

4.3.1 Generating Keys for Signature Generation and Verification
Use OpenSSL for key generation. Refer to 4.2.3 in advance and install OpenSSL.

Execute the following OpenSSL commands to generate an elliptic curve cryptography (secp256r1) key pair
to be used to generate and verify image signatures, and to extract the private and public keys:

>openssl ecparam -genkey -name secp256r1 -out secp256r1.keypair
using curve name prime256v1 instead of secp256r1

>openssl ec -in secp256r1.keypair -outform PEM -out secp256r1.privatekey
read EC key
writing EC key

> openssl ec -in secp256r1.keypair -outform PEM -pubout -out
secp256r1.publickey
read EC key
writing EC key

4.3.2 Preparing the execution environment for Renesas Image Generator
Unzip ImageGenerator.zip included in the package to any folder on your Windows PC. Make sure the folder
name does not contain double-byte characters.

Renesas Image Generator requires a Python execution environment, so refer to 4.2.2 and install Python in
advance.

RL78/G22,RL78/G23,RL78/G24 Firmware Update Module

R01AN6374EJ0202 Rev.2.02 Page 41 of 84
Dec.13.24

4.4 Sample Project for RL78/G23-128p FPB
This section describes the demo projects using the RL78/G23-128p FPB.

See this chapter for a demonstration using the RL78/G24-64p FPB, which is the same as the RL78/G23-
128p FPB.

Three demo projects for RL78/G23-128p FPB, boot_loader, fwup_leddemo, and fwup_main, are available for
CC-RL compiler and IAR compiler, as shown. These demo projects support two firmware update methods by
changing configuration settings: partial update method (buffer side is internal flash) and full update method
(buffer side is external flash).

The execution procedure of this demo project does not assume a debugger connection. Refer to 4.6 for
information on how to debug the application through a debugger connection.

Figure 4.1 Folder structure of demo project for RL78/G23-128p FPB

Table 4.2 Device Configuration

No. Equipment Note
1 Development PC The PC used for development.
2 Evaluation Board RL78/G23-128p Fast Prototyping Board
3 Host PC Running terminal software such as TeraTerm
4 USB serial conversion board Pmod USBUART (Made by DIGILENT)

https://reference.digilentinc.com/reference/pmod/pmodusbuart/start
5 USB cable USB serial conversion board and host PC are connected via USB.
6 E2Lite Debugger
7 External Flash Memory Macronix International MX25/66L family serial NOR Flash Memory

Used to check the operation of the full update method (buffer side
is external flash).

Demos
 └─rl
 ├─rl78g23-fpb
 │ └─linear
 │ ├─e2_ccrl
 │ │ ├─boot_loader
 │ │ ├─fwup_leddemo
 │ │ └─fwup_main
 │ └─iar
 │ ├─boot_loader
 │ ├─fwup_leddemo
 │ └─fwup_main

https://reference.digilentinc.com/reference/pmod/pmodusbuart/start

RL78/G22,RL78/G23,RL78/G24 Firmware Update Module

R01AN6374EJ0202 Rev.2.02 Page 42 of 84
Dec.13.24

4.4.1 Partial Update Method (buffer face is internal flash)

4.4.1.1 Build Demo Project
The following steps are used to build three demo projects for the partial update method (buffer side is
internal flash).

The following procedure is described for the e2 studio environment; when using the IAR environment, please
read and follow the procedure for IAR's Integrated Development Environment.

1. Import the boot_loader, fwup_leddemo, and fwup_main demo projects into the integrated development
environment.

2. Add the public key used to verify the image to the demo project.

Paste the contents of secp256r1.publickey into code_signer_public_key.h in project boot_loader and
fwup_main.

Figure 4.2 Location of the code_signer_public_key.h file for the demo project

/*
 * PEM-encoded code signer public key.
 *
 * Must include the PEM header and footer:
 * "-----BEGIN CERTIFICATE-----\n"\
 * "...base64 data...\n"\
 * "-----END CERTIFICATE-----"
 */
#define CODE_SIGNER_PUBLIC_KEY_PEM \
"-----BEGIN PUBLIC KEY-----"\
Paste the contents of secp256r1.publickey here.
"-----END PUBLIC KEY-----"\
#endif /* CODE_SIGNER_PUBLIC_KEY_H_ */

RL78/G22,RL78/G23,RL78/G24 Firmware Update Module

R01AN6374EJ0202 Rev.2.02 Page 43 of 84
Dec.13.24

3. Set the configuration settings for the firmware update module.
Open r_fwup_config.h in the project and configure as shown in Table 6.3 is not used.

4. Build the demo project.
Build the three demo projects and verify that the following mot files have been generated:
boot_loader.mot, fwup_main.mot, fwup_leddemo.mot

RL78/G22,RL78/G23,RL78/G24 Firmware Update Module

R01AN6374EJ0202 Rev.2.02 Page 44 of 84
Dec.13.24

4.4.1.2 Create initial and updated images
This section describes the procedure for creating the initial and updated images, assuming that the initial
image name is initial_firm.mot and the updated image name is fwup_leddemo.rsu.

1. Store the mot file of the built demo project and the secret key generated in 4.3.1 in the same folder as the
Renesas Image Generator.
image-gen.py
RL78_G23_ImageGenerator_PRM.csv
RL78_G24_ImageGenerator_PRM.csv
boot_loader.mot
fwup_main.mot
fwup_leddemo.mot
secp256r1.privatekey

2. Execute the following command to create the initial image.

> python image-gen.py -iup fwup_main.mot -ip RL78_G23_ImageGenerator_PRM.csv
-o initial_firm -ibp boot_loader.mot -vt ecdsa

Successfully generated the initial_firm.mot file.

3. Execute the following command to create the updated image.
> python image-gen.py -iup fwup_leddemo.mot -ip
RL78_G23_ImageGenerator_PRM.csv -o fwup_leddemo -vt ecdsa

Successfully generated the fwup_leddemo.rsu file.

Initial and updated images are generated in the same folder as the Renesas Image Generator.

image-gen.py
RL78_G23_ImageGenerator_PRM.csv
RL78_G24_ImageGenerator_PRM.csv
boot_loader.mot
fwup_main.mot
fwup_leddemo.mot
secp256r1.privatekey
fwup_leddemo.rsu
initial_firm.mot

RL78/G22,RL78/G23,RL78/G24 Firmware Update Module

R01AN6374EJ0202 Rev.2.02 Page 45 of 84
Dec.13.24

4.4.1.3 Program Initial Image
Write the initial image (initial_firm.mot) to the MCU board using a flash writer. After writing, turn off the power
to the board.

4.4.1.4 Update Firmware
Once the initial image firmware is activated, it waits for the transfer of the updated image via the terminal.
The received update image is programmed into flash memory, and after the reception is completed, the
signature of the update image is verified and the firmware of the update image is activated.

Follow the steps below to try the firmware update.

1. Connect devices with reference to "Figure 6.1 RL78/G23-128p FPB Device Connection Diagram".

2. Start the terminal software on the PC, select the serial COM port, and configure the connection settings.

3. Turn on power to the board. The following message is output.

4. Send the updated image through the terminal software.

Send file>check binary>fwup_leddemo.rsu

The following message is output during the transfer of the update image, and the software resets after
installation and signature verification are complete.

5. Execute the activation process in the bootloader and perform a software reset again.

6. When the signature verification is completed in the bootloader, the firmware of the updated image will

boot. It is normal if the following message is output and the LED is blinking.

Note: The demo program does not erase the buffer side. If you need to erase the image before
updating for rollback measures, please add a process to erase the buffer side image.

==== RL78G23 : BootLoader [with buffer] ====
verify install area main [sig-sha256-ecdsa]...OK
execute new image ...

==== RL78G23 : Update from User [with buffer] ver 1.0.0 ====
send image(*.rsu) via UART.

W 0x59000, 128 ... OK
W 0x59080, 128 ... OK
・・・
W 0x5BA00, 128 ... OK
W 0x5BA80, 128 ... OK
verify install area buffer [sig-sha256-ecdsa]...OK
software reset...

==== RL78G23 : BootLoader [with buffer] ====
verify install area buffer [sig-sha256-ecdsa]...OK
copy to main area ... OK
software reset...

==== RL78G23 : BootLoader [with buffer] ====
verify install area main [sig-sha256-ecdsa]...OK
execute new image ...

--
FWUP demo (ver 0.1.1)
--
Check the LEDs on the board.

RL78/G22,RL78/G23,RL78/G24 Firmware Update Module

R01AN6374EJ0202 Rev.2.02 Page 46 of 84
Dec.13.24

4.4.2 Full Update Method (buffer face is external flash)

4.4.2.1 Build Demo Project
The following steps are used to build three demo projects for the partial update method (buffer side is
external flash).

The following procedure is described for the e2 studio environment; when using the IAR environment, please
read and follow the procedure for IAR's Integrated Development Environment.

1. Import the boot_loader, fwup_leddemo, and fwup_main demo projects into the integrated development
environment.

2. Add the public key used to verify the image to the demo project.

Paste the contents of secp256r1.publickey into code_signer_public_key.h in project boot_loader and
fwup_main.

Figure 4.3 Location of the code_signer_public_key.h file for the demo project

/*
 * PEM-encoded code signer public key.
 *
 * Must include the PEM header and footer:
 * "-----BEGIN CERTIFICATE-----\n"\
 * "...base64 data...\n"\
 * "-----END CERTIFICATE-----"
 */
#define CODE_SIGNER_PUBLIC_KEY_PEM \
"-----BEGIN PUBLIC KEY-----"\
Paste the contents of secp256r1.publickey here.
"-----END PUBLIC KEY-----"\
#endif /* CODE_SIGNER_PUBLIC_KEY_H_ */

RL78/G22,RL78/G23,RL78/G24 Firmware Update Module

R01AN6374EJ0202 Rev.2.02 Page 47 of 84
Dec.13.24

3. Set the configuration settings for the firmware update module.
Open r_fwup_config.h in the project and configure as shown in Table 6.4 is not used.

4. Build the demo project.
Build the three demo projects and verify that the following mot files have been generated:
boot_loader.mot, fwup_leddemo.mot, fwup_main.mot

RL78/G22,RL78/G23,RL78/G24 Firmware Update Module

R01AN6374EJ0202 Rev.2.02 Page 48 of 84
Dec.13.24

4.4.2.2 Create initial and updated images
This section describes the procedure for creating the initial and updated images, assuming that the initial
image name is initial_firm.mot and the updated image name is fwup_leddemo.rsu.

1. Store the mot file of the built demo project and the secret key generated in 4.3.1 in the same folder as the
Renesas Image Generator.

image-gen.py
RL78_G23_ImageGenerator_PRM.csv
RL78_G24_ImageGenerator_PRM.csv
boot_loader.mot
fwup_main.mot
fwup_leddemo.mot
secp256r1.privatekey

2. Execute the following command to create the initial image.

> python image-gen.py -iup fwup_main.mot -ip
RL78_G23_ImageGenerator_PRM.csv -o initial_firm -ibp boot_loader.mot -vt
ecdsa -key secp256r1.privatekey

Successfully generated the initial_firm.mot file.

3. Execute the following command to create the updated image.
> python image-gen.py -iup fwup_leddemo.mot -ip
RL78_G23_ImageGenerator_PRM.csv -o fwup_leddemo -vt ecdsa -key
secp256r1.privatekey

Successfully generated the fwup_leddemo.rsu file.

Initial and updated images are generated in the same folder as the Renesas Image Generator.

image-gen.py
RL78_G23_ImageGenerator_PRM.csv
RL78_G24_ImageGenerator_PRM.csv
boot_loader.mot
fwup_main.mot
fwup_leddemo.mot
secp256r1.privatekey
fwup_leddemo.rsu
initial_firm.mot

RL78/G22,RL78/G23,RL78/G24 Firmware Update Module

R01AN6374EJ0202 Rev.2.02 Page 49 of 84
Dec.13.24

4.4.2.3 Program Initial Image
Use Flash Writer to program the initial image (initial_firm.mot) to the MCU board. After programming, turn off
the power to the board and disconnect the debugger (E2 Lite).

4.4.2.4 Update Firmware
Once the initial image firmware is activated, it waits for the transfer of the updated image via the terminal.
The received update image is programmed into flash memory, and after the reception is completed, the
signature of the update image is verified and the firmware of the update image is activated.

Follow the steps below to try the firmware update.

1. Connect devices with reference to "Figure 6.2 RL78/G23-128p FPB Device Connection Pin
Information".

2. Start the terminal software on the PC, select the serial COM port, and configure the connection settings.

3. Turn on power to the board. The following message is output.

4. Send the updated image through the terminal software.

Send file>check binary>fwup_leddemo.rsu

The following message is output during the transfer of the update image, and the software resets after
installation and signature verification are complete.

5. Execute the activation process in the bootloader and perform a software reset again.

6. When the signature verification is completed in the bootloader, the firmware of the updated image will

boot. It is normal if the following message is output and the LED is blinking.

Note: The demo program does not erase the buffer side. If you need to erase the image before updating
for rollback measures, please add a process to erase the buffer side image.

==== RL78G23 : BootLoader [with ext-buffer] ====
verify install area main [sig-sha256-ecdsa]...OK
execute new image ...

==== RL78G23 : Update from User [with ext-buffer] ver 1.0.0 ====
send image(*.rsu) via UART.

W 0x0000, 128 ... OK
W 0x0080, 128 ... OK
・・・
W 0x1A00, 128 ... OK
W 0x1A80, 128 ... OK
verify install area buffer [sig-sha256-ecdsa]...OK
software reset...

==== RL78G23 : BootLoader [with ext-buffer] ====
verify install area buffer [sig-sha256-ecdsa]...OK
copy to main area ... OK
software reset...

==== RL78G23 : BootLoader [with ext-buffer] ====
verify install area main [sig-sha256-ecdsa]...OK
execute new image ...

--
FWUP demo (ver 0.1.1)
--
Check the LEDs on the board.

RL78/G22,RL78/G23,RL78/G24 Firmware Update Module

R01AN6374EJ0202 Rev.2.02 Page 50 of 84
Dec.13.24

4.5 Sample Project for RL78/G22-48p FPB
This section describes the demo projects using the RL78/G22-48p FPB.

Three demo projects for RL78/G22-48p FPB, boot_loader and fwup_leddemo, are available for CC-RL
compiler and IAR compiler, as shown in the following. These demo projects support the firmware update
method, which is a full update method (without buffer side).

The execution procedure of this demo project does not assume a debugger connection. Refer to 4.6 for
information on how to debug the application through a debugger connection.

Figure 4.4 Folder structure of demo project for RL78/G22-48p FPB

Table 4.3 Equipment to be used in the demo projects

No. Equipment Note
1 Development PC The PC used for development.
2 Evaluation Board RL78/G22-48p Fast Prototyping Board
3 Host PC Running terminal software such as TeraTerm
4 USB serial conversion board Pmod USBUART (Made by DIGILENT)

https://reference.digilentinc.com/reference/pmod/pmodusbuart/start
5 USB cable USB serial conversion board and host PC are connected via USB.
6 E2Lite Debugger

Demos
 └─rl
 ├─rl78g22-fpb
 │ └─linear
 │ ├─e2_ccrl
 │ │ ├─boot_loader
 │ │ └─fwup_ leddemo
 │ └─iar
 │ ├─boot_loader
 │ └─fwup_ leddemo
 └─rl78g23-fpb
 └─linear
・・・

https://reference.digilentinc.com/reference/pmod/pmodusbuart/start

RL78/G22,RL78/G23,RL78/G24 Firmware Update Module

R01AN6374EJ0202 Rev.2.02 Page 51 of 84
Dec.13.24

4.5.1 Full Update Method (without buffer side)

4.5.1.1 Build Demo Project
The following steps are used to build two demo projects for the full update method (without buffer side).

1. Import the boot_loader and fwup_leddemo demo projects into the integrated development environment.

2. Set the configuration settings for the firmware update module.

Open r_fwup_config.h in the project and configure as shown in Table 6.7 is used.

3. Build the demo project.
a. Build the project (boot_loader) and generate boot_loader.mot.
b. Build the project (fwup_leddemo) and generate fwup_leddemo.mot.
c. Rename fwup_leddemo.mot to fwup_leddemo_011.mot.
d. Change the version of the project (fwup_leddemo) as follows, build and generate fwup_leddemo.mot.

fwup_leddemo.c

#define FWUP_DEMO_VER_MAJOR (0)
#define FWUP_DEMO_VER_MINOR (1)
#define FWUP_DEMO_VER_BUILD (1)★1->2

e. Rename fwup_leddemo.mot to fwup_leddemo_012.mot.

RL78/G22,RL78/G23,RL78/G24 Firmware Update Module

R01AN6374EJ0202 Rev.2.02 Page 52 of 84
Dec.13.24

4.5.1.2 Create initial and updated images
This section describes the procedure for creating the initial and updated images, assuming that the initial
image name is initial_firm.mot and the updated image name is fwup_leddemo_012.rsu.

1. Store the mot file of the built demo project in the same folder as Renesas Image Generator.
image-gen.py
RL78_G22_ImageGenerator_PRM.csv
boot_loader.mot
fwup_leddemo_011.mot
fwup_leddemo_012.mot

2. Execute the following command to create the initial image.
> python image-gen.py -iup fwup_leddemo_011.mot -ip
RL78_G22_ImageGenerator_PRM.csv -o initial_firm -ibp boot_loader.mot

Successfully generated the initial_firm.mot file.

3. Execute the following command to create the updated image.
> python image-gen.py -iup fwup_leddemo_012.mot -ip
RL78_G22_ImageGenerator_PRM.csv -o fwup_leddemo_012

Successfully generated the fwup_leddemo_012.rsu file.

Initial and updated images are generated in the same folder as the Renesas Image Generator.

image-gen.py
RL78_G22_ImageGenerator_PRM.csv
boot_loader.mot
fwup_leddemo_011.mot
fwup_leddemo_012.mot
fwup_leddemo_012.rsu
initial_firm.mot

RL78/G22,RL78/G23,RL78/G24 Firmware Update Module

R01AN6374EJ0202 Rev.2.02 Page 53 of 84
Dec.13.24

4.5.1.3 Program Initial Image
Write the initial image (initial_firm.mot) to the MCU board using a flash writer. After writing, turn off the board
power and disconnect the debugger (E2 Lite).

4.5.1.4 Update Firmware
The LED will blink when the initial image is activated. Enter update mode by pressing RESET_SW while
holding down USER_SW on the board and wait for the transfer of the update image via the terminal.
Program the received update image into flash memory, verify the update image after the transfer is
complete, and then boot the firmware of the update image.

Follow the steps below to try the firmware update.

1. Connect devices with reference to "Figure 6.11 RL78/G22 full update method demo project memory
map".

2. Start the terminal software on the PC, select the serial COM port, and configure the connection settings.

3. Power on the board. The following message is output.

4. Press RESET_SW while holding down USER_SW.

5. Send the updated image through the terminal software.

Send file>check binary>fwup_leddemo_012.rsu

The following message is output during the transfer of the update image, and the software resets after
installation and signature verification are complete.

6. When the signature verification is completed in the bootloader, the firmware of the updated image will

boot. It is normal if the following message is output and the LED is blinking.

==== RL78G22 : BootLoader [without buffer] ====
verify install area main [hash-sha256]...OK
execute new image ...

--
FWUP demo (ver 0.1.1)
--

==== RL78G22 : Image updater [without buffer] ====
send image(*.rsu) via UART.

W 0x2000, 64 ... OK
W 0x2040, 64 ... OK
・・・
W 0x4D00, 64 ... OK
W 0x4D40, 64 ... OK
verify install area 0 [hash-sha256]...OK
software reset...

==== RL78G22 : BootLoader [without buffer] ====
verify install area main [hash-sha256]...OK
execute new image ...

--
FWUP demo (ver 0.1.2)
--
Check the LEDs on the board.

RL78/G22,RL78/G23,RL78/G24 Firmware Update Module

R01AN6374EJ0202 Rev.2.02 Page 54 of 84
Dec.13.24

4.6 How to debug the demo project
If you wish to debug this project (bootloader + application program) in the e2 studio environment, the
following procedure can be used.

This demo project is set to be powered by the emulator in the debugger (E2 Lite). If you want to connect with
other debuggers or supply power from the target board, change the debugger settings.

(1) Build the bootloader and application program without optimization.

Build the bootloader (boot_loader) and application program (fwup_main).

(2) Generate the initial image.

The Renesas Image Generator generates an initial image file (.mot) consisting of a bootloader (boot_loader)
and an application program (fwup_main).

(3) Debug settings for the application program (fwup_main).

Follow the steps below to configure debugging settings for the application program (fwup_main).

a) Open Run->Debug Configuration and select fwup_main_HardwareDebug.

RL78/G22,RL78/G23,RL78/G24 Firmware Update Module

R01AN6374EJ0202 Rev.2.02 Page 55 of 84
Dec.13.24

b) Select fwup_main_HardwareDebug and click Startup.

c) Change the load type of the program binary [fwup_main.x] from "Image and Symbol" to "Symbol

Only".

RL78/G22,RL78/G23,RL78/G24 Firmware Update Module

R01AN6374EJ0202 Rev.2.02 Page 56 of 84
Dec.13.24

(4) Add the bootloader (boot_loader) symbol.

Follow the procedure below to add the boot loader (boot_loader) symbol built in step (1).

a) Click "Add".

b) Click Workspace.

RL78/G22,RL78/G23,RL78/G24 Firmware Update Module

R01AN6374EJ0202 Rev.2.02 Page 57 of 84
Dec.13.24

c) Select the bootloader (boot_loader.x) and click "OK.".

d) Confirm that the download module name is set to bootloader (boot_loader.x) and click "OK.

RL78/G22,RL78/G23,RL78/G24 Firmware Update Module

R01AN6374EJ0202 Rev.2.02 Page 58 of 84
Dec.13.24

e) Change the load type of the bootloader (boot_loader.x) from "Image and Symbol" to "Symbol only".

(5) Add the image of the initial image (initial_firm.mot).

Add the image of the initial image (initial_firm.mot) generated in step (2) according to the following
procedure.

a) Click "Add".

RL78/G22,RL78/G23,RL78/G24 Firmware Update Module

R01AN6374EJ0202 Rev.2.02 Page 59 of 84
Dec.13.24

b) Click File System.

c) Select the initial image (initial_firm.mot) and click "OK”.

d) Change the load type of the initial image (initial_firm.mot) from "Image and Symbol" to "Image only"

and click "OK”.

RL78/G22,RL78/G23,RL78/G24 Firmware Update Module

R01AN6374EJ0202 Rev.2.02 Page 60 of 84
Dec.13.24

e) Click "Apply" and click "Debug".

(6) Start the debugger.

When the debugger starts, it jumps to cstart.asm in the boot_loader project.

RL78/G22,RL78/G23,RL78/G24 Firmware Update Module

R01AN6374EJ0202 Rev.2.02 Page 61 of 84
Dec.13.24

(7) Resume the program.

When you click Resume, the program stops at the beginning of the main() function in boot_loader.c. project.

(8) Set a breakpoint in main() of the fwup_main project.

Set a breakpoint in the following red frame in main() of the fwup_main project.

RL78/G22,RL78/G23,RL78/G24 Firmware Update Module

R01AN6374EJ0202 Rev.2.02 Page 62 of 84
Dec.13.24

(9) Resume the program.

Click restart and stop at the breakpoint set in (8).

RL78/G22,RL78/G23,RL78/G24 Firmware Update Module

R01AN6374EJ0202 Rev.2.02 Page 63 of 84
Dec.13.24

5. Renesas Image Generator
Renesas Image Generator is a utility tool that generates firmware images for use with firmware update
modules. The Renesas Image Generator can generate the following images used by the firmware update
module.

• Initial image: An image file containing the bootloader and application program that is programmed using

Flash Writer at the time of initial system configuration (extension: mot).
• Update image: An image file containing the firmware update (extension: rsu).

See 5.1 for how to generate an image, and 5.2 to 5.3 for details on image configuration and parameter files.

Renesas Image Generator is a program that runs on Python.

5.1 Image Generation Methods
Describes the specifications of Renesas Image Generator (image-gen.py) and how to generate an image file
(initial image or update image) using this tool.

See 5.1.1 for how to generate an initial image, and 5.1.2 for how to generate an update image.

The format of the image-gen.py command is as follows:

python image-gen.py < options >

Some image-gen.py command options are required and others are optional. Table 5.1 lists the required
image-gen.py options, and Table 5.2 lists the optional image-gen.py options.

Table 5.1 Required Options of image-gen.py

Option Description
-iup <file> Specifies the application program.

For the character string < file >, specify the mot file name (the full path
including the file name) of the user application program.

-ip <file> Specifies a parameter file.
For the character string < file >, specify the name of the file (the full
path including the file name) containing the parameters to be input.

-o <file> Specifies the file name of the output image.
For the character string < file >, specify the file name (the full path
including the file name), excluding the extension, of the firmware
update image file to be output.
The file extension is .mot because the output image is determined to be
the initial image when the bootloader is specified with the -ibp <file>
option.
If you omit the -ibp <file> specification, the output image is determined
to be an update image and becomes .rsu.

RL78/G22,RL78/G23,RL78/G24 Firmware Update Module

R01AN6374EJ0202 Rev.2.02 Page 64 of 84
Dec.13.24

Table 5.2 Optional Options of image-gen.py

Option Description
-ibp <file> Specifies the bootloader.

For the character string < file >, specify mot file name (the full path
including the file name) of the bootloader program.
Specify this option when generating a mot file.

--key <file> Specify the name of the key file to be used to sign the image using
ECDSA. (This option does not need to be set if sha256 is specified for
the -vt option.)
Store the file secp256r1.privatekey in the command execution folder.
If the file name has been changed, specify the full path including the file
name.

-vt <VerificationType>[sha256 /
ecdsa]

Specifies the image verification method in the firmware update module.
The following VerificationType can be specified.

sha256: Append a hash of the image. If this option is omitted, "sha256"

is specified.
ecdsa: Adds an image signature. The key file specified by -key is used
to generate signature data. An error will result if the key file is not
specified with -key.

-ff <FileFormat> Specifies the RSU format type.
The following FileFormat can be specified

BareMetal: Generates an image of the application program data with

RSU header signature information. This is the RSU format
used in the demo project.
If this option is omitted, "BareMetal" is specified.

RTOS: Generates an updated image for FreeRTOS OTA. Update
images for FreeRTOS OTA do not add RSU header signature
information.

BareMetal_FWUP_V2_V1_DATA: For special purpose.
RTOS_FWUP_V2_V1_DATA: For special purpose.

-h Output a list of commands.
Specify this option to display help information for the tool.

RL78/G22,RL78/G23,RL78/G24 Firmware Update Module

R01AN6374EJ0202 Rev.2.02 Page 65 of 84
Dec.13.24

5.1.1 Initial Image Generation Method
Renesas Image Generator has the bootloader file name (.mot) generated by build, application program
(.mot), parameter file name (.csv), output file name (no extension), image verification method in firmware
update module. Specify (ecdsa/sha256) as a command line option to generate an initial image file (.mot).

Command input example

> python image-gen.py -iup fwup_main.mot -ip
RL78_G23_ImageGenerator_PRM.csv -o initial_firm -ibp boot_loader.mot
-vt ecdsa -key secp256r1.privatekey

fwup_main.mot: The mot file name of the user application program
RL78_G23_ImageGenerator_PRM.csv: The name of the file containing the parameters to be input
initial_firm: The file name of the initial image file to be output
boot_loader.mot: The mot file name of the bootloader program
ecdsa: Specifies that ECDSA is used to sign the image.
secp256r1.privatekey: Key file name for signing images with ECDSA.

5.1.2 Update Image Generation Method
The Renesas Image Generator uses the update application program (.mot) generated by the build,
parameter file name (.csv), output file name (no extension), image verification method (ecdsa/sha256) for the
firmware update module. Set the command line options to generate an update image file (.rsu).

Command input example

> python image-gen.py -iup fwup_leddemo.mot -ip
RL78_G23_ImageGenerator_PRM.csv -o fwup_leddemo -vt ecdsa -key
secp256r1.privatekey

fwup_leddemo.mot: The mot file name of the user application program to be applied as an update
RL78_G23_ImageGenerator_PRM.csv: The name of the file containing the parameters to be input
fwup_leddemo: The file name of the update image file to be output
ecdsa: Specifies that ECDSA is used to sign the image.
secp256r1.privatekey: Key file name for signing images with ECDSA.

RL78/G22,RL78/G23,RL78/G24 Firmware Update Module

R01AN6374EJ0202 Rev.2.02 Page 66 of 84
Dec.13.24

5.2 Image File
5.2.1 Update Image File
Figure 5.1 shows the configuration diagram of the update image file generated by Renesas Image
Generator.

For the format of the RSU header, see Table 5.3.

Figure 5.1 Configuring the update image file

The update image file consists of RSU header and application program data. The RSU header stores the
application program location information required to verify the validity of the application program, as well as
the signature value and hash value of the application program calculated based on the information.
Following the RSU header, place the application program data corresponding to the program allocation
information stored in the RSU header. The Renesas Image Generator arranges the application program data
in the order of the data to be placed in the code flash and the data to be placed in the data flash. Valid code
flash data and data flash data are extracted from the user-generated application program file (.mot),
converted to binary data, and set.

The update image file has the same configuration for partial-updating method and full-updating method.

Table 5.3 RSU Header Format (1/2)

Offset Item
Length
(Bytes) Description

0x00000000 Magic Code 7 Magic code (“RELFWV2”)
0x00000007 Reserved 1 Reserved area
0x00000008 Firmware Verification

Type
32 Image verification method

Set sig-sha256-ecdsa to use ECDSA for image
verification, and hash-sha256 to use hash.

0x00000028 Signature size 4 Data size of signature value or hash value stored in
Signature
Set 0x40 if Firmware Verification Type is sig-sha256-
ecdsa, and 0x20 if hash-sha256.

0x0000002C Signature 64 Signature value used for firmware verification
For SHA-256 signature data, bytes 33 to 64 are set to
0x00.

0x0000006C RSU File Size 4 File size of entire update image file
0x00000070 Reserved 400 Reserved area

RL78/G22,RL78/G23,RL78/G24 Firmware Update Module

R01AN6374EJ0202 Rev.2.02 Page 67 of 84
Dec.13.24

Table 5.3 RSU Header Format (2/2)

Offset Item
Length
(Bytes) Description

0x00000200 Program Data Num 4 Number of subsequent divided application programs or
data flashes (maximum 31)

0x00000204 Start Address[0] 4 Start address of the first application program or data
flash

0x00000208 Data Size[0] 4 Size of the first application program or data flash
0x0000020C Start Address[1] 4 Start address of second application program or data

flash
0x00000210 Data Size[1] 4 Second application program or data flash size
: :
0x000002F4 Start Address[30] 4 Start address of the 31st application program or data

flash
0x000002F8 Data Size[30] 4 Size of the 31st application program or data flash
0x000002FC Reserved 4 Reserved area

See Figure 5.2 for the mechanism of generating the update image file.

Figure 5.2 Updating image of partial / full updating method

• The parameter file is a CSV format file that contains the device address information required to generate

the image file.
• The private key for generating the ecdsa signature value is used when ecdsa is specified as the image

verification method in the firmware update module.

RL78/G22,RL78/G23,RL78/G24 Firmware Update Module

R01AN6374EJ0202 Rev.2.02 Page 68 of 84
Dec.13.24

5.2.2 Initial Image File
The initial image file is the RSU header and application program data plus the bootloader program data.

Figure 5.3 also show a diagram of the initial image file (partial / full update method).

Figure 5.3 Composition of initial image file (partial / full update method)

In the initial image file of partial / full update method, the bootloader data to be placed on the main side of the
code flash uses the data in the user-generated bootloader file (boot_loader.mot) as is.

See Figure 5.4 for the mechanism that generates the initial image file.

Figure 5.4 Initial image of partial/ full update method

• The parameter file is a CSV format file that contains the device address information required to generate
the image file.

• The private key for generating the ecdsa signature value is used when ecdsa is specified as the image
verification method in the firmware update module.

RL78/G22,RL78/G23,RL78/G24 Firmware Update Module

R01AN6374EJ0202 Rev.2.02 Page 69 of 84
Dec.13.24

5.3 Parameter File
The parameter file is the information required for Renesas Image Generator to generate the initial and
updated image files for the sample program, and is included in the release package as part of the Renesas
Image Generator Python It is included in the release package as part of the Renesas Image Generator
Python program set. When a customer generates an initial or updated image for a demo project, there is no
need to change the contents of the parameter file.

5.3.1 Contents of Parameter File

The items listed in the parameter file are the same for all devices, but the settings differ for each device.
Table 5.4 shows the contents of the parameter file for the RL78/G23 demo project.
Figure 5.5 shows the parameters referenced when generating images for the RL78/G23 partial update
method, and Figure 5.6 shows an example of parameters referenced when generating initial images for the
RL78/G23 partial update method.

Table 5.4 Contents of parameter file

Parameter name Description Example of
setting contents

RL78/G23
device Type Linear Mode：partial / full update method Mot file

generation for
Liner Mode

Code Flash Size(Dual
Mode Only)

Code Flash Size
(For RL78, set 'No Used.')

No Uset

Bootloader Start Address Bootloader start address 0x000B1000
Bootloader End Address Bootloader end address 0x000BFFFF
User Program Start
Address

Starting address of the application program on the main
face

0x00001000

User Program End
Address

End address of the application program on the main side
(in dual mode, application program area on main side)

0x00058FFF

OFS Data Start Address OFSM data start address
(For RL78, set 'No Used.')

No Used.

OFS Data End Address OFSM data end address
(For RL78, set 'No Used.')

No Used.

Data Flash Start Address Data flush start address
(Set 'No Used.' if data flush data is not to be generated)

0x000F1000

Data Flash End Address Data flash end address
(Set 'No Used.' if data flash data is not to be generated)

0x000F2FFF

Near Data Start
Address(RL78 Only)

Near bootloader start address for RL78

0x00000000

Near Data End
Address(RL78 Only)

Near boot loader start address for RL78

0x00000FFF

Flash Write Size Flash write size (number of bytes required for one write to
the flash in decimal)

128

The value specified for each parameter is specified in decimal for Flash Write Size and in hexadecimal (with
0x added at the beginning) for other parameters.

RL78/G22,RL78/G23,RL78/G24 Firmware Update Module

R01AN6374EJ0202 Rev.2.02 Page 70 of 84
Dec.13.24

Figure 5.5 Parameters referenced when generating image files

• Device type is used to determine how the initial image is generated; for the RL78, set to ‘Linear Mode’.
• Using the bootloader file (boot_loader.mot) as input data, the range from Bootloader Start Address to

Bootloader End Address is generated as a code flash for the bootloader (main plane).
• Using the application program file (.mot) as input data, the range from User Program Start Address to

User Program End Address is generated as an application program code flash.
• Using the application program file (.mot) as input data, the range from Data Flash Start Address to Data

Flash End Address is generated as a data flash. (This demonstration project does not use data flash.)
• Using the bootloader file (boot_loader.mot) as input data, the range from Near Data Flash Start Address

(RL78 Only) to Near Data Flash End Address (RL78 Only) is generated using the bootloader vector table
etc.

• Flash Write Size is used to set the data size of the RSU header (address information) as the minimum
unit when writing to the flash.

RL78/G22,RL78/G23,RL78/G24 Firmware Update Module

R01AN6374EJ0202 Rev.2.02 Page 71 of 84
Dec.13.24

Figure 5.6 Example of parameters referred to when generating the initial image of RL78/G23 partial
update method

RL78/G22,RL78/G23,RL78/G24 Firmware Update Module

R01AN6374EJ0202 Rev.2.02 Page 72 of 84
Dec.13.24

6. Appendices
6.1 Confirmed Operation Environments
This section describes confirmed operation environment for the module.

Table 6.1 Confirmed Operation Environment (CC-RL)

Item Description
Integrated development
environment

Renesas Electronics e2 studio 2023-01

C compiler Renesas Electronics CC-RL V1.11.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99

Endian order Little endian
Revision of the module Rev.2.01
Board used RL78/G23-128p Fast Prototyping Board 128-pin (R7F100GSN CF 768KB)

RL78/G22-48p Fast Prototyping Board 48-pin (R7F102GGE2DFB CF 64KB)
RL78/G24-64p Fast Prototyping Board 64-pin (RTK7RLG240C00000BJ)

Table 6.2 Confirmed Operation Environment (IAR)

Item Description
Integrated development
environment

IAR Systems IAR Embedded Workbench for Renesas RL78 5.10.1

C compiler IAR Systems
IAR C/C++ Compiler for Renesas RL78 version 5.10.1
IAR Assembler for Renesas RL78 version 5.10.1
Compiler option: Default settings of the integrated development environment.

Endian order Little endian
Revision of the module Rev.2.01
Board used RL78/G23-128p Fast Prototyping Board 128-pin (R7F100GSN CF 768KB)

RL78/G22-48p Fast Prototyping Board 48-pin (R7F102GGE2DFB CF 64KB)
RL78/G24-64p Fast Prototyping Board 64-pin (RTK7RLG240C00000BJ)

RL78/G22,RL78/G23,RL78/G24 Firmware Update Module

R01AN6374EJ0202 Rev.2.02 Page 73 of 84
Dec.13.24

6.2 Operating Environment for Demo Project
This module supports multiple compilers. When using this module, the different settings for each compiler
are shown below.

6.2.1 Operation Confirmation Environment for RL78/G23
The execution environment and connection diagram are shown below.

Figure 6.1 RL78/G23-128p FPB Device Connection Diagram

RL78/G22,RL78/G23,RL78/G24 Firmware Update Module

R01AN6374EJ0202 Rev.2.02 Page 74 of 84
Dec.13.24

The pin assignment is shown in the figure below.

Figure 6.2 RL78/G23-128p FPB Device Connection Pin Information

RL78/G22,RL78/G23,RL78/G24 Firmware Update Module

R01AN6374EJ0202 Rev.2.02 Page 75 of 84
Dec.13.24

6.2.1.1 Memory map of demo project for partial update method
Shown below are the memory map of the RL78/G23 partial update method demo project and the memory
map of the configuration settings.

Figure 6.3 RL78/G23 partial update method demo project memory map

Table 6.3 RL78/G23 partial update method configuration setting

Configuration options in r_fwup _config.h

parameter name boot_loader fwup_main

FWUP_CFG_UPDATE_MODE 1 1

FWUP_CFG_FUNCTION_MODE 0 1

FWUP_CFG_MAIN_AREA_ADDR_L 0x1000 0x1000

FWUP_CFG_BUF_AREA_ADDR_L 0x59000 0x59000

FWUP_CFG_AREA_SIZE 0x58000 0x58000

FWUP_CFG_CF_BLK_SIZE 2048 2048

FWUP_CFG_CF_W_UNIT_SIZE 128 128

FWUP_CFG_EXT_BUF_AREA_ADDR_L 0x0000 0x0000

FWUP_CFG_EXT_BUF_AREA_BLK_SIZE 4096 4096

FWUP_CFG_DF_ADDR_L 0xF1000 0xF1000

FWUP_CFG_DF_BLK_SIZE 256 256

FWUP_CFG_DF_NUM_BLKS 32 32

FWUP_CFG_FWUPV1_COMPATIBLE 0 0

FWUP_CFG_SIGNATURE_VERIFICATION 0 0

FWUP_CFG_PRINTF_DISABLE 0 0

RL78/G22,RL78/G23,RL78/G24 Firmware Update Module

R01AN6374EJ0202 Rev.2.02 Page 76 of 84
Dec.13.24

6.2.1.2 Memory map of demo project for full update method
The memory map of the RL78/G23 full update method demo project and the memory map of the
configuration settings are shown below.

Figure 6.4 RL78/G23 full update method demo project memory map

Table 6.4 RL78/G23 full update method configuration setting

Configuration options in r_fwup _config.h

parameter name boot_loader fwup_main

FWUP_CFG_UPDATE_MODE 3 3

FWUP_CFG_FUNCTION_MODE 0 1

FWUP_CFG_MAIN_AREA_ADDR_L 0x1000 0x1000

FWUP_CFG_BUF_AREA_ADDR_L 0x59000 0x59000

FWUP_CFG_AREA_SIZE 0xB0000 0xB0000

FWUP_CFG_CF_BLK_SIZE 2048 2048

FWUP_CFG_CF_W_UNIT_SIZE 128 128

FWUP_CFG_EXT_BUF_AREA_ADDR_L 0x0000 0x0000

FWUP_CFG_EXT_BUF_AREA_BLK_SIZE 4096 4096

FWUP_CFG_DF_ADDR_L 0xF1000 0xF1000

FWUP_CFG_DF_BLK_SIZE 256 256

FWUP_CFG_DF_NUM_BLKS 32 32

FWUP_CFG_FWUPV1_COMPATIBLE 0 0

FWUP_CFG_SIGNATURE_VERIFICATION 0 0

FWUP_CFG_PRINTF_DISABLE 0 0

RL78/G22,RL78/G23,RL78/G24 Firmware Update Module

R01AN6374EJ0202 Rev.2.02 Page 77 of 84
Dec.13.24

6.2.2 Operation Confirmation Environment for RL78/G24
The execution environment and connection diagram are shown below.

Figure 6.5 RL78/G24-64p FPB Device Connection Diagram

The pin assignment is shown in the figure below.

Figure 6.6 RL78/G24-64p FPB Pin Information

RL78/G22,RL78/G23,RL78/G24 Firmware Update Module

R01AN6374EJ0202 Rev.2.02 Page 78 of 84
Dec.13.24

6.2.2.1 Memory map of demo project for partial update method
Shown below are the memory map of the RL78/G24 partial update method demo project and the memory
map of the configuration settings.

Figure 6.7 RL78/G24 partial update method demo project memory map

Table 6.5 RL78/G24 partial update method configuration setting

Configuration options in r_fwup _config.h

parameter name boot_loader fwup_main

FWUP_CFG_UPDATE_MODE 1 1

FWUP_CFG_FUNCTION_MODE 0 1

FWUP_CFG_MAIN_AREA_ADDR_L 0x1000 0x1000

FWUP_CFG_BUF_AREA_ADDR_L 0x9000 0x9000

FWUP_CFG_AREA_SIZE 0x8000 0x8000

FWUP_CFG_CF_BLK_SIZE 2048 2048

FWUP_CFG_CF_W_UNIT_SIZE 128 128

FWUP_CFG_EXT_BUF_AREA_ADDR_L 0x0000 0x0000

FWUP_CFG_EXT_BUF_AREA_BLK_SIZE 4096 4096

FWUP_CFG_DF_ADDR_L 0xF1000 0xF1000

FWUP_CFG_DF_BLK_SIZE 256 256

FWUP_CFG_DF_NUM_BLKS 16 16

FWUP_CFG_FWUPV1_COMPATIBLE 0 0

FWUP_CFG_SIGNATURE_VERIFICATION 0 0

FWUP_CFG_PRINTF_DISABLE 0 0

RL78/G22,RL78/G23,RL78/G24 Firmware Update Module

R01AN6374EJ0202 Rev.2.02 Page 79 of 84
Dec.13.24

6.2.2.2 Memory map of demo project for full update method
The memory map of the RL78/G24 full update method demo project and the memory map of the
configuration settings are shown below.

Figure 6.8 RL78/G24 full update method demo project memory map

Table 6.6 RL78/G24 full update method configuration setting

Configuration options in r_fwup _config.h

parameter name boot_loader fwup_main

FWUP_CFG_UPDATE_MODE 3 3

FWUP_CFG_FUNCTION_MODE 0 1

FWUP_CFG_MAIN_AREA_ADDR_L 0x1000 0x1000

FWUP_CFG_BUF_AREA_ADDR_L 0x9000 0x9000

FWUP_CFG_AREA_SIZE 0x10000 0x10000

FWUP_CFG_CF_BLK_SIZE 2048 2048

FWUP_CFG_CF_W_UNIT_SIZE 128 128

FWUP_CFG_EXT_BUF_AREA_ADDR_L 0x0000 0x0000

FWUP_CFG_EXT_BUF_AREA_BLK_SIZE 4096 4096

FWUP_CFG_DF_ADDR_L 0xF1000 0xF1000

FWUP_CFG_DF_BLK_SIZE 256 256

FWUP_CFG_DF_NUM_BLKS 16 16

FWUP_CFG_FWUPV1_COMPATIBLE 0 0

FWUP_CFG_SIGNATURE_VERIFICATION 0 0

FWUP_CFG_PRINTF_DISABLE 0 0

RL78/G22,RL78/G23,RL78/G24 Firmware Update Module

R01AN6374EJ0202 Rev.2.02 Page 80 of 84
Dec.13.24

6.2.3 Operation Confirmation Environment for RL78/G22
The execution environment and connection diagram are shown below.

Figure 6.9 RL78/G22-48p FPB Device Connection Diagram

The pin assignment is shown in the figure below.

Figure 6.10 RL78/G22-48p FPB Pin Information

RL78/G22,RL78/G23,RL78/G24 Firmware Update Module

R01AN6374EJ0202 Rev.2.02 Page 81 of 84
Dec.13.24

6.2.3.1 Memory map of demo project for full update method
The memory map of the RL78/G22 full update method demo project and the memory map of the
configuration settings are shown below.

Figure 6.11 RL78/G22 full update method demo project memory map

Table 6.7 RL78/G22 full update method configuration setting

Configuration options in r_fwup _config.h

parameter name boot_loader

FWUP_CFG_UPDATE_MODE 2

FWUP_CFG_FUNCTION_MODE 0

FWUP_CFG_MAIN_AREA_ADDR_L 0x2000

FWUP_CFG_BUF_AREA_ADDR_L 0x2000

FWUP_CFG_AREA_SIZE 0x9000

FWUP_CFG_CF_BLK_SIZE 2048

FWUP_CFG_CF_W_UNIT_SIZE 128

FWUP_CFG_EXT_BUF_AREA_ADDR_L (unused) 0x0000

FWUP_CFG_EXT_BUF_AREA_BLK_SIZE (unused) 4096

FWUP_CFG_DF_ADDR_L 0xF1000

FWUP_CFG_DF_BLK_SIZE 256

FWUP_CFG_DF_NUM_BLKS 8

FWUP_CFG_FWUPV1_COMPATIBLE 0

FWUP_CFG_SIGNATURE_VERIFICATION 1

FWUP_CFG_PRINTF_DISABLE 0

RL78/G22,RL78/G23,RL78/G24 Firmware Update Module

R01AN6374EJ0202 Rev.2.02 Page 82 of 84
Dec.13.24

6.3 Open source license information used in the demo project
The demo project for this product uses the open source TinyCrypt. If you use TinyCrypto for your
cryptographic library, you must comply with the terms of use set forth in TinyCrypt's license terms.

Check out the TinyCrypt license terms below.

URL：https://github.com/intel/tinycrypt

license：https://github.com/intel/tinycrypt/blob/master/LICENSE

https://github.com/intel/tinycrypt
https://github.com/intel/tinycrypt/blob/master/LICENSE

RL78/G22,RL78/G23,RL78/G24 Firmware Update Module

R01AN6374EJ0202 Rev.2.02 Page 83 of 84
Dec.13.24

7. Notes
7.1 Notes on Transition from Bootloader to Application.
When transitioning from the sample bootloader program to the application, the settings of the bootloader's
peripheral functions will be taken over by the application.

For the peripheral functions used in the sample bootloader, the API functions of each module are closed at
the end of the bootloader. Other settings are default values when the smart configurator is used.

If the customer modifies the bootloader sample program for use, the settings of the peripheral functions set
in the bootloader will be inherited by the application side. Therefore, it is recommended to initialize the
settings of the peripheral functions before moving from the bootloader to the application, or to share the
settings of the peripheral functions with the application.

When creating an application, please take the implementation of the bootloader into consideration.

Table 7.1 Notes on peripheral functions used in the bootloader

Peripheral Functions Settings and Notes on the Boot Loader
Board Functions These are the default values when the module is embedded in the Smart

Configurator. The settings are not changed in the bootloader.
Note) For the demo project for RL78/G24, the PLL setting is set to 32 MHz,
which is different from the default value.

Functions of Flash
Memory

The Flash API performs Close for peripheral functions related to flash
memory and transitions to the application.

Serial Communication
Functions

For peripheral functions related to serial communication, Close is performed
by the SCI API and the transition is made to the application.
For the SCI channels used in the bootloader, refer to the device connection
diagram for each product in 6.2 Operating Environment for Demo Project.

Option Setting Memory For the option setting memory, set the same value in the bootloader and the
application program.

Other Functions As for the settings of other functions, these are the default values when using
the Smart Configurator.
The interrupt enable flag is set to interrupt disabled to transition to the
application.

7.2 Security measures for the bootloader area
When the firmware update module is commercialized by the customer, it is recommended to protect the area
of the code flash where the bootloader (boot_loader) is deployed.

RL78/G22,RL78/G23,RL78/G24 Firmware Update Module

R01AN6374EJ0202 Rev.2.02 Page 84 of 84
Dec.13.24

Revision History

Rev. Date
Description
Page Summary

2.00 Jul. 20, 2023 First edition issued
2.01 Nov. 22, 2023 1 Added RL78/G24

to Target Devices
13-14 Added device to folder structure
18 Added FWUP_CFG_CF_W_UNIT_SIZE and

FWUP_CFG_FWUPV1_COMPATIBLE to configuration
settings

20 Added device in ROM/RAM/Stack
23 Added parameter to R_FWUP_EraseArea function
23 Added description to R_FWUP_GetImageSize function
23 Added description to R_FWUP_GetImageSize function
24 Added parameter to R_FWUP_WriteImageProgram function
24 Added return value to R_FWUP_WriteImage function
25 Added return value to R_FWUP_VerifyImage function
58 Added board used for operation check environment
59-67 Added device to Operation check environment
69 Added note

2.02 Dec.13.2024 12-13 Modified chapter 1.4.
22-23 Moved figures from chapter 1.6 to chapter 2.10.
28 Moved the R_FWUP_WriteImageHeader function to chapter

3.13.
28 Moved the R_FWUP_WriteImageProgram function to chapter

3.14.
- Replaced chapters 4 and 5.
37-52 Modified the description of 4.demo project.
53-61 Added chapter 4.6 Debugging demo projects.
62-70 Modified chapter 5 Renesas Image Generator.
83 Added chapter 7.2 Security measures for the bootloader area

General Precautions in the Handling of Microprocessing Unit and Microcontroller
Unit Products
The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the
products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Precaution against Electrostatic Discharge (ESD)

A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps

must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be

adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity.

Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and

measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor

devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.
2. Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of

register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset

pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins

in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power reaches the

level at which resetting is specified.
3. Input of signal during power-off state

Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O

pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal

elements. Follow the guideline for input signal during power-off state as described in your product documentation.
4. Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are

generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of

the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal

become possible.
5. Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program

execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator

during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal

produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.
6. Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL

(Max.) and VIH (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the

input level is fixed, and also in the transition period when the input level passes through the area between VIL (Max.) and VIH (Min.).
7. Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these

addresses as the correct operation of the LSI is not guaranteed.
8. Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems.

The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms

of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values,

operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-

evaluation test for the given product.

© 2024 Renesas Electronics Corporation. All rights reserved.

Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products

and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your
product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use
of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights,
or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this
document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics
or others.

4. You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export,
manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.

5. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any
and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.

6. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for
each Renesas Electronics product depends on the product’s quality grade, as indicated below.
 "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home

electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key

financial terminal systems; safety control equipment; etc.
Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas
Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to
human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space
system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics
disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product
that is inconsistent with any Renesas Electronics data sheet, user’s manual or other Renesas Electronics document.

7. No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics
hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but
not limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS
ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING
RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE,
HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION (“Vulnerability Issues”). RENESAS ELECTRONICS DISCLAIMS ANY AND
ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT
PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH
RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO
THE IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.

8. When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General Notes for
Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by
Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas
Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such
specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific
characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability
product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics
products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily
injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as
safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for
aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are
responsible for evaluating the safety of the final products or systems manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas
Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of
controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these
applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance
with applicable laws and regulations.

11. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is
prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations
promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.

12. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or
transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

13. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
14. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas

Electronics products.

(Note1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled
subsidiaries.

(Note2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.
(Rev.5.0-1 October 2020)

Corporate Headquarters Contact information
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

 For further information on a product, technology, the most up-to-date
version of a document, or your nearest sales office, please visit:
www.renesas.com/contact/.

Trademarks
Renesas and the Renesas logo are trademarks of Renesas Electronics
Corporation. All trademarks and registered trademarks are the property
of their respective owners.

https://www.renesas.com/
https://www.renesas.com/contact/

	1. Overview
	1.1 About the Firmware Update Module
	1.2 Configuration of Firmware Update Module
	1.3 Firmware Update Operation
	1.3.1 Partial Update Method (buffer side is internal flash)
	1.3.1.1 Operation of Partial Update Method (buffer side is internal flash)

	1.3.2 Full Update Method (without buffer side)
	1.3.2.1 Operation of Full Update Method (without buffer side)

	1.3.3 Full Update Method (buffer side is external flash)
	1.3.3.1 Operation of Full Update Method (buffer side is external flash)

	1.4 Initial State of Firmware Update
	1.4.1 Initial State of Partial Update Method Settings Utilizing Renesas Image Generator
	1.4.2 Initial State of Full Update Method Settings Utilizing Renesas Image Generator
	1.4.3 Initial State of Partial Update Method Settings Utilizing Bootloader
	1.4.4 Initial State of Full Update Method Settings Utilizing Bootloader

	1.5 Package Contents
	1.6 API Overview

	2. API Information
	2.1 Hardware Requirements
	2.2 Software Requirements
	2.3 Supported Toolchains
	2.4 Header Files
	2.5 Integer Types
	2.6 Compile Settings
	2.7 Sample Project Code Sizes
	2.7.1 Sample Project for RL78/G23-128p FPB
	2.7.2 Sample Project for RL78/G24-64p FPB
	2.7.3 Sample project for RL78/G22-48p FPB

	2.8 Arguments
	2.9 Return Values
	2.10 Implementation Examples of APIs

	3. API Functions
	3.1 R_FWUP_Open Function
	3.2 R_FWUP_Close Function
	3.3 R_FWUP_IsExistImage Function
	3.4 R_FWUP_EraseArea Function
	3.5 R_FWUP_GetImageSize Function
	3.6 R_FWUP_WriteImage Function
	3.7 R_FWUP_VerifyImage Function
	3.8 R_FWUP_ActivateImage Function
	3.9 R_FWUP_ExecImage Function
	3.10 R_FWUP_SoftwareReset Function
	3.11 R_FWUP_SoftwareDelay Function
	3.12 R_FWUP_GetVersion Function
	3.13 R_FWUP_WriteImageHeader Function
	3.14 R_FWUP_WriteImageProgram Function
	3.15 Wrapper Functions
	3.15.1 r_fwup_wrap_com.c, h
	3.15.1.1 r_fwup_wrap_disable_interrupt Function
	3.15.1.2 r_fwup_wrap_enable_interrupt Function
	3.15.1.3 r_fwup_wrap_software_reset Function
	3.15.1.4 r_fwup_wrap_software_delay Function

	3.15.2 r_fwup_wrap_flash.c, h
	3.15.2.1 r_fwup_wrap_flash_open Function
	3.15.2.2 r_fwup_wrap_flash_close Function
	3.15.2.3 r_fwup_wrap_flash_erase Function
	3.15.2.4 r_fwup_wrap_flash_write Function
	3.15.2.5 r_fwup_wrap_flash_read Function
	3.15.2.6 r_fwup_wrap_bank_swap Function
	3.15.2.7 r_fwup_wrap_ext_flash_open Function
	3.15.2.8 r_fwup_wrap_ext_flash_close Function
	3.15.2.9 r_fwup_wrap_ext_flash_erase Function
	3.15.2.10 r_fwup_wrap_ext_flash_write Function
	3.15.2.11 r_fwup_wrap_ext_flash_read Function

	3.15.3 r_fwup_wrap_verify.c, h
	3.15.3.1 r_fwup_wrap_sha256_init Function
	3.15.3.2 r_fwup_wrap_sha256_update Function
	3.15.3.3 r_fwup_wrap_sha256_final Function
	3.15.3.4 r_fwup_wrap_verify_ecdsa Function
	3.15.3.5 r_fwup_wrap_get_crypt_context Function

	4. Demo Project
	4.1 Demo project Structure
	4.2 Operating environment preparation
	4.2.1 Installing TeraTerm
	4.2.2 Installing the Python execution environment
	4.2.3 Installing the OpenSSL execution environment
	4.2.4 Installing the Flash Writer
	4.2.5 USB serial conversion board

	4.3 Execution environment preparation
	4.3.1 Generating Keys for Signature Generation and Verification
	4.3.2 Preparing the execution environment for Renesas Image Generator

	4.4 Sample Project for RL78/G23-128p FPB
	4.4.1 Partial Update Method (buffer face is internal flash)
	4.4.1.1 Build Demo Project
	4.4.1.2 Create initial and updated images
	4.4.1.3 Program Initial Image
	4.4.1.4 Update Firmware

	4.4.2 Full Update Method (buffer face is external flash)
	4.4.2.1 Build Demo Project
	4.4.2.2 Create initial and updated images
	4.4.2.3 Program Initial Image
	4.4.2.4 Update Firmware

	4.5 Sample Project for RL78/G22-48p FPB
	4.5.1 Full Update Method (without buffer side)
	4.5.1.1 Build Demo Project
	4.5.1.2 Create initial and updated images
	4.5.1.3 Program Initial Image
	4.5.1.4 Update Firmware

	4.6 How to debug the demo project

	5. Renesas Image Generator
	5.1 Image Generation Methods
	5.1.1 Initial Image Generation Method
	5.1.2 Update Image Generation Method

	5.2 Image File
	5.2.1 Update Image File
	5.2.2 Initial Image File

	5.3 Parameter File
	5.3.1 Contents of Parameter File

	6. Appendices
	6.1 Confirmed Operation Environments
	6.2 Operating Environment for Demo Project
	6.2.1 Operation Confirmation Environment for RL78/G23
	6.2.1.1 Memory map of demo project for partial update method
	6.2.1.2 Memory map of demo project for full update method

	6.2.2 Operation Confirmation Environment for RL78/G24
	6.2.2.1 Memory map of demo project for partial update method
	6.2.2.2 Memory map of demo project for full update method

	6.2.3 Operation Confirmation Environment for RL78/G22
	6.2.3.1 Memory map of demo project for full update method

	6.3 Open source license information used in the demo project

	7. Notes
	7.1 Notes on Transition from Bootloader to Application.
	7.2 Security measures for the bootloader area

