
 Application Note

R01AN7654EJ0100 Rev.1.00 Page 1 of 37
Jan.10.25

RX Family
Tamper Detection Method Utilizing Existing Peripheral Functions

Introduction
This application note explains a method for detecting tampering from malicious third parties tBy using

application with existing peripheral functions such as the Data Transfer Controller (DTC), Event Link
Controller (ELC), and Serial Communication Interface (SCI).

The target devices of this application note are as follows. When adapting the content of this application
note to RX family devices other than the tested RX66N group, please adjust it according to the specifications
of the target microcontrollers and perform thorough evaluations.

RX family equipped with DTC, ELC, TMR, MTU3a, DOC, SCI, and TSIP (with built-in TRNG).

Target Device

Supported Devices
RX66N group

RX Family Tamper Detection Method Utilizing Existing Peripheral Functions

R01AN7654EJ0100 Rev.1.00 Page 2 of 37
Jan.10.25

Contents

1. Overview ... 4
1.1 Background ... 4
1.2 Tamper Detection Function ... 4
1.3 System Configuration .. 6
1.4 Memory Map .. 7
1.5 LED Status Indication .. 8
1.6 Definition of Sequence .. 9
1.6.1 MTU0.TGRA Settings .. 9
1.7 Notes ... 10
1.7.1 Implementation Notes ... 10
1.7.2 Notes on Operating Conditions ... 10
1.7.3 Notes on modules used ... 10

2. Operational Check Conditions ... 11

3. Operating Environment .. 12
3.1 Connection Method ... 12
3.2 Writing Method .. 13

4. System Description .. 16
4.1 Tamper Detection Operation Description .. 16
4.1.1 DTC Transfer Operation .. 18
4.1.2 Bit Length Alignment for Random Numbers .. 19
4.1.3 Tamper Detection Erasure .. 20
4.2 １Sequence Operation Details .. 21
4.2.1 Behavior from Power-On to the Start of the First Sequence Transfer .. 23
4.2.2 Details of Operations During Tamper Events .. 23

5. Software Description .. 24
5.1 Configuration ... 24
5.1.1 File Configuration .. 24
5.1.2 List of Variables ... 24
5.1.3 List of Functions .. 25
5.1.4 Function Specifications ... 26
5.2 Flowchart ... 30
5.2.1 Overall Operation Flow .. 30
5.2.2 Main Function Initialization and ActiveTAMP Start Flow ... 31
5.2.3 Flow of Tamper Detection Processing .. 32
5.2.4 Flow When the Timer Detects Two or More Mismatches ... 34
5.2.5 Communication Error Interrupt Processing ... 34
5.2.6 Sensitive Data Deletion Function .. 35
5.3 Footprint .. 36
5.4 Notes ... 36
5.4.1 Notes on Stopping Tamper Detection ... 36

RX Family Tamper Detection Method Utilizing Existing Peripheral Functions

R01AN7654EJ0100 Rev.1.00 Page 3 of 37
Jan.10.25

6. Reference Documents ... 36

Revision History .. 37

RX Family Tamper Detection Method Utilizing Existing Peripheral Functions

R01AN7654EJ0100 Rev.1.00 Page 4 of 37
Jan.10.25

1. Overview

1.1 Background
In today's era of IoT, there are concerns that malicious third parties may target IoT devices for

unauthorized modifications or tampering with internal data.
One of the measures to prevent this is the tamper detection function, which detects modifications and
tampering of the hardware itself, thereby enhancing security. By utilizing the existing peripheral functions of
the RX family, it is possible to implement tamper detection.

1.2 Tamper Detection Function
In this sample progrum detect tamper which sends a random number and looped back and received

externally.Then compares these numbers to monitor for the presence of a tamper.
This way is defferent to other stadard tamp detection by voltage level.
Additionally, communication errors such as framing, parity, and overflow errors caused by disconnections

in the external loopback signal are detected as tampering. Once the tampering is detected, the internal
SRAM and backup registers are erased to prevent the leakage of confidential information, such as billing
data and personal information.

Figure 1-1 and Figure 1-2 show the level monitoring system and the configuration diagram of this sample
program. As an example, a switch (SW) is installed inside the enclosure to detect its opening and closing.

Figure 1-3 illustrates the method of tamper detection using level monitoring. Tamper detection occurs
when a change in the level of the TAMPn signal is detected. This method also detects the opening and
closing of the enclosure.

Figure 1-4 and Figure 1-5 illustrate the tamper detection method implemented in this sample program. In
this sample program, tamper detection is not based on level monitoring; instead, it occurs when the received
random numbers do not match a specified number of times or when a communication error occurs.

Figure 1-3 Tamper Detection Through Level Monitoring

TAMPn

Tamper detection

Tamper
detection

circuit

TAMPn

SW*1

Tamper
detection
function

Input

Output

Figure 1-2 System Configuration Diagram of This
Sample Program

Clock

High

Low

SW*1: Switches ON/OFF by opening and closing the enclosure

SW*
1

SW*1: Switches ON/OFF by opening and closing the enclosure.

Figure 1-1 Level Monitoring System
Configuration Diagram (n=0 to 2)

RX Family Tamper Detection Method Utilizing Existing Peripheral Functions

R01AN7654EJ0100 Rev.1.00 Page 5 of 37
Jan.10.25

Figure 1-4 Tamper detection by this sample program (tamper detection after 2
discrepancies)

Figure 1-5 Tamper detection by this sample program (in case of communication error)

Table 1-1 summarizes the tampers that can be detected by this sample code.

Table 1-1 Detectable tamper summary
Tamper Detection Factors

• Opening and closing the
enclosure

• Broken Communication Line
on the Board

• Communication error
• Mismatch in Transmitted /Received Counts

• Data tampering of
communication lines by
probes

• "The number of mismatches in the comparison of transmitted and
received data is two or more.

• Mismatch in Transmitted /Received Counts

Number of mismatches

(TMR.TCNT)

Tamper detection

(TMR.CMIA)

h’FF h’FF h’FF h’FF

h’FF h’AA h’FF h’AA

0 1 1 2

Input data

Output data

Increment TMR.TCNT by 1
on mismatch

TAMPA detection is triggered by the compare-
match (CMIA) interrupt of TMR.TCORA when a
mismatch is detected twice.

communication line

(SCI.SSR[3:5])

Tamper detection
(SCI.ERI)

The ERI (Communication Error) interrupt occurs due to one of the
following communication errors (Overrun, Parity, or Framing Error) to
detect a tamper.

(Communication errors such as (communication format error, communication
line breakage)

RX Family Tamper Detection Method Utilizing Existing Peripheral Functions

R01AN7654EJ0100 Rev.1.00 Page 6 of 37
Jan.10.25

1.3 System Configuration
Figure 1-6 shows the system configuration diagram for tamper detection using the RX66N, and Table 1-1

lists the peripheral functions used.

Figure 1-6 System configuration diagram

Table 1-2 Peripheral Functions Used and Applications
Peripheral Functions Application

MTU0 Manages the sequences described later.
ICU Manages various interrupt requests from peripheral modules and

generates interrupt requests for the CPU or transfer requests to the
DTC.

TRNG in TSIP Generates random numbers.
The random numbers are written to SRAM by the CPU.

SCI9 Transmitted random numbers and receive them through external
loopback.

DTC Random numbers generated by the TRNG are transferred from SRAM
to SCI9. The random numbers received by SCI9 are then transferred to
the DOC. The remaining transfer count of the random numbers is also
counted.

DOC Transmitted random numbers are compared with random numbers
received to determine a match or mismatch.

ELC Event link the DOC mismatch signal to TMR0.
TMR0 Count the number of DOC mismatch signals through the ELC
GPIO Turn on LED0 and LED1/Turn off LED0 and LED1

SCI9

SRAM/
Backup register

CPU

ELC

DTC

TMR0 MTU0 TSIP
(TRNG)

GPIO LED0

LED1

DOC
Loop back TX
and RX signals
on the board.

RX66N
TB-RX66N

ICU

RX Family Tamper Detection Method Utilizing Existing Peripheral Functions

R01AN7654EJ0100 Rev.1.00 Page 7 of 37
Jan.10.25

1.4 Memory Map
Figure 1-7 shows a memory map that represents the space used for storing sensitive information and for

sending and receiving random numbers.

Figure 1-7 Memory Map

0000 0000h

0008 0000h

0007 FFE0h

0007 FFFCh

0007 FFFFh

0007 FFFEh

SRAM

1920-bit area for storing
confidential information

(g_random_128)

16-bit area for sending random
numbers

(g_send_data_16)

16-bit area for receiving random
numbers

(g_rcv_data_16)

128bit area for random numbers
generated by TSIP

(g_secret_data[240])

～

0005 0000h

0005 00F0h

～

～

RX Family Tamper Detection Method Utilizing Existing Peripheral Functions

R01AN7654EJ0100 Rev.1.00 Page 8 of 37
Jan.10.25

1.5 LED Status Indication
Table 1-3 shows the status of LED0 and LED1 for tamper detection.

Table 1-3 LED Status for Tamper Detection

LED0 LED1 Status
OFF OFF Normal (No tamper detection)
OFF ON Detected the Tamper

The number of discrepancies in sent/received data
comparison results is 2 or more (Data tampering)

ON OFF Detected the Tamper
Disconnection (enclosure damage or board modification)

ON ON No setting

RX Family Tamper Detection Method Utilizing Existing Peripheral Functions

R01AN7654EJ0100 Rev.1.00 Page 9 of 37
Jan.10.25

1.6 Definition of Sequence
The sequence is a period from the generation of the first random number to the start of the next transfer.

The sequence consists of tamper detection time and idle time, and the next sequence is initiated by a
compare match on MTU0.TGRA.

This enables the sequence operation to occur at the configured cycle.
For details on the tamper detection operation, please refer to Section 4.1: Tamper Detection Operation

Description.

For information regarding idle time, please refer to Section 1.6.1: MTU0.TGRA Settings.

Figure 1-8 Sequence Definition

1.6.1 MTU0.TGRA Settings
The sequence contain with the tamper detection operation time and idle time.
The tamper detection operation time can be calculated as 5.6 [us] + (1000000 / baud rate [bps]) * 10 *4

[us].
The idle time can be set by the user to any duration. After calculating the tamper detection time, please

add any desired duration chosen by the user to set the total time in MTU0.TGRA.

 Example: When the baud rate is set to 9600 bps and the desired idle time is 100 ns, the tamper detection
operation time, calculated using the above formula, is 4172.26 µs. Therefore, to ensure that the total time in
MTU0.TGRA is greater than 4272.36 µs, please set it to the sum of these two values.

This formula does not account for the time required to complete reception. Therefore, in practice, please
adjust the formula to consider the time it takes to receive the data.

MTU0.TGRA

MTU0.TCNT

Tamper detection
operation Idle time Tamper detection

operation Idle time

1st Sequence 2nd Sequence

RX Family Tamper Detection Method Utilizing Existing Peripheral Functions

R01AN7654EJ0100 Rev.1.00 Page 10 of 37
Jan.10.25

1.7 Notes
1.7.1 Implementation Notes
The sample code specifies that if the external folding is severed, it will remove all confidential information

in any case. Before opening or closing the enclosure for regular maintenance, please ensure that you upload
any confidential information to the cloud and take specific steps to disable tamper detection.

For information on how to stop tamper detection, Please refer 5.1.4 Notes on Stopping Tamper
Detection.

1.7.2 Notes on Operating Conditions
During the operation of this sample program, please be cautious of short circuits between the

communication lines, power supply, and ground, as well as noise on the communication lines, as these may
be detected as tampering.

1.7.3 Notes on modules used.
When using this sample program, please note that the DOC has only one channel and cannot be used

within the user program. However, other modules can utilize any channels that are not used by this sample
program.

RX Family Tamper Detection Method Utilizing Existing Peripheral Functions

R01AN7654EJ0100 Rev.1.00 Page 11 of 37
Jan.10.25

2. Operational Check Conditions
The sample program in this application note has been tested under the following conditions.

Table 2-1 Operating Environment
Item Contents

MCU used R5F566NNHDFP (Equipped with Target Board for RX66N)
Operating Frequency Main Clock: Stopped (using HOCO)

PLL：240MHz（HOCO x 1/1 x 15）
HOCO：16MHz
LOCO：Stop
System clock（ICLK）：120MHz（PLL x 1/2）
Peripheral module clock A（PCLKA）: 120MHz（PLL x 1/2）
Peripheral module clock B（PCLKB）: 60MHz（PLL x 1/4）
Peripheral module clock C（PCLKC）: 60MHz（PLL x 1/4）
Peripheral module clock D（PCLKD）: 60MHz（PLL x 1/4）
Flash IF Clock（FCLK）：60MHz（PLL x 1/4）

Operating Voltage 3.3V
Integrated Development Environment Renesas Electronics

e2 studio Version 2024-07.0
C Compiler Note Renesas Electronics

C/C++ Compiler Package for RX Family V3.06.00
RX Smart Configurator V2.22.0
Board Support Package (r_bsp） V7.50
Endian little Endian
Operation Mode Single Chip Mode
Processor Mode

Supervisor Mode

Sample Code Version V1.00
Evaltion Board Target Board for RX66N

（Type Name：RTK5RX66N0C00000BJ）
Emulator E2-Lite

Note If the version of the toolchain (C compiler) specified for this project is not installed, the toolchain will
remain unselected, resulting in an error. If an error occurs, please check the toolchain selection status in
the project settings screen.

For setup instructions, please refer to FAQ 3000404.

FAQ 3000404: When building an imported project, a "Program 'make' not found in PATH" error occurs
(e² studio)

https://ja-support.renesas.com/knowledgeBase/18367361#:%7E:text=%E7%95%AA%E5%8F%B7:%20FAQ%2030
https://ja-support.renesas.com/knowledgeBase/18367361#:%7E:text=%E7%95%AA%E5%8F%B7:%20FAQ%2030

RX Family Tamper Detection Method Utilizing Existing Peripheral Functions

R01AN7654EJ0100 Rev.1.00 Page 12 of 37
Jan.10.25

3. Operating Environment
The sample program project for this application needs to be written to the Target Board for RX66N by

connecting it to the development PC via USB.
In this sample proram, the on-chip debugging emulator on the Target Board for RX66N will be used. Table

3-1 shows the setup environment for writing the sample program, and Figure 3-1 illustrates the connection
method.

Table 3-1 Sample Program Writing Environment
Item Contents

Development Environment ・Development Windows PC
・e2 studio Version 2024-07.0

Debugging Tool ・E2 Lite(RX)
Board ・Target Board for RX66N

（Type Name：RTK5RX66N0C00000BJ）
Cable ・USB Cable (type-A ⇔ type micro B)

・Jumper Cable (Male ⇔ Male)

3.1 Connection Method
a. Connect a jumper cable (male to male) to pins 9 and 10 of the Pmod connector (CN1).

b. Connect the micro-B side of the USB function cable to the USB connector on the Target Board for
RX66N.

c. Connect the type-A side of this USB cable to a USB port on the development PC. This will connect
you to the on-chip debugging emulator.

Figure 3-1 Target Board for RX66NConnection Diagram

Target Board for RX66N

USB Cable
(type-A ⇔ type micro B)

Development Windows PC

Jumper Cable
(Male ⇔ Male)

CN1

USB type micro B

1
2
3
4
5
6

7

9
10
11
12

8

Bottom

Top

RX Family Tamper Detection Method Utilizing Existing Peripheral Functions

R01AN7654EJ0100 Rev.1.00 Page 13 of 37
Jan.10.25

3.2 Writing Method
Once the connection is complete, follow the steps below to write the project.

a. Import the project.

Figure 3-2 Import the project

Start e2 studio and from the menu
[File (F)],select [Import (I)].

Select [Existing Projects to
Workspace].

Select [Select archive file(T)].

Select the directory where the
project is stored. For example:
an-r01an3956jj0100-rxv2-dsp.
The project name varies for
each application note.

When using a working set,
select [Add Project to Working
Set (T)].

RX Family Tamper Detection Method Utilizing Existing Peripheral Functions

R01AN7654EJ0100 Rev.1.00 Page 14 of 37
Jan.10.25

b. After building the project, press the debug button in e2 studio, which will start the writing process.

Figure 3-3 Build and Debug

RX Family Tamper Detection Method Utilizing Existing Peripheral Functions

R01AN7654EJ0100 Rev.1.00 Page 15 of 37
Jan.10.25

c. After the writing process in b, it will automatically start in FINE boot mode. Press 'Exit' to disconnect e2
studio and the on-chip debugging emulator. and the on-chip debugging emulator.

Figure 3-4 Emulator disconnection

d. When the emulator reset header (J6) is connected, it will start in single-chip mode without requiring a
debugger, executing the programmed project.

Figure 3-5 Operating Mode Switch

Target Board for RX66N

By connecting the emulator reset pin
(J6), it will begin operation in single-chip
mode.

RX Family Tamper Detection Method Utilizing Existing Peripheral Functions

R01AN7654EJ0100 Rev.1.00 Page 16 of 37
Jan.10.25

4. System Description

4.1 Tamper Detection Operation Description
Figure 4-1 shows the data flow (random numbers) in this sample program. Table 4-1 provides details on

the operation when no tampering has occurred, Table 4-2 describes the operation when tampering is
detected due to transmitted or received data alteration, and Table 4-3 details the operation when tampering
is detected due to a communication error.

...

Figure 4-1 Tamper Detection Operation

Table 4-1 Tamper Detection Operation Details (When No Tampering Occurs)
Operation Description

1 Start of Sequence The sequence will start with the MTU0.TGRA compare match interrupt.

2 Random Number
Generation

A random number generation command will be issued to the TRNG within
the TSIP.

3 Random number storage The random numbers generated by 2 will be stored in SRAM by the CPU.
4-1 DTC Transfer
(Transmitted Data)

A part of the random numbers stored in 3 is transferred from SRAM to
SRAM by DTC normal transfer.

4-2 DTC Transfer (Transmit
Data)

The random numbers transferred in 4-1 will be transferred from SRAM to
DOC.DODSR using the chain transfer from 4-1.

4-3 DTC Transfer
(Transmitted Data)

A portion of the random numbers transferred in 4-1 will be transferred from
SRAM to SCI9.TDR using the chain transfer in 4-2.

5-1 DTC Transfer (Received
Data)

The random numbers received will be transferred from SCI9.RDR to SRAM
using the normal transfer of the DTC.

5-2 DTC Transfer
(Transmitted Data)

The random numbers transferred in 5-1 will be transferred from SRAM to
DOC.DODIR using the chain transfer from 5-1.

6 Comparison of Transmitted
and Received Random
Numbers

The random numbers transferred 4-2 are compared to the random numbers
transferred in 5-2 by the DOC.

7 When matched Starting the transfer of the next random number.
8 Repeat Repeat steps 4 to 7-1 a total of four times.
9 Idle time We will wait for the idle time.

SCI9

SRAM/
Backup Register

CPU

ELC TMR0

MTU0

DOC

RX66N

SRAM

③

⑥

⑧

⑪’

⑨’-

GPIO ⑩’

⑨’-

TSIP
(TRNG) ②

DTC
④-

⑦

⑦’

Solid line: data
Dashed Line: Event/Operation

④-2

④-3
⑤-1

⑤-2

⑨
① ⑩

⑧’

〇 : Operation when no tampering occurs
〇’ : Operation ｗhen tampering occurs

ICU

RX Family Tamper Detection Method Utilizing Existing Peripheral Functions

R01AN7654EJ0100 Rev.1.00 Page 17 of 37
Jan.10.25

10 End of sequence The sequence will end with the MTU0.TGRA compare match interrupt.
(Return to 1)

Table 4-2 Tamper Detection Operation Details (When Tamper Detection Occurs Due to Data Alteration in

Transmitted and Received Data)

Operation Description

1 to 6: Same as when no
tamper has occurred.

-

7’ In the Case of mismatch If the comparison results of 6 is a mismatch, the event link signal will be
output, and the transfer of the next random number will start.

8 Count of mismatches The 7' event signal increments to the TMR0.TCNT (mismatch count).
9’-1 When there are two

mismatches, TMR0
interrupt is triggered.

When the value of TMR0.TCNT reaches 2, TMR0 raises the TCORA
compare match interrupt to the CPU.

10’ Turn on LED1 When the interrupt from 9-2 occurs, the CPU will turn on LED1.
11’ Deletion of confidential
information

After step 10, the CPU will delete (clear to zero) the confidential information
in SRAM and the contents of the backup registers, and then call the user
program in case of an error.

Table 4-3 Tamper Detection Operation Details (When Tamper Detection Occurs Due to
Communication Errors)

Operation Description

1 to 6: Same as when
tampering has not occurred.

-

9’-2 Communication error
Interrupt occurred

When a communication error is detected, SCI9 raises a communication
error interrupt to the CPU.

10’ Turn on LED0 When the interrupt of 9-1 occurs, the CPU turns on LED0
11’ Deletion of confidential
information

After step 10, the CPU will delete (clear to zero) the confidential information
in SRAM and the contents of the backup registers, and then call the user
program in case of an error.

RX Family Tamper Detection Method Utilizing Existing Peripheral Functions

R01AN7654EJ0100 Rev.1.00 Page 18 of 37
Jan.10.25

4.1.1 DTC Transfer Operation
In this sample program, DTC transfers are conducted due to software factors, transmission data empty

factors, and reception data full factors.
From here on, the DTCs for each activation factor will be referred to as (Software) DTC, (Transmission)

DTC, and (Reception) DTC.
Table 4-4 provides an overview of the DTC operations for each activation factor. The numbers in the table

correspond to the numbers in Figure 4-1.
Please refer to Section 4.1.2 'Random Number Bit-Length Alignment,' for details on the random numbers

to be transferred.

Table 4-4 Activation Factors and DTC Transfer Operations
Operation Overview Name Activation Factors

4-1 Transfers 8 bits of 128-bit random numbers from
SRAM to SRAM

(Soft)DTC Software

4-2 In the chain transfer described above, the random
numbers transferred earlier will be sent from SRAM to
DOC.

(Soft)DTC No chain transfer

4-3 In the above chain transfer, the data will be sent from
SRAM to SCI9.TDR.

(Soft)DTC Same as above

4-3 The transfer will be performed from SRAM to
SCI9.TDR.

(Transmission)DTC Transmitted data
empty

5-1 The random number in SCI.RDR will be transferred to
SRAM.

(Reception)DTC Received data full

5-2 In the above chain transfer, the data will be sent from
SRAM to DODIR.

(Reception)DTC No chain transfer

RX Family Tamper Detection Method Utilizing Existing Peripheral Functions

R01AN7654EJ0100 Rev.1.00 Page 19 of 37
Jan.10.25

4.1.2 Bit Length Alignment for Random Numbers
The random numbers generated by the TRNG are 128 bits long, while those transmitted via SCI are 8 bits

long, and those compared by the DOC are 16 bits long. Therefore, it is necessary to align the bit lengths
when exchanging these random numbers.

In this sample program, the random numbers are aligned to a length of 16 bits for compatibility with the
DOC for comparison.

Figure 4-2 provides an overview of the method for aligning the bit lengths of random numbers, while Table
4-5 presents the details of this alignment method.

The numbers within the figures are linked to the numbers in Figure 4-1.

Figure 4-2 Overview of Random Number Bit Length Alignment

Table 4-5 Detailed Method for Random Number Bit Length Alignment
Operation Description

2 Random Number Generation Random numbers (128 bits long) are generated by the TRNG within
TSIP.

3 Random number storage The 128-bit random number generated in 2 will be stored in SRAM by
the CPU.

4-1 16-bit Random Number s The least significant 8 bits of the 128-bit random number stored in 3
will be transferred to the lower section of the (transmit) DOC SRAM
space, aligning it with the initial value to form a 16-bit random number.

4-2 Storing Transmitted
Random Numbers in DOC

The 16-bit random number aligned in 4-1 will transfer to DOC.DODSR
via DTC.

4-3 Transfer of Transmitted
Random Numbers

Transfer the lower 8 bits of the 16-bit random number created in step
4-1 to SCI9.TDR via DTC.

5-1 Transfer of Received
Random Numbers

Transfer the received 8-bit random number to the lower part of the
(receive) DOC-designated SRAM space and align it to 16 bits by
combining it with the initial value.

5-2 Storing Received Random
Numbers in DOC

The 16-bit random number aligned in 5-1 will be transferred to
DOC.DODIR via DTC.

128-bit random numbers generated by the RNG
8bit

16bi
t

SRAM

DOC.DODSR

DTC

Initial value (all 0)

SCI
TXD

RXD

DOC.DODIR

16bit

TSIP

128-bit random number

8bit random number

CPU

2
3

4-2

4-1

4-3

5-1

5-2

(Transmission)
SRAM Space for
DOC

(Reception)
SRAM Space for
DOC

DTC

RX Family Tamper Detection Method Utilizing Existing Peripheral Functions

R01AN7654EJ0100 Rev.1.00 Page 20 of 37
Jan.10.25

4.1.3 Tamper Detection Erasure
Upon tamper detection, confidential information stored in SRAM at addresses 0005 0000h to 0005 00F0h,

as well as in the backup registers at addresses 0008 C2A0h to 0008 C2BFh, will be erased.
After the erasure, this sample program enters an infinite loop. Additionally, the user can be informed of the

erasure of confidential information due to tamper detection via a communication error (overrun, framing, or
parity error) interrupt or the TMR0 TCORA compare match interrupt.

RX Family Tamper Detection Method Utilizing Existing Peripheral Functions

R01AN7654EJ0100 Rev.1.00 Page 21 of 37
Jan.10.25

4.2 １Sequence Operation Details
This sample program minimizes CPU processing to reduce the load on the user program as much as
possible, allowing tamper detection to occur in the background. The operation of this sample program from
power-on to the completion of a single sequence is outlined below.

1. Initialize each peripheral function (TSIP, SCI9, TMR0, ELC, DOC, MTU0, DTC).
2. Set the value of MTU0.TGRA to MTU0.TCNT, and then activate each peripheral function in the following

order: TSIP, SCI9, TMR0, ELC, DOC, MTU0.
3. Setting the MTU0.TSTRA.CST0 bit to 1b starts the counting process of MTU0.
4. When the value of the MTU0.TCNT register matches the value of the MTU0.TGRA register, the

MTU0.TCNT register is cleared, and simultaneously, a MTU0.TGRA compare match interrupt is
generated.

5. In the MTU0.TGRA compare match interrupt handling, random numbers are generated, and the DTC
transfer count is verified, initialized, and enabled. After that, a value of 1 is set in SWINTR.SWINT to start
the DTC transfer for software triggers.

6. Through the DTC transfer for software triggers, data is transferred from SRAM(A)* to SRAM(B)*, and
then, using chain transfer, SRAM(B)*is sent to DOC.DODIR. Additionally, a portion of SRAM(B)* is
transferred to SCI9.TDR via chain transfer. This initiates the DTC transfer for the transmit data empty
condition, starting four transmissions via SCI9.

7. Upon receiving data from SCI9 due to self-looping of the SCI9 transmitted data, the DTC transfer for the
receive data full condition is initiated, transferring the received data (SCI9.RDR) to SRAM(C)*.

8. In the chain transfer of (7), the received data is transferred to DOC.DODSR, where it is compared with
the transmitted data.

RX Family Tamper Detection Method Utilizing Existing Peripheral Functions

R01AN7654EJ0100 Rev.1.00 Page 22 of 37
Jan.10.25

Transmit/receive 16-bit Random Number

9.

Figure 4-3 Sample Program Operation

DTC Transfer

MTU0.TCNT

TGIA

TSTRA.CST0
TGIA

Compare match

SCI9.RDR

SWINTR.SWINT

SRAM(A)*

SRAM(B)*

SCI9.TDR Transmission
Random Number 1

Transmission
Random Number 2

Transmission
Random Number 3

Transmission
Random Number 4

DOC

(1) (3)
(2) (4)

(5) (6)
(7) (8)

SRAM(C)*

DOC.DODSR

DOC.DODIR

TSIP(TRNG)-generated 128-bit

DTC Transfer

DTC Transfer

DTC Transfer

DTC Transfer

DTC Transfer

DTC Transfer

DTC Transfer

DTC Transfer

DTC Transfer

DTC Transfer

DTC Transfer

Transmitted 16-bit random number

Received Random
Number1

Received Random
Number2

Received Random
Number3

Received Random
Number4

Received Random
Number1

Received Random
Number2

Received Random
Number3

Received Random
Number4

Received Random
Number1

Received Random
Number2

Received Random
Number3

Received Random
Number4

Comparison Result1 Comparison Result2

Comparison Result3

Comparison Result4

DTC Transfer

(7) (8) (7) (8) (7) (8)

SRAM(A)*: TRNG Generated 128-bit Random Number Space SRAM(B)*: Transmission 16-bit Random Number Space SRAM(C)*:
Reception 16-bit Random Number Space

DTC Transfer

RX Family Tamper Detection Method Utilizing Existing Peripheral Functions

R01AN7654EJ0100 Rev.1.00 Page 23 of 37
Jan.10.25

4.2.1 Behavior from Power-On to the Start of the First Sequence Transfer
In this sample program, to minimize the time during which tamper detection cannot occur after power-on,

tamper detection begins at the rising edge of the first clock cycle of the MTU0 source clock.
。
After the first sequence, the sequence will start at the period set in MTU0.TGRA.

4.2.2 Details of Operations During Tamper Events
If a tamper event occurs during the operation of the sequence, the following actions will be taken

immediately.

1. The corresponding LED will be turned on to indicate the cause of the tamper event (random number
tampering or communication error).

2. All peripheral functions used for tamper detection will be stopped.
3. All confidential information in RAM and backup registers will be deleted (zeroed out).

4. The user-defined error handling function will be called.

RX Family Tamper Detection Method Utilizing Existing Peripheral Functions

R01AN7654EJ0100 Rev.1.00 Page 24 of 37
Jan.10.25

5. Software Description

5.1 Configuration
5.1.1 File Configuration
Table 5-1 lists the files used in this sample program. Note that files containing source code generated

directly by the Smart Configurator's code generation feature are excluded.。

Table 5-1 Files used in the sample code
File name Overview Notes

ActiveTAMP.c Main Process This sample code performs
the initial setup and start
process for tamper detection.

ActiveTAMP.h Header file of ActiveTAMP .c -
user_main.c User's main, Error handling Called from ActiveTAMP.c.

This sample program does
not perform any processing.

user_main.h Header file of user_main.c -
Config_MTU0_user.c Timer Interrupt Processing -
Config_DTC_soft.c DTC transfer setting processing Software Factors
Config_DTC_rcv_user.c DTC transfer setting processing Software Factors
Config_DTC_send.c DTC transfer setting processing Factors for Empty

Transmission Data
Config_DTC_send_user.c DTC transfer setting processing Factors for Empty

Transmission Data
Config_DTC_rcv.c DTC transfer setting processing Factors for Full Reception

Data
Config_DTC_soft_user.c DTC transfer setting processing Factors for Full Reception

Data

5.1.2 List of Variables
Table 5-2 shows the global variables.

Table 5-2 List of Variables
Type Variable Name Description Functions Used

uint32_t g_random_128 SRAM area for storing 128-bit random
numbers

main
r_Config_MTU0_tgia0_interrupt

uint16_t g_send_data_16 SRAM area for storing a 16-bit
transmission random number

main
r_Config_MTU0_tgia0_interrupt

uint16_t g_rcv_data_16 Store a 16-bit reception random number main
uint8_t g_secret_data[240] SRAM area for storing data that

simulates confidential information
main

uint8_t g_backup[32] Backup register area for storing data
that simulates confidential information

main

RX Family Tamper Detection Method Utilizing Existing Peripheral Functions

R01AN7654EJ0100 Rev.1.00 Page 25 of 37
Jan.10.25

5.1.3 List of Functions
Table 5-3 lists the functions. Note that functions that use source code generated directly by the Smart

Configurator's code generation feature are omitted.

Table 5-3 List of Functions
Function Name Overview

main Main Processing, Initial Setup for Tamper Detection Operation,
Start Processing

erase_secret_data Confidential Information Deletion Process
user_main_function User Main Processing
user_err_function User Error Handling
r_Config_MTU0_tgia0_interrupt Start Process of Tamper Detection Sequence
R_Config_DTC_rcv_Remaining Process to Retrieve Remaining Transfer Count of DTC for Full

Reception Data Factors
R_Config_DTC_rcv_reset Process to Reset DTC Transfer Count for Full Reception Data

Factors
R_Config_DTC_rcv_Create_UserInit Initial Setup Process for DTC Transfer Count for Full Reception

Data Factors
R_Config_DTC_send_reset Process to Reset DTC Transfer Count for Empty Transmission

Data Factors
R_Config_DTC_send_Create_UserInit Initial Setup Process for DTC Transfer Count for Empty

Transmission Data Factors
R_Config_DTC_soft_reset Process to Reset DTC Transfer Count for Software Factors
R_Config_DTC_soft_Create_UserInit Initial Setup Process for DTC Transfer Count for Software

Factors

RX Family Tamper Detection Method Utilizing Existing Peripheral Functions

R01AN7654EJ0100 Rev.1.00 Page 26 of 37
Jan.10.25

5.1.4 Function Specifications
The function specifications of the sample code are shown.

main

 Overview Main Processing, Initial Setup for Tamper Detection Operation, Start Processing
 Header None
 Declaration void main(void)
 Description After the initial setup, the tamper detection operation will be started, and the user

main processing will be called.
 Arguments None
 Return Value None
 Notes -

erase_secret_data
 Overview Confidential Information Deletion Process
 Header ActiveTAMP.h
 Declaration void erase_secret_data(void)
 Description Deletes (clears to 0) sensitive information from SRAM and backup registers and

calls the user error handling routine.
 Arguments None
 Return Value None
 Notes After the process, it enters an infinite loop and does not perform any other

operations.

user_main_function
 Overview User Main Processing
 Header user_main.h
 Declaration void user_main_function(void)
 Description You can implement the user-defined main processing, which operates in parallel

with tamper detection.
 Arguments None
 Return Value None
 Notes -

RX Family Tamper Detection Method Utilizing Existing Peripheral Functions

R01AN7654EJ0100 Rev.1.00 Page 27 of 37
Jan.10.25

user_err_function
 Overview User Error Handling
 Header user_main.h
 Declaration void user_err_function(void)
 Description You can implement the user-defined error handling that occurs when a tamper

event is detected. This process is called only once, after the deletion of
confidential information.

 Arguments None
 Return Value None
 Notes It is called by the erase_secret_data function.

r_Config_MTU0_tgia0_interrupt
 Overview Timer Interrupt Handling
 Header r_Config_MTU0.h
 Declaration static void r_Config_MTU0_tgia0_interrupt(void)
 Description The start process of the tamper detection sequence is performed by the compare

match interrupt handling of MTU0.TGIA.
 Arguments None
 Return Value None
 Notes -

R_Config_DTC_rcv_Remaining
 Overview Process to retrieve the remaining transfer count of DTC for full reception data

factors.
 Header R_Config_DTC_rcv.h
 Declaration int R_Config_DTC_rcv_Remaining(void)
 Description It returns the remaining transfer count for the full reception data factors of SCI9.
 Arguments None
 Return Value int dtc_transferdata_vector102[0].cra_crb
 Notes -

R_Config_DTC_rcv_reset
 Overview Process to reset the remaining transfer count of DTC for full reception data

factors.
 Header R_Config_DTC_rcv.h
 Declaration void R_Config_DTC_rcv_reset(void)
 Description The remaining transfer count of DTC for full reception data factors will be reset to

4.
 Arguments None
 Return Value None
 Notes -

RX Family Tamper Detection Method Utilizing Existing Peripheral Functions

R01AN7654EJ0100 Rev.1.00 Page 28 of 37
Jan.10.25

R_Config_DTC_rcv_Create_UserInit
 Overview Initial setup process for the DTC transfer count for full reception data factors.
 Header R_Config_DTC_rcv.h
 Declaration void R_Config_DTC_rcv_Create_UserInit(void)
 Description During initialization, the remaining transfer count of DTC for full reception data

factors is initialized to 0.
 Arguments None
 Return Value None
 Notes -

R_Config_DTC_send_reset
 Overview Process to reset the DTC transfer count for empty transmission data factors.
 Header R_Config_DTC_send.h
 Declaration void R_Config_DTC_send_reset(void)
 Description The remaining transfer count of DTC for empty transmission data factors will be

reset to 3.
 Arguments None
 Return Value None
 Notes -

R_Config_DTC_send_Create_UserInit
 Overview Initial setup process for the DTC transfer count for empty transmission data

factors.
 Header R_Config_DTC_send.h
 Declaration void R_Config_DTC_send_Create_UserInit(void)
 Description During initialization, the remaining transfer count of DTC for empty transmission

data factors is initialized to 0.
 Arguments None
 Return Value None
 Notes -

R_Config_DTC_soft_reset
 Overview Process to reset the DTC transfer count for software factors.
 Header R_Config_DTC_soft.h
 Declaration void R_Config_DTC_soft_reset(void)
 Description The remaining transfer count of DTC for software factors will be reset to 1.
 Arguments None
 Return Value None
 Notes -

RX Family Tamper Detection Method Utilizing Existing Peripheral Functions

R01AN7654EJ0100 Rev.1.00 Page 29 of 37
Jan.10.25

R_Config_DTC_soft_Create_UserInit
 Overview Initial setup process for the DTC transfer count for software factors.
 Header R_Config_DTC_soft.h
 Declaration void R_Config_DTC_soft_Create_UserInit(void)
 Description During initialization, the remaining transfer count of DTC for software factors is

initialized to 0.
 Arguments None
 Return Value None
 Notes -

RX Family Tamper Detection Method Utilizing Existing Peripheral Functions

R01AN7654EJ0100 Rev.1.00 Page 30 of 37
Jan.10.25

5.2 Flowchart
In the following flow, the initialization of each module is generated by the Smart Configurator using
theR_Config_< ModuleName>_Create function. Additionally, the TSIP is generated by the R_TSIP_Open
function.

5.2.1 Overall Operation Flow
Figure 5-1 illustrates the overall operation flow of this sample program.

Figure 5-1 Overall Operation Flow

Start

Initialization

Start ActiveTAMP

User Main
Processing Tamper Detection (Timer,

Communication Error)

Refer to Figures 5-3 to 5-7 for details. Refer to Figure 5-2 for details.

RX Family Tamper Detection Method Utilizing Existing Peripheral Functions

R01AN7654EJ0100 Rev.1.00 Page 31 of 37
Jan.10.25

5.2.2 Main Function Initialization and ActiveTAMP Start Flow
Figure 5-2 illustrates the flow of the initialization of the main function and the start of ActiveTAMP.

Figure 5-2 Flow of Main Function Initialization and ActiveTAMP Start

Initialization / ActiveTAMP Start

Enable TMR.TCORA interrupt.

TSIP Start
R_TSIP_Open()

SCI Start
R_Config_SCI9_Start();

Start ELC
R_Config_ELC_Start();

DOC Configuration
R_Config_DOC_SetMode();

Start ActiveTAMP
R_Config_MTU0_Start();

END

SCI Receive Permission
R_Config_SCI9_Serial_Receive();

SCI Transmit Permission
R_Config_SCI9_Serial_Send();

(1) TSIP open process.

(2) Start SCI operation.

(3) Permit SCI reception.

(4) Permit SCI transmission.

(5) Interrupt permission for 8-bit timer.

Set the value of MTU.TGRA to MTU.TCNT.

(6) Starting to count the number of mismatches in
the random numbers.

(7) Set the DOC to comparison mode.

(8) Set the value just before the compare match in
MTU.TCNT.

(9) Start the counting operation of the MTU and
initiate tamper detection.

RX Family Tamper Detection Method Utilizing Existing Peripheral Functions

R01AN7654EJ0100 Rev.1.00 Page 32 of 37
Jan.10.25

5.2.3 Flow of Tamper Detection Processing
Figure 5-3 illustrates the overview flow of tamper detection interrupt processing by the timer, while Figure

5-4 presents the detailed flow.

Figure 5-3 Tamper Detection Interrupt Processing by Time Overview Flow

Tamper Detection
Processing

Random Number
Generation

Random Number
Transmission

Random Number Reception

Comparison of Sent and
Received Random

End of 4
Repetitions

Fewer than 2
Mismatches

END

Yes

Yes

No

No

Sensitive Data Deletion

User Error Handling

RX Family Tamper Detection Method Utilizing Existing Peripheral Functions

R01AN7654EJ0100 Rev.1.00 Page 33 of 37
Jan.10.25

Figure 5-4 Timer-Based Tamper Detection Interrupt Processing Detailed Flow

MTU Interrupt Processing

END

Remaining Transfer
Count is 0

Yes

No

Turn on only LED0

Sensitive Information Deletion
Initialize DTC Transfer Count
R_Config_DTC_rcv_reset();

R_Config_DTC_send_reset();
R_Config_DTC_soft_reset();

Random Number Generation
R_TSIP_GenerateRandomNumber();

DTC Transfer Permission
R_Config_DTC_send_Start
R_Config_DTC_rcv_Start
R_Config_DTC_soft_Start

Software Interrupt Permission
R_Config_ICU_Software_Start();

Start Software Interrupt
R_Config_ICU_SoftwareInterrupt_Generate()

Clear TMR0.TCNT to 0

RX Family Tamper Detection Method Utilizing Existing Peripheral Functions

R01AN7654EJ0100 Rev.1.00 Page 34 of 37
Jan.10.25

5.2.4 Flow When the Timer Detects Two or More Mismatches
Figure 5-5 shows the flow when the timer detects two or more mismatches.

Figure 5-5 Interrupt Processing Flow for Timer When Comparison Mismatches are Two or More

5.2.5 Communication Error Interrupt Processing
Figure 5-6 illustrates the interrupt processing due to communication errors.

Figure 5-6 Interrupt Handling Flow for Communication Errors

TMR0.TCORA Interrupt Processing

END

Deletion of confidential
information

erase_secret_data()

Turn on only LED1

SCI communication error

END

Deletion of confidential
information

erase_secret_data();

Turn on only LED0.

(1)L Turn on LED1 to indicate tampering due to
random number modification.

(2) Call the function to delete confidential
information.

(2) Call the function to delete confidential
information.

(1)LED0 を点灯し通信エラーによる
タンパを知らせます

RX Family Tamper Detection Method Utilizing Existing Peripheral Functions

R01AN7654EJ0100 Rev.1.00 Page 35 of 37
Jan.10.25

5.2.6 Sensitive Data Deletion Function
Figure 5-7 shows the process of sensitive data deletion during tamper occurrence.

Figure 5-7 Confidential Information Deletion Flow

Deletion of confidential information

Clear the sensitive area of SRAM to 0.

Clear the backup register to 0.

"Stop each peripheral function.

User-defined error function
user_err_function();

(1) All peripheral functions will be stopped to
prepare for future attacks

(2) I will delete confidential information, such as
billing information, from SRAM.

(3)I will delete sensitive information, such as
billing information, from the backup register.

(4) I will call the user-defined error handling.

RX Family Tamper Detection Method Utilizing Existing Peripheral Functions

R01AN7654EJ0100 Rev.1.00 Page 36 of 37
Jan.10.25

5.3 Footprint
Table 5-4 shows the footprint of this sample program.

Table 5-4 Footprint of the Sample Program
Program Size

TSIP driver 245 kB

Sample Code (excluding TSIP) 10 kB

Note that the footprint of the TSIP-Lite driver installed on the RX100 and RX200 series is approximately
55kB. Therefore, this sample program can also be used with the RX100 and RX200 series.

5.4 Notes
5.4.1 Notes on Stopping Tamper Detection
Tamper detection is initiated by a compare match trigger on MTU0.TGRA. Therefore, to stop the detection

operation, please disable the counting operation of MTU0.

When stopping peripheral functions other than MTU0, please first confirm that MTU0 has stopped. Then,
verify that there is no transmission or reception occurring on SCI9 before stopping the other peripherals.

6. Reference Documents

RX66NGroup User's Manual Hardware (renesas.com)

Target Board for RX66N User's Manual Rev.1.00 (renesas.com)

 RX Family TSIP (Trusted Secure IP) Module Firmware Integration Technology Rev.1.21 (renesas.com)

https://www.renesas.com/jp/ja/document/mah/rx66n-group-users-manual-hardware?r=1170201
https://www.renesas.com/jp/ja/document/mah/target-board-rx66n-users-manual-rev100
https://www.renesas.com/jp/ja/document/apn/rx-family-tsiptrusted-secure-ip-module-firmware-integration-technology

RX Family Tamper Detection Method Utilizing Existing Peripheral Functions

R01AN7654EJ0100 Rev.1.00 Page 37 of 37
Jan.10.25

Revision History

Rev. Date
Description

Page Summary
1.00 January 10,

2025
- Initial release

General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit
Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the
products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Precaution against Electrostatic Discharge (ESD)

A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps

must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be

adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity.

Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and

measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor

devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.
2. Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of

register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset

pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins

in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power reaches the

level at which resetting is specified.
3. Input of signal during power-off state

Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O

pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal

elements. Follow the guideline for input signal during power-off state as described in your product documentation.
4. Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are

generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of

the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal

become possible.
5. Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program

execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator

during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal

produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.
6. Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL

(Max.) and VIH (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the

input level is fixed, and also in the transition period when the input level passes through the area between VIL (Max.) and VIH (Min.).
7. Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these

addresses as the correct operation of the LSI is not guaranteed.
8. Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems.
The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms of
internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values, operating
margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-evaluation test for
the given product.

© 2024 Renesas Electronics Corporation. All rights reserved.

Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products

and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of
your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the
use of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights,
or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this
document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics
or others.

4. You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export,
manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.

5. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any
and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.

6. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for
each Renesas Electronics product depends on the product’s quality grade, as indicated below.
 "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home

electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key

financial terminal systems; safety control equipment; etc.
Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas
Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to
human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space
system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas
Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas
Electronics product that is inconsistent with any Renesas Electronics data sheet, user’s manual or other Renesas Electronics document.

7. No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics
hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but
not limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS
ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING
RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE,
HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION (“Vulnerability Issues”). RENESAS ELECTRONICS DISCLAIMS ANY AND
ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT
PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH
RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO
THE IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.

8. When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General Notes for
Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by
Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc.
Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products
outside of such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific
characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability
product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics
products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily
injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as
safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for
aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you
are responsible for evaluating the safety of the final products or systems manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas
Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of
controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these
applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance
with applicable laws and regulations.

11. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is
prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations
promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.

12. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or
transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

13. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
14. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas

Electronics products.

(Note1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled
subsidiaries.

(Note2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.
(Rev.5.0-1 October 2020)

© 2024 Renesas Electronics Corporation. All rights reserved.

Corporate Headquarters Contact information
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan

www.renesas.com

 For further information on a product, technology, the most up-to-date

version of a document, or your nearest sales office, please visit:

www.renesas.com/contact/.

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics

Corporation. All trademarks and registered trademarks are the property

of their respective owners.

https://www.renesas.com/
https://www.renesas.com/contact/

	1. Overview
	1.1 Background
	1.2 Tamper Detection Function
	1.3 System Configuration
	1.4 Memory Map
	1.5 LED Status Indication
	1.6 Definition of Sequence
	1.6.1 MTU0.TGRA Settings

	1.7 Notes
	1.7.1 Implementation Notes
	1.7.2 Notes on Operating Conditions
	1.7.3 Notes on modules used.

	2. Operational Check Conditions
	3. Operating Environment
	3.1 Connection Method
	3.2 Writing Method

	4. System Description
	4.1 Tamper Detection Operation Description
	4.1.1 DTC Transfer Operation
	4.1.2 Bit Length Alignment for Random Numbers
	4.1.3 Tamper Detection Erasure

	4.2 １Sequence Operation Details
	4.2.1 Behavior from Power-On to the Start of the First Sequence Transfer
	4.2.2 Details of Operations During Tamper Events

	5. Software Description
	5.1 Configuration
	5.1.1 File Configuration
	5.1.2 List of Variables
	5.1.3 List of Functions
	5.1.4 Function Specifications

	5.2 Flowchart
	5.2.1 Overall Operation Flow
	5.2.2 Main Function Initialization and ActiveTAMP Start Flow
	5.2.3 Flow of Tamper Detection Processing
	5.2.4 Flow When the Timer Detects Two or More Mismatches
	5.2.5 Communication Error Interrupt Processing
	5.2.6 Sensitive Data Deletion Function

	5.3 Footprint
	5.4 Notes
	5.4.1 Notes on Stopping Tamper Detection

	6. Reference Documents

