
 Application Note

R01AN7094EJ0100 Rev.1.00 Page 1 of 66
Nov.14.23

RL78/G24
Flexible Application Accelerator (FAA) Tool Guide: CS+
Introduction
This guide describes the options that must be set for the build process and debugger of the flexible
application accelerator (FAA) contained in RL78/G24. It also describes how to operate the debugger.

Target Device
RL78/G24

RL78/G24 Fast Prototyping Board

Chapter Composition
Chapter 1: Overview of Flexible Application Accelerator (FAA)

This chapter describes the overview of the flexible application accelerator (FAA) and program creation.

Chapter 2: Overview of build process and debugger of Flexible Application Accelerator (FAA)

This chapter describes the new project creation procedure and the options that must be set for the build
process and debugger of the flexible application accelerator (FAA). It also describes how to operate the
debugger.

Chapter 3: Debugger operation using sample project

This chapter describes debugging operations for FAA programs using the sample code and the sample
script.

Related Documents
・ RL78/G24 User’s Manual: Hardware (R01UH0961)

・ RL78/G24 Fast Prototyping Board User’s Manual (R20UT5091)

RL78/G24 Flexible Application Accelerator (FAA) Tool Guide: CS+

R01AN7094EJ0100 Rev.1.00 Page 2 of 66
Nov.14.23

Contents

1. Overview ... 4
1.1 Flexible Application Accelerator (FAA) .. 4
1.2 Internal Memory Space of FAA ... 4
1.3 Program for RL78/G24 .. 5
1.3.1 Program Structure ... 5
1.3.2 Transfer of Program and Data for FAA ... 5
1.3.3 FAA Program ... 6
1.3.4 Build Process and Debug of FAA Program ... 6

2. Option Setting and Operation .. 7
2.1 Operating Environment ... 7
2.2 Project Creation ... 7
2.3 Adding FAA Program... 9
2.3.1 Adding FAA Component .. 9
2.3.2 Overview of FAA library’s File Structure ... 18
2.4 Build Tool Option Setting ... 19
2.4.1 FAA Assemble Options ... 20
2.4.2 Link Options ... 21
2.4.3 Program Building ... 23
2.5 Debug Tool Option Setting .. 24
2.5.1 Connect Settings ... 24
2.5.2 Debug Tool Settings .. 25
2.5.3 Download File Settings .. 26
2.5.4 Program Download .. 27
2.6 FAA Program Debug ... 28
2.6.1 Debug Target... 28
2.6.2 Source File Display ... 30
2.6.3 Go/Stop ... 31
2.6.4 Breakpoint ... 32
2.6.5 Memory .. 33
2.6.6 Symbol (Label) .. 33
2.6.7 Register ... 36
2.6.8 SFR ... 36

3. Sample Project .. 38
3.1 Specifications .. 38
3.1.1 Specification Overview .. 38
3.1.2 Operation Overview ... 39
3.2 Operation Confirmation Conditions ... 40
3.3 Hardware Description .. 41

RL78/G24 Flexible Application Accelerator (FAA) Tool Guide: CS+

R01AN7094EJ0100 Rev.1.00 Page 3 of 66
Nov.14.23

3.3.1 Example of Hardware Configuration ... 41
3.3.2 List of Used Pins.. 41
3.4 Software Description ... 42
3.4.1 Smart Configurator Setting .. 42
3.4.1.1 Clock .. 42
3.4.1.2 System... 43
3.4.1.3 Component .. 43
3.4.2 Folder Structure ... 46
3.4.3 Option Byte Settings .. 46
3.4.4 List of Constants .. 47
3.4.5 List of Variables ... 47
3.4.6 List of Functions .. 48
3.4.7 Function Specification ... 48
3.4.8 Flowchart ... 49
3.4.8.1 Main Process ... 49
3.4.8.2 r_Config_TKB0_end_count_interrupt Function ... 50
3.4.8.3 FAA Processing ... 51
3.5 Sample Script Specification ... 52
3.5.1 SFR Display Overview .. 52
3.5.2 Operation Overview ... 53
3.5.3 List of Functions .. 55
3.5.4 List of Variables ... 55
3.5.5 Flowchart ... 56
3.5.6 Script Execution... 61
3.5.7 Basic debug operations ... 62
3.5.8 Cautions When Using the Sample Script .. 64

4. Sample Code ... 65

5. Reference Documents ... 65

Revision History .. 66

RL78/G24 Flexible Application Accelerator (FAA) Tool Guide: CS+

R01AN7094EJ0100 Rev.1.00 Page 4 of 66
Nov.14.23

1. Overview
1.1 Flexible Application Accelerator (FAA)
The flexible application accelerator (FAA) contained in RL78/G24 is a Renesas original application
accelerator with a Harvard architecture. It can execute 32-bit multiplication, addition, and subtraction in a
single cycle.

FAA can access some peripheral functions directly by the address bus select function. Operations by the
CPU and FAA can be combined to suit the application, it can improve operation efficiency of the system.

Figure 1-1 Image diagram of RL78/G24 FAA

CPU FAA

A / DTimerSerial

RL78/G24

1.2 Internal Memory Space of FAA
When the FAA is in use, some of the RL78/G24's internal RAM is dedicated to the FAA.

 Instruction Code Memory: Store the program for FAA

 Data Memory: Store the data for FAA

Figure 1-2 Memory Map of the Instruction Code Memory and Data Memory

Data Memory

Instruction Code
Memory

RL78/G24 Flexible Application Accelerator (FAA) Tool Guide: CS+

R01AN7094EJ0100 Rev.1.00 Page 5 of 66
Nov.14.23

1.3 Program for RL78/G24
1.3.1 Program Structure
Programs for the CPU and programs for the FAA are coded in separate files. FAA programs use the FAA-
dedicated instruction sets. CPU programs and FAA programs are built together in an object file (load module
file) that can be executed in RL78/G24.

Figure 1-3 Program structure when FAA is in use

CPU program
source file

FAA program
source file

RL78/G24 program
Executable object file

Build

(The extension is fixed as “.dsp”)

Remark. For instruction sets for FAA, refer to the chapter for FAA in RL78/G24 User’s Manual: Hardware

(R01UH0961).

1.3.2 Transfer of Program and Data for FAA
An executable object file is written to the RL78/G24 code flash memory. However, FAA programs must be
placed in the instruction code memory and FAA data must be placed in the data memory. Therefore, before
executing an FAA program, the FAA program and data stored in the code flash memory must be transferred
to the instruction code memory and data memory, respectively.

Figure 1-4 Transfer of the program and data for FAA

Transfer

Remark. FAA component in the RL78 Smart Configurator provides API functions for transfer processing.

RL78/G24 Flexible Application Accelerator (FAA) Tool Guide: CS+

R01AN7094EJ0100 Rev.1.00 Page 6 of 66
Nov.14.23

1.3.3 FAA Program
You can create an FAA program by either of the following ways:

 Use a provided FAA library according to the purpose. The library is provided in a source file in which
code cannot be changed. (FAA library of various function)

 Use a template file to code your own FAA program. (Template (Custom FAA library))

In both cases, add the FAA program to the program project by using the Smart Configurator (SC).

For details about how to use the Smart Configurator (SC) to output an FAA program file (library or template),
see 2.3 Adding FAA Program.

1.3.4 Build Process and Debug of FAA Program
To build and debug FAA programs, some options must be set up. This guide describes the options that must
be specified for the processing shown in Figure 1-5. It also describes how to use the debugger for debugging
FAA programs.

Note that this guide requires the use of FAA programs (libraries or templates) generated by the Smart
Configurator (SC).

Figure 1-5 Operating instruction in chapter 2 of this guide

Start

Project creation

Adding FAA program

Build option setting,
Program build

Debug tool option setting,
Program download

Debugging FAA program

End

RL78/G24 Flexible Application Accelerator (FAA) Tool Guide: CS+

R01AN7094EJ0100 Rev.1.00 Page 7 of 66
Nov.14.23

2. Option Setting and Operation
This chapter explains the option settings and debugger operation required for building and debugging an
FAA program in the CS+ for CC environment.

For options that are not described in this guide, set them if necessary. For details about the options and
operations, see the help or documentation of CS+ for CC.

2.1 Operating Environment
This guide uses the following tools:

Table 2-1 Software tool

Integrated development
environment

Item version

CS+ CS+ for CC Manufactured by Renesas Electronics V8.10.00
 CC-RL Manufactured by Renesas Electronics V1.12.01
 DSPASM FAA/GREEN_DSP Structured Assembler

Manufactured by Renesas Electronics
V1.04.02

 RL78 Smart Configurator Manufactured by Renesas
Electronics

V1.8.0

Table 2-2 Hardware tool

Board / Emulator Item
Board RL78/G24 Fast Prototyping Board Manufactured by Renesas Electronics
Emulator Note1 E2 emulator Lite Manufactured by Renesas Electronics
 E2 emulator Manufactured by Renesas Electronics

Note1. When the debugger and the RL78/G24 Fast Prototyping Board are connected via COM port, the
emulator is not required.

2.2 Project Creation
Select the RL78/G24 product as the microcontroller to be used and create a program project.

Procedure:

1. Launch the CS+.

2. Select [File] menu -> [New] -> [Create New Project] of CS+.

Figure 2-1 [File] menu -> [New] -> [Create New Project]

RL78/G24 Flexible Application Accelerator (FAA) Tool Guide: CS+

R01AN7094EJ0100 Rev.1.00 Page 8 of 66
Nov.14.23

3. In the [Create Project] dialog, select the RL78/G24 products, input the project name and click the
[Create].

Figure 2-2 [Create Project] dialog

After creating the project, change the debug tool you use. In 2.3 Adding FAA Program, the Smart
Configurator (SC) sets some options for the debug tool, so you must first select the debug tool you want to
use.

Figure 2-3 Select debug tool

RL78/G24 Flexible Application Accelerator (FAA) Tool Guide: CS+

R01AN7094EJ0100 Rev.1.00 Page 9 of 66
Nov.14.23

2.3 Adding FAA Program
Use the Smart Configurator (SC) to add an FAA program (library or template) to your project.

This guide only describes the procedure for adding an FAA program, [Clock], [System] and [Voltage
detection] that need to be set in the CPU program. Please set other peripheral functions as appropriate to
suit your system.

2.3.1 Adding FAA Component

Procedure:

1. In the CS+ Project Tree, double-click [Smart Configurator (Design Tool)] to launch the RL78 Smart
Configurator.

Figure 2-4 Launch Smart Configurator

2. In the Smart Configurator (SC), click [Clock]. Set various clocks and the operation mode according to
your system.

Figure 2-5 Smart Configurator: [Clock] tab

Screen size can be adjusted by placing the mouse
cursor on the screen, holding down the "CTRL" key
and moving the mouse wheel up or down.

RL78/G24 Flexible Application Accelerator (FAA) Tool Guide: CS+

R01AN7094EJ0100 Rev.1.00 Page 10 of 66
Nov.14.23

3. Click the [System]. In the [System] tab, set the debug tool and functions to be used, and security ID.

Figure 2-6 Smart Configurator: [System] tab

4. Click the [Component]. Next, click the [Add component] to open the [New Component] dialog.

Figure 2-7 Smart Configurator: [Component] tab

RL78/G24 Flexible Application Accelerator (FAA) Tool Guide: CS+

R01AN7094EJ0100 Rev.1.00 Page 11 of 66
Nov.14.23

5. In the [New Component] dialog, select [Voltage Detector] and click the [Next].

Figure 2-8 Select [Voltage Detector]

6. Select the [LVD0] at the [Resource]. Check the configuration name and click the [Finish]. (The
configuration name can be changed to any name.)

Figure 2-9 Select resource and check configuration name [Voltage Detector]

RL78/G24 Flexible Application Accelerator (FAA) Tool Guide: CS+

R01AN7094EJ0100 Rev.1.00 Page 12 of 66
Nov.14.23

7. The Voltage Detector is added to the component tree. In the settings screen, set the Voltage Detector
according to your system.

Figure 2-10 Smart Configurator: [Voltage Detector] setting screen

8. Open the [New Component] dialog again, select the [Flexible Application Accelerator] and click the
[Next].

Figure 2-11 Select [Flexible Application Accelerator]

RL78/G24 Flexible Application Accelerator (FAA) Tool Guide: CS+

R01AN7094EJ0100 Rev.1.00 Page 13 of 66
Nov.14.23

9. Check the configuration name and click the [Finish]. (The configuration name can be changed to any
name.)

Figure 2-12 Select resource and check configuration name [Flexible Application Accelerator]

10. The Flexible Application Accelerator is added to the component tree.

Figure 2-13 Add [Flexible Application Accelerator] component

RL78/G24 Flexible Application Accelerator (FAA) Tool Guide: CS+

R01AN7094EJ0100 Rev.1.00 Page 14 of 66
Nov.14.23

11. When the FAA component is used for the first time, the download of FAA libraries or template from the
configurator's dedicated server is needed. Click the [Update FAA modules] or the [Please download
FAA data] to download them. (Please use the [Update FAA modules] to check and obtain the latest
version libraries as well.)

Figure 2-14 Update/Download FAA module (Library)

12. Select the library you want to download and click the [Download]. In the disclaimer dialog that follows,
click the [Agree].

Figure 2-15 Download FAA module (Library)

Remark. The content displayed on the actual download screen will differ.

Table 2-3 FAA library

Title Overview
RL78/G24 Common
FAA Library

The FAA program and data transfer routine described in 1.3.2 Transfer of
Program and Data for FAA. When using FAA libraries/templates, this is always
downloaded.

Custom Library A template for writing FAA programs.
Others FAA library of various function

RL78/G24 Flexible Application Accelerator (FAA) Tool Guide: CS+

R01AN7094EJ0100 Rev.1.00 Page 15 of 66
Nov.14.23

13. The downloaded libraries are added. (“RL78/G24 Common FAA Module” is not displayed.)

Figure 2-16 Added FAA library

14. Check the box which libraries/functions you will actually use among the downloaded libraries. If there
are any setting items in the properties of the checked function, set them as appropriate.

Figure 2-17 Select/set FAA library

Check the box which libraries/
features to use.

Set selectable items as necessary
(reflected in the generated code)

Remark. Two types of libraries and functions are provided: The subprocessor type, which can be used in

conjunction with other functions, and the standalone type, which cannot. Do not use the standalone
type simultaneously with any other library or function. When a standalone library or function is
selected, selecting another library or function causes the following message to appear on the
[Console] page.

Figure 2-18 Warning

RL78/G24 Flexible Application Accelerator (FAA) Tool Guide: CS+

R01AN7094EJ0100 Rev.1.00 Page 16 of 66
Nov.14.23

15. Click the [Generate Code] to generate source files of FAA library and added peripheral functions.

Figure 2-19 Generate Code

16. When the [Confirmation linker option change] dialog appears, click the [OK].

Figure 2-20 [Confirmation linker option change] dialog

Remark. Some items set in Smart Configurator's the [Clock], the [System] and the [Voltage Detector] (LVD0)
are reflected in option settings of the build tool (CC-RL).

RL78/G24 Flexible Application Accelerator (FAA) Tool Guide: CS+

R01AN7094EJ0100 Rev.1.00 Page 17 of 66
Nov.14.23

17. Source files of the FAA library and added peripheral functions are generated and registered in the
project. The FAA library source files are shown below.

Figure 2-21 Registered FAA library source files

｝
｝

RL78/G24 Common FAA Module
(Include FAA program and data

transfer routine)

Source files of selected FAA library
(.dsp: source file of FAA program)

File with empty main()

Remark. For files other than the red frame above, refer to RL78 Smart Configurator User's Guide: CS+
(R20AN0580).

18. API functions to control the FAA are defined in the FAA library source file. Call these functions in the
CPU program to operate the FAA. Create a CPU program according to your system.

RL78/G24 Flexible Application Accelerator (FAA) Tool Guide: CS+

R01AN7094EJ0100 Rev.1.00 Page 18 of 66
Nov.14.23

2.3.2 Overview of FAA library’s File Structure
The overview of the FAA library file structure is shown below.

Table 2-4 Overview of FAA library’s file structure

Library name Files Description
RL78/G24 Common
FAA Library

<Config_FAA>_common.c
<Config_FAA>_common.h

The transfer processing and common
functions to control the FAA are defined.
The transfer processing is executed within
the peripheral function initialization function
(R_Systeminit) generated by SC, so there
is no need to call it within the user program.

 <Config_FAA>_common.inc SFRs for FAA are defined.
Custom FAA Library <Config_FAA>_src.dsp The template for the FAA source file.
Others <Config_FAA>_XXX.c / asm / s

<Config_FAA>_XXX.h /inc
<Config_FAA>_src.dsp

FAA library of various functions.
Refer to documents of each FAA library.

・ <Config_FAA> is the configuration name set/checked in the step 9.

・ “XXX” depends on each library.

・ In the FAA source file (.dsp) provided by the FAA library and the template (Custom FAA Library), the
code section name is defined as FAACODE and the data section name is defined as FAADATA.

・ When using the Custom FAA Library, add your user code and data to the template. If you build the
template as is, an error will occur.

RL78/G24 Flexible Application Accelerator (FAA) Tool Guide: CS+

R01AN7094EJ0100 Rev.1.00 Page 19 of 66
Nov.14.23

2.4 Build Tool Option Setting
Before starting a build, set the build tool options required to build the FAA program. Some options are set by
the Smart Configurator (SC) in 2.3.1 Adding FAA Component. Manually set the options for which “No” is
indicated in the “Set by SC” column in Table 2-5.

For build tool options that are not described in this guide, set them if necessary.

How to open the build tool property:

Select the build tool node in the project tree, and then select the [View] menu -> [Property] or select the
[Property] from the context menu.

Figure 2-5 shows the build tool options required to build the FAA program.

Table 2-5 Setting options of build tool

Tab Category Item Description Set by
SC

FAA Assemble
Options

Preprocess Method for recognizing
the text macro

Exact(-macro_identify exact) Yes

Link Options Section Layout section
automatically

Yes(-AUTO_SECTION_LAYOUT)
or
No

No

 Section start address FAACODE,FAADATA/XXXX

XXXX (hexadecimal number
without “0x”) specifies an even
address after address D8H in the
code flash memory.

No

 ROM to RAM mapped
section

FAACODE=FAACODER
FAADATA=FAADATAR

Yes

 Allocate FAA memory
area automatically

Yes
or
Yes(Automatically allocate
sections by striding FAA memory
area) Note2

Yes Note1

Note 1. SC sets “Yes”.

2. When the RAM size used by the user program (CPU program) is larger than 2304 bytes (the user
RAM area before the FAA code area on RAM), manually set it to "No". Also, when
“Yes(Automatically allocate sections by striding FAA memory area)” is specified, the setting "No" of
“Layout section automatically” is ignored.

RL78/G24 Flexible Application Accelerator (FAA) Tool Guide: CS+

R01AN7094EJ0100 Rev.1.00 Page 20 of 66
Nov.14.23

2.4.1 FAA Assemble Options

Figure 2-22 FAA Assemble Options

Table 2-6 FAA Assemble Options, Overview of settings

Category Item Description
Preprocess Metho for recognizing

the text macros
Set “Exact(-macro_identify exact)”.

A text macro is replaced in the FAA source file in units
of tokens. Unless Exact is specified, replacement is
performed even if the identifier to be replaced is
included in another identifier.

RL78/G24 Flexible Application Accelerator (FAA) Tool Guide: CS+

R01AN7094EJ0100 Rev.1.00 Page 21 of 66
Nov.14.23

2.4.2 Link Options

Figure 2-23 Link Options

Table 2-7 Link Options, Overview of settings (1/2)

Category Item Description
Section Layout sections

automatically
Set “Yes(-AUTO_SECTION_LAYOUT)”.

Sections are automatically allocated based on
information in the device file.
When selecting "No", the address of each section used
in the program need to be specified in "Section Start
Address".

 Section start address Set “FAACODE,FAADATA/address”.

Specify the address of code flash memory to store
FAA programs and data. In the FAA program file
(library or template) generated by the Smart
Configurator (SC), the code section name is defined in
FAACODE and the data section name is defined in
FAADATA. Therefore, specify “FAACODE” and
“FAADATA” as the section name.
In addition, SC provides the processing (in
Config_FAA_Common.c, generated by SC) to transfer
the FAA program and data to the instruction code
memory and data memory. The processing is
performed in units of 2 bytes. Therefore, FAACODE
and FAADATA must be aligned to the 2-byte
boundary. specify an even number address after D8H.
(at address 2000H in the example).

RL78/G24 Flexible Application Accelerator (FAA) Tool Guide: CS+

R01AN7094EJ0100 Rev.1.00 Page 22 of 66
Nov.14.23

Table 2-8 Link Options, Overview of settings (2/2)

Category Item Description
Section ROM to RAM mapped

section
Set “FAACODE＝FAACODER,FAADATA=FAADATAR”.

The definition symbols for the FAA program and data
placed in the code flash memory will be relocated to the
internal RAM (instruction code memory and data
memory). If relocation is not performed, the addresses of
the FAA program and data symbols will remain in the
code flash memory area, and symbol information cannot
be handled correctly during debugging.
The left side specifies the FAA program and data sections
located in code flash memory. The right side specifies the
section of RAM to be transferred.
In the processing to transfer the FAA program and data to
the instruction code memory and data memory (in
Config_FAA_Common.c generated by SC), FAACODER
and FAADATAR is handled as the transfer destination
RAM section, so the right side specifies FAACODER and
FAADATAR.

 Allocate FAA memory
area automatically

Set “Yes”.

Reserve a dedicated area for FAA in the internal RAM.
Variables for the CPU program will not be placed in the
FAA instruction code memory (FD800H-FE7FFH) or data
memory (FE800H-FEFFFH) in the internal RAM.

Figure 2-24 Memory image before and after transfer processing

Before transfer processing

2000H

FD800H

FE800H

FAACODE

FAADATA

FAACODER

FAADATAR

FAACODE

FAADATA

(FAA data memory area)

(FAA instruction code area)

The linker relocates the defined symbols
to addresses in the RAM section

By executing the transfer process
generated by SC, the contents are
transferred from the CODE section to
CODER and from the DATA section to
DATAR. After transfer processing

RL78/G24 Flexible Application Accelerator (FAA) Tool Guide: CS+

R01AN7094EJ0100 Rev.1.00 Page 23 of 66
Nov.14.23

2.4.3 Program Building
After setting the build tool options necessary to build the FAA program, build it. There are several ways to
run a build. Two methods are described here.

 Select the [Build] menu -> [Build Project] (Figure 2-25)

 Click the [Builds the project] on the toolbar (Figure 2-26)

Figure 2-25 [Build] menu

Figure 2-26 Build tool bar

RL78/G24 Flexible Application Accelerator (FAA) Tool Guide: CS+

R01AN7094EJ0100 Rev.1.00 Page 24 of 66
Nov.14.23

2.5 Debug Tool Option Setting
Before downloading an executable object to the RL78/G24 Fast Prototyping Board, set the debug tool
options required to debug an FAA program. Some options are set by the Smart Configurator (SC) in 2.3.1
Adding FAA Component. Manually set the options for which “No” is indicated in the “Set by SC” column in
Table 2-9. For debug tool options that are not described in this guide, set them if necessary.
After setting the required options, download the object.

How to open the debug tool property:

Select the debug tool node in the project tree, and then select the [View] menu -> [Property] or select the
[Property] from the context menu.

Table 2-9 shows the build tool options required to build the FAA program.

Table 2-9 Setting options of debug tool

Tab Category Item Description Set by SC
Connect Settings FAA Debug FAA Yes Yes
Debug Tool
Settings

Memory FAA memory space
(n) (n= 1 - 4)

Instruction code space
or
Data space

No

 Break Stop FAA when
stopping

No
or
Yes

No

Download File
Settings

Download Specify code section
name defined in FAA
source file

FAACODER Yes

 Specify data section
name defined in FAA
source file

FAADATAR Yes

2.5.1 Connect Settings

Figure 2-27 Connect Settings

Table 2-10 Connect Settings, Overview of settings

Category Item Description
FAA Debug FAA Set “Yes”.

Enable source debugging of the FAA program.

RL78/G24 Flexible Application Accelerator (FAA) Tool Guide: CS+

R01AN7094EJ0100 Rev.1.00 Page 25 of 66
Nov.14.23

2.5.2 Debug Tool Settings

Figure 2-28 Debug Tool Settings

Table 2-11 Debug Tool Settings, Overview of settings

Category Item Description
Memory FAA memory area(n)

（n=1 - 4）
Set the FAA space corresponding to FAA memory
space (n).

The debugger can display up to four [Watch] panels
and four [Memory] panels each.
When debugging the FAA program, the space set here
is displayed in each panel.

Break Stop FAA when
stopping

Set “No” or “Yes”.

If the debug target is a CPU, select whether to stop the
FAA program when the CPU program is stopped by
the stop button.

RL78/G24 Flexible Application Accelerator (FAA) Tool Guide: CS+

R01AN7094EJ0100 Rev.1.00 Page 26 of 66
Nov.14.23

2.5.3 Download File Settings

Figure 2-29 Download File Settings

Table 2-12 Download File Settings, Overview of settings

Category Item Description
Download Specify code section name

defined in FAA source
Set “FAACODER”.

In the FAA program file (library or template) generated
by the Smart Configurator (SC), the code section name
is defined in FAACODE.
However, specify the section name FAACODER to be
relocated to the RAM area.
Reference: The link option “Section mapped from ROM
to RAM”.

 Specify data section name
defined in FAA source

Set “FAADATAR”.

In the FAA program file (library or template) generated
by the Smart Configurator (SC), the data section name
is defined in FAADATA.
However, specify the section name FAADATAR to be
relocated to the RAM area.
Reference: The link option “Section mapped from ROM
to RAM”.

RL78/G24 Flexible Application Accelerator (FAA) Tool Guide: CS+

R01AN7094EJ0100 Rev.1.00 Page 27 of 66
Nov.14.23

2.5.4 Program Download
After setting the debug tool options necessary to debug the FAA program, connect PC and RL78/G24 Fast
Prototyping Board and then download the object. There are several ways to download. Two methods are
described here.

 Select the [Debug] menu -> [Download] (Figure 2-30)

 Click the [Download] on the toolbar (Figure 2-31)

Caution1: Before downloading, check the power supply in the [Connect Settings] tab – [Connection with
Target Board] of the debug tool option.

Caution2: The FAA program is not placed in the instruction code memory by simply downloading the object.
You need to transfer the FAA program and data from the code flash memory to the instruction
code memory and data memory by using the CPU program.

The RL78 Smart Configurator provides transfer processing functions as FAA components. The
transfer processing function is executed in the initialization routine before the main function is
executed, and the transfer is performed.

Figure 2-30 [Debug] menu

Figure 2-31 Debug tool bar

RL78/G24 Flexible Application Accelerator (FAA) Tool Guide: CS+

R01AN7094EJ0100 Rev.1.00 Page 28 of 66
Nov.14.23

2.6 FAA Program Debug
2.6.1 Debug Target
When debugging the RL78/G24 program, select whether to debug the CPU or FAA. Select by using one of
the following methods.

 Select the [View] menu -> [Debug Manager] to open [Debug Manager]. Select the debug target on it.
(Figure 2-32)

 Select the target debug on the status bar. (Figure 2-33)

Figure 2-32 Open [Debug Manager]

Figure 2-33 Status bar

Address information is displayed in the address area only for the source file to be debugged, and debugging
operations such as step execution are possible at the source level.

It is possible to change the debug target in the following status.

Table 2-13 Change debug target

Current debug
target Status Change from

CPU to FAA
Change from
FAA to CPU

CPU CPU program stopping Available －
CPU CPU program running Not available －
FAA FAA program stopping － Available
FAA FAA program running － Available

RL78/G24 Flexible Application Accelerator (FAA) Tool Guide: CS+

R01AN7094EJ0100 Rev.1.00 Page 29 of 66
Nov.14.23

Additionally, CPU or FAA status that is debug target is displayed in the debug manager and status bar.
When FAA is the debug target, the status of FAA is as follows. If multiple statuses exist at the same time, the
statuses are displayed separated by "&".

Table 2-14 FAA status

Status display FAA status
Standby Stops supply of an input clock to FAA. (FAAEN bit = 0)
Disable Disables FAA operation. (ENB bit = 0)
Sleep FAA in Low power consumption mode (SLP bit = 1 and EXE bit = 0)

RL78/G24 Flexible Application Accelerator (FAA) Tool Guide: CS+

R01AN7094EJ0100 Rev.1.00 Page 30 of 66
Nov.14.23

2.6.2 Source File Display
After selecting the FAA as the debug target, display the .dsp file containing the FAA program on the [Editor]
panel. The address information appears in the address area, and debug operations such as step execution
can be performed at the FAA source level.

The address area indicates the addresses in the FAA instruction code memory space. The address area is
not displayed when the debug target is CPU.

Figure 2-34 Source file display

RL78/G24 Flexible Application Accelerator (FAA) Tool Guide: CS+

R01AN7094EJ0100 Rev.1.00 Page 31 of 66
Nov.14.23

2.6.3 Go/Stop
When selecting FAA as the debug target, FAA source debugging is enabled. There are several ways to
go/stop FAA program. Two methods are described here.

 Select the [Debug] menu -> [Go] / [Stop]. (Figure 2-35)

 Click the [Go] / [Stop] on the toolbar. (Figure 2-36)

 Click the [Go] / [Stop] on the toolbar of the Debug Manager. (Figure 2-37)

Figure 2-35 [Debug] menu

Figure 2-36 Debug tool bar

Figure 2-37 Debug Manager

RL78/G24 Flexible Application Accelerator (FAA) Tool Guide: CS+

R01AN7094EJ0100 Rev.1.00 Page 32 of 66
Nov.14.23

The FAA program control are as follows:

 If the FAA status is “Standby” or “Disable”, program execution cannot start and other debug
operations such as step execution are also disabled. When using FAA libraries, FAA programs runs
by calling the start function (that executes FAAEN=1, ENB=1) provided by each FAA library.

 When the debug target is FAA, the operation to execute or stop programs only executes or stops the
FAA program. The CPU program is not executed or stopped in synchronization. However, you can
use a debug tool option so that stopping a CPU program also stops the FAA program when the debug
target is CPU. To do this, on the [Debug Tool Settings] tab, under the [Break] category, select [Yes]
for [Stop the FAA when stopping the program].

 Step execution is applicable only to the FAA.

 Reset operation performs a software reset for the FAA. The whole MCU (CPU and peripheral
functions) are not reset. When the debug target is CPU, the whole MCU (CPU and peripheral
functions) are reset.

 Do not proceed with debugging of the FAA during execution of a CPU program that includes
operations with the WIND register. Since the debugger temporarily rewrites the WIND register in the
debugging operations for the FAA, the use of FAA debugging may make operation of the program
being executed by the CPU incorrect.

2.6.4 Breakpoint
After selecting the FAA as the debug target, display the FAA source on the [Editor] panel. You can set a
breakpoint by clicking the main area on the row on which you want to set the breakpoint. To cancel a
breakpoint, click the icon set for the breakpoint.

The breakpoint controls for the FAA program are as follows:

 4 points hardware breaks are available. (Break after execution)

 If the FAA is stopped after detecting a hardware break, the CPU is not synchronously stopped.

Figure 2-38 FAA program, breakpoint setting

RL78/G24 Flexible Application Accelerator (FAA) Tool Guide: CS+

R01AN7094EJ0100 Rev.1.00 Page 33 of 66
Nov.14.23

2.6.5 Memory
When selecting FAA as the debug target, FAA instruction code memory and data memory are displayed in
the [Memory] panel.

The memory display control for the FAA are as follows:

 The [Memory] panel that specified in 2.5.2 Debug Tool Settings displays FAA instruction code memory
and data memory.

 Address is the FAA space.

 When the debug target is CPU, CPU memory is displayed regardless of the settings in 2.5.2 Debug
Tool Settings.

 The display cannot be updated while the FAA program is running.

 If the FAA status is “Disable” or “Standby”, the displayed content will be undefined.

Figure 2-39 [Memory] panel

2.6.6 Symbol (Label)
When selecting FAA as the debug target, the symbols (labels) defined in the FAA program are displayed in
the [Watch] panel.

The watch display control for the FAA are as follows:

 Data for the FAA has 32-bit width. However, 8-bit width data is displayed when a symbol is registered
on a [Watch] panel. Therefore, change the [Size Notation] setting to [4 Bytes].

 Address is the FAA space address.

 If [Immediate address] is specified for the watch-expression, the value corresponding to the address
in the space specified in 2.5.2 Debug Tool Settings is displayed.

 If the debug target is CPU, the value column indicates a question mark (?).

 If the FAA status is “Standby” or “Disable”, the display contents are undefined.

Remark. To make a symbol accessible to the CPU program, it must be defined with a name starting with "_"
and must be declared public in the FAA program.

RL78/G24 Flexible Application Accelerator (FAA) Tool Guide: CS+

R01AN7094EJ0100 Rev.1.00 Page 34 of 66
Nov.14.23

Figure 2-40 [Watch] panel (Size change of symbol)

Drag & drop

Or, click the button

Right after registration, display width is 1 byte.

Right-click to show the context menu, and select
[Size Notation] – [4 Bytes].

RL78/G24 Flexible Application Accelerator (FAA) Tool Guide: CS+

R01AN7094EJ0100 Rev.1.00 Page 35 of 66
Nov.14.23

Figure 2-41 [Watch] panel (How to specify with [Immediate address])

Drag & drop

Or, click the button

Click the button to add a new watch expression, and specify
the area after “_V_Max3” with an immediate address.
Address of “＿V_Max3" is 0x008, specify the address shifted
by 4 bytes.

Select all registered watch expressions. Right-click to show the
context menu, and select [Size Notation] – [4 Bytes].

Remark. The above example shows that FAA memory space (1) is specified for the data space in 2.5.2
Debug Tool Settings.

RL78/G24 Flexible Application Accelerator (FAA) Tool Guide: CS+

R01AN7094EJ0100 Rev.1.00 Page 36 of 66
Nov.14.23

2.6.7 Register
When selecting FAA as the debug target, the operation parameter register set, address pointer set, the
processor control register, etc. are displayed in the [CPU Register] panel.

Figure 2-42 [CPU Register] panel

2.6.8 SFR
When selecting FAA as the debug target, the [SFR] panel displays only SFRs (Special Function Register)
that FAA can access. There are two types of SFRs that the FAA can access.

 SFRs of the FAA

Registers that are not affected by the address bus select register (ADBSEL) settings and can be
accessed via the FAA bus.

 Registers of the peripheral functions

Registers that can be accessed via the FAA bus when “access from the FAA” is selected in the
ADBSEL register.

There are two different types of register access to the peripheral functions as described below.

• Access to a peripheral function register through the FAA address map

• Access to a peripheral function register by using the FAA address pointer (FAAAP)

For the address bus select register (ADBSEL) and how to access, refer to RL78/G24 User’s Manual:
Hardware (R01UH0961).

The SFR display control for the FAA are as follows:

 The address area for the FAA SFR displays the FAA addresses.

 Access to some peripheral function SFRs is enabled by using the address bus function to permit
bus access from the FAA. For such SFRs, the display name is suffixed by “_PTR”. The address
displayed in the address field is the FAA address pointer values that be set in the FAA address
pointer (FAAAP) when accessing using the FAAAP register.

 The debugger reads or writes peripheral function SFR values through bus access from the CPU.
Therefore, it cannot access the peripheral function SFRs for which bus access from the FAA is
selected by using the address bus selection function, and the displayed values for these SFRs are
undefined. To display the values of the peripheral function SFRs for which bus access from the
FAA is selected, see 3.5 Sample Script Specification.

RL78/G24 Flexible Application Accelerator (FAA) Tool Guide: CS+

R01AN7094EJ0100 Rev.1.00 Page 37 of 66
Nov.14.23

Figure 2-43 [SFR] panel

Registers of the peripheral functions

Registers of the FAA
FAA address

FAA address pointer

RL78/G24 Flexible Application Accelerator (FAA) Tool Guide: CS+

R01AN7094EJ0100 Rev.1.00 Page 38 of 66
Nov.14.23

3. Sample Project
This section describes how to display the SFR values of peripheral functions in the CS+'s [SFR] panel when
debugging a FAA program using sample code and sample scripts.

3.1 Specifications
3.1.1 Specification Overview
This sample code uses a 16-bit timer KB30 (TKB30) to perform two PWM outputs.

PWM output is connected to LED1 and LED2. Initialize TKB30 using the CPU program, count the number of
TKB30 timer interrupts (INTTKB00), create a fixed cycle (500ms) timing, and start FAA operation at a fixed
cycle.

The FAA program controls the LED brightness by changing the duty ratio of the PWM output. After changing
the duty ratio, the operation stops.

Table 3-1 Peripheral Functions and Their Usage

Peripheral Usage
16-bit timer KB30 (TKB30) Output PWM from TKBO00 pin and TKBO01 pin
Flexible application accelerator (FAA) Change the duty ratio of PWM output from TKBO00 pin and

KBO01 pin

Figure 3-1 Operation overview of PWM output

Brightness 20%
<Output>

LED1

Brightness 40%
<Output>

LED1

Brightness 10%
<Output>

LED1

Brightness 10%
<Output>

LED1 After 500ms

After 500msAfter 500ms

After 500ms

Brightness 80%

LED2

LED2

Brightness 40%

LED2

Brightness 20%

LED2

Brightness 80%

Table 3-2 Relationship between PWM output duty ratio and LED brightness

Duty ratio Brightness
10% 10%
20% 20%
40% 40%
80% 80%

RL78/G24 Flexible Application Accelerator (FAA) Tool Guide: CS+

R01AN7094EJ0100 Rev.1.00 Page 39 of 66
Nov.14.23

3.1.2 Operation Overview
In this sample code, 16-bit timer KB30 (TKB30) is used with the standalone mode (period controlled by the
TKBCRn0 register), PWM signals are output from P12/TKBO00 and P13/TKBO01.

The PWM pulse period of TKB30 is 2ms, and the interrupts (INTTKB30) that occur in each period are
counted 250 times. Start the FAA from the CPU every 500ms and change the duty ratio of PWM output with
FAA.

1. [CPU program] Store the initial values of the TKBCR01 register and the TKBCR03 register in variables
for checking the duty value.

2. [CPU program] Enable the TKB30 operation.

3. [CPU program] Set SFR access of the TKB30 to FAA bus.

4. [CPU program] Wait until the TKB30 interrupt occurs 250 times (500ms).

5. [CPU program] After the TKB30 starts the operation, the TKB30 interrupt occurs every 2ms.

6. [CPU program] Count the number of interrupt occurrences in the TKB30 interrupt (INTTKB30).

7. [CPU program] When TKB30 interrupt (INTTKB30) occurs 250 times (500ms), clock supply to the FAA
is enabled and FAA operation is enabled.

8. [CPU program] Set the FAA stack pointer and the start address of the FAA program and start FAA
operation. Then wait until the FAA program completes.

9. [FAA program] Update the compare register (TKBCR01) and change the duty ratio of TKBO00 output.
And update the compare register (TKBCR03) and change the duty ratio of TKBO01 output. Every
500ms, the duty ratio of the TKBO00 output is updated by double in the order of 10% → 20% → 40% →
80%, and after the duty ratio reaches 80%, it is set to 10% again. The duty ratio of the TKBO01 output
is updated by 1/2 in the order of 80% → 40% → 20% → 10%, and after the duty ratio is 10%, it is set to
80% again.

10. [FAA program] Store the updated duty ratio (values of the TKBCR01 register and the TKBCR03
register) in global variables and the FAA stops operating.

11. [CPU program] When FAA program execution is completed, clock supply to the FAA is stopped and
FAA operation is disabled.

12. [CPU program] Store the updated duty ratio (values of the TKBCR01 register and the TKBCR03
register) in variables for duty value confirmation.

13. [CPU program] Return to step 4 and wait for TKB30 interrupts (INTTKB30) to occur 250 times (500ms)
again.

RL78/G24 Flexible Application Accelerator (FAA) Tool Guide: CS+

R01AN7094EJ0100 Rev.1.00 Page 40 of 66
Nov.14.23

3.2 Operation Confirmation Conditions

Table 3-3 Operation Confirmation Conditions

Item Description
MCU RL78/G24 (R7F101GLG)
Operating frequency ・ High-Speed On-Chip Oscillator Clock: 32MHz

・ CPU/Peripheral Hardware Clock: 32MHz
Operating voltage ・ 3.3V (Can operate between 2.7V to 5.5V)

・ LVD0 Operation (VLVD0): Reset Mode
 Rising edge = 2.97V
 Falling edge = 2.91V

Integrated development
environment (CS+)

CS+ for CC V8.10.00 Manufactured by Renesas Electronics

C compiler (CS+) CC-RL V1.12.01 Manufactured by Renesas Electronics

Smart Configurator (SC) Manufactured by Renesas Electronics
V1.7.0

Board Support Package (BSP) Manufactured by Renesas Electronics
V1.60

Emulator E2 Emulator Lite
Board RL78/G24 Fast Prototyping Board (RTK7RLG240C00000BJ)

RL78/G24 Flexible Application Accelerator (FAA) Tool Guide: CS+

R01AN7094EJ0100 Rev.1.00 Page 41 of 66
Nov.14.23

3.3 Hardware Description
3.3.1 Example of Hardware Configuration
The example of the hardware configuration used in this sample code is shown below.

Figure 3-2 Example of Hardware Configuration

RESET

P40 /TOOL0For On-chip Debug

RL78/G24

VDD / EVDD0

REGC

VSS / EVSS0 LED1

P12 /TKBO00

VDD VDD

P13 /TKBO01

LED2

Note 1. This simplified circuit diagram was created to show an overview of connections only. When actually

designing your circuit, make sure the design includes appropriate pin handling and meets electrical
characteristic requirements (connect each input-only port to VDD or VSS through a resistor).

Note 2. Connect any pins whose name begins with EVSS to VSS, and any pins whose name begins with
EVDD to VDD, respectively.

Note 3. VDD must not be lower than the reset release voltage (VLVD0) that is specified for the LVD0.

3.3.2 List of Used Pins
Table 3-1 shows the pins used and their function.

Table 3-4 Pins Used and their Functions

Pin name I/O Function
P12 / TKBO00 Output PWM output (lighting control for LED1)
P13 / TKBO01 Output PWM output (lighting control for LED2)

Caution. In this application note, only the used pins are processed. When actually designing your circuit,
make sure the design includes sufficient pin processing and meets electrical characteristic
requirements.

RL78/G24 Flexible Application Accelerator (FAA) Tool Guide: CS+

R01AN7094EJ0100 Rev.1.00 Page 42 of 66
Nov.14.23

3.4 Software Description
3.4.1 Smart Configurator Setting
The Smart Configurator (SC) settings in this sample code are shown below. The items and settings in each
SC settings table are explained using the description on the settings screen.

3.4.1.1 Clock
The clock settings used in this sample code are shown below.

Operation mode: High-speed main mode 2.7(V)~5.5(V)

EVDD setting: 2.7 V ≤ EVDD0 ≤ 5.5V

High-speed on-chip oscillator: 32MHz

fCLK: 32000kHz

Timer Clock: 32000kHz

Figure 3-3 Clock Settings

RL78/G24 Flexible Application Accelerator (FAA) Tool Guide: CS+

R01AN7094EJ0100 Rev.1.00 Page 43 of 66
Nov.14.23

3.4.1.2 System
The system settings used in this sample code are shown below.

Figure 3-4 System Settings

3.4.1.3 Component
The component settings used in this sample code are shown below.

Table 3-5 Component settings (LVD0)

Item Description
Component Voltage Detector
Configuration name Config_LVD0
Resource LVD0

Figure 3-5 LVD0 Settings

RL78/G24 Flexible Application Accelerator (FAA) Tool Guide: CS+

R01AN7094EJ0100 Rev.1.00 Page 44 of 66
Nov.14.23

Table 3-6 Component settings (TKB30)

Item Description
Component PWM Output
Operation Standalone mode (Period controlled by the TKBCRn0 register)
Configuration name Config_TKB0
Resource TKB0

Figure 3-6 TKB30 Settings

RL78/G24 Flexible Application Accelerator (FAA) Tool Guide: CS+

R01AN7094EJ0100 Rev.1.00 Page 45 of 66
Nov.14.23

Table 3-7 Component settings (FAA)

Item Description
Component Flexible Application Accelerator
Configuration name Config_FAA

Figure 3-7 FAA Settings

Remark. If any FAA library is not displayed after the sample project is opened, refer to step 11 in 2.3.1

Adding FAA Component to download FAA libraries.

RL78/G24 Flexible Application Accelerator (FAA) Tool Guide: CS+

R01AN7094EJ0100 Rev.1.00 Page 46 of 66
Nov.14.23

3.4.2 Folder Structure
Table 3-8 shows the structure of the source files/header files used in the sample project.

Table 3-8 Folder Structure

Folder, File name Description Generated
by SC

\sample_project<DIR> Sample project folder
main.c Sample source file

 sample_project.py (File for loading sample script)
 sample_script.py (Sample script)

\src<DIR> Program storage folder √
 \smc_gen<DIR> Smart Configurator generated folder √

 \Config_FAA<DIR> FAA program storage folder √
 Config_FAA_common.c Common FAA module source file √
 Config_FAA_common.h Common FAA module header file √
 Config_FAA_common.inc Include file for FAA assembly source file √
 Config_FAA_src.dsp FAA assembly source file √ Note 1
 \Config_TKB0<DIR> TKB30 program storage folder √
 Config_TKB0.c TKB30 source file √
 Config_TKB0.h TKB30 header file √
 Config_TKB0_user.c TKB30interrupt source file √ Note 2
 ¥general<DIR> Initialization and common program storage

folder
√

 ¥r_bsp<DIR> BSP program storage folder √
 ¥r_config<DIR> Configuration header storage folder √

Note. “<DIR>” indicates a directory.
Note 1. This sample project uses the Custom Library of FAA library. Therefore, file content is only a template

and no code right after the file is generated. Sample code has been added.
Note 2. Sample code has been added in the user code area of SC.

3.4.3 Option Byte Settings
Table 3-9 shows the option byte settings.

Table 3-9 Option Byte Settings

Address Setting value Description
000C0H/040C0H 1110 1111B (EFH) Watchdog Timer stopped operation

(Count stops after reset release)
000C1H/040C1H 1111 1011B (FBH) LVD0 reset mode.

Detection voltage: Rising 2.97V / Falling 2.91V
000C2H/040C2H 1110 1000B (E8H) lash operation mode: High-speed main mode.

High-speed on-chip oscillator frequency: 32MHz
000C3H/040C3H 1000 0100B (84H) On-chip debug operation enabled

RL78/G24 Flexible Application Accelerator (FAA) Tool Guide: CS+

R01AN7094EJ0100 Rev.1.00 Page 47 of 66
Nov.14.23

3.4.4 List of Constants
Table 3-10 and Table 3-11 show constants used in the sample code.

Table 3-10 Constants (CPU program)

Constant name Value Description Function that
uses the constant

FAA_BUS_ACCESS 0200H Enable to access TKB30 register from FAA.
(ADBSEL setting value)

main

Table 3-11 Constans (FAA program)

Constant name Value Description
_C_TKBO00_DUTY_INIT 1900H Initial duty ratio for TKBO00 output (TKBCR01 setting value)
_C_TKBO01_DUTY_INIT C800H Initial duty ratio for TKBO01 output (TKBCR03 setting value)
_C_TKBTRG_TKBRDT_REQ 1H Batch overwrite request of TKB30 compare register

(TKBRDT0 setting value)

3.4.5 List of Variables
Table 3-12 and Table 3-13 show variables used in the sample code.

Table 3-12 Variables (CPU program)

Type Variable name Description Function that uses
the variable

uint32_t g_work_tkbo00 Variable to check the current duty ratio for
TKBO00 output
(Value of TKBCR01)

main

uint32_t g_work_tkbo01 Variable to check the current duty ratio for
TKBO01 output
(Value of TKBCR03)

main

uint8_t g_tkb_interrupt_flag 500ms elapsed flag r_Config_TKB0_end
_count_interrupt

Table 3-13 Variables (FAA program)

Size Variable name Description
4 bytes _V_TKBO00_DUTY Storage the updated duty ratio for TKBO00 output (TKBCR01 setting

value)
4 bytes _V_TKBO01_DUTY Storage the updated duty ratio for TKBO01 output (TKBCR03 setting

value)

RL78/G24 Flexible Application Accelerator (FAA) Tool Guide: CS+

R01AN7094EJ0100 Rev.1.00 Page 48 of 66
Nov.14.23

3.4.6 List of Functions
Table 3-14 and Table 3-15show functions and processing used in the sample code. However, functions
generated by the Smart Configurator that have not been modified are excluded.

Table 3-14 Functions (CPU program)

Function name Description Source file
main main process main.c
r_Config_TKB0_end_count_interrupt TKB30 interrupt processing

(Count the number of INTTKB00
occurrences)

Config_TKB0_user.c

Table 3-15 Processing (FAA program)

Label name Description Source file
_P_TKB_PWM Change the duty ratio of TKBO00 and TKBO01 output Config_FAA_src.dsp

3.4.7 Function Specification
The function specifications of the sample code are shown below.

CPU program
[FUnction name] main()

Outline main process
Header r_smc_entry.h、Config_TKB0.h

Declaration void main(void)
Description Start operation of the Timer TKB30, and start operation of the FAA every 500ms.
Argument -

Return value -

CPU program
[Function name] r_Config_TKB0_end_count_interrupt()

Outline Timer TKB30 interrupt processing
Header r_cg_macrodriver.h、r_cg_userdefine.h、Config_TKB0.h

Declaration static void __near r_Config_TKB0_end_count_interrupt(void)

Description Count INTTMKB30 occurrences and set the 500ms elapsed flag every 250
interrupts (500ms elapsed).

Argument -
Return value -

FAA program
[Label name] _P_TKB_PWM

Outline Change processing of the duty ratio for TKBO00 and TKBO01 output
Header Config_FAA_common.inc

Declaration -
Description Change the duty ratio for TKBO00 and TKBO01 output.
Argument -

Return value -

RL78/G24 Flexible Application Accelerator (FAA) Tool Guide: CS+

R01AN7094EJ0100 Rev.1.00 Page 49 of 66
Nov.14.23

3.4.8 Flowchart
3.4.8.1 Main Process
Figure 3-8 shows the flowchart for the main process.

Figure 3-8 Main process

main

Store the updated duty ratio for TKBO00
and TKBO01 output in variables

Start TKB30 operation
R_Config_TKB0_Start()

Set FAA stack pointer

IE←1

Store the initial duty ratio of TKBO00
and TKBO01 in variables

Enable access from FAA to
peripheral registers of TKB30 ADBSEL←0x0200

500ms elapsed? g_tkb_interrupt_flag == 1?

Clear 500ms elapsed flag g_tkb_interrupt_flag ← 0

Enable FAA operation
R_Config_FAA_Enable()

Set FAA program pointer

Start FAA operation

SP0 ← End address of FAA data
 memory area (2048)

PG0 ← _P_TKB_PWM in FAA
 program

Wait until FAA process completes
R_Config_FAA_Wait()

Disable FAA operation
R_Config_FAA_Disable()

Yes

No

Enable interrupt
EI()

RL78/G24 Flexible Application Accelerator (FAA) Tool Guide: CS+

R01AN7094EJ0100 Rev.1.00 Page 50 of 66
Nov.14.23

3.4.8.2 r_Config_TKB0_end_count_interrupt Function
Figure 3-9 shows the flowchart of the r_Config_TKB0_end_count_interrupt function.

Figure 3-9 r_Config_TKB0_end_count_interrupt function

r_Config_TKB0_end_count_interrupt

Clear the counter

Counter +1, then
500ms elapsed?No

Yes

Set the 500ms elapsed flag

return

s_tkb_count ← 0

250 == s_tkb_count+1?

g_tkb_interrupt_flag ← 1

RL78/G24 Flexible Application Accelerator (FAA) Tool Guide: CS+

R01AN7094EJ0100 Rev.1.00 Page 51 of 66
Nov.14.23

3.4.8.3 FAA Processing
Figure 3-10 shows the flowchart of the r_Config_TKB0_end_count_interrupt function.

Figure 3-10 FAA processing

_P_TKB_PWM

Set the address of variable to RP0
register

return

Store the current duty ratio for TKBO00
output in the register

Double the duty ratio

Store the PWM period in the register

A0 ← TKBCR01

A0 ← TKBCR01 * 2
R0 ← A0

A0 ← TKBCR00

100%(period) > duty ratio?

Set the doubled duty ratio for TKBO00
output

A0 > R0 ?

Store the current duty ratio for TKBO01
output in the register

R0 ⇔ A0
TKBCR01 ← A0

A0 ← TKBCR03

Store the doubled duty ratio in the
variable _V_TKBO00_DUTY ← A0

RP0 ← #_V_TKBO00_DUTY

Divide the duty ratio by two A0 ← TKBCR03 * 1/2

Set the 1/2 duty ratio for TKBO01 output TKBCR01 ← A0

Store the 1/2 duty ratio in the variable _V_TKBO01_DUTY ← A0

Set the duty ratio to 10% for TKBO00
output

Store the duty ratio in the variable _V_TKBO00_DUTY ← A0

A0 ← Initial value
TKBCR01 ← A0

Set the duty ratio to 80% for TKBO01
output

Store the duty ratio in the variable _V_TKBO01_DUTY ← A0

A0 ← Initial value
TKBCR03 ← A0

Request batch overwrite of compare
register TKBRDT0 ← 1

Yes
No

RL78/G24 Flexible Application Accelerator (FAA) Tool Guide: CS+

R01AN7094EJ0100 Rev.1.00 Page 52 of 66
Nov.14.23

3.5 Sample Script Specification
This sample project includes the sample script that manipulates the value of the address bus selection
register (ADBSEL) to display peripheral function SFRs on the [SFR] panel in CS+ when debugging an FAA
program. (sample_script.py in the sample project)

CS+ can be controlled by using a script language IronPython (Python that runs on .NET Framework) and the
CS+ Python function. For details about the functions, see the help or documentation of CS+ for CC.

3.5.1 SFR Display Overview
For some peripheral functions of RL78/G24, access from the CPU or from the FAA can be selected with the
address bus selection register (ADBSEL). For the address bus select register (ADBSEL), refer to RL78/G24
User’s Manual: Hardware (R01UH0961).

The debugger reads or writes peripheral function SFR values through bus access from the CPU. It cannot
access the peripheral function SFRs for which bus access from the FAA is selected with the address bus
select register (ADBSEL). Therefore, reading from or writing to these peripheral function SFRs cannot be
performed on the debugger’s [SFR] panel.

To enable read and write on the debugger’s [SFR] panel for the peripheral function SFRs for which bus
access from the FAA is selected when the debug target is FAA, use the script to manipulate the ADBSEL
register value.

Figure 3-11 Image diagram of address bus select function

RL78/G24 Flexible Application Accelerator (FAA) Tool Guide: CS+

R01AN7094EJ0100 Rev.1.00 Page 53 of 66
Nov.14.23

3.5.2 Operation Overview
When the debug target is FAA, after the FAA program is stopped by using the stop button, step execution, or
breakpoint, the script assigns the XORed value to the current setting of the ADBSEL register. This
temporality permits access from the CPU (the debugger) for the peripheral function SFRs for which access
from the FAA is selected. In addition, before the FAA program is executed by using the execution button or
step execution, the script assigns the original setting to the ADBSEL register to return the setting to permit
access from the FAA.

This allows access from the FAA to the relevant SFRs during execution of the FAA program and, after the
FAA program stops, allows the debugger to access the relevant SFRs and read or write values on the [SFR]
panel.

Figure 3-12 Image of sample script

Sample script file (.py)

Variable initialization

def BeforeCpuRun():
 processing

def AfterCpuStop():
 　processing

def AfterCpuReset():
　 processing

• In addition to the functions and control statements
supported by the IronPython language, use additional
Python functions for CS+ to create operations to control CS+.

• Register CS+ hook functions to be executed before the
program starts running and after it stops running.

• Write the process to change ADBSEL register values in each
hook function.

The script file for this sample project is sample_script.py.

RL78/G24 Flexible Application Accelerator (FAA) Tool Guide: CS+

R01AN7094EJ0100 Rev.1.00 Page 54 of 66
Nov.14.23

Figure 3-13 Image diagram of changing ADBSEL register values by script

RL78/G24 Flexible Application Accelerator (FAA) Tool Guide: CS+

R01AN7094EJ0100 Rev.1.00 Page 55 of 66
Nov.14.23

3.5.3 List of Functions

(1) Hook Functions
The sample script uses the CS+ hook functions to change the ADBSEL register value within a hook function
that is called when an event occurs. Table 3-16 lists the hook functions used in the script and provides an
overview of processing.

Table 3-16 Hook functions used in the sample script and processing overview

Hook function name Event overview
AfterCpuReset After CPU reset Initialize variables used in the sample script.
BeforeCpuRun Before execute Write the original value that CPU sets to ADBSEL register

to the ADBSEL register.
AfterCpuStop After break Write the XORed value of the original value to the ADBSEL

register.

(2) CS+ Python Functions
Table 3-17 lists the CS+ Python functions used in the script and provides an overview of processing.

Table 3-17 CS+ Python functions used in the sample script and processing overview

Function name Overview
debugger.DebugTool.GetType This function displays information about the debug tool.
debugger.Watch.SetValue This function sets a variable (SFR) value.
debugger.Watch.GetValue This function refers to a variable (SFR) value.

3.5.4 List of Variables

(1) CS+ Python Property
Table 3-18 lists the CS+ Python property used in the script and provides an overview of processing.

Table 3-18 CS+ Python property used in the sample script and processing overview

Property name Overview
debugger.ProcessorElement This property sets or refers to the PE of multiple cores with the name.

[Value] 1: CPU 2: FAA

(2) Others
Table 3-19 lists the variables other than CS+ Python property used in the script and provides an overview of
processing.

Table 3-19 Other variables used in the sample script and processing overview

Variable name Overview
FaaStatus The FAA program operation status (Set when Go/Stop button is pressed).

[Value]
RUNNING: FAA program is running STOPPING: FAA program is stopping

previousPe The debug target just before pressing the Go/Stop button.
[Value] 1: CPU 2: FAA

adbsel_value_cpu ADBSEL register’s value set by the CPU program
number_of_command The number of times the hook function was executed.

RL78/G24 Flexible Application Accelerator (FAA) Tool Guide: CS+

R01AN7094EJ0100 Rev.1.00 Page 56 of 66
Nov.14.23

3.5.5 Flowchart
(1) Initialization Process
Figure 3-14 shows the flowchart of the initialization process that is executed after loading the sample script
(.py).

Figure 3-14 Initialization process

After reading of script

Get debugger type

Initialize variables

End

Show message in console
“Initialize”

(2) AfterCpuReset Process
Figure 3-15 shows the flowchart of the AfterCpuReset process.

Figure 3-15 AfterCpuReset process

AfterCpuReset()

Show message in console
status of variables

Show message in console
warning message

YES

NO

Initialize variables

End

Present debug target
 is FAA?

RL78/G24 Flexible Application Accelerator (FAA) Tool Guide: CS+

R01AN7094EJ0100 Rev.1.00 Page 57 of 66
Nov.14.23

(3) BeforeCpuRun Process
Figure 3-16 and Figure 3-17 show the flowchart of the BeforeCpuRun process.

Figure 3-16 BeforeCpuRun process (1/2)

Previous debug target is CPU?

BeforeCpuRun()

Present debug target is CPU?

Yes

No

Debugger type is
not Simulator ?

Show message in console
“CPU RUN: CPU->CPU”

No

No

PreviousPe = 1

FAA status is STOPPING?

Show message in console
“CPU RUN: FAA(STOPPING)->CPU”

Show message in console
“CPU RUN: FAA(RUNNING)->CPU”

A

B

C

Show message in console
“RUN: Debug Target(1=CPU, 2=FAA): X”

Show message in console
“ADBSEL = XXXXH”

ADBSEL = original value

Show message in console
“ADBSEL = XXXXH”

Show message in console
“ADBSEL = XXXXH”

No

Yes

RL78/G24 Flexible Application Accelerator (FAA) Tool Guide: CS+

R01AN7094EJ0100 Rev.1.00 Page 58 of 66
Nov.14.23

Figure 3-17 BeforeCpuRun process (2/2)

End

FAA status = RUNNING

Previous debug target is FAA?

Show message in console
“FAA RUN: FAA->FAA” PreviousPe = 2

Change debug target to CPU
internally

ADBSEL = original value

Revert debug target

Show message in console
warning message

B A

C

C

C

No

Yes

Show message in console
“ADBSEL = XXXXH”

Show message in console
“FAA RUN: CPU->FAA”

RL78/G24 Flexible Application Accelerator (FAA) Tool Guide: CS+

R01AN7094EJ0100 Rev.1.00 Page 59 of 66
Nov.14.23

(4) AfterCpuStop Process
Figure 3-18 and Figure 3-19 show the flowchart of the AfterCpuStop process.

Figure 3-18 AfterCpuStop process (1/2)

Previous debug target is CPU?

AfterCpuStop()

Present debug target is CPU?

Yes

No

Debugger type is
other than Simulator ?

Show message in console
“CPU STOP: CPU->CPU”

No

No

A

B

C

Yes

Yes

Show message in console
“STOP: Debug Target(1=CPU, 2=FAA): X”

Show message in console
“CPU STOP: FAA->CPU, debug target

was changed while FAA is running.”

Save current ADBSEL value

Show message in console
“ADBSEL = XXXXH”

RL78/G24 Flexible Application Accelerator (FAA) Tool Guide: CS+

R01AN7094EJ0100 Rev.1.00 Page 60 of 66
Nov.14.23

Figure 3-19 AfterCpuStop process (2/2)

FAA status = STOPPING

Previous debug target is FAA?

Show message in console
“FAA STOP: FAA->FAA” PreviousPe = 2

Show message in console
“FAA STOP: CPU->FAA”

Change debug target to CPU
internally

ADBSEL = XOR-ed original value

Revert debug target

No

Yes

B

Show message in console
warning message

A

C

C

End

C

RL78/G24 Flexible Application Accelerator (FAA) Tool Guide: CS+

R01AN7094EJ0100 Rev.1.00 Page 61 of 66
Nov.14.23

3.5.6 Script Execution
There are several ways to execute a script and register hook functions.

 When loading the project file (project-file-name.py)

If there is a file in the same folder as the project file, and with the same name as the project file but
with the "py" extension, then that file is executed automatically when the project file is loaded. The
active project will be processed.

 When downloading the download file (download-file-name.py)

If there is a file in the same folder as the download file, and with the same name as the download
file but with the "py" extension, then that file is executed automatically after downloading.

 Execute in the CS+ [Python Console] panel

Execute the “.py” file by the CS+ Python function: “Source”.

In this sample project, it is executed when the project file is loaded.

The hook functions are declared in the sample_script.py. Also, there is the sample_project.py with the same
name as the sample project “sample_project.mtpj”, and the sample_project.py hooks the sample_script.py
and registers hook functions declared in the sample_script.py. The sample_project.py is executed
automatically when the project file is loaded.

Procedure:

1. Load the sample_project.mtpj to CS+.

2. Select the CS+ [View] menu -> [Python Console].

3. In the [Python Console] panel, confirm that the script executes.

Figure 3-20 Python Console

RL78/G24 Flexible Application Accelerator (FAA) Tool Guide: CS+

R01AN7094EJ0100 Rev.1.00 Page 62 of 66
Nov.14.23

3.5.7 Basic debug operations
This section explains the basic operations of debugging a FAA program using sample code and sample
scripts.

Procedure:

1. Connect the RL78/G24 Fast Prototyping Board (with the emulator or via COM port) to the PC.

2. Select the [Debug] menu -> [Rebuild & Download].

3. Select the [View] menu -> [Debug Manager] and select the CPU as debug target.

Figure 3-21 Debug Manager

4. Open the main.c. Click the main area of “FAACNT = 0x0001U;” to set the breakpoint (Software break).

Figure 3-22 main.c (Debug target: CPU)

RL78/G24 Flexible Application Accelerator (FAA) Tool Guide: CS+

R01AN7094EJ0100 Rev.1.00 Page 63 of 66
Nov.14.23

5. Click the reset button and then click the execution button in the [Debug Manager].

Figure 3-23 Debug Manager

Reset
Go

6. After the program stopped by the breakpoint, change the debug target to the FAA on the [Debug
Manager]. To debug FAA programs, the FAA must be enabled (FAAEN=1, ENB=1). In the sample
code, “R_Config_FAA_Enable()” enables the FAA. Therefore, the FAA has been enabled at the
breakpoint.

7. Register variables (_V_TKBO00_DUTY, _V_TKBO01_DUTY) and SFRs (TKBCR01_PTR,
TKBCR03_PTR PPP, RRR) whose values are changed in the FAA program to the [Watch] panel.

・ After registering the variable, change it to 4-byte notation. (Refer to 2.6.6 Symbol (Label)

・ SFRs can also be displayed in the [SFR] panel.

・ The [Watch] panel to display the variables must be set to the FAA data space.(Refer to 2.5.2
Debug Tool Settings)

Figure 3-24 [Watch] panel

RL78/G24 Flexible Application Accelerator (FAA) Tool Guide: CS+

R01AN7094EJ0100 Rev.1.00 Page 64 of 66
Nov.14.23

8. Step-execute/execute the FAA program and debug while checking the values of variables, SFRs, and
registers.

・ Breakpoints can be set by clicking in the main area of the FAA program source. (Refer to 2.6.4
Breakpoint)

・ After running the program, check in the [Python Console] panel whether the ADBSEL register
value is the value set in the CPU program.
(Remark: ADBSEL register is only accessible by the CPU, so the value of the ADBSEL register
cannot be displayed in the [SFR] panel while debugging the FAA.)

Figure 3-25 Example of FAA program debugger screen

Hardware breakpoint

After executing the program,
check whether the ADBSEL
register value was restored to
the original value CPU has set.

Variables, SFRs value

Registers value

3.5.8 Cautions When Using the Sample Script

 To disable this script (initialize Python), enter the following in the [Console] tab of the [Python console]
panel.

 common.PythonInitialize()

Alternatively, if you want to re-enable the sample script without reloading the sample project, enter the
following in the [Console] tab of the [Python console] panel.

 import os

Source (os.path.join(os.path.dirname(project.Path), 'sample_script.py'))

 Remark. “os.path.join(os.path.dirname(project.Path)” is a description to get the full path of the file.

 The operation of sample code is not guaranteed. And the operation of this sample script is not
guaranteed with all application programs and debugging operations.

 This sample script assists in displaying SFRs when debugging FAA programs. After completing
debugging, thoroughly evaluate your system without using the sample script.

RL78/G24 Flexible Application Accelerator (FAA) Tool Guide: CS+

R01AN7094EJ0100 Rev.1.00 Page 65 of 66
Nov.14.23

4. Sample Code
Sample code can be downloaded from the Renesas Electronics website.

5. Reference Documents
RL78/G24 User’s Manual: Hardware (R01UH0961)

RL78 family User's Manual: Software (R01US0015)

DSPASM FAA/GREEN_DSP Structured Assembler User’s Manual (R20UT3911)

RL78/G24 Fast Prototyping Board User’s Manual (R20UT5091)

RL78 Smart Configurator User’s Gude: CS+ (R20AN0580)

CS+ V8.10.00 User’s Manual: RL78 Debug Tool (R20UT5301)

(The latest version can be downloaded from the Renesas Electronics website.)

Technical Update/Technical News

(The latest version can be downloaded from the Renesas Electronics website.)

All trademarks and registered trademarks are the property of their respective owners.

RL78/G24 Flexible Application Accelerator (FAA) Tool Guide: CS+

R01AN7094EJ0100 Rev.1.00 Page 66 of 66
Nov.14.23

Revision History

Rev. Date
Description
Page Summary

1.00 Nov. 14. 23 - First edition

General Precautions in the Handling of Microprocessing Unit and Microcontroller
Unit Products
The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the
products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Precaution against Electrostatic Discharge (ESD)

A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps

must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be

adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity.

Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and

measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor

devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.
2. Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of

register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset

pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins

in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power reaches the

level at which resetting is specified.
3. Input of signal during power-off state

Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O

pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal

elements. Follow the guideline for input signal during power-off state as described in your product documentation.
4. Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are

generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of

the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal

become possible.
5. Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program

execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator

during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal

produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.
6. Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL

(Max.) and VIH (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the

input level is fixed, and also in the transition period when the input level passes through the area between VIL (Max.) and VIH (Min.).
7. Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these

addresses as the correct operation of the LSI is not guaranteed.
8. Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems.

The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms

of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values,

operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-

evaluation test for the given product.

© 2023 Renesas Electronics Corporation. All rights reserved.

Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products

and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your
product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use
of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights,
or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this
document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics
or others.

4. You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export,
manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.

5. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any
and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.

6. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for
each Renesas Electronics product depends on the product’s quality grade, as indicated below.
 "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home

electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key

financial terminal systems; safety control equipment; etc.
Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas
Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to
human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space
system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics
disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product
that is inconsistent with any Renesas Electronics data sheet, user’s manual or other Renesas Electronics document.

7. No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics
hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but
not limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS
ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING
RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE,
HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION (“Vulnerability Issues”). RENESAS ELECTRONICS DISCLAIMS ANY AND
ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT
PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH
RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO
THE IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.

8. When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General Notes for
Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by
Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas
Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such
specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific
characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability
product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics
products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily
injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as
safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for
aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are
responsible for evaluating the safety of the final products or systems manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas
Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of
controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these
applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance
with applicable laws and regulations.

11. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is
prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations
promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.

12. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or
transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

13. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
14. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas

Electronics products.

(Note1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled
subsidiaries.

(Note2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.
(Rev.5.0-1 October 2020)

Corporate Headquarters Contact information
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

 For further information on a product, technology, the most up-to-date
version of a document, or your nearest sales office, please visit:
www.renesas.com/contact/.

Trademarks
Renesas and the Renesas logo are trademarks of Renesas Electronics
Corporation. All trademarks and registered trademarks are the property
of their respective owners.

https://www.renesas.com/
https://www.renesas.com/contact/

	1. Overview
	1.1 Flexible Application Accelerator (FAA)
	1.2 Internal Memory Space of FAA
	1.3 Program for RL78/G24
	1.3.1 Program Structure
	1.3.2 Transfer of Program and Data for FAA
	1.3.3 FAA Program
	1.3.4 Build Process and Debug of FAA Program

	2. Option Setting and Operation
	2.1 Operating Environment
	2.2 Project Creation
	2.3 Adding FAA Program
	2.3.1 Adding FAA Component
	2.3.2 Overview of FAA library’s File Structure

	2.4 Build Tool Option Setting
	2.4.1 FAA Assemble Options
	2.4.2 Link Options
	2.4.3 Program Building

	2.5 Debug Tool Option Setting
	2.5.1 Connect Settings
	2.5.2 Debug Tool Settings
	2.5.3 Download File Settings
	2.5.4 Program Download

	2.6 FAA Program Debug
	2.6.1 Debug Target
	2.6.2 Source File Display
	2.6.3 Go/Stop
	2.6.4 Breakpoint
	2.6.5 Memory
	2.6.6 Symbol (Label)
	2.6.7 Register
	2.6.8 SFR

	3. Sample Project
	3.1 Specifications
	3.1.1 Specification Overview
	3.1.2 Operation Overview

	3.2 Operation Confirmation Conditions
	3.3 Hardware Description
	3.3.1 Example of Hardware Configuration
	3.3.2 List of Used Pins

	3.4 Software Description
	3.4.1 Smart Configurator Setting
	3.4.1.1 Clock
	3.4.1.2 System
	3.4.1.3 Component

	3.4.2 Folder Structure
	3.4.3 Option Byte Settings
	3.4.4 List of Constants
	3.4.5 List of Variables
	3.4.6 List of Functions
	3.4.7 Function Specification
	3.4.8 Flowchart
	3.4.8.1 Main Process
	3.4.8.2 r_Config_TKB0_end_count_interrupt Function
	3.4.8.3 FAA Processing

	3.5 Sample Script Specification
	3.5.1 SFR Display Overview
	3.5.2 Operation Overview
	3.5.3 List of Functions
	(1) Hook Functions
	(2) CS+ Python Functions

	3.5.4 List of Variables
	(1) CS+ Python Property
	(2) Others

	3.5.5 Flowchart
	(1) Initialization Process
	(2) AfterCpuReset Process
	(3) BeforeCpuRun Process
	(4) AfterCpuStop Process

	3.5.6 Script Execution
	3.5.7 Basic debug operations
	3.5.8 Cautions When Using the Sample Script

	4. Sample Code
	5. Reference Documents
	Revision History

