
 Application Note

R01AN7660EJ0100 Rev.1.00 Page 1 of 178

Jan.14.25

RX Family/RA Family

PMBus Master-Slave communication using I2C bus interface (RIIC/I3C)

Summary

This application note is intended to explain how to use RX family RX26T group and RA family RA6T3 group

to communicate and control PMBus. PMBus communication and control software includes PMBus Master

software and PMBus Slave software. PMBus Master software executes in RX26T group, PMBus Slave

software Execute in RX26T group, and RA6T3 group, and Execute PMBus communication between Master-

Slave devices.

These sample programs are only to be used as reference and Renesas Electronics Corporation does not
guarantee operations. Please use them after carrying out a thorough evaluation in a suitable environment.

◼ Operation Check Device

The operation of the sample program is checked with the following devices.

 PMBus Master
RX family RX26T Group (R5F526TFCDFP)

 PMBus Slave
RX family RX26T Group (R5F526TFCDFP)
RA family RA6T3 Group (R7FA6T3BB3CFM)

It is also applicable to RX/RA family that has the resources described in this application note or equivalent
peripheral functions. (RX72T, RX66T, RX24T, RX23T, RX13T, RX72M, RX72N, RX66N, RA6T1, RA6T2,
RA4T1 etc.)

◼ Target Sample Program

The sample program for this application note is shown below.

 PMBus Master
RX26T_MCBA_PMBUS_MASTER_E2S_V100 (IDE : e2studio)
RX26T_MCBA_PMBUS_MASTER_CSP_V100 (IDE : CS+)

 PMBus Slave
RX26T_MCBA_PMBUS_SLAVE_E2S_V100 (IDE : e2studio)
RX26T_MCBA_PMBUS_SLAVE_CSP_V100 (IDE : CS+)
RA6T3_MCILV1_PMBUS_SLAVE_E2S_V100 (IDE : e2studio)

◼ Reference materials

 RX26T Group User’s Manual Hardware (R01UH0979)
 RA6T3 Group User’s Manual Hardware (R01UH0998)
 MCK-RX26T User's Manual (R12UZ0111)
 MCK-RA6T3 User's Manual (R12UZ0114)
 RX Famiky Sensorless Vector Control of a Permanent Magnet Synchronous Motor - For MCK

(R01AN6858)
 Sensorless vector control for permanent magnetic synchronous motor For Renesas Flexible Motor

Control (R01AN6839)

https://www.renesas.com/document/mah/rx26t-group-users-manual-hardware?language=en
https://www.renesas.com/document/mah/ra6t3-group-users-manual-hardware?language=en
https://www.renesas.com/document/mat/mck-rx26t-users-manual?language=en
https://www.renesas.com/document/mat/mck-rx26t-users-manual?language=en
https://www.renesas.com/document/mat/mck-ra6t3-users-manual?language=en
https://www.renesas.com/document/mat/mck-ra6t3-users-manual?language=en
https://www.renesas.com/document/apn/sensorless-vector-control-permanent-magnet-synchronous-motor-mck-rev110?language=en
https://www.renesas.com/document/apn/sensorless-vector-control-permanent-magnet-synchronous-motor-mck-rev110?language=en
https://www.renesas.com/document/apn/sensorless-vector-control-permanent-magnet-synchronous-motor-mckmcb-ra-family?language=en
https://www.renesas.com/document/apn/sensorless-vector-control-permanent-magnet-synchronous-motor-mckmcb-ra-family?language=en

RX Family/RA Family PMBus Master-Slave communication using I2C bus interface (RIIC/I3C)

R01AN7660EJ0100 Rev.1.00 Page 2 of 178

Jan.14.25

Contents

1. Overview .. 4

1.1 Development Environment ... 5

2. PMBus Outline ... 6

2.1 PMBus protocols ... 7

2.2 PMBus Command .. 15

3. Hardware Description .. 23

3.1 Hardware configuration .. 23

3.2 Hardware Setup ... 27

3.3 Configuration of MCU Function ... 28

3.4 MCU peripheral function ... 29

3.5 Port interface ... 30

4. Operation procedure ... 31

5. Software Description ... 34

5.1 PMBus Master softwares .. 40

5.1.1 PMBus Master Operation Sequence ... 40

5.1.2 PMBus Master status transitions... 46

5.1.2.1 PMBus Master Middleware Application Layer status transitions .. 46

5.1.2.2 PMBus Master Driver Layer status transitions .. 49

5.1.3 PMBus Master Function List .. 52

5.1.4 Customizing PMBus Master Driver section .. 56

5.1.5 PMBus Master Data Types and Structure list ... 64

5.1.6 PMBus Master global variables List .. 70

5.1.7 PMBus Master macro Definition List ... 71

5.1.8 PMBus Master Control Flowchart .. 74

5.1.8.1 PMBus Master Application Flowchart ... 74

5.1.8.2 PMBus Master API flowchart ... 83

5.1.8.3 PMBus Master Drivers Flowchart .. 88

5.2 PMBus Salve softwares .. 91

5.2.1 PMBus Slave operation Sequence .. 93

5.2.2 PMBus Slave status transitions ... 100

5.2.2.1 PMBus Slave Middleware Application Layer status transitions... 100

5.2.2.2 PMBus Slave Driver Layer status transitions .. 108

5.2.3 PMBus Slave Function List .. 111

5.2.4 Customizing PMBus Slave Drivers .. 116

5.2.5 PMBus Slave Data Types and Structure List .. 139

5.2.6 PMBus Slave Global variables List.. 144

5.2.7 PMBus Slave macro-definition list .. 145

5.2.8 PMBus Slave Control Flowchart .. 148

5.2.8.1 PMBus Slave Application section flowchart .. 148

5.2.8.2 PMBus Slave API section flowchart .. 156

5.2.8.3 PMBus Slave Drivers Flowchart .. 160

RX Family/RA Family PMBus Master-Slave communication using I2C bus interface (RIIC/I3C)

R01AN7660EJ0100 Rev.1.00 Page 3 of 178

Jan.14.25

6. PMBus command-transmit/receive test-result .. 175

7. FAQ ... 176

RX Family/RA Family PMBus Master-Slave communication using I2C bus interface (RIIC/I3C)

R01AN7660EJ0100 Rev.1.00 Page 4 of 178

Jan.14.25

1. Overview

This application note is intended to provide PMBus communication and control methods using I2C bus
interface (RIIC/I3C) *1 installed in RX family and RA family. Connect RX26T group to PMBus Master and
RX26T group or RA6T3 group to PMBus Slave for PMBus transmission and reception between both devices
in Master-Slave. In this application note, the RX26T group of the PMBus master analyzes and processes
PMBus commands from PC. Then, it controls and monitors a permanent-magnet synchronous motor
connected from PMBus Master to PMBus Slave at 100kbps communication rate in a vector control method.

Although PMBus is a communication method widely used in power supply systems, this application note
uses the Flexible Motor Control Kit for the motor system shown below as an alternative to a power supply
system.

*1: RIIC/I3C supports communication compliant with SMBus (Ver.2.0).

Figure 1 System Configuration and Operation Overview of This Application Note

RX Family/RA Family PMBus Master-Slave communication using I2C bus interface (RIIC/I3C)

R01AN7660EJ0100 Rev.1.00 Page 5 of 178

Jan.14.25

1.1 Development Environment

Table 1 shows the hardware development environment for this application note. Table 2 shows the
development environment for software for this application note.

Table 1 Hardware Development Environment

Master/Slave MCU Board name Model

Master RX26T
(R5F526TFCDFP)

RX26T CPU Board RTK0EMXE70C00000B

- USB-UART Conversion Module Pmod-USBUART
(Made by DIGILENT)

Slave RX26T
(R5F526TFCDFP)

MCK-RX26T Renesas Flexible
Motor Control Kit for RX26T MCU
Group
(Include RX26T CPU Board)

RTK0EMXE70S00020BJ

RA6T3
(R7FA6T3BB3CFM)

MCK-RA6T3 Renesas Flexible
Motor Control Kit for RA6T3 MCU
Group
(Include RA6T3 CPU Board)

RTK0EMA330S00020BJ

- Motor
(Included with
RTK0EMXE70S00020BJ or
RTK0EMXE70S00020BJ)

R42BLD30L3
(Made by MOONS’)

Table 2 Software Development Environment

Device IDE version RX Smart
Configurator

FSP Toolchain version*1

RX26T
(R5F526TFCDFP)

CS+:V8.12.00 Version 2.22.0 - CC-RX: V3.06.00

e2studio:2024-07 e2studio plug-in
version

RA6T3
(R7FA6T3BB3CFM)

e2studio:2024-07 - V4.4.0 GCC ARM
Embedded:13.2.1.arm-13-7

Note If the same version as the toolchain (C compiler) specified in the project does not exist in the import

destination, the toolchain is not selected and an error occurs. Check the toolchain selection status in

the project settings screen.

Refer to FAQ 3000404 for the selection procedure.

(https://en-support.renesas.com/knowledgeBase/18398339)

https://en-support.renesas.com/knowledgeBase/18398339

RX Family/RA Family PMBus Master-Slave communication using I2C bus interface (RIIC/I3C)

R01AN7660EJ0100 Rev.1.00 Page 6 of 178

Jan.14.25

2. PMBus Outline

PMBus(Power Management Bus) is a general communication standard for power converters. It is based on
SMBus communication standard for protocols derived from I2C. PMBus is used in servers, data sensors,
and communication devices to monitor the power supply and set the power supply. PMBus is characterized
by its ability to communicate with several slaves by synchronous communication of two-wire type (two-wire
type of clock/data) based on SMBus, and is adopted mainly for industrial equipment. PMBus simplifies
power-system component-to-component communication, enabling component configuration, control, and
monitoring. Figure 2 shows a sample system configuration using PMBus.

In this application note, the RX family RX26T group is used as the PMBus Master, and the RX family
RX26T group or the RA family RA6T3 group is used as the PMBus Slave.

Figure 2 Structure of PMBus

RX Family/RA Family PMBus Master-Slave communication using I2C bus interface (RIIC/I3C)

R01AN7660EJ0100 Rev.1.00 Page 7 of 178

Jan.14.25

2.1 PMBus protocols

The protocol format of PMBus uses a SMBus compliant transaction protocol. The transaction protocol
consists of Send Byte, Write Byte, Write Word, Block Write, Receive Byte, Read Byte, Read Word, Block
Read. The transaction protocols are shown in Figure 3 to Figure 6. PMBus commands are classified into
standard command protocol, group command protocol, zone command protocol, extended command
protocol, and bus master protocol. Both are command protocols that consist of SMBus based transactions.
Of the five command protocols classified, the Group Command Protocol, the Zone Command Protocol, and
the Extended Command Protocol are protocols dedicated to PMBus that extend SMBus protocol. This
application note controls and monitors slave equipment using standard commands. For others, only protocol
process is implemented as a reference, so please confirm according to your purpose of use. Figure 7 shows
the standard command protocol format. Figure 8 shows the group command protocol, Figure 9 and Figure
10 shows the extended command protocol, and Figure 11 shows the zone command protocol.

⚫ Send Byte protocol

 7 1 1 8 1

S Address Wr A Data Byte A P

⚫ Write Byte protocol

 7 1 1 8 1 8 1

S Address Wr A Command Code A Data Byte A P

⚫ Write Word protocol

 7 1 1 8 1

S Address Wr A Command Code A …

 8 1 8 1

 Data Byte Low A Data Byte High A P

⚫ Block Write protocol

 7 1 1 8 1 8 1

S Address Wr A Command Code A Byte Count = N A …

 8 1 8 1 8 1

 Data Byte 1 A Data Byte 2 A … Data Byte N A P

Figure 3 Transactional of Write protocol

RX Family/RA Family PMBus Master-Slave communication using I2C bus interface (RIIC/I3C)

R01AN7660EJ0100 Rev.1.00 Page 8 of 178

Jan.14.25

⚫ Send Byte protocol with PEC

 7 1 1 8 1 8 1

S Address Wr A Data Byte A PEC Byte A P

⚫ Write Byte protocol with PEC

 7 1 1 8 1

S Address Wr A Command Code A …

 8 1 8 1

 Data Byte A PEC Byte A P

⚫ Write Word protocol with PEC

 7 1 1 8 1

S Address Wr A Command Code A …

 8 1 8 1 8 1

 Data Byte Low A Data Byte High A PEC Byte A P

⚫ Block Write protocol with PEC

 7 1 1 8 1 8 1

S Address Wr A Command Code A Byte Count = N A …

 8 1 8 1

 Data Byte 1 A Data Byte 2 A …

 8 1 8 1

 Data Byte N A PEC Byte N A P

Figure 4 Transactional of Write protocol with PEC

RX Family/RA Family PMBus Master-Slave communication using I2C bus interface (RIIC/I3C)

R01AN7660EJ0100 Rev.1.00 Page 9 of 178

Jan.14.25

⚫ Receive Byte protocol

 7 1 1 8 1

S Address Rd A Data Byte N P

⚫ Read Byte protocol

 7 1 1 8 1
S Address Wr A Command Code A …

 7 1 1 8 1

 Sr Address Rd A Data Byte N P

⚫ Read Word protocol

 7 1 1 8 1
S Address Wr A Command Code A …

 7 1 1 8 1 8 1

 Sr Address Rd A Data Byte Low A Data Byte High N P

⚫ Block Read protocol

 7 1 1 8 1
S Address Wr A Command Code A …

 7 1 1 8 1

 Sr Address Rd A Block Count = N A …

 8 1 8 1 8 1

 Data Byte 1 A Data Byte 2 A … Data Byte N N P

Figure 5 Transactional of Read protocol

RX Family/RA Family PMBus Master-Slave communication using I2C bus interface (RIIC/I3C)

R01AN7660EJ0100 Rev.1.00 Page 10 of 178

Jan.14.25

⚫ Receive Byte protocol with PEC

 7 1 1 8 1 8 1

S Address Rd A Data Byte A PEC Byte N P

⚫ Read Byte protocol with PEC

 7 1 1 8 1

S Address Wr A Command Code A …

 7 1 1 8 1 8 1

 Sr Address Rd A Data Byte A PEC Byte N P

⚫ Read Word protocol with PEC

 7 1 1 8 1
S Address Wr A Command Code A …

 7 1 1 8 1

 Sr Address Rd A Data Byte Low A …

 8 1 8 1

 Data Byte High A PEC Byte N P

⚫ Block Read protocol with PEC

 7 1 1 8 1
S Address Wr A Command Code A …

 7 1 1 8 1 8 1

 Sr Address Rd A Block Count = N A Data Byte 1 A …

 8 1 8 1 8 1

 Data Byte 2 A … Data Byte N A PEC Byte N P

Figure 6 Transactional of Read protocol with PEC

⚫ 7-bit address format

n(n=1～)

1 7 1 1 8 1 1 1

S
SLA(Slave
Address)

R/
W#

A
DATA(Command

Code & Data)
A A/

A#
P

n: Number of transfer data bytes

Figure 7 Standard Command Protocol

RX Family/RA Family PMBus Master-Slave communication using I2C bus interface (RIIC/I3C)

R01AN7660EJ0100 Rev.1.00 Page 11 of 178

Jan.14.25

⚫ Group command protocol

⚫ Group Command Protocol with PEC

Figure 8 Group Command Protocol

RX Family/RA Family PMBus Master-Slave communication using I2C bus interface (RIIC/I3C)

R01AN7660EJ0100 Rev.1.00 Page 12 of 178

Jan.14.25

⚫ Extended command Read Byte protocol

⚫ Extended command Write Byte protocol

⚫ Extended command Read Word protocol

⚫ Extended command Write Word protocol

Figure 9 Extended command protocol

RX Family/RA Family PMBus Master-Slave communication using I2C bus interface (RIIC/I3C)

R01AN7660EJ0100 Rev.1.00 Page 13 of 178

Jan.14.25

⚫ Extended command Read Byte protocol with PEC

⚫ Extended command Write Byte protocol with PEC

⚫ Extended command Read Word protocol with PEC

⚫ Extended command Write Word protocol with PEC

Figure 10 Extended command protocol with PEC

RX Family/RA Family PMBus Master-Slave communication using I2C bus interface (RIIC/I3C)

R01AN7660EJ0100 Rev.1.00 Page 14 of 178

Jan.14.25

⚫ Zone Read Command Protocol with Status Response Data

⚫ Zone Read Command Protocol with PMBus Command Code

⚫ Zone read command protocol with PEC and status response data

⚫ Zone Read Command Protocol with PEC, PMBus Command Code

⚫ 2-byte data, zone write command protocol with PMBus command code

Figure 11 Zone Command Protocol

RX Family/RA Family PMBus Master-Slave communication using I2C bus interface (RIIC/I3C)

R01AN7660EJ0100 Rev.1.00 Page 15 of 178

Jan.14.25

2.2 PMBus Command

PMBus has a predefined command to facilitate interconnection between devices. Commands are also
prepared for future extensions and user-defined commands for easy customization. Table 3 lists PMBus
commands and the transaction types associated with the commands.
This application note uses the command code 01h, 02h, 03h, 81h, 8Bh, 8Ch, 90h, 95h among the
commands shown in Table 3.

Table 3 PMBus Commands List

Command
Code

Command Name Transaction Type:
Writing Data

Transaction
Type: Reading
Data

Number
Of Data
Bytes

00h PAGE Write Byte Read Byte 1

01h OPERATION Write Byte Read Byte 1

02h ON_OFF_CONFIG Write Byte Read Byte 1

03h CLEAR_FAULTS Send Byte N/A 0

04h PHASE Write Byte Read Byte 1

05h PAGE_PLUS_WRITE Block Write N/A Variable

06h PAGE_PLUS_READ N/A Block Write –
Block Read
Process Call

Variable

07h ZONE_CONFIG Write Word Read Word 2

08h ZONE_ACTIVE Write Word Read Word 2

09h Reserved

0Ah Reserved

0Bh Reserved

0Ch Reserved

0Dh Reserved

0Eh Reserved

0Fh Reserved

10h WRITE_PROTECT Write Byte Read Byte 1

11h STORE_DEFAULT_ALL Send Byte N/A 0

12h RESTORE_DEFAULT_ALL Send Byte N/A 0

13h STORE_DEFAULT_CODE Write Byte N/A 1

14h RESTORE_DEFAULT_CODE Write Byte N/A 1

15h STORE_USER_ALL Send Byte N/A 0

16h RESTORE_USER_ALL Send Byte N/A 0

17h STORE_USER_CODE Write Byte N/A 1

18h RESTORE_USER_CODE Write Byte N/A 1

19h CAPABILITY N/A Read Byte 1

1Ah QUERY N/A Block Write- Block
Read Process Call

1

1Bh SMBALERT_MASK Write Word Block Write- Block
Read Process Call

2

: Commands Used in this Application Note

RX Family/RA Family PMBus Master-Slave communication using I2C bus interface (RIIC/I3C)

R01AN7660EJ0100 Rev.1.00 Page 16 of 178

Jan.14.25

1Ch Reserved

1Dh Reserved

1Eh Reserved

1Fh Reserved

20h VOUT_MODE Write Byte Read Byte 1

21h VOUT_COMMAND Write Word Read Word 2

22h VOUT_TRIM Write Word Read Word 2

23h VOUT_CAL_OFFSET Write Word Read Word 2

24h VOUT_MAX Write Word Read Word 2

25h VOUT_MARGIN_HIGH Write Word Read Word 2

26h VOUT_MARGIN_LOW Write Word Read Word 2

27h VOUT_TRANSITION_RATE Write Word Read Word 2

28h VOUT_DROOP Write Word Read Word 2

29h VOUT_SCALE_LOOP Write Word Read Word 2

2Ah VOUT_SCALE_MONITOR Write Word Read Word 2

2Bh VOUT_MIN Write Word Read Word 2

2Ch Reserved

2Dh Reserved

2Eh Reserved

2Fh Reserved

30h COEFFICIENTS N/A Block Write- Block
Read Process Call

5

31h POUT_MAX Write Word Read Word 2

32h MAX_DUTY Write Word Read Word 2

33h FREQUENCY_SWITCH Write Word Read Word 2

34h POWER_MODE Write Byte Read Byte 1

35h VIN_ON Write Word Read Word 2

36h VIN_OFF Write Word Read Word 2

37h INTERLEAVE Write Word Read Word 2

38h IOUT_CAL_GAIN Write Word Read Word 2

39h IOUT_CAL_OFFSET Write Word Read Word 2

3Ah FAN_CONFIG_1_2 Write Byte Read Byte 1

3Bh FAN_COMMAND_1 Write Word Read Word 2

3Ch FAN_COMMAND_2 Write Word Read Word 2

3Dh FAN_CONFIG_3_4 Write Byte Read Byte 1

3Eh FAN_COMMAND_3 Write Word Read Word 2

3Fh FAN_COMMAND_4 Write Word Read Word 2

40h VOUT_OV_FAULT_LIMIT Write Word Read Word 2

RX Family/RA Family PMBus Master-Slave communication using I2C bus interface (RIIC/I3C)

R01AN7660EJ0100 Rev.1.00 Page 17 of 178

Jan.14.25

41h VOUT_OV_FAULT_RESPONSE Write Byte Read Byte 1

42h VOUT_OV_WARN_LIMIT Write Word Read Word 2

43h VOUT_UV_WARN_LIMIT Write Word Read Word 2

44h VOUT_UV_FAULT_LIMIT Write Word Read Word 2

45h VOUT_UV_FAULT_RESPONSE Write Byte Read Byte 1

46h IOUT_OC_FAULT_LIMIT Write Word Read Word 2

47h IOUT_OC_FAULT_RESPONSE Write Byte Read Byte 1

48h IOUT_OC_LV_FAULT_LIMIT Write Word Read Word 2

49h IOUT_OC_LV_FAULT_RESPONSE Write Byte Read Byte 1

4Ah IOUT_OC_WARN_LIMIT Write Word Read Word 2

4Bh IOUT_UC_FAULT_LIMIT Write Word Read Word 2

4Ch IOUT_UC_FAULT_RESPONSE Write Byte Read Byte 1

4Dh Reserved

4Eh Reserved

4Fh OT_FAULT_LIMIT Write Word Read Word 2

50h OT_FAULT_RESPONSE Write Byte Read Byte 1

51h OT_WARN_LIMIT Write Word Read Word 2

52h UT_WARN_LIMIT Write Word Read Word 2

53h UT_FAULT_LIMIT Write Word Read Word 2

54h UT_FAULT_RESPONSE Write Byte Read Byte 1

55h VIN_OV_FAULT_LIMIT Write Word Read Word 2

56h VIN_OV_FAULT_RESPONSE Write Byte Read Byte 1

57h VIN_OV_WARN_LIMIT Write Word Read Word 2

58h VIN_UV_WARN_LIMIT Write Word Read Word 2

59h VIN_UV_FAULT_LIMIT Write Word Read Word 2

5Ah VIN_UV_FAULT_RESPONSE Write Byte Read Byte 1

5Bh IIN_OC_FAULT_LIMIT Write Word Read Word 2

5Ch IIN_OC_FAULT_RESPONSE Write Byte Read Byte 1

5Dh IIN_OC_WARN_LIMIT Write Word Read Word 2

5Eh POWER_GOOD_ON Write Word Read Word 2

5Fh POWER_GOOD_OFF Write Word Read Word 2

60h TON_DELAY Write Word Read Word 2

61h TON_RISE Write Word Read Word 2

62h TON_MAX_FAULT_LIMIT Write Word Read Word 2

63h TON_MAX_FAULT_RESPONSE Write Byte Read Byte 1

64h TOFF_DELAY Write Word Read Word 2

65h TOFF_FALL Write Word Read Word 2

RX Family/RA Family PMBus Master-Slave communication using I2C bus interface (RIIC/I3C)

R01AN7660EJ0100 Rev.1.00 Page 18 of 178

Jan.14.25

66h TOFF_MAX_WARN_LIMIT Write Word Read Word 2

67h Reserved (Was Used In Revision
1.0)

68h POUT_OP_FAULT_LIMIT Write Word Read Word 2

69h POUT_OP_FAULT_RESPONSE Write Byte Read Byte 1

6Ah POUT_OP_WARN_LIMIT Write Word Read Word 2

6Bh PIN_OP_WARN_LIMIT Write Word Read Word 2

6Ch Reserved

6Dh Reserved

6Eh Reserved

6Fh Reserved

70h Reserved (Test Input Fuse A)

71h Reserved (Test Input Fuse B)

72h Reserved (Test Input OR-ing A)

73h Reserved (Test Input OR-ing B)

74h Reserved (Test Output OR-ing)

75h Reserved

76h Reserved

77h Reserved

78h STATUS_BYTE Write Byte Read Byte 1

79h STATUS_WORD Write Word Read Word 2

7Ah STATUS_VOUT Write Byte Read Byte 1

7Bh STATUS_IOUT Write Byte Read Byte 1

7Ch STATUS_INPUT Write Byte Read Byte 1

7Dh STATUS_TEMPERATURE Write Byte Read Byte 1

7Eh STATUS_CML Write Byte Read Byte 1

7Fh STATUS_OTHER Write Byte Read Byte 1

80h STATUS_MFR_SPECIFIC Write Byte Read Byte 1

81h STATUS_FANS_1_2 Write Byte Read Byte 1

82h STATUS_FANS_3_4 Write Byte Read Byte 1

83h READ_KWH_IN N/A Read 32 4

84h READ_KWH_OUT N/A Read 32 4

85h READ_KWH_CONFIG Write Word Read Word 2

86h READ_EIN N/A Block Read 5

87h READ_EOUT N/A Block Read 5

88h READ_VIN N/A Read Word 2

89h READ_IIN N/A Read Word 2

8Ah READ_VCAP N/A Read Word 2

RX Family/RA Family PMBus Master-Slave communication using I2C bus interface (RIIC/I3C)

R01AN7660EJ0100 Rev.1.00 Page 19 of 178

Jan.14.25

8Bh READ_VOUT N/A Read Word 2

8Ch READ_IOUT N/A Read Word 2

8Dh READ_TEMPERATURE_1 N/A Read Word 2

8Eh READ_TEMPERATURE_2 N/A Read Word 2

8Fh READ_TEMPERATURE_3 N/A Read Word 2

90h READ_FAN_SPEED_1 N/A Read Word 2

91h READ_FAN_SPEED_2 N/A Read Word 2

92h READ_FAN_SPEED_3 N/A Read Word 2

93h READ_FAN_SPEED_4 N/A Read Word 2

94h READ_DUTY_CYCLE N/A Read Word 2

95h READ_FREQUENCY N/A Read Word 2

96h READ_POUT N/A Read Word 2

97h READ_PIN N/A Read Word 2

98h PMBUS_REVISION N/A Read Byte 1

99h MFR_ID Block Write Block Read Variable

9Ah MFR_MODEL Block Write Block Read Variable

9Bh MFR_REVISION Block Write Block Read Variable

9Ch MFR_LOCATION Block Write Block Read Variable

9Dh MFR_DATE Block Write Block Read Variable

9Eh MFR_SERIAL Block Write Block Read Variable

9Fh APP_PROFILE_SUPPORT N/A Block Read Variable

A0h MFR_VIN_MIN N/A Read Word 2

A1h MFR_VIN_MAX N/A Read Word 2

A2h MFR_IIN_MAX N/A Read Word 2

A3h MFR_PIN_MAX N/A Read Word 2

A4h MFR_VOUT_MIN N/A Read Word 2

A5h MFR_VOUT_MAX N/A Read Word 2

A6h MFR_IOUT_MAX N/A Read Word 2

A7h MFR_POUT_MAX N/A Read Word 2

A8h MFR_TAMBIENT_MAX N/A Read Word 2

A9h MFR_TAMBIENT_MIN N/A Read Word 2

AAh MFR_EFFICIENCY_LL N/A Block Read 14

ABh MFR_EFFICIENCY_HL N/A Block Read 14

ACh MFR_PIN_ACCURACY N/A Read Byte 1

ADh IC_DEVICE_ID N/A Block Read Variable

AEh IC_DEVICE_REV N/A Block Read Variable

AFh Reserved

RX Family/RA Family PMBus Master-Slave communication using I2C bus interface (RIIC/I3C)

R01AN7660EJ0100 Rev.1.00 Page 20 of 178

Jan.14.25

B0h USER_DATA_00 Block Write Block Read Variable

B1h USER_DATA_01 Block Write Block Read Variable

B2h USER_DATA_02 Block Write Block Read Variable

B3h USER_DATA_03 Block Write Block Read Variable

B4h USER_DATA_04 Block Write Block Read Variable

B5h USER_DATA_05 Block Write Block Read Variable

B6h USER_DATA_06 Block Write Block Read Variable

B7h USER_DATA_07 Block Write Block Read Variable

B8h USER_DATA_08 Block Write Block Read Variable

B9h USER_DATA_09 Block Write Block Read Variable

BAh USER_DATA_10 Block Write Block Read Variable

BBh USER_DATA_11 Block Write Block Read Variable

BCh USER_DATA_12 Block Write Block Read Variable

BDh USER_DATA_13 Block Write Block Read Variable

BEh USER_DATA_14 Block Write Block Read Variable

BFh USER_DATA_15 Block Write Block Read Variable

C0h MFR_MAX_TEMP_1 Write Word Read Word 2

C1h MFR_MAX_TEMP_2 Write Word Read Word 2

C2h MFR_MAX_TEMP_3 Write Word Read Word 2

C3h Reserved

C4h MFR_SPECIFIC_C4 Mfr. Defined Mfr. Defined Mfr.
Defined

C5h MFR_SPECIFIC_C5 Mfr. Defined Mfr. Defined Mfr.
Defined

C6h MFR_SPECIFIC_C6 Mfr. Defined Mfr. Defined Mfr.
Defined

C7h MFR_SPECIFIC_C7 Mfr. Defined Mfr. Defined Mfr.
Defined

C8h MFR_SPECIFIC_C8 Mfr. Defined Mfr. Defined Mfr.
Defined

C9h MFR_SPECIFIC_C9 Mfr. Defined Mfr. Defined Mfr.
Defined

CAh MFR_SPECIFIC_CA Mfr. Defined Mfr. Defined Mfr.
Defined

CBh MFR_SPECIFIC_CB Mfr. Defined Mfr. Defined Mfr.
Defined

CCh MFR_SPECIFIC_CC Mfr. Defined Mfr. Defined Mfr.
Defined

CDh MFR_SPECIFIC_CD Mfr. Defined Mfr. Defined Mfr.
Defined

CEh MFR_SPECIFIC_CE Mfr. Defined Mfr. Defined Mfr.
Defined

CFh MFR_SPECIFIC_CF Mfr. Defined Mfr. Defined Mfr.
Defined

D0h MFR_SPECIFIC_D0 Mfr. Defined Mfr. Defined Mfr.
Defined

D1h MFR_SPECIFIC_D1 Mfr. Defined Mfr. Defined Mfr.
Defined

RX Family/RA Family PMBus Master-Slave communication using I2C bus interface (RIIC/I3C)

R01AN7660EJ0100 Rev.1.00 Page 21 of 178

Jan.14.25

D2h MFR_SPECIFIC_D2 Mfr. Defined Mfr. Defined Mfr.
Defined

D3h MFR_SPECIFIC_D3 Mfr. Defined Mfr. Defined Mfr.
Defined

D4h MFR_SPECIFIC_D4 Mfr. Defined Mfr. Defined Mfr.
Defined

D5h MFR_SPECIFIC_D5 Mfr. Defined Mfr. Defined Mfr.
Defined

D6h MFR_SPECIFIC_D6 Mfr. Defined Mfr. Defined Mfr.
Defined

D7h MFR_SPECIFIC_D7 Mfr. Defined Mfr. Defined Mfr.
Defined

D8h MFR_SPECIFIC_D8 Mfr. Defined Mfr. Defined Mfr.
Defined

D9h MFR_SPECIFIC_D9 Mfr. Defined Mfr. Defined Mfr.
Defined

DAh MFR_SPECIFIC_DA Mfr. Defined Mfr. Defined Mfr.
Defined

DBh MFR_SPECIFIC_DB Mfr. Defined Mfr. Defined Mfr.
Defined

DCh MFR_SPECIFIC_DC Mfr. Defined Mfr. Defined Mfr.
Defined

DDh MFR_SPECIFIC_DD Mfr. Defined Mfr. Defined Mfr.
Defined

DEh MFR_SPECIFIC_DE Mfr. Defined Mfr. Defined Mfr.
Defined

DFh MFR_SPECIFIC_DF Mfr. Defined Mfr. Defined Mfr.
Defined

E0h MFR_SPECIFIC_E0 Mfr. Defined Mfr. Defined Mfr.
Defined

E1h MFR_SPECIFIC_E1 Mfr. Defined Mfr. Defined Mfr.
Defined

E2h MFR_SPECIFIC_E2 Mfr. Defined Mfr. Defined Mfr.
Defined

E3h MFR_SPECIFIC_E3 Mfr. Defined Mfr. Defined Mfr.
Defined

E4h MFR_SPECIFIC_E4 Mfr. Defined Mfr. Defined Mfr.
Defined

E5h MFR_SPECIFIC_E5 Mfr. Defined Mfr. Defined Mfr.
Defined

E6h MFR_SPECIFIC_E6 Mfr. Defined Mfr. Defined Mfr.
Defined

E7h MFR_SPECIFIC_E7 Mfr. Defined Mfr. Defined Mfr.
Defined

E8h MFR_SPECIFIC_E8 Mfr. Defined Mfr. Defined Mfr.
Defined

E9h MFR_SPECIFIC_E9 Mfr. Defined Mfr. Defined Mfr.
Defined

EAh MFR_SPECIFIC_EA Mfr. Defined Mfr. Defined Mfr.
Defined

EBh MFR_SPECIFIC_EB Mfr. Defined Mfr. Defined Mfr.
Defined

ECh MFR_SPECIFIC_EC Mfr. Defined Mfr. Defined Mfr.
Defined

EDh MFR_SPECIFIC_ED Mfr. Defined Mfr. Defined Mfr.
Defined

EEh MFR_SPECIFIC_EE Mfr. Defined Mfr. Defined Mfr.
Defined

EFh MFR_SPECIFIC_EF Mfr. Defined Mfr. Defined Mfr.
Defined

RX Family/RA Family PMBus Master-Slave communication using I2C bus interface (RIIC/I3C)

R01AN7660EJ0100 Rev.1.00 Page 22 of 178

Jan.14.25

F0h MFR_SPECIFIC_F0 Mfr. Defined Mfr. Defined Mfr.
Defined

F1h MFR_SPECIFIC_F1 Mfr. Defined Mfr. Defined Mfr.
Defined

F2h MFR_SPECIFIC_F2 Mfr. Defined Mfr. Defined Mfr.
Defined

F3h MFR_SPECIFIC_F3 Mfr. Defined Mfr. Defined Mfr.
Defined

F4h MFR_SPECIFIC_F4 Mfr. Defined Mfr. Defined Mfr.
Defined

F5h MFR_SPECIFIC_F5 Mfr. Defined Mfr. Defined Mfr.
Defined

F6h MFR_SPECIFIC_F6 Mfr. Defined Mfr. Defined Mfr.
Defined

F7h MFR_SPECIFIC_F7 Mfr. Defined Mfr. Defined Mfr.
Defined

F8h MFR_SPECIFIC_F8 Mfr. Defined Mfr. Defined Mfr.
Defined

F9h MFR_SPECIFIC_F9 Mfr. Defined Mfr. Defined Mfr.
Defined

FAh MFR_SPECIFIC_FA Mfr. Defined Mfr. Defined Mfr.
Defined

FBh MFR_SPECIFIC_FB Mfr. Defined Mfr. Defined Mfr.
Defined

FCh MFR_SPECIFIC_FC Mfr. Defined Mfr. Defined Mfr.
Defined

FDh MFR_SPECIFIC_FD Mfr. Defined Mfr. Defined Mfr.
Defined

FEh MFR_SPECIFIC_COMMAND EXT Extended Command Extended
Command

Mfr
Defined

FFh PMBUS_COMMAND_EXT Extended Command Extended
Command

Mfr
Defined

RX Family/RA Family PMBus Master-Slave communication using I2C bus interface (RIIC/I3C)

R01AN7660EJ0100 Rev.1.00 Page 23 of 178

Jan.14.25

3. Hardware Description

The boards and parts used in this application note are shown in Table 4.

Table 4 Boards Used and Parts List

No. Board and

Part Name

Model Master/

Slave

Remarks

1 CPU Board RTK0EMXE70C00000BJ Master &

Slave

Renesas CPU evaluation board with

R5F526TFCDFP included in MCK-

RX26T(RTK0EMXE70S00020BJ)

RTK0EMA330C00000BJ Slave Renesas CPU evaluation board with

R7FA6T3BB3CFM included in MCK-

RA6T3(RTK0EMA330S00020BJ)

2 Inverter Board RTK0EM0000B12020BJ Slave Renesas Motor drive evaluation inverter

board Included in MCK-

RX26T(RTK0EMXE70S00020BJ),

OR

MCK-RA6T3(RTK0EMA330S00020BJ)

3 USB-UART

Conversion

board

Pmod-USBUART Master DIGILENT's USB-UART converter that

connects USB of PC to SCI of MCU

4 Motor R42BLD30L3 Slave Renesas MOONS'-made brushless DC

motor (rated 36V,1.67A) included in

MCK-RX26T(RTK0EMXE70S00020BJ),

OR

MCK-RA6T3(RTK0EMA330S00020BJ)

3.1 Hardware configuration

Figure 12 shows the hardware configuration used in this application note. Figure 13 to Figure 16 show the
external views and schematic specifications of each board. The board information is written in abbreviated
form. For details such as the latest specifications, refer to the user's manuals to various boards in the
reference material of summary.

Figure 12 Hardware configuration diagram

RX Family/RA Family PMBus Master-Slave communication using I2C bus interface (RIIC/I3C)

R01AN7660EJ0100 Rev.1.00 Page 24 of 178

Jan.14.25

Figure 13 RX26T CPU Board used in PMBus Master

RX Family/RA Family PMBus Master-Slave communication using I2C bus interface (RIIC/I3C)

R01AN7660EJ0100 Rev.1.00 Page 25 of 178

Jan.14.25

Figure 14 Flexible Motor Control Kit for RX26T Groups used in PMBus Slave

Figure 15 Flexible Motor Control Kit for RA6T3 Groups used in PMBus Slave

RX Family/RA Family PMBus Master-Slave communication using I2C bus interface (RIIC/I3C)

R01AN7660EJ0100 Rev.1.00 Page 26 of 178

Jan.14.25

Figure 16 DIGILENT’s Pmod USBUART

RX Family/RA Family PMBus Master-Slave communication using I2C bus interface (RIIC/I3C)

R01AN7660EJ0100 Rev.1.00 Page 27 of 178

Jan.14.25

3.2 Hardware Setup

Connect RX26T CPU Board of PMBus Master and PC, and RX26T CPU Board of PMBus Master and
RX26T CPU Board or RA6T3 CPU Board of PMBus Slave as shown in Figure 12 Hardware Configuration
Diagram. Figure 17 shows the board terminal connections. For details on how to handle the flexible motor
control kit, such as connection with motor, refer to the user's manual to the flexible motor control kit
described in the reference material of summary.

① Connecting PC to PMBus Master's RX26T CPU Board

Signal
Name

Pmod
USBUART

RX26T CPU board

TXD 3pin CN12-2pin

RXD 2pin CN12-3pin

VCC 6pin CN12-6pin

GND 5pin CN12-5pin

② Connecting PMBus Master's RX26T to PMBus Slave's RX26T or RA6T3

【Note】Set the JP of RA6T3 to be PMOD (Type 6a).

Figure 17 Device Connection diagram

RX Family/RA Family PMBus Master-Slave communication using I2C bus interface (RIIC/I3C)

R01AN7660EJ0100 Rev.1.00 Page 28 of 178

Jan.14.25

3.3 Configuration of MCU Function

The configuration for connecting MCU function is shown in Figure 18.

Figure 18 MCU Function Connection Configuration Diagram

RX Family/RA Family PMBus Master-Slave communication using I2C bus interface (RIIC/I3C)

R01AN7660EJ0100 Rev.1.00 Page 29 of 178

Jan.14.25

3.4 MCU peripheral function

Table 5 lists shows the peripheral functions of RX26T group of PMBus Master, RX26T group of PMBus
Slave, and RA6T3 group of PMBus Slave used in this system.

Table 5 Peripheral Functions List

Device Peripheral
functions

Usage

RX26T group

(PMBus Master)

RSCI11 Use for communication with PC Terminal Soft.

RIIC0 Use as the master for PMBus communication.

TMR Use unit0 for PMBus communication time-out monitoring.

RX26T group

(PMBus Slave)

RIIC0 Use as a slave for PMBus communication.

TMR Use unit0 for PMBus communication time-out monitoring.

S12AD Use for the following functions:

 Inverter bus voltage measurement

 Rotation speed command value input (analog value)

 U-phase current measurement

 W-phase current measurement

MTU3 Use ch3,4 for the following functions:

 U-phase PWM output (Up / Un)

 V-phase PWM output (Vp / Vn)

 W-phase PWM output (Wp / Wn)

POE3 Use for PWM emergency-stop when overcurrent is detected.

CMT Speed control interval timer

IWDT Independent Watchdog Timer

RA6T3 group

(PMBus Slave)

I3C Use as slave for PMBus communication.

GPT Use ch5 for PMBus communication time-out monitoring.

ADC12 Use for the following functions:

 Inverter bus voltage measurement

 Rotation speed command value input (analog value)

 U-phase current measurement

 V-phase current measurement

 W-phase current measurement

GPT Use ch1,2,3 for the following functions:

 U-phase PWM output (Up / Un)

 V-phase PWM output (Vp / Vn)

 W-phase PWM output (Wp / Wn)

POEG Use for PWM emergency-stop when overcurrent is detected.

AGTW Speed control interval timer

RX Family/RA Family PMBus Master-Slave communication using I2C bus interface (RIIC/I3C)

R01AN7660EJ0100 Rev.1.00 Page 30 of 178

Jan.14.25

3.5 Port interface

Table 6 lists port interfaces of RX26T group of PMBus Master, RX26T group and RA6T3 group of PMBus
Slave.

Table 6 PMBus Master RX26T, PMBus Slave RX26T, RA6T3 port interfaces

Device Peripheral
functions

Port name Usage

RX26T group

(PMBus Master)

RSCI11 PB5_TXD11 Use for communication with PC

Terminal Soft. PB6_RXD11

RIIC0 PB1_SCL Use as the master for PMBus

communication. PB2_SDA

GPIO P21 LED1 control

P20 LED2 control

P65 LED3 control

P64 LED4 control

RX26T group

(PMBus Slave)

RIIC0 PB1_SCL Use as slave for PMBus

communication. PB2_SDA

S12AD P43/ANI003 Inverter bus voltage measurement

P50/ANI204 Rotation speed command value input

(VR In, analog value)

P40/ANI000 U-phase current measurement

P42/ANI002 W-phase current measurement

MTU3 P73/MTIOC4B PWM output (Up) / "High" active

P72/MTIOC4A PWM output (Vp) / "High" active

P71/MTIOC3B PWM output (Wp) / "High" active

P76/MTIOC4D PWM output (Un) / "High" active

P75/MTIOC4C PWM output (Vn) / "High" active

P74/MTIOC3D PWM output (Wn) / "High" active

POE3 P70/POE0# Use for PWM emergency-stop when

overcurrent detected.

GPIO P23 START/STOP toggle switch

P22 ERROR RESET push-switch

P21 LED1 control

P20 LED2 control

RA6T3 group

(PMBus Slave)

I3C P205_SCL0 Use as slave for PMBus

communication. P206_SDA0_C

ADC12 P000/ANI000 U-phase current measurement

P001/ANI001 V-phase current measurement

P002/ANI002 W-phase current measurement

P004/ANI004 Inverter bus voltage measurement

P005/ANI005 Rotation speed command value input

(VR In, analog value)

GPT P409/GTIOC1A PWM output (Up) / "High" active

P103/GTIOC2A PWM output (Vp) / "High" active

P111/GTIOC3A PWM output (Wp) / "High" active

P408/GTIOC1B PWM output (Un) / "High" active

P102/GTIOC2B PWM output (Vn) / "High" active

P112/GTIOC3B PWM output (Wn) / "High" active

POEG P104/GTERGB Use for PWM emergency-stop when

overcurrent detection

RX Family/RA Family PMBus Master-Slave communication using I2C bus interface (RIIC/I3C)

R01AN7660EJ0100 Rev.1.00 Page 31 of 178

Jan.14.25

GPIO P302 START/STOP toggle switch

P200 ERROR RESET push-switch

P113 LED1 control

P106 LED2 control

4. Operation procedure

As shown in Section 1, the system in this application note uses PC terminal software to issue PMBus
commands to control the motor. Operates motor module samplewith the setting to operate in Board UI. After
connecting the board and turning on the power as shown in Section 3, follow the procedure below.

1. Turn ON SW1 (toggle SW) of the inverter board.

2. Rotate VR1 on the inverter-board in CW or CCW orientation.

3. Use the terminal software to enter PMBus commands in the order shown in Figure 19.

Table 7 lists the command specifications supported by the demo system.

When starting motor rotation, start rotation by sending the setting shown in Table 7 with ON_OFF_CONFIG
command and OPERATION command of PMBUS under the condition of the above-mentioned steps 1 and
2. When stopping the rotation of the motor, issue a Pmbus command with ON_OFF_CONFIG and
Operation, turn off SW1 (Togur SW), or set VR1 to the center (the lowest motor rotation). When the motor is
to be rotated again, SW1 (toggle SW) must be rotated to ON position and VR1 must be rotated to a position
other than the center position, and then OPERATION command-based rotational start-request must be
received again.

RX Family/RA Family PMBus Master-Slave communication using I2C bus interface (RIIC/I3C)

R01AN7660EJ0100 Rev.1.00 Page 32 of 178

Jan.14.25

⚫ PC Terminal Software Settings for Write,Write/Read Commands

⚫ PC Terminal Software Settings for Read Commands

*1: Byte: 1 line, word:2 lines, BLOCK: n lines. Some commands display the value in decimal.

Refer Table 7 for details.

*2: "R" means Read, and "W" means Write specification.

*: Enter 8bit in HEX notation, for example "0xAB".

*: In this application, the slave address is fixed to 0x0A.

Figure 19 PC terminal software to Issue PMBus Command

Ex: For OPERATION command (WRITE)
0x0A
W
0x01
0x80

Return code:0x00
Packet result:0x00

Ex: For OPERATION command (READ)
0x0A

R

0x01

>>PMBUS_RESPONSE_START

0x08

Return code:0x00
Packet result:0x00

RX Family/RA Family PMBus Master-Slave communication using I2C bus interface (RIIC/I3C)

R01AN7660EJ0100 Rev.1.00 Page 33 of 178

Jan.14.25

Table 7 Commands used in this demonstration system

Command name

(Command code)

TRANSACTION
CODE

Functional Description

OPERATION

(0x01)

WRITE_BYTE Only when bit3 is set to "1" in ON_OFF_CONFIG, the

following operation is executed according to bit7.

Bit7 = 1: Start rotating the motor.

Bit7 = 0: Stop rotating the motor

READ_BYTE Return the value set in WRITE_BYTE.

ON_OFF_CONFIG

(0x02)

WRITE_BYTE Used in conjunction with OPERATION command.

This demonstration system uses only bit3. For more

information, refer to the explanation of OPERATION

command-related functions.

READ_BYTE Return the value set in WRAITE_BYTE.

CLEAR_FAULTS

(0x03)

SEND_BYTE Clear the error information of the motor. (For RX26T, the

motor operation is also reset.)

STATUS_FANS_1_2

(0x81)

WRITE_BYTE Clear the status corresponding to the bit set to “1” in the

FAN status.

READ_BYTE Return FAN status.

READ_VOUT

(0x8b)

READ_WORD Return the measured output voltage (V). In PC terminal

software, it is displayed as and integer decimal number.

READ_IOUT

(0x8c)

READ_WORD Return the measured output current (mA). In PC terminal

software, it is displayed as a signed integer decimal number.

READ_FAN_SPEED_1

(0x90)

READ_WORD Return FAN velocity (rad/s). In PC terminal software, it is

displayed as a signed integer decimal number.

READ_FREQENCY

(0x95)

READ_WORD Return the main power converter switching frequency (μ

sec). In PC terminal software, it is displayed as and integer

decimal number.

RX Family/RA Family PMBus Master-Slave communication using I2C bus interface (RIIC/I3C)

R01AN7660EJ0100 Rev.1.00 Page 34 of 178

Jan.14.25

5. Software Description

The software process of this application note is divided into driver sections that control MCU peripheral
functions, PMBus middleware sections that control PMBus, and user applications that operate PMBus
middleware. In addition, SCI drivers connected to PC on PMBus Master and the motor control middleware
for controlling the motor on PMBus Slave are operated by the user application. Figure 20 shows the module
configuration of PMBus Master software, and Figure 21 and Figure 22 show the module configuration of
PMBus Slave software. For details on PMBus Master state transitions and function operations, see Section
5.1. For details on PMBus Slave state transitions and function operations, see Section 5.2.

Figure 20 PMBus Master Software Module Configuration (RX26T Group)

RX Family/RA Family PMBus Master-Slave communication using I2C bus interface (RIIC/I3C)

R01AN7660EJ0100 Rev.1.00 Page 35 of 178

Jan.14.25

Table 8 List of Global Variables Used on PMBus master Software Interfaces

IF No indicates the number of the interfaces in Figure 20 PMBus Master Software Module Configuration (RX26T Groups).

IF No R_PMBUS_Master_Open R_PMBUS_Master_Write R_PMBUS_Master_Read

① - s_u1_uart_rx_relay_buf,

s_u1_uart_tx_buf

s_u1_uart_rx_relay_buf,

s_u1_uart_tx_buf

② - s_u1_uart_rx_relay_buf s_u1_uart_rx_relay_buf

③ s_e_packet_result,

s_u1_pmbus_ret,

s_user_pmbus_cfg

s_u1_uart_rx_buf,

s_u1_uart_tx_buf,

s_u2_uart_rx_index,

s_u2_rx_r_index,

s_u2_rx_w_index,

s_e_main_status,

s_u2_seq_index,

s_st_pmbus_data,

s_e_packet_result,

s_u1_pmbus_ret

s_u1_uart_rx_buf,

s_u1_uart_tx_buf,

s_u2_uart_rx_index,

s_u2_rx_r_index,

s_u2_rx_w_index,

s_e_main_status,

s_u2_seq_index,

s_u2_rx_size,

s_u1_pmbus_temp_rx_buf,

s_e_packet_result,

s_u1_pmbus_ret

④ s_user_pmbus_cfg,

s_u1_pmbus_tx_buf,

s_u1_pmbus_rx_buf,

s_e_packet_result

s_st_pmbus_data,

s_e_packet_result

s_st_pmbus_data,

s_u1_pmbus_temp_rx_buf

s_u2_rx_size,

s_e_packet_result

⑤ g_st_pmbus_ctrl g_st_pmbus_ctrl,

s_st_pmbus_data

g_st_pmbus_ctrl

⑥ - g_st_pmbus_ctrl g_st_pmbus_ctrl

⑦ - g_st_pmbus_ctrl g_st_pmbus_ctrl

⑧ - g_st_pmbus_ctrl g_st_pmbus_ctrl

⑨ - s_e_packet_result s_u1_pmbus_temp_rx_buf

s_u2_rx_size,

s_e_packet_result

【NOTE】Only PMBUS Master API supported by this application are listed in this table.

For more information on global-variables, see 5.1.6 PMBus Master global variables List.

RX Family/RA Family PMBus Master-Slave communication using I2C bus interface (RIIC/I3C)

R01AN7660EJ0100 Rev.1.00 Page 36 of 178

Jan.14.25

Figure 21 PMBus Slave Software Module Configuration (RX26T Group)

RX Family/RA Family PMBus Master-Slave communication using I2C bus interface (RIIC/I3C)

R01AN7660EJ0100 Rev.1.00 Page 37 of 178

Jan.14.25

Table 9 List of Global Variables Used on PMBus slave Software Interfaces for RX26T Group

IF No indicates the number of the interfaces in Figure 21 PMBus Slave Software Module Configuration (RX26T Groups).
IF No R_PMBUS_Slave_Open Write Byte protocol Read Byte Protocol

① s_st_pmbus_cfg s_u1_pmbus_rx_buf s_u1_pmbus_rx_buf,

s_u1_pmbus_tx_buf

② s_st_pmbus_cfg,

s_u1_pmbus_tx_buf,

s_u1_pmbus_rx_buf

- -

③ g_st_pmbus_ctrl,

g_riic0_user_slave_addr

g_st_pmbus_ctrl g_st_pmbus_ctrl

④ g_riic0_user_slave_addr g_st_pmbus_ctrl g_st_pmbus_ctrl

⑤ g_st_pmbus_ctrl g_st_pmbus_ctrl,

s_u1_pmbus_rx_buf

g_st_pmbus_ctrl,

s_u1_pmbus_rx_buf

⑥ g_st_pmbus_ctrl g_st_pmbus_ctrl,

s_u1_pmbus_rx_buf

g_st_pmbus_ctrl,

s_u1_pmbus_rx_buf

⑦ g_st_pmbus_ctrl g_st_pmbus_ctrl,

s_u1_pmbus_rx_buf

g_st_pmbus_ctrl,

s_u1_pmbus_rx_buf,

s_u1_pmbus_tx_buf

⑧ - s_u1_pmbus_config_data,

s_u1_pmbus_operation_data

*1

s_u1_pmbus_config_data,

s_u1_pmbus_operation_data

*1

【NOTE】 Since the timing at which slave operation is started is an interrupt notification from Driver Layer,

this table lists the global-variables to be used when operating under typical protocols and during
Open API.
For more information on global-variables, see 5.2.6 PMBus Slave Global variables List.

*1. This global-variable is used only when OPERATION command is received or when ON_OFF_CONFIG
command is received.

RX Family/RA Family PMBus Master-Slave communication using I2C bus interface (RIIC/I3C)

R01AN7660EJ0100 Rev.1.00 Page 38 of 178

Jan.14.25

Figure 22 PMBus Slave Software Module Configuration (RA6T3 Group)

RX Family/RA Family PMBus Master-Slave communication using I2C bus interface (RIIC/I3C)

R01AN7660EJ0100 Rev.1.00 Page 39 of 178

Jan.14.25

Table 10 List of Global Variables Used on PMBus slave Software Interfaces for RA6T3 Group

IF No indicates the number of the interfaces in

Figure 22 PMBus Slave Software Module Configuration (RA6T3 Groups).
IF

No

R_PMBUS_Slave_Open Write Byte protocol Read Byte Protocol

① s_st_pmbus_cfg s_u1_pmbus_rx_buf s_u1_pmbus_rx_buf,

s_u1_pmbus_tx_buf

② s_st_pmbus_cfg,

s_u1_pmbus_tx_buf,

s_u1_pmbus_rx_buf

- -

③ g_st_pmbus_ctrl g_st_pmbus_ctrl

g_st_pmbus_ctrl

④ s_st_gpt_ctrl,

s_st_smbus_ctrl,

s_st_smbus_slave_cfg,

g_smbus_slave0

g_st_pmbus_ctrl,

st_smbus_ctrl

g_st_pmbus_ctrl,

st_smbus_ctrl

⑤ g_st_pmbus_ctrl g_st_pmbus_ctrl,

s_u1_pmbus_rx_buf

g_st_pmbus_ctrl,

s_u1_pmbus_rx_buf

⑥ g_st_pmbus_ctrl g_st_pmbus_ctrl,

s_u1_pmbus_rx_buf

g_st_pmbus_ctrl,

s_u1_pmbus_rx_buf

⑦ g_st_pmbus_ctrl g_st_pmbus_ctrl,

s_u1_pmbus_rx_buf

g_st_pmbus_ctrl,

s_u1_pmbus_rx_buf,

s_u1_pmbus_tx_buf

⑧ - s_u1_pmbus_config_data,

s_u1_pmbus_operation_data*1

s_u1_pmbus_config_data,

s_u1_pmbus_operation_data*1

【NOTE】 Since the timing at which slave operation is started is an interrupt notification from Driver Layer, this

table lists the global-variables to be used when operating under typical protocols and during Open
API.
For more information on global-variables, see 5.2.6 PMBus Slave Global variables List.

*1. This global-variable is used only when OPERATION command is received or when ON_OFF_CONFIG
command is received.

RX Family/RA Family PMBus Master-Slave communication using I2C bus interface (RIIC/I3C)

R01AN7660EJ0100 Rev.1.00 Page 40 of 178

Jan.14.25

5.1 PMBus Master softwares

PMBus Master software is classified into the user application part, middleware part, and driver part as shown
in Figure 20 PMBus Master software module configuration. The driver section is modified or added to
Execute some PMBus Master operations using the software generated by the smart configurator. Please
refer to Section 5.1.4 for details of changes and additions. Table 11 shows the folder and file structure of
each software.

Table 11 PMBus Master RX26T Group Folder/File Configuration

Folder name File name Outline

app\ r_pmbus_demo_master.c The main program of PMBus demonstration
system. (User Applications)

r_pmbus_demo_master.h The header file to use for the main program
of PMBus demonstration system.

pmbus_master\

r_pmbus_app_master.c The application-layer of PMBus
Middleware.

r_pmbus_app_master.h The header file to use for the application-
layer of PMBus Middleware.

r_pmbus_nwk_master.c The network-layer of PMBus Middleware.

r_pmbus_nwk_master.h The header file to use for the network-layer
of PMBus Middleware.

src\smc_gen\Config_RIIC0\

Config_RIIC0.c The driver-layer of PMBus Middleware.
Generate by the smart configurator.

Config_RIIC0.h The driver-layer of PMBus Middleware.
Generate by the smart configurator.

Config_RIIC0_user.c The driver-layer of PMBus Middleware.
Generate by the smart configurator.

src\smc_gen\Config_RSCI11\

Config_RSCI11.c The driver-layer of PMBus user application.
Generate by the smart configurator.

Config_RSCI11.h The driver-layer of PMBus user application.
Generate by the smart configurator.

Config_RSCI11_user.c The driver-layer of PMBus user application.
Generate by the smart configurator.

src\smc_gen\Config_TMR0\

Config_TMR0.c The driver-layer of PMBus Middleware.
Generate by the smart configurator.

Config_TMR0.h The driver-layer of PMBus Middleware.
Generate by the smart configurator.

Config_TMR0_user.c The driver-layer of PMBus Middleware.
Generate by the smart configurator.

5.1.1 PMBus Master Operation Sequence

Figure 23 shows the sequence of operations from the issuance of PMBus command to the completion of the
operation. Figure 24 and Figure 25 shows Write operation sequence, and Figure 26 and Figure 27 show
Read operation sequence and Write/Read operation sequence according to PMBus command. For the
functions used in each operation, refer to PMBus Master Function List in Section 5.1.3.

[Sequence diagram arrow legend]

Function Call (Own task) :

Function Call (Other task) :
Function Return :
Asynchronous Notification :

RX Family/RA Family PMBus Master-Slave communication using I2C bus interface (RIIC/I3C)

R01AN7660EJ0100 Rev.1.00 Page 41 of 178

Jan.14.25

Figure 23 PMBus Master operation Sequence diagram

main task PMBus
Middleware

UART Receive
Interrupt

UART Send
Interrupt

Initialize System

Receive interrupt

analyze receive data

until:recieve CR code

update status (REV_BUSY)

wait updated status to REV_COMP

alt:sutatus is REV_BUSY

alt:sutatus is REV_COMP (All Receive Data is OK)

update status (REV_COMP)

call R_PMBUS_Master_XXX

wait reply from slave

Start UART reception

update status (PMBUS_ACTIVE)

Restart UART

update status (RESPONSE_BUSY)

Start UART transmission

wait updated status to RESPONSE_COMP
Transmit interrupt

until:all data transmission is complete

update status (RESPONSE_COMP)
all data transmissino is complete

RX Family/RA Family PMBus Master-Slave communication using I2C bus interface (RIIC/I3C)

R01AN7660EJ0100 Rev.1.00 Page 42 of 178

Jan.14.25

Figure 24 Write Operation (R_PMBUS_Master_Write) Sequence Diagram (1/2)

Set write buffer data to ICDRT

main process
PMBus

Middleware
RIIC RXI

interrupt
RIIC TXI

interrupt

call R_PMBUS_Master_Open

alt:TX

RIIC TEI
interrupt

RIIC EEI
interrupt

call R_PMBUS_Master_Write

update status (TX or TX_BLOCK or QUICK)

copy slave_addr and command to tx_buffer

alt:PEC enabled

calcurate PEC data from write data and it result to tx_buffer

alt:TX_BLOCK
copy slave_addr, command and write data size to tx_buffer

call R_Config_Master_Send

call R_Config_RIIC0_Master_Start

alt:QUICK

call R_Config_Master_Send_Without_Stop

alt:other than QUICK

Check Status

loop:status is not IDLE

Transmit empty interrupt

loop:write data count < write size

call R_Config_TMR0_Start

Continued on next page

NOTE : status is expressed by omitting the element defined in the e_pmbus_nwk_status_m_t.
The status at the beginning of API for each protocol is as follows:
Send Byte, Write Byte, Write Word : TX, Block Write : TX_BLOCK, Quick Command: QUICK

RX Family/RA Family PMBus Master-Slave communication using I2C bus interface (RIIC/I3C)

R01AN7660EJ0100 Rev.1.00 Page 43 of 178

Jan.14.25

Figure 25 Write Operation (R_PMBUS_Master_Write) Sequence Diagram (2/2)

Transmit end

call R_Config_ICCR0_ICC_StopCondition

Stop condition detect interrupt

Update status (IDLE)

call R_PMBUS_Master_Close

call R_Config_RIIC0_Master_Stop

alt : other than QUICK

call R_Config_TMR0_Stop

call error callback

Update status (ENDING)

call transmit end callback

alt:status is IDLE

When the status changes to
IDLE, the waiting state ends.

main process
PMBus

Middleware
RIIC RXI

interrupt
RIIC TXI

interrupt
RIIC TEI
interrupt

RIIC EEI
interrupt

RX Family/RA Family PMBus Master-Slave communication using I2C bus interface (RIIC/I3C)

R01AN7660EJ0100 Rev.1.00 Page 44 of 178

Jan.14.25

Figure 26 Read operation (R_PMBUS_Master_Read) and Write/Read operation

(R_PMBUS_Master_WriteRead) Sequence Diagram (1/2)

Set write buffer data to ICDRT

main process
PMBus

Middleware
RIIC RXI

interrupt
RIIC TXI

interrupt

call R_PMBUS_Master_Open

RIIC TEI
interrupt

RIIC EEI
interrupt

call R_PMBUS_Master_Read

update status (TX or TX_BLOCK or RX)

copy slave_addr and command to local tx_buffer

alt:PEC enabled

calcurate PEC data from write data and it result to tx_buffer

alt:TX_BLOCK

call R_Config_RIIC0_Master_Start

call R_Config_Master_Send_Without_Stop

Check Status

Transmit empty interrupt

loop:write data count < write size

Transmit end interrupt

Update status (RX or RX BLOCK)

alt:other than RX

alt : other than RX

call R_Config_RIIC0_Master_Receive
(with reqest restart condition)

call R_Config_TMR0_Start

call transmit end callback

loop:status is not IDLE

copy slave_addr, command and write data size to tx_buffer

Continued on next page

alt:TX and TX_BLOCK

NOTE : status is expressed by omitting the element defined in the e_pmbus_nwk_status_m_t.

The status at the beginning of API for each protocol is as follows:

Read Byte, Read Word : TX, Block Read : TX_BLOCK, Receive Byte : RX

R_PMBUS_Master_WriteRead handling (Prosecc Call and Block Write-Block Read Process Call) is equivalent to Block Read.

RX Family/RA Family PMBus Master-Slave communication using I2C bus interface (RIIC/I3C)

R01AN7660EJ0100 Rev.1.00 Page 45 of 178

Jan.14.25

Figure 27 Read operation (R_PMBUS_Master_Read) and Write/Read operation
(R_PMBUS_Master_WriteRead) Sequence Diagram (2/2)

loop:recieve data count < receive size

Stop condition detect interrupt

Update status (IDLE)

call R_PMBUS_Master_Close

call R_Config_RIIC0_Master_Stop

Recieve buffer empty interrupt

read ICDRR to rx buffer

alt : RX_BLOCK and recieve data is first

check data size

call receive callback

call R_Config_TMR0_Stop

call error callback

alt:PEC enabled

calcurate PEC data in rx buffer and check result

update g_riic0_rx_length

alt : 1 <(g_riic0_rx_length - g_riic0_rx_count)

revert drive status to _09_IIC_MASTER_RECEIVE_DATA

alt : 2 <(g_riic0_rx_length - g_riic0_rx_count)

clear WAIT bit

clear ACKBT bit

main process
PMBus

Middleware
RIIC RXI

interrupt
RIIC TXI

interrupt
RIIC TEI

interrupt
RIIC EEI

interrupt

alt:status is IDLE

When the status changes to
IDLE, the waiting state ends.

RX Family/RA Family PMBus Master-Slave communication using I2C bus interface (RIIC/I3C)

R01AN7660EJ0100 Rev.1.00 Page 46 of 178

Jan.14.25

5.1.2 PMBus Master status transitions

The status of PMBus Master middleware is managed by each of Application Layer and Driver Layer
sections. Application Layer manages protocol-status transitions, and Driver Layer manages data-
transmission/reception counts. Section 5.1.2.1 shows the status transitions of Application Layer part, and
Section 5.1.2.2 shows the status transitions of Driver Layer part.

5.1.2.1 PMBus Master Middleware Application Layer status transitions

The status of Application Layer of PMBus Master manages the status of send, receive, Quick command,
Block command, and error-handling in accordance with the command code. Figure 28, Figure 29, and Table
12 show below.

Figure 28 PMBus Master Application Layer status transition diagram

Bold line or bold character indicates the default destination and Event.
Thin line or thin character indicates the transition point and Event when an error occurs.

RX Family/RA Family PMBus Master-Slave communication using I2C bus interface (RIIC/I3C)

R01AN7660EJ0100 Rev.1.00 Page 47 of 178

Jan.14.25

Figure 29 PMBus Master Application Layer status transition diagram(Supplement to Figure 28)

Table 12 PMBus Master Application Layer status transition table

The table can be read as follows.
 The event consists of an abbreviation of the API name and an interrupt factor.
 status" is an abbreviation of "e_pmbus_nwk_status_m_t".
 [If (<Condition>)] means that transitions are conditional.
 [→ <state>] means a transition to a state.
 [ERROR (<error_name>)] means the return value of API.
 [PACKET RESULT (<error name>)] means the error information stored in API parameter p_e_packet_result.
 [-] means that the state does not transition.
 Light blue indicates the state transitions in Figure 28

IDLE RX TX QCMD TX_BLOC
K

RX_BLOC
K

ENDING ERROR

E00/err00_
Open

→

IDLE*2

→
IDLE*2

→
IDLE*2

→
IDLE*2

→
IDLE*2

→
IDLE*2

→
IDLE*2

→
IDLE*2

E01_Close - - - - - - - -

E02_Write →

TX
rx_len = 0

ERROR
(BUSY)

ERROR
(BUSY)

ERROR
(BUSY)

ERROR
(BUSY)

ERROR
(BUSY)

ERROR
(BUSY)

ERROR
(BUSY)

E03_Write
(Block)

→

TX_BLOCK
rx_len = 0

ERROR
(BUSY)

ERROR
(BUSY)

ERROR
(BUSY)

ERROR
(BUSY)

ERROR
(BUSY)

ERROR
(BUSY)

ERROR
(BUSY)

E04_Write
(Quick)

→

QCMD
rx_len = 0

ERROR
(BUSY)

ERROR
(BUSY)

ERROR
(BUSY)

ERROR
(BUSY)

ERROR
(BUSY)

ERROR
(BUSY)

ERROR
(BUSY)

E05_Read →

TX
rx_len = not

0

ERROR
(BUSY)

ERROR
(BUSY)

ERROR
(BUSY)

ERROR
(BUSY)

ERROR
(BUSY)

ERROR
(BUSY)

ERROR
(BUSY)

E06_Read
(Block)

→

TX_BLOCK
rx_len = not

0

ERROR
(BUSY)

ERROR
(BUSY)

ERROR
(BUSY)

ERROR
(BUSY)

ERROR
(BUSY)

ERROR
(BUSY)

ERROR
(BUSY)

E07_Write
Read

→

TX
rx_len = 2

ERROR
(BUSY)

ERROR
(BUSY)

ERROR
(BUSY)

ERROR
(BUSY)

ERROR
(BUSY)

ERROR
(BUSY)

ERROR
(BUSY)

E08_Write
Read

(Block)

→

TX_BLOCK
rx_len = not

0

ERROR
(BUSY)

ERROR
(BUSY)

ERROR
(BUSY)

ERROR
(BUSY)

ERROR
(BUSY)

ERROR
(BUSY)

ERROR
(BUSY)

E09_Enabl
ePEC

- - - - - - - -

[Event list] * [EXX] means normal event, and [errXX] means Event in the case of abnormal occurrence.

E00/err00_Open ,E01_Close ,E02_Write
E03_Write (Block) ,E04_Write (Quick) ,E05_Read
E06_Read (Block) ,E07_WriteRead ,E08_WriteRead (BLOCK)
E09_EnablePEC ,E0A_DisablePEC ,E0B_ReceiveARA
E0C_Interrupt(Start Condition detect) ,E0D/err0D_Interrupt(Receive Buffer Full)
E0E/err0E_Interrupt(Transmit Interrupt) ,E0F/err0F_Interrupt(Transmit End Interrupt)
E10/err10_Interrupt(Stop Condition detect) ,err11_Interrupt(Arbitlation Lost)
err12_Interrupt(NACK detect) ,err13_Interrupt(Timeout Detect)

*1. conditions are as follows.
[err0D] If (rx_index over rx_len) ,[err0F] ,[err10] If (pec is enabled and pec data is error)
[err11] ,[err12] ,[err13]

*2. conditions are as follows.
[err0D] ,[err11] ,[err12] ,[err13]

*3. conditions are as follows.
[err0D]if (rx_index over rx_len) or first receive data size is Out of range) ,[err0F]
[err10]if (pec is enabled and pec data is error) ,[err11]
[err12] ,[err13]

*4. conditions are as follows.

[err0D] ,[err0F] .「err11」 ,[err13]

RX Family/RA Family PMBus Master-Slave communication using I2C bus interface (RIIC/I3C)

R01AN7660EJ0100 Rev.1.00 Page 48 of 178

Jan.14.25

E0A_Disab
lePEC

- - - - - - - -

E0B_Recei
veARA

→

RX
rx_len = 1

ERROR
(BUSY)

ERROR
(BUSY)

ERROR
(BUSY)

ERROR
(BUSY)

ERROR
(BUSY)

ERROR
(BUSY)

ERROR
(BUSY)

E0C_Interr
upt

(Start
Condition

detect)

- - - - - - - -

E0D/err0D
_Interrupt
(Receive

Buffer
Full)

- (read
receive

data from
ICDRR)

if (rx_index
over rx_len)

PACKET
RESULT

(DATA_SIZ
E)
→

ERROR*1

PACKET
RESULT

(INTERNAL
)

→
ERROR*1

PACKET
RESULT

(INTERNAL
)

→
ERROR*1

PACKET
RESULT

(INTERNAL
)

→
ERROR*1

(read
receive

data from
ICDRR)

if (rx_index
over rx_len)

or
(first

receive
data size is

Out of
range)

PACKET
RESULT

(DATA_SIZ
E)
→

ERROR*1
if (first
receive

data size is
in range)
Update
rx_len

PACKET
RESULT

(INTERNAL
)

→
ERROR*1

PACKET
RESULT

(INTERNAL
)

→
ERROR*1

E0E/err0E_
Interrupt
(Transmit
Interrupt)

- - (set
transmit
data to
ICDRT)

- (set
transmit
data to
ICDRT)

- - -

E0F/err0F_
Interrupt
(Transmit

End
Interrupt)

- PACKET
RESULT

(INTERNAL
)

→
ERROR*1

if (rx_len >
0):

→

RX
if (rx_len ==

0):
→

ENDING*1

- if (rx_len >
0):
→

RX_BLOC
K

if (rx_len ==
0):
→

ENDING*1

PACKET
RESULT

(INTERNAL
)

→
ERROR*1

PACKET
RESULT

(INTERNAL
)

→
ERROR*1

PACKET
RESULT

(INTERNAL
)

→
ERROR*1

E10/err10_
Interrupt

(Stop
Condition

detect)

- If (pec is
enabled
and pec
data is
error)

PACKET_E
RROR

（PEC）

→

IDLE

→

IDLE

→

IDLE

→

IDLE

If (pec is
enabled
and pec
data is
error)

PACKET
RESULT

（PEC）

→
IDLE

→

IDLE

→

IDLE

err11_Inter
rupt

(Arbitlatio
n Lost)

- PACKET
RESULT

(ARB_LOS
T)
→

ERROR

PACKET
RESULT

(ARB_LOS
T)
→

ERROR

PACKET
RESULT

(ARB_LOS
T)
→

ERROR

PACKET
RESULT

(ARB_LOS
T)
→

ERROR

PACKET
RESULT

(ARB_LOS
T)
→

ERROR

PACKET
RESULT

(ARB_LOS
T)
→

ERROR

PACKET
RESULT

(ARB_LOS
T)
→

ERROR

err12_Inter
rupt

(NACK
detect)

- PACKET
RESULT
(NACK)

→
ERROR*1

PACKET
RESULT
(NACK)

→
ERROR*1

PACKET
RESULT
(NACK)

→
ERROR*1

PACKET
RESULT
(NACK)

→
ERROR*1

PACKET
RESULT
(NACK)

→
ERROR*1

PACKET
RESULT

(OK)

PACKET
RESULT
(NACK)

→
ERROR*1

err13_Inter
rupt

(Timeout
Detect)

- PACKET
RESULT

(TIMEOUT)
→

ERROR*1

PACKET
RESULT

(TIMEOUT)
→

ERROR*1

PACKET
RESULT

(TIMEOUT)
→

ERROR*1

PACKET
RESULT

(TIMEOUT)
→

ERROR*1

PACKET
RESULT

(TIMEOUT)
→

ERROR*1

PACKET
RESULT

(TIMEOUT)
→

ERROR*1

PACKET
RESULT

(TIMEOUT)
→

ERROR*1

*1. Issue Stop Condition.
*2. Switches to Idle only when Open occurs after Close.

RX Family/RA Family PMBus Master-Slave communication using I2C bus interface (RIIC/I3C)

R01AN7660EJ0100 Rev.1.00 Page 49 of 178

Jan.14.25

5.1.2.2 PMBus Master Driver Layer status transitions

The state transition of the PMBus Master Driver Layer is divided into the transmit operation part and the
receive operation part to PMBus Slave, and the specified data is sent/received by the specified number of
bytes. PMBus Master Driver status transitions are shown in Figure 30, Figure 31, and Table 13, Table 14.

Figure 30 PMBus Master Driver Layer status transitions

Bold line (bold): Normal route
Thin line (thin line); abnormal route or restarting

RX Family/RA Family PMBus Master-Slave communication using I2C bus interface (RIIC/I3C)

R01AN7660EJ0100 Rev.1.00 Page 50 of 178

Jan.14.25

Figure 31 PMBus Master Driver Layer status transition diagram (Supplement to Figure 30)

Table 13 PMBus Master Driver Layer status transition table（when transmit）

This table shows the state transition table when mode_flag is _0D_IIC_MASTER_TRANSMIT.
Explanations of the annotations are summarized in Table 14.

This table and Table 14. should be interpreted as follows.
 Since slave-address 10-bit is not used in PMBus, status control is omitted.
 The status control is omitted because RIIC0 timeout detection interrupt is not used in PMBus.
 [→<number>] is the number of the transition destination. (<number>) indicates the number of the transition destination of

mode_flag.
 [-] means no state transition.
 [Callback <xxx>] refers to executing a callback. Callback error (<number>) means the error-information passed to callback error.
 [If (<Condition>)] refers to conditional operation.
 Red text indicates the process changed for PMBus middleware.
 Light green indicates state transitions when mode_flag=0D in Figure 30.
 Light blue indicates state transitions when mode_flag=0C in Figure 30.

 _01_IIC_MASTER_SE
NDS_ADR_7_W

_05_IIC_MASTER_SE
NDS_DATA

_06_IIC_MASTER_SE
NDS_END

_07_IIC_MASTER_SE
NDS_STOP

E00/err00_Send
(stop_flag = 1)

→

01
(0D)

→

01
(0D)

→

01
(0D)

→

01
(0D)

E01/err01_Send_With
out_Stop (stop_flag =
0)

→

01
(0D)

→

01
(0D)

→

01
(0D)

→

01
(0D)

E02/err02_Rreceive *2 →

00
(0C)*1

→

00
(0C)*1

→

00
(0C)*1

→

00
(0C)*1

E03_Interrupt
(Receive Buffer Full)

- - - -

E04_callback
receive*3

- - - -

E05_Interrupt
(Transmit)

→

05

if (0>remain_data)

→

06

- -

E06_Interrupt
(Transmit End)

- - If (stop_flag == 1)

→

07
If (stop_flag == 0)

callback transmitend

-

E07/err07_Interrupt
(Start Condition
Detect)*6

- callback error
(MD_ERROR4)

callback error
(MD_ERROR4)

callback error
(MD_ERROR4)

[Event List]
* [Exx] indicates normal Event, and [errxx] indicates Event when an error occurs.

An error Event not shown in the list occurs in any status, and an error is notified by callback error.
E00/err00_Send (stop_flag = 1)
E01/err01_Send_Without_Stop (stop_flag = 0)
E02/err02_Rreceive
E03_Interrupt (Receive Buffer Full)
E04_callback receive *1
E05_Interrupt (Transmit)
E06_Interrupt (Transmit End)
E07/err07_Interrupt (Start Condition Detect)
E08/err08_Interrupt (Stop Condition Detect)
err09_Interrupt (Arbitlation Lost)
err0A_Interrupt (NACK detect)

*1. The default receive data count (total_data_size) specified. Block Read and Block Write-BlockRead Process Call is 3 (Data

Size(1) + Data(1) + PEC(1)), which is the minimum number of received data.
Otherwise, specify the number of data according to each protocol. However, "0" cannot be specified.

*2. Check the received data. callback receive, and if Block read, refresh the expected data count.
As a result, if the remaining number of received data is 2 bytes or more, the status is returned to 09.
Set ACKBT=0 when the number of remaining received data is 2 bytes or more, and set WAIT=0
when the number of remaining received data is 3 bytes or more.

*3. Set WAIT=1 when the remaining number of received data is 2 bytes. Set ACKBT=1 when the remaining number of received
data is 1-byte.

RX Family/RA Family PMBus Master-Slave communication using I2C bus interface (RIIC/I3C)

R01AN7660EJ0100 Rev.1.00 Page 51 of 178

Jan.14.25

E08/err08_Interrupt
(Stop Condition
Detect)

- callback error
(MD_ERROR4)

callback error
(MD_ERROR4)

callback transmitend

err09_Interrupt
(Arbitlation Lost)

callback error
(MD_ERROR1)

callback error
(MD_ERROR1)

callback error
(MD_ERROR1)

callback error
(MD_ERROR1)

err0A_Interrupt
(NACK detect)

→

07
callback error

(MD_ERROR3)

→

07
callback error

(MD_ERROR3)

→

07
callback error

(MD_ERROR3)

→

07
callback error

(MD_ERROR3)

Table 14 PMBus Master Driver Layer status transition table（When receive）

This table shows the state transition when mode_flag is _0C_IIC_MASTER_RECEIVE.

 _00_IIC_MAST
ER_SENDS_AD

R_7_R

_08_IIC_MAST
ER_RECEIVE_

START

_09_IIC_MASTER_RE
CEIVE_DATA

_0A_IIC_MASTER
_RECEIVE_STOPP

ING

_0B_IIC_MAST
ER_RECEIVE_

STOP

E00/err00_Send
(stop_flag = 1)

→
01

(0D)

→
01

(0D)

→
01

(0D)

→
01

(0D)

→
01

(0D)

E01/err01_Send_W
ithout_Stop
(stop_flag = 0)

→
01

(0D)

→
01

(0D)

→
01

(0D)

→
01

(0D)

→
01

(0D)

E02/err02_Rreceiv
e *2

→
00

(0C)*1

→
00

(0C)*1

→
00

(0C)*1

→
00

(0C)*1

→
00

(0C)*1

E03_Interrupt
(Receive Buffer
Full)

- *4
(1 ==

total_data_size)
→
0A
If

(1<total_data_si

ze) →09

callback receive

*4
(1 == total_data_size)

→
0A

If (1 == remain data)
→
0A

callback receive
If (1<total_data_size) or

(1 < remain_data)
callback receive

*5

→

0B
callback receive

-

E04_callback
receive*3

- - If (1 <updated remain
data)

→

09
*6

(last receive data
process)

-

E05_Interrupt
(Transmit)

→
08

- - - -

E06_Interrupt
(Transmit End)

- - - - -

E07/err07_Interrupt
(Start Condition
Detect)*6

- callback error
(MD_ERROR4)

callback error
(MD_ERROR4)

callback error
(MD_ERROR4)

callback error
(MD_ERROR4)

E08/err08_Interrupt
(Stop Condition
Detect)

- callback error
(MD_ERROR4)

callback error
(MD_ERROR4)

callback error
(MD_ERROR4)

callback
receiveend

err09_Interrupt
(Arbitlation Lost)

- callback error
(MD_ERROR1)

callback error
(MD_ERROR1)

callback error
(MD_ERROR1)

callback error
(MD_ERROR1)

err0A_Interrupt
(NACK detect)

- →

0B
callback error

(MD_ERROR3)

→

0B
callback error

(MD_ERROR3)

→

0B
callback error

(MD_ERROR3)

→

0B
callback error

(MD_ERROR3)

*1. When ICCR2.MST is 1, set ICCR2.RS to 1 and issue a restart condition.
*2. The default receive data count (total_data_size) specified at Block Read and Block Write-BlockRead Process Call is 3

(Data Size(1) + Data(1) + PEC(1)), which is the minimum number of received data. For other protocols, specify the number of
data according to each protocol. "0" cannot be specified.

*3. Status transitions are also executed inside callback receive.
*4. Set WAIT=1 if (2 == tatal_data_size) or (1 = tatal_data_size). If (1 = tatal_data_size), set ACKBT=1.
*5. Set WAIT = 0.
*6. (2 <updated remain data): Set WAIT=0. (1 <updated remain data): Set ACKBT=0.
*7. Start condition interrupt is not used.

RX Family/RA Family PMBus Master-Slave communication using I2C bus interface (RIIC/I3C)

R01AN7660EJ0100 Rev.1.00 Page 52 of 178

Jan.14.25

5.1.3 PMBus Master Function List

PMBus Master functions are divided into Application functions in Table 15, API functions in Table 16,
Middleware functions in Table 17, and driver functions generated by the Smart Configurator in Table 18. The
driver-function is partially changed according to PMBus Master process. Refer to Customizing 5.1.4 PMBus
Master Driver section for details.

Table 15 PMBus Master Application function list

File name Function name Function

r_pmbus_ap

p_master.c

main The main process of the application.

pmbus_demo_main The main process for transmission and reception

by RSCI11 and control PMBUS.

pmbus_demo_init Application initialization process.

pmbus_demo_updata_status Update the internal state of the application.

pmbus_demo_notify_result Send PMBUS process to the terminal software via

RSCI11.

pmbus_demo_response Send PMBUS received data to the terminal

software via RSCI11.

pmbus_demo_pmbus_execute Execute PMBUS API according to the receive

command.

pmbus_demo_uart_recv_callback Execute RSCI11 receive interrupt process.

pmbus_demo_notify_event Send application process information to the

terminal software via RSCI11.

pmbus_demo_update_sequence The main process for manage internal state

transitions within an application.

pmbus_demo_seq_idle Analyzes the received data when the first character

string is received from the terminal software.

pmbus_demo_seq_slave_addr Analyzes the received data when the slave address

and R/W data is received from the terminal

software.

pmbus_demo_seq_rw Analyzes the transaction when a command is

received from the terminal software.

pmbus_demo_seq_cmd Analyzes the data when data for sending PMBUS

is received from the terminal software.

r_uart_ctrl_check_CmdFormData Check whether the number of data received from

the terminal software matches the format of the

received command.

r_uart_ctrl_check_CmdFormCmd Check whether the command received from the

terminal software is supported.

r_uart_ctrl_conv_StrToDec Converts hexadecimal ASCII characters received

from the terminal software to hexadecimal digits.

r_uart_ctrl_is_read_write Converts W/R data received from the terminal

software to bool data.

r_uart_ctrl_conv_DecToStrCont To return a response to the terminal software,

convert the response data to hexadecimal ASCII

character.

r_uart_ctrl_conv_DecToStr2Byte To return a response to the terminal software,

convert the response data to decimal ASCII

character.

pmbus_demo_system_init Initialize the driver used by the application.

pmbus_demo_system_deinit Stop the driver used by the application.

pmbus_demo_uart_ctrl_init Initialize RSCI11 communication function.

pmbus_demo_uart_ctrl_start Start RSCI11 communication with the terminal

software.

RX Family/RA Family PMBus Master-Slave communication using I2C bus interface (RIIC/I3C)

R01AN7660EJ0100 Rev.1.00 Page 53 of 178

Jan.14.25

pmbus_demo_uart_ctrl_stop Stop RSCI11 communication with the terminal

software.

pmbus_demo_uart_ctrl_read_buf Copy data received by RSCI11 to the internal

buffer.

pmbus_demo_uart_ctrl_clear_buf Clear buffer data received by RSCI11.

Table 16 PMBus Master API function list

File name Function name Function

r_pmbus_ap

p_master.c

R_PMBUS_Master_Open Open PMBus Middleware.

R_PMBUS_Master_Close Close PMBus Middleware.

R_PMBUS_Master_Write Execute PMBUS command protocol for the

sending.

R_PMBUS_Master_Read Execute PMBUS command protocol for the

receiving.

R_PMBUS_Master_WriteRead Execute PMBUS command protocol for the

Process Call system.

R_PMBUS_Master_EnablePEC Enable sending and receiving packets with PEC.

R_PMBUS_Master_DisablePEC Disable sending and receiving packets with PEC.

R_PMBUS_Master_ReceiveARA Execute alert response.

Table 17 PMBus Master Middleware function list

File name Function name Function

r_pmbus_ap

p_master.c

r_pmbus_app_InitCtrl Initialize PMBus Middleware parameters.

r_pmbus_app_SendByte Execute Send Byte protocol.

r_pmbus_app_WriteByte Execute Write Byte protocol.

r_pmbus_app_WriteWord Execute Write Word protocol.

r_pmbus_app_BlockWrite Execute Block Write protocol.

r_pmbus_app_QuickWrite Execute Quick Command (Write) protocol.

r_pmbus_app_ReceiveByte Execute Receive Byte protocol.

r_pmbus_app_ReadByte Execute Read Byte protocol.

r_pmbus_app_ReadWord Execute Read Word protocol.

r_pmbus_app_BlockRead Execute Block Read protocol.

r_pmbus_app_ProcessCall Execute Process Call protocol.

r_pmbus_app_BlockProcessCall Execute Block Write-Block Read protocol.

r_pmbus_app_StartendByte Start Send Byte protocol.

r_pmbus_app_StartWriteByteWord Start Write protocol.

r_pmbus_app_StartBlockWrite Start Block Write protocol.

r_pmbus_app_StartQuickCmd Start Quick Command protocol.

r_pmbus_app_StartReceiveByte Start Receive Byte protocol.

r_pmbus_app_StartReadByteWord Start Read protocol.

r_pmbus_app_StartBlockRead Start Block Read protocol.

r_pmbus_app_StartProcessCall Start Process Call protocol.

r_pmbus_app_StartBlockProcess Start Block Write-Block Read Process Call

protocol.

r_pmbus_app_WaitProcessEnd Wait for the protocol to finish executing.

r_pmbus_app_SetTxBuf Copy the transmission data specified by the

argument to the transmission buffer.

r_pmbus_app_SetBlockTxBuf Copy the transmission Block data specified by the

argument to the transmission buffer.

RX Family/RA Family PMBus Master-Slave communication using I2C bus interface (RIIC/I3C)

R01AN7660EJ0100 Rev.1.00 Page 54 of 178

Jan.14.25

r_pmbus_app_GetRxBuf Copy the received data from the receive buffer to

the return buffer.

r_pmbus_app_int_ReceiveEnd Execute receive end callback process.

r_pmbus_app_int_Receive Execute receive callback process.

r_pmbus_app_int_TransmitEnd Execute transmit end callback process.

r_pmbus_app_int_Notify Execute error detection callback process.

r_pmbus_nw

k_master.c

r_pmbus_nwk_StartTx Execute PMBus transmission start process.

r_pmbus_nwk_StartRx Execute PMBus reception start process.

r_pmbus_nwk_ProcessTx Execute PMBus transmission process.

r_pmbus_nwk_ProcessRx Execute PMBus reception process.

r_pmbus_nwk_ProcessStop Execute PMBus stopping process.

r_pmbus_nwk_ProcessErrorStop Execute the stopping process at PMBus error

timing.

r_pmbus_nwk_StartMaster Start PMBus physical-layer operation.

r_pmbus_nwk_StopMaster Stop PMBus physical-layer operation.

r_pmbus_nwk_ResetMaster Initialize the physical layer of PMBus.

r_pmbus_nwk_ProcessTimeout Execute the timeout detection process.

r_pmbus_nwk_ProcessNACK Execute a NACK discovery operation.

r_pmbus_nwk_ProcessArbLost Execute arbitration-lost detection process.

r_pmbus_nwk_GetRxPayloadSize Get the received data size.

r_pmbus_nwk_AddCrc8 Execute a CRC operation on a single file.

r_pmbus_nwk_CalculatePEC Execute a CRC operation on more than one

datum.

RX Family/RA Family PMBus Master-Slave communication using I2C bus interface (RIIC/I3C)

R01AN7660EJ0100 Rev.1.00 Page 55 of 178

Jan.14.25

Table 18 Smart Configurator Function list

File name Function name Function Change from

diversion

source*

Config_RIIC0_user.c r_Config_RIIC0_transmi

t_interrupt

RIIC0 transmit buffer empty

interrupt process.

Yes

r_Config_RIIC0_receive

_interrupt

RIIC0 receive buffer full interrupt

process.

Yes

r_Config_RIIC0_callbac

k_transmitend

RIIC0 transmit end callback. Yes

r_Config_RIIC0_callbac

k_receiveend

RIIC0 reception end callback. Yes

r_Config_RIIC0_callbac

k_error

RIIC0 error-detection callback. Yes

r_User_RIIC0_callback_

receive

RIIC0 receive callback. New

Config_TMR0.c R_Config_TMR0_Start Execute TMR after the counter

clear.

Yes

Config_TMR0_User.c r_Config_TMR0_cmia0_

interrupt

TMR compare match A interrupt

process.

Yes

Config_RSCI11_user.c r_Config_RSCI11_callb

ack_transmitend

RSCI11 transmit end interrupt

callback.

Yes

r_Config_RSCI11_callb

ack_receiveend

RSCI11 receive end interrupt

callback.

Yes

r_Config_RSCI11_callb

ack_receiveerror

Error interrupt callback for

RSCI11.

Yes

*: Refer to Customizing 5.1.4 PMBus Master Driver section for details.

RX Family/RA Family PMBus Master-Slave communication using I2C bus interface (RIIC/I3C)

R01AN7660EJ0100 Rev.1.00 Page 56 of 178

Jan.14.25

5.1.4 Customizing PMBus Master Driver section

PMBus Master driver code (RIIC0,TMR,RSCI11) is generated by the Smart Configurator. For RIIC0 and
TMR, some processes have been changed and added using the user code protection function of the Smart
Configurator. The settings and changes for each smart configurator are shown below.

⚫ Setting Smart Configurator RIIC0

RX Family/RA Family PMBus Master-Slave communication using I2C bus interface (RIIC/I3C)

R01AN7660EJ0100 Rev.1.00 Page 57 of 178

Jan.14.25

⚫ List of Changed Parts of RIIC0 Driver Codes Generated by Smart Configurator

Function Name r_User_RIIC0_callback_receive()

File name Config_RIIC0_user.c

Change Details This is the callback function for the receive buffer full interrupt added by PMBus

Middleware. r_pmbus_app_int_Receive() is executed to check and update PMBus

Middleware status each time a receive buffer full interrupt is generated. Specify

"g_riic0_rx_count" (number of received data) and g_riic0_rx_length as parameters.

When the g_riic0_rx_count is "1" and block read process is in progress, the

g_riic0_rx_length is updated to the receive data size. If the remaining receive data

count becomes larger than 1, the g_riic0_state is reset to

_09_IIC_MASTER_RECEIVE_DATA after AKBT bit of ICMR3 is cleared once. If

the remaining receive data size is greater than 2, clear this register to ICMR3's

WAIT setting.

Before change After change

None.

RX Family/RA Family PMBus Master-Slave communication using I2C bus interface (RIIC/I3C)

R01AN7660EJ0100 Rev.1.00 Page 58 of 178

Jan.14.25

Function Name r_Config_RIIC0_receive_interrupt()

File name Config_RIIC0_user.c

Change Details Receive buffer full interrupt handler.

Execute r_User_RIIC0_callback_receive() when

_09_IIC_MASTER_RECEIVE_DATA == g_riic0_state and there is more data to

receive or_0A_IIC_MASTER_RECEIVE_STOPPING = g_riic0_state.

Before change After change

Function Name r_Config_RIIC0_transmi_interrupt()

File name Config_RIIC0_user.c

Change Details Transmit buffer empty interrupt handler.

After adding the g_riic0_tx_length to the globals,

After transmitting the slave address with _0D_IIC_MASTER_TRANSMIT ==

g_riic0_mode_flag, save the g_riic0_tx_count in the g_riic0_tx_length.

Before change After change

RX Family/RA Family PMBus Master-Slave communication using I2C bus interface (RIIC/I3C)

R01AN7660EJ0100 Rev.1.00 Page 59 of 178

Jan.14.25

Function Name r_Config_RIIC0_callback_transmitend()

File name Config_RIIC0_user.c

Change Details This is a callback function for transmission completion interrupts.

Execute r_pmbus_app_int_TransmitEnd() to check the status of PMBus

Middleware and to refresh the status after the transmit end interrupt. Specify

"g_riic0_tx_length" (total number of data to be sent) as the parameter. 0 Execute

Quick Command process.

Before change After change

Function Name r_Config_RIIC0_callback_receiveend ()

File name Config_RIIC0_user.c

Change Details Callback function upon receive end.

Execute r_pmbus_app_int_ReceiveEnd() to check and update the status of

PMBus Middleware after Stop condition interrupt after receive end of all the data.

Before change After change

RX Family/RA Family PMBus Master-Slave communication using I2C bus interface (RIIC/I3C)

R01AN7660EJ0100 Rev.1.00 Page 60 of 178

Jan.14.25

Function Name r_Config_RIIC0_callback_error()

File name Config_RIIC0_user.c

Change Details This is a callback function for error detection interrupts. Execute the following

process for each parameter status.

For "MD_ERROR1" (Arbitration Lost):

Execute the r_pmbus_app_int_Notify (E_PMBUS_INT_EVENT_ARB_LOST) to

refresh PMBus Middleware status.

When "MD_ERROR3" (NACK detected):

Execute the r_pmbus_app_int_Notify (E_PMBUS_INT_EVENT_NACK) to refresh

PMBus Middleware status.

When "MD_ERROR4" (a Stop condition outside the driver-sequence is detected):

If STOP of ICSR2 is 1,

If the g_riic0_mode_flag is_0C_IIC_MASTER_RECEIVE to refresh PMBus

Middleware status, set RIIC0.ICMR3.BIT.WAIT to 0, and then execute

r_pmbus_app_int_Notify (E_PMBUS_INT_EVENT_STOP_ERROR). If the

g_riic0_mode_flag is other than the above, execute r_pmbus_app_int_Notify

(E_PMBUS_INT_EVENT_STOP).

*MD_ERROR2 (TimeoutError detect) is not used in PMBus Middleware.

Before change After change

RX Family/RA Family PMBus Master-Slave communication using I2C bus interface (RIIC/I3C)

R01AN7660EJ0100 Rev.1.00 Page 61 of 178

Jan.14.25

⚫ Setting smart configurator TMR

⚫ List of Changed Parts of TMR Driver Codes Generated by Smart Configurator

Function Name R_Config_TMR0_Start()

File name Config_TMR0.c

Change Details Add a process for clearing TMR0.TCNT.

Before change After change

Function Name r_Config_TMR0_cmia0_interrupt()

File name Config_TMR0_user.c

Change Details This is a callback function for compare match interrupts.

Execute the r_pmbus_app_int_Notify (E_PMBUS_INT_EVENT_TIMEOUT) to

refresh PMBus Middleware status.

Before change After change

RX Family/RA Family PMBus Master-Slave communication using I2C bus interface (RIIC/I3C)

R01AN7660EJ0100 Rev.1.00 Page 62 of 178

Jan.14.25

⚫ Setting smart configurator RSCI11

RX Family/RA Family PMBus Master-Slave communication using I2C bus interface (RIIC/I3C)

R01AN7660EJ0100 Rev.1.00 Page 63 of 178

Jan.14.25

⚫ List of Changed Parts of RSCI11 Driver Codes Generated by Smart Configurator

Function Name r_Config_RSCI11_callback_transmitend

File name Config_RSCI11_user.c

Change Details Execute the pmbus_demo_update_status

(E_MAIN_STATUS_RESPONSE_COMP).

Before change After change

Function Name r_Config_RSCI11_callback_receiveend

File name Config_RSCI11_user.c

Change Details Execute pmbus_demo_uart_recv_callback().

Before change After change

Function Name r_Config_RSCI11_callback_receiveerror

File name Config_RSCI11_user.c

Change Details Execute the pmbus_demo_notify_event (E_UART_EVENT_RECEIVE_ERROR).

Before change After change

RX Family/RA Family PMBus Master-Slave communication using I2C bus interface (RIIC/I3C)

R01AN7660EJ0100 Rev.1.00 Page 64 of 178

Jan.14.25

5.1.5 PMBus Master Data Types and Structure list

The following table lists the Data Types and Structure used in this control program.

⚫ Data Types and Structure for PMBus Master Application Functions

e_main_status_t

Enumeration Name e_main_status_t

Description This enumeration is used to indicate the main status of the
PMBus Master Application.

Declared header file r_pmbus_demo_master.h

Remarks -

Element name Description Value

E_MAIN_STATUS_IDLE IDLE state. Waits for UART data to be received. 0

E_MAIN_STATUS_REV_BUSY Receiving UART data. 1

E_MAIN_STATUS_REV_COMP Completed receiving UART data required for

command process.

2

E_MAIN_STATUS_PMBUS_BUSY PMBUS API is being executed. (Reserve) 3

E_MAIN_STATUS_PMBUS_COMP PMBUS API operation has ended. 4

E_MAIN_STATUS_PMBUS_ACTIVE PMBUS API is being executed. 5

E_MAIN_STATUS_RESPONSE_BUSY Command process results are being sent via UART. 6

E_MAIN_STATUS_RESPONSE_COMP UART data transmission completed. 7

E_MAIN_STATUS_ERROR_BUSY Error process. (Reserve) 8

E_MAIN_STATUS_ERROR_COMP Error process completed. (Reserve) 9

E_MAIN_STATUS_MAX The maximum value of the main status. 10

e_uart_event_t

Enumeration Name e_uart_event_t

Description This enumeration is used to specify the message
number to respond by UART.

Declared header file r_pmbus_demo_master.h

Remarks -

Element name Description Value

E_UART_EVENT_COMMAND_END Specify "PMBUS COMMAND END" as the

transmission string.

0

E_UART_EVENT_RESP_START Specify ">>PMBUS_RESPONSE_START" as

the transmission string.

1

E_UART_RECEIVE_FULL Specify ">>ERROR:UART RECEIVE BUFFER

IS FULL" as the transmission string.

2

E_UART_RECEIVE_ERROR Specify "ERROR:UART RECEIVE ERROR" as

the transmission string.

3

E_UART_EVENT_FORMAT_ERROR Specify "ERROR:PMBUS FORMAT ERROR"

as the transmission string.

4

E_UART_EVENT_COMMAND_INVALIDATE Specify "ERROR:PMBUS COMMAND NOT

SUPPORT" as the transmission string.

5

E_UART_EVENT_COMMAND_FAIL Specify "ERROR:PMBUS API RETURN

ERROR" as the transmission string.

6

E_UART_EVENT_MAX The maximum value of the message number. 7

RX Family/RA Family PMBus Master-Slave communication using I2C bus interface (RIIC/I3C)

R01AN7660EJ0100 Rev.1.00 Page 65 of 178

Jan.14.25

e_response_type_t

Enumeration Name e_response_type_t

Description This enumeration type is used to specify the notation
type of the numeric expression that is responded to via
UART. It is used to specify the notation type for each
PMBUS command registered in
s_st_pmbus_command_check_table.

Declared header file r_pmbus_demo_master.h

Remarks -

Element name Description Value

E_RESPONSE_TYPE_HEX Specifies hexadecimal notation. 0

E_RESPONSE_TYPE_DECIMAL Specifies signed decimal notation. 1

E_RESPONSE_TYPE_DECIMAL_UNSIGNED Specifies unsigned decimal notation. 2

E_RESPONSE_TYPE_MAX The maximum value of notation type. 3

e_app_varidate_info_t

Enumeration Name e_app_varidate_info_t

Description This enumeration type is used to indicate whether the PMBUS
command received via UART is valid or invalid. It is used to specify
whether each PMBUS command registered in
s_st_pmbus_command_check_table is valid or invalid.

Declared header file r_pmbus_demo_master.h

Remarks -

Element name Description Value

E_COMMAND_INVALIDATE Specifies an invalid command. 0

E_COMMAND_VALIDATE Specifies a valid command. 1

st_app_command_format_t

Structure Name st_app_command_format_t

Description This structure manages the format information of PMBUS commands

processed by the PMBus Master Application.

It is used to check whether the data received via UART matches the format

of the corresponding PMBUS command, and to determine the format to

respond to via UART.

Declared header file r_pmbus_demo_master.h

Remarks -

Member name Description

uint8_t u1_validate Command valid/invalid information. (E_COMMAND_INVALIDATE or

E_COMMAND_VALIDATE)

uint8_t u1_command PMBUS command code. (0x00 to 0xFF)

uint8_t u1_transaction Transaction type of PMBUS command. (Combination of transaction code

(PMBUS_TRANS_XXX))

uint16_t u2_tx_data_size The amount of data sent by the PMBUS command. (0x00 to 0xFF)

uint16_t u2_rx_data_size The amount of data received by the PMBUS command. (0x00 to 0xFF)

e_response_type_t

e_resp_type

Specifies the numeric representation when returning received data of

PMBUS command via UART. (E_RESPONSE_TYPE_HEX,

E_RESPONSE_TYPE_DECIMAL or

E_RESPONSE_TYPE_DECIMAL_UNSIGNED)

RX Family/RA Family PMBus Master-Slave communication using I2C bus interface (RIIC/I3C)

R01AN7660EJ0100 Rev.1.00 Page 66 of 178

Jan.14.25

st_pmbus_data_t

Structure Name st_pmbus_data_t

Description This structure manages PMBUS commands information received

from UART.

Declared header file r_pmbus_demo_master.h

Remarks -

Member name Description

uint8_t u1_command The command code of the PMBUS command to execute.

uint8_t u1_transaction Transaction code of the PMBUS command to be executed.

(Combination of transaction codes (PMBUS_TRANS_XXX))

uint8_t u1_slave_addr The slave address to which the PMBUS command is to be

communicated.

uint16_t u2_data_size Total number of transmission data for PMBUS command to be

executed. (Reserve)

uint16_t u2_tx_index The current number of transmission data being processed by the

PMBUS command.

uint16_t u2_command_index The index of the s_st_pmbus_command_check_table

corresponding to the PMBUS command to be executed. (0 to

(COMMAND_TABLE_SIZE – 1))

uint8_t

u1_tx_buf[PMBUS_TX_BUF_SIZE]

A buffer that stores the transmission data to be processed by

PMBUS commands.

bool b_direction The communication direction to be handled by the PMBUS

command. (false: receive protocol or true: transmit or

transmit/receive protocol)

st_app_uart_rx_t

Structure Name st_app_uart_rx_t

Description This structure manages PMBUS commands information received

from UART.

Declared header file r_pmbus_demo_master.h

Remarks -

Member name Description

uint8_t

u1_recv_buf[UART_RX_BUF_SIZE]

Buffer for storing received UART data.

bool b_recv_flag The receive end status of one line of data. (false:(receive is not

end) or true:(receive end (set when line feed code "0x0A" is

received)))

RX Family/RA Family PMBus Master-Slave communication using I2C bus interface (RIIC/I3C)

R01AN7660EJ0100 Rev.1.00 Page 67 of 178

Jan.14.25

⚫ Data Types and Structure for PMBus Master API

e_pmbus_packet_result_m_t

Enumeration Name e_pmbus_packet_result_m_t

Description This enumeration type is used to indicate the execution
result of PMBus communication (master). It is used as
the argument type of each PMBus Master API. It
indicates the details of the error cause when the PMBus
API return value is PMBUS_RET_ERROR.

Declared header file r_pmbus_app_master.h

Remarks -

Element name Description Value

E_PMBUS_PACKET_M_OK Normal operation. 0

E_PMBUS_PACKET_M_DATA_SIZE_ERROR Detects packet size error. 1

E_PMBUS_PACKET_M_PEC_ERROR Detects error in PEC operation. 2

E_PMBUS_PACKET_M_TIMEOUT Detects timeout error. (TTIMEOUT error detected) 3

E_PMBUS_PACKET_M_ARB_LOST Detects arbitration-lost error. 4

E_PMBUS_PACKET_M_NACK Detects NACK receive. 5

E_PMBUS_PACKET_M_INTERNAL_ERROR Detects internal error. 6

st_pmbus_cfg_m_t

Structure Name st_pmbus_cfg_m_t

Description This is a structure for PMBus Master configuration data. It is

used as the argument type for R_PMBUS_Master_Open. It is

used to register the configuration data to the internal global

variables of the PMBus Master Middleware.

Declared header file r_pmbus_app_master.h

Remarks -

Member name Description

uint16_t u2_rx_size *The dimensions of the p_u1_rx_buf. (1 to 35)

uint8_t *p_u1_rx_buf Pointer to the receive data storage buffer. The data received

by R_PMBUS_Master_Read or

R_PMBUS_Master_WriteRead is stored in this buffer. The

data is multiplied by the *p_u1_rx_buf and *u2_rx_len

arguments, and then returned to API caller.

uint16_t u2_tx_size *The dimensions of the p_u1_tx_buf. (1 to 35)

uint8_t *p_u1_tx_buf Pointer to the transmit data storage buffer. The data of the

u1_command, u2_tx_len, and *p_u1_tx_buf specified by

R_PMBUS_Master_Write or R_PMBUS_Master_WriteRead

parameter is stored in this buffer according to the protocol

corresponding to the command code. Then, the data is sent.

RX Family/RA Family PMBus Master-Slave communication using I2C bus interface (RIIC/I3C)

R01AN7660EJ0100 Rev.1.00 Page 68 of 178

Jan.14.25

⚫ Data Types and Structure for PMBus Master Middleware function

e_pmbus_nwk_status_m_t

Enumeration Name e_pmbus_nwk_status_m_t

Description This enumeration type indicates the internal state of the

PMBus network layer (master). It is used to manage the

internal state of the PMBus Master Middleware.

Declared header file r_pmbus_app_master.h

Remarks -

Element name Description Value

E_PMBUS_NWK_STATUS_M_IDLE Waiting for new packet receive. 0

E_PMBUS_NWK_STATUS_M_RX Receiving packet. 1

E_PMBUS_NWK_STATUS_M_TX Transmitting packet. 2

E_PMBUS_NWK_STATUS_M_TX_QUICK Transmitting quick command. 3

E_PMBUS_NWK_STATUS_M_TX_BLOCK Transmitting block. 4

E_PMBUS_NWK_STATUS_M_RX_BLOCK Receiving block. 5

E_PMBUS_NWK_STATUS_M_ENDING End of packet. 6

E_PMBUS_NWK_STATUS_M_ERROR Detects packet error. 7

e_pmbus_int_event_m_t

Enumeration Name e_pmbus_int_event_m_t

Description This enumeration type indicates the cause of an I2C

error detection interrupt. It is used to execute process for

each interrupt cause in the internal process of the PMBus

Master Middleware.

Declared header file r_pmbus_app_master.h

Remarks -

Element name Description Value

E_PMBUS_INT_EVENT_M_NONE Interrupt not detected 0

E_PMBUS_INT_EVENT_M_ARB_LOST Detects arbitration lost. 1

E_PMBUS_INT_EVENT_M_TIMEOUT Detects timeout. 2

E_PMBUS_INT_EVENT_M_NACK Detects NACK receive. 3

E_PMBUS_INT_EVENT_M_START Detects start condition. 4

E_PMBUS_INT_EVENT_M_STOP Detects stop condition. 5

E_PMBUS_INT_EVENT_M_STOP_ERROR Detects unexpected Stop condition. 6

RX Family/RA Family PMBus Master-Slave communication using I2C bus interface (RIIC/I3C)

R01AN7660EJ0100 Rev.1.00 Page 69 of 178

Jan.14.25

st_pmbus_nwk_ctrl_m_t

Enumeration Name st_pmbus_nwk_ctrl_m_t

Description This is a structure that manages PMBus network layer

(master) parameters. It is used to manage the

communication status inside the PMBus Master Middleware.

Declared header file r_pmbus_app_master.h

Remarks -

Member name Description

volatile e_pmbus_nwk_status_m_t

e_m_status

Network layer status

uint8_t u1_current_addr Currently executing slave address

uint8_t u1_current_cmd Currently executing command

uint16_t u2_rx_index Current number of received data bytes

uint16_t u2_rx_len Number of data bytes to be received

uint16_t u2_rx_size *p_u1_rx_buf Size

uint8_t *p_u1_rx_buf Pointer to receive data storage buffer

uint16_t u2_tx_index Current number of transmission data bytes

uint16_t u2_tx_len Number of data bytes to be transmitted

uint16_t u2_tx_size *p_u1_tx_buf Size

uint8_t *p_u1_tx_buf Pointer to transmit data storage buffer

uint8_t u1_pec Present PEC calculation

st_pmbus_ctrl_m_t

Structure Name st_pmbus_ctrl_m_t

Description This is the control data structure of the PMBus Middleware

(master). It is used to manage the PMBus Master Middleware

setting information and communication status.

Declared header file r_pmbus_app_master.h

Remarks -

Member name Description

st_pmbus_nwk_ctrl_m_t st_nwk_ctrl_m Parameter-managed struct of PMBus network Layer (master)

volatile e_pmbus_packet_result_m_t

e_pmbus_result_m

Executing PMBus communication (master)

bool b_open_flag OPEN status (No false: Open or true: Open).

bool b_pec_flag PEC enable/disable information (false: disable, true: enable)

uint8_t u1_own_slave_addr Its own slave address. (Not used in demonstration systems.)

RX Family/RA Family PMBus Master-Slave communication using I2C bus interface (RIIC/I3C)

R01AN7660EJ0100 Rev.1.00 Page 70 of 178

Jan.14.25

5.1.6 PMBus Master global variables List

The following table lists the global variables used in this control program.

Table 19 PMBus Master Application global variables list

File

name

Global Variables Usage

r_pmbu

s_demo

_master

.c

static const

st_app_command_forma

t_t

s_st_pmbus_command_

check_table[COMMAND

_TABLE_SIZE]

A const table used to check the format of PMBUS commands

received via UART.

static const char *

sp_pmbus_message_ret

urn_res

A const value that stores the string "return code:" that is added

when storing the PMBUS execution result in the UART transmit

buffer.

static const char *

sp_pmbus_message_pa

cket_res

A const value that stores the string "packet result:" that is added

when storing the PMBUS execution result in the UART transmit

buffer.

static st_app_uart_rx_t

s_st_uart_rx_data

Structure variable that manages UART receive data information.

Analyzes the receive data stored in u1_recv_buf, a member of this

structure, and controls PMBUS process.

static uint8_t

s_u1_uart_tx_buf[UART

_TX_BUF_SIZE]

Buffers for storing UART transmit data.

static uint8_t

s_u1_uart_rx_buf[UART

_RX_BUF_SIZE]

A buffer that stores UART received data. The received data stored

in this buffer is analyzed to detect the line feed code that separates

the received data. This buffer is used as a ring buffer.

static uint16_t

s_u2_uart_rx_index;

Variable that manages how many data items are currently received

in UART.

static uint16_t

s_u2_rx_r_index

This parameter indicates the most recent data position at which the

receive data buffer (s_u1_uart_rx_buf) was read.

static uint16_t

s_u2_rx_w_index

Indicates the most recent data position stored in the receive data

buffer (s_u1_uart_rx_buf).

static uint8_t

s_u1_uart_rx_relay_buf[

UART_RELAY_BUF_SI

ZE]

Buffer for storing UART receive data. After the UART receive

interrupt handler stores the received data in this buffer, the main

process Copy the data to s_u1_uart_rx_buf.

volatile static

e_main_status_t

s_e_main_status

Variables for managing the internal process state of an application.

volatile static uint16_t

s_u2_seq_index

Variables for managing the UART command receive process

status. This variable determines how much data required for

PMBUS communication has been received.

static st_pmbus_data_t

s_st_pmbus_data

Structural variables that manage the data for PMBUS commands.

The data stored in this structure variable is used as an argument to

be passed to the PMBUS API.

static uint8_t

s_u1_pmbus_tx_buf[PM

BUS_TX_BUF_SIZE]

Buffers for storing the transmitted data for PMBUS. This buffer is

set to the member *p_u1_tx_buf of s_user_pmbus_cfg and used

inside the PMBUS Middleware.

static uint8_t

s_u1_pmbus_rx_buf[PM

BUS_RX_BUF_SIZE]

Buffers to store received data for PMBUS. This buffer is set to the

member *p_u1_rx_buf of s_user_pmbus_cfg and used inside the

PMBUS Middleware.

RX Family/RA Family PMBus Master-Slave communication using I2C bus interface (RIIC/I3C)

R01AN7660EJ0100 Rev.1.00 Page 71 of 178

Jan.14.25

static uint16_t

s_u2_pmbus_rx_size

Number of data received by PMBUS. Specify this as an argument

to R_PMBUS_Master_Read and R_PMBUS_Master_WriteRead to

store the amount of data received via PMBUS.

static uint8_t

s_u1_pmbus_temp_rx_b

uf[PMBUS_RX_BUF_SI

ZE]

Buffer for storing PMBUS receive data specified when executing

the PMBUS API. Specify as an argument to

R_PMBUS_Master_Read and R_PMBUS_Master_WriteRead to

store data received via PMBUS.

static

e_pmbus_packet_result_

m_t s_e_packet_result

Variable that stores the execution result (packet result) of the

PMBUS API. Specify as an argument for each PMBUS API to

store the execution result (packet result) of the PMBUS API.

static uint8_t

s_u1_pmbus_ret

Variable that stores the result of executing PMBUS API (return

code).

static st_pmbus_cfg_m_t

s_user_pmbus_cfg

Variable to store the configuration data to be registered in

R_PMBUS_Master_Open.

Table 20 Global variables for PMBus Master Middleware

File name Global Variables Usage

r_pmbus_ma

ster_app.c

static

st_pmbus_ctrl_m_t

g_st_pmbus_ctrl

Global variable that manages the control information of PMBUS

Master Middleware. It is used only within PMBUS Master

Middleware.

5.1.7 PMBus Master macro Definition List

The following table lists the macro definitions used in this control program.

Table 21 PMBus Master Application macro definition list

File

name

Macro name Usage Defined

Value

r_pmbus_

demo_ma

ster.h

PMBUS_APP_C

MD_xxx

 Define the command code for PMBUS. (Refer to below for

macro names)

-

PMBUS_APP_CMD_OPERAION : OPERAION command 0x01

PMBUS_APP_CMD_ON_OFF_CONFIG :

ON_OFF_CONFIG command

0x02

PMBUS_APP_CMD_CLEAR_FAULTS : CLEAR FAULTS

command

0x03

PMBUS_APP_CMD_STATUS_FAN_1_2 :

STATUS_FAN_1_2 command

0x81

PMBUS_APP_CMD_READ_VOUT : READ_VOUT command 0x8B

PMBUS_APP_CMD_READ_IOUT : READ_IOUT command 0x8C

PMBUS_APP_CMD_READ_FAN_SPEED_1 :

REA_DFAN_SPEED_1 command

0x90

PMBUS_APP_CMD_READ_FREQUENCY :

READ_FREQUENCY command

0x95

PMBUS_APP_CMD_RESERVED : RESERVED command 0x09

PMBUS_APP_CMD_PMBUS_REVISION :

PMBUS_REVISION command

0x98

PMBUS_APP_CMD_STORE_DEFAULT_CODE :

STORE_DEFAULT_CODE command

0x13

PMBUS_APP_CMD_FAN_COMMAND_1 :

FAN_COMMAND_1 command

0x38

PMBUS_APP_CMD_READ_EOUT : READ_EOUT command 0x87

PMBUS_APP_CMD_PAGE_PLUS_WRITE :

PAGE_PLUS_WRITE command

0x05

RX Family/RA Family PMBus Master-Slave communication using I2C bus interface (RIIC/I3C)

R01AN7660EJ0100 Rev.1.00 Page 72 of 178

Jan.14.25

UART_TX_BUF

_SIZE

Max. of buffers for storing data to be sent by UART. 256

UART_RX_BUF

_SIZE

Max. of buffers for storing data to be received by UART. 256

UART_RELAY_

BUF_SIZE

Max. buffers to temporarily store data received by UART. 3

PMBUS_TX_BU

F_SIZE

Max. value of buffers for storing data to be sent by PMBUS. 40

PMBUS_RX_B

UF_SIZE

Max. value of buffers for storing data to be received by

PMBUS.

40

COMMAND_TA

BLE_SIZE

The total number of commands to be registered in the

command check table (s_st_pmbus_command_check_table).

14

SEQ_INDEX_xx

x

 Define the UART command receive process state. (see

below for macro names)

-

SEQ_INDEX_IDLE : Waiting for UART receive. 0

SEQ_INDEX_SLAVE_ADDR : Receive end up to slave

address.

1

SEQ_INDEX_RX : READ/WRITE information has been

received.

2

SEQ_INDEX_COMMAND : Command code has been

received.

3

SEQ_INDEX_WRITE_DATA : PMBUS transmission data is

being received or has been received.

4

SEQ_INDEX_MAX : The maximum number of PMBUS

transmission data that can be processed by this application.

256

UART_RESPO

NSE_TIMEOUT

_TIME

Soft timer count value that waits until UART communication

is completed when PMBUS receive is returned in UART

0x50000

RET_OK Return value of the application internal function. Normal end. 0

RET_ERROR Return value of the application internal function. Abnormal

end.

1

Table 22 PMBus Master API macro definition list

File

name

Macro name Usage Defined

Value

r_pmb

us_ap

p_mas

ter.h

PMBUS_RET_x

xx

 Error code returned from PMBus middleware API. (See below for

macro names)

-

PMBUS_RET_OK : Normal end. 0

PMBUS_RET_ERROR : Abnormal end. See the

st_pmbus_cfg_m_t.e_pmbus_result_m for more information

about the source.

1

PMBUS_RET_PARAM : Specified argument is invalid. 2

PMBUS_RET_NOT_OPENED : No OPEN. 3

PMBUS_RET_OPENED : Already OPEN. 4

Table 23 PMBus Master Middleware function macro definition list

File

name

Macro name Usage Defined

Value

r_pmb

us_ap

p_mas

ter.h

PMBUS_TRAN

S_xxx

 Defines the transaction code used to determine the protocol

supported by each command code. (See below for macro

names)

-

PMBUS_TRANS_RESERVED : Command code is RESERVED. 0x00

RX Family/RA Family PMBus Master-Slave communication using I2C bus interface (RIIC/I3C)

R01AN7660EJ0100 Rev.1.00 Page 73 of 178

Jan.14.25

PMBUS_TRANS_READ_BYTE : Command Code Supports

READ BYTE Transactions.

0x01

PMBUS_TRANS_READ_WORD : Command Code Supports

READ WORD Transactions.

0x02

PMBUS_TRANS_BLOCK_READ : Command Code Supports

BLOCK READ Transactions.

0x03

PMBUS_TRANS_SEND_BYTE : Command Code Supports

SEND BYTE Transactions.

0x10

PMBUS_TRANS_WRITE_BYTE : Command Code Supports

WRITE BYTE Transactions

0x20

PMBUS_TRANS_WRITE_WORD : Command Code Supports

WRITE WORD Transactions.

0x30

PMBUS_TRANS_BLOCK_WRITE : Command Code Supports

BLOCK WRITE Transactions.

0x40

PMBUS_TRANS_WRITE_QUICK : Command Code Supports

Write Quick Command Transactions.

0x50

PMBUS_TRANS_PROCESS_CALL : Command Code Supports

PROCESS CALL Transactions.

0x60

PMBUS_TRANS_BLOCK_PROCESS_CALL : Command Code

Supports Block Write-Block Read Process Call Transactions.

0x70

PMBUS_COM

MAND_CODE_

MAX

The maximum number of commands supported by the PMBus

middleware.

256

PMBUS_BLOC

K_SIZE_MIN

Min. amount of data that can be sent/received by Block

command will.

1

PMBUS_BLOC

K_SIZE_MAX

Max. amount of data that can be sent/received by Block

command will.

32

PMBUS_BUF_

SIZE_MIN

Min. of buffer size that can be registered in PMBUS Middleware

during Open.

1

PMBUS_BUF_

SIZE_MAX

Max. of buffer size that can be registered in PMBUS Middleware

during Open. (Max. number of data to write during Block

Read/Block Write (32) + Command code (1) + Number of data to

write/Number of data to read (1) + PEC (1))

PMBUS_

BLOCK_

SIZE_MA

X + 3

PMBUS_CRC8

_USE_IP

Defined value that specifies the PEC calculation method. Set to

"1 (uses the calculator built into the MCU)" or "0 (specifies

whether to use a table for calculation)." If you want to use the

calculator built into the MCU, you must implement code that uses

a CRC calculator in the r_pmbus_nwk_AddCrc8() function and

then change the setting to "1 (uses the calculator built into the

MCU)."

0

PMBUS_ALER

T_RESPONSE

_ADDR

The slave address (ARA) of the communication destination for

receiving ALERT information specified when

R_PMBUS_Master_ReceiveARA is executed. The value defined

is compliant with the SMBus specifications.

0x0C

PMBUS_SLAV

E_ADDR_MAX

Max. number of slave address that can be specified in the

PMBUS master API arguments.

0x80

RX Family/RA Family PMBus Master-Slave communication using I2C bus interface (RIIC/I3C)

R01AN7660EJ0100 Rev.1.00 Page 74 of 178

Jan.14.25

5.1.8 PMBus Master Control Flowchart

The flow of PMBus Master Application section is shown in section 5.1.8.1, the flow of PMBus Master API
section is shown in Section 5.1.8.2, and the flow of PMBus Master drivers section is shown in Section
5.1.8.3. In addition, Please refer to the project code for PMBus Master Middleware section.

5.1.8.1 PMBus Master Application Flowchart

PMBus Master Application part communicates with PC and calls API that control PMBus Master Middleware
part. The flowchart of PMBus Master Application part is shown below. Refer to the Project Code for the
process flow of the intermediate functions in PMBus Master Application section. The red-framed areas in the
PAD diagram related to RSCI11 indicate the changes made to the code generated by the Smart
Configurator.

◼ PMBus master overall outline flow

RX Family/RA Family PMBus Master-Slave communication using I2C bus interface (RIIC/I3C)

R01AN7660EJ0100 Rev.1.00 Page 75 of 178

Jan.14.25

◼ PMBus master function detailed flow

⚫ main

RX Family/RA Family PMBus Master-Slave communication using I2C bus interface (RIIC/I3C)

R01AN7660EJ0100 Rev.1.00 Page 76 of 178

Jan.14.25

⚫ pmbus_demo_main

⚫ pmbus_demo_init

RX Family/RA Family PMBus Master-Slave communication using I2C bus interface (RIIC/I3C)

R01AN7660EJ0100 Rev.1.00 Page 77 of 178

Jan.14.25

⚫ pmbus_demo_update_status

⚫ pmbus_Demo_notify_result

RX Family/RA Family PMBus Master-Slave communication using I2C bus interface (RIIC/I3C)

R01AN7660EJ0100 Rev.1.00 Page 78 of 178

Jan.14.25

⚫ pmbus_demo_response

RX Family/RA Family PMBus Master-Slave communication using I2C bus interface (RIIC/I3C)

R01AN7660EJ0100 Rev.1.00 Page 79 of 178

Jan.14.25

⚫ pmbus_demo_pmbus_execute

RX Family/RA Family PMBus Master-Slave communication using I2C bus interface (RIIC/I3C)

R01AN7660EJ0100 Rev.1.00 Page 80 of 178

Jan.14.25

⚫ pmbus_demo_uart_rev_callback

RX Family/RA Family PMBus Master-Slave communication using I2C bus interface (RIIC/I3C)

R01AN7660EJ0100 Rev.1.00 Page 81 of 178

Jan.14.25

⚫ pmbus_demo_notify_event

⚫ pmbus_demo_update_sequence

RX Family/RA Family PMBus Master-Slave communication using I2C bus interface (RIIC/I3C)

R01AN7660EJ0100 Rev.1.00 Page 82 of 178

Jan.14.25

⚫ r_Config_RSCI11_callback_transmitend

⚫ r_Config_RSCI11_callback_receiveend

⚫ r_Config_RSCI11_callback_receiveerror

RX Family/RA Family PMBus Master-Slave communication using I2C bus interface (RIIC/I3C)

R01AN7660EJ0100 Rev.1.00 Page 83 of 178

Jan.14.25

5.1.8.2 PMBus Master API flowchart

PMBus Master API part controls PMBus Master Middleware part. The flowchart for PMBus Master API part
is shown below.

⚫ R_PMBUS_Master_Open

⚫ R_PMBUS_Master_Close

RX Family/RA Family PMBus Master-Slave communication using I2C bus interface (RIIC/I3C)

R01AN7660EJ0100 Rev.1.00 Page 84 of 178

Jan.14.25

◼ R_PMBUS_Master_Write

RX Family/RA Family PMBus Master-Slave communication using I2C bus interface (RIIC/I3C)

R01AN7660EJ0100 Rev.1.00 Page 85 of 178

Jan.14.25

⚫ R_PMBUS_Master_Read

RX Family/RA Family PMBus Master-Slave communication using I2C bus interface (RIIC/I3C)

R01AN7660EJ0100 Rev.1.00 Page 86 of 178

Jan.14.25

⚫ R_PMBUS_Master_WriteRead

RX Family/RA Family PMBus Master-Slave communication using I2C bus interface (RIIC/I3C)

R01AN7660EJ0100 Rev.1.00 Page 87 of 178

Jan.14.25

⚫ R_PMBUS_Master_EnablePEC

⚫ R_PMBUS_Master_DisablePEC

⚫ R_PMBUS_Master_ReceiveARA

RX Family/RA Family PMBus Master-Slave communication using I2C bus interface (RIIC/I3C)

R01AN7660EJ0100 Rev.1.00 Page 88 of 178

Jan.14.25

5.1.8.3 PMBus Master Drivers Flowchart

In RX26T, the drivers are partially changed according to PMBus Master process from the code generated by
the smart configurator. Refer to Customizing 5.1.4 PMBus Master Driver section for details. The deficit in
each pad diagram is the correction part. The areas framed in red in each PAD diagram are the areas to be
corrected.

⚫ r_Config_RIIC0_transmit_interrupt

⚫ r_Config_RIIC0_receive_interrupt

RX Family/RA Family PMBus Master-Slave communication using I2C bus interface (RIIC/I3C)

R01AN7660EJ0100 Rev.1.00 Page 89 of 178

Jan.14.25

⚫ r_Config_RIIC0_callback_transmitend

⚫ r_Config_RIIC0_callback_receiveend

⚫ r_Config_RIIC0_callback_error

RX Family/RA Family PMBus Master-Slave communication using I2C bus interface (RIIC/I3C)

R01AN7660EJ0100 Rev.1.00 Page 90 of 178

Jan.14.25

⚫ r_User_RIIC0_callback_receive

⚫ R_Config_TMR0_Start

⚫ r_Config_TMR0_cmia0_interrupt

RX Family/RA Family PMBus Master-Slave communication using I2C bus interface (RIIC/I3C)

R01AN7660EJ0100 Rev.1.00 Page 91 of 178

Jan.14.25

5.2 PMBus Salve softwares

PMBus Slave software is classified into the user application part, middleware part, and driver part as shown
in Figure 21 PMBus Slave Software Module Configuration (RX26T Group) and Figure 22 PMBus Slave
Software Module Configuration (RA6T3 Group). The driver for the RX26T group uses software generated by
the Smart Configurator, and for the RA6T3 group uses software generated by FSP, with some modifications
made to Execute PMBus Slave operations. Table 24 shows RX26T folder/file configurations for each
software, and Table 25 shows RA6T3 groups.

Table 24 PMBus Slave RX26T Folder/File Configuration

Folder name File name Outline

pmbus_app\ r_app_main.c The main program of PMBus demonstration system. User

Applications

PMBus user application process is added to main file of

the motor sample.

pmbus_app\ r_app_board_ui.c The program for controlling the motor to monitor UI of the

motor sample board.

Commented motor revolution starting control is used

when SW1 is ON for the motor sample.

pmbus_app\ r_app_main.h The header file to use for the main program of PMBus

demonstration system.

PMBus user application process is added to main file of

the motor sample.

pmbus_slave\ r_pmbus_app_slave.c The application-layer of PMBus Middleware.

pmbus_slave\ r_pmbus_app_slave.h The header file to use for application-layer of PMBus

Middleware.

pmbus_slave\ r_pmbus_nwk_slave.c The network-layer of PMBus Middleware.

pmbus_slave\ r_pmbus_nwk_slave.h The header file to use for the network-layer of PMBus

Middleware.

pmbus_slave\ r_pmbus_wrapper_slave.c Use in the wrapper function which absorbs the difference

between RX26T and RA6T3 driver API in the driver-layer

of PMBus Middleware.

pmbus_slave\ r_pmbus_wrapper_slave.h The header file to use for wrapper function in the driver-

layer of PMBus Middleware.

src\smc_gen\C

onfig_RIIC0\

Config_RIIC0.c The driver-layer of PMBus Middleware. Generate by the

smart configurator.

src\smc_gen\C

onfig_RIIC0\

Config_RIIC0.h The header file to use for the driver-layer of PMBus

Middleware. Generate by the smart configurator.

src\smc_gen\C

onfig_RIIC0\

Config_RIIC0_user.c The driver-layer of PMBus Middleware. Generate by the

smart configurator.

src\smc_gen\C

onfig_TMR0\

Config_TMR0.c The driver-layer of PMBus Middleware. Generate by the

smart configurator.

src\smc_gen\C

onfig_TMR0\

Config_TMR0.h The header file to use for the driver-layer of PMBus

Middleware. Generate by the smart configurator.

src\smc_gen\C

onfig_TMR0\

Config_TMR0_user.c The driver-layer of PMBus Middleware. Generate by the

smart configurator.

src\smc_gen\C

onfig_CMT0\

- The driver-layer used in motor sample. Generate by the

smart configurator.

src\smc_gen\C

onfig_IWDT\

- The driver-layer used in motor sample. Generate by the

smart configurator.

src\smc_gen\C

onfig_MOTOR

\

- The driver-layer used in motor sample. Generate by the

smart configurator.

RX Family/RA Family PMBus Master-Slave communication using I2C bus interface (RIIC/I3C)

R01AN7660EJ0100 Rev.1.00 Page 92 of 178

Jan.14.25

src\smc_gen\C

onfig_POE\

- The driver-layer used in motor sample. Generate by the

smart configurator.

src\smc_gen\C

onfig_PORT\

- The driver-layer used in motor sample. Generate by the

smart configurator.

src\smc_gen\C

onfig_S12AD2

\

- The driver-layer used in motor sample. Generate by the

smart configurator.

motor_module\ - Middleware parts of motor sample.

app\ - Main application parts of motor sample.

The demonstration system excludes files in main folder

and r_app_board_ui.c in the board_ui folder from being

built.

app\cfg\ r_app_control_cfg.h File that defines the configuration information of motor

sample.

Change "APP_CFG_USE_UI" to "MAIN_UI_BOARD" to

control the motor by Board UI.

Table 25 PMBus Slave RA6T3 Folder/File Configuration

Folder name File name Outline

pmbus_app\ r_app_pmbus_main.c The main program of PMBus demonstration system.

User Applications

PMBus user application process is added to main file

of motor sample.

pmbus_app\ r_app_pmbus_main.h The header file to use for the main program of PMBus

demonstration system.

PMBus user application process is added to main file

of motor sample.

pmbus_app\ r_app_control_parameter.h The header file to use for the main program of PMBus

demonstration system.

Renamed only, the file r_mtr_control_parameter.h of

motor sample.

pmbus_app\ r_app_motor_parameter.h The header file to use for the main program of PMBus

demonstration system.

Renamed only, the file r_mtr_moter_parameter.h of

motor sample.

pmbus_slave\ r_pmbus_app_slave.c The application-layer of PMBus Middleware.

pmbus_slave\ r_pmbus_app_slave.h The header file to use for the application-layer of

PMBus Middleware.

pmbus_slave\ r_pmbus_nwk_slave.c The network-layer of PMBus Middleware.

pmbus_slave\ r_pmbus_nwk_slave.h The header file to use for the network-layer of PMBus

Middleware.

pmbus_slave\ r_pmbus_wrapper_slave.c Use in the wrapper function which absorbs the

difference between RX26T and RA6T3 driver API in

the driver-layer of PMBus Middleware.

pmbus_slave\ r_pmbus_wrapper_slave.h The header file for wrapper function in the driver-layer

of PMBus Middleware.

pmbus_slave\ r_smbus_slave.c The SMBus driver-layer of PMBus Middleware.

Corresponds to the r_iic_b_slave.c of FSP.

pmbus_slave\ r_smbus_slave.h The header file to use for the SMBus driver-layer of

PMBus Middleware.

Corresponds to the r_iic_b_slave.h of FSP.

RX Family/RA Family PMBus Master-Slave communication using I2C bus interface (RIIC/I3C)

R01AN7660EJ0100 Rev.1.00 Page 93 of 178

Jan.14.25

pmbus_slave\ r_smbus_slave_api.h The header file to use for SMBus driver-layer of

PMBus Middleware.

Corresponds to the r_i2c_slave_api.h of FSP.

pmbus_slave\ r_smbus_slave_cfg.h The header file to use for SMBus driver-layer of

PMBus Middleware.

Corresponds to the r_iic_b_slave_cfg.h of FSP.

ra\fsp\src\r_gpt\ r_gpt.c PMBus Middleware generated by FSP and the drivers

used by the motor samples.

ra\fsp\inc\api\ r_tiemr_api.h PMBus Middleware generated by FSP and the header

file of the driver layer used in the motor sample.

ra\fsp\inc\instan

ce\

r_gpt.h PMBus Middleware generated by FSP and the header

file of the driver layer used in the motor sample.

ra\ - Various files including the drivers used in the motor

samples generated by FSP.

ra_cfg\ - The driver-layer of PMBus Middleware. Generate by

the smart configurator.

ra_gen\ - The driver-layer of PMBus Middleware. Generate by

the smart configurator.

motor_module\ - Middleware of the motor sample

src\ - Main application parts of motor sample.

The demonstration system excludes files in src

\ application \ main folder from being built.

5.2.1 PMBus Slave operation Sequence

To PMBus for Write operation, Read operation, Write/Read operation, and Alert Response operation
according to the command-sequence. the Write operation sequence is shown in Figure 32 and Figure 33,
the Read operation sequence and Write/Read operation sequence are shown in Figure 34 and Figure 35,
and the Alert Response operation is shown in Figure 36 and Figure 37 For API functions used in each
operation, refer to PMBus Slave Function List in Section 5.2.3.

[Sequence diagram arrow legend]

Function Call (Own task) :

Function Call (Other task) :
Function Return :
Asynchronous Notification :

RX Family/RA Family PMBus Master-Slave communication using I2C bus interface (RIIC/I3C)

R01AN7660EJ0100 Rev.1.00 Page 94 of 178

Jan.14.25

Figure 32 PMBus Slave Write protocol Sequence Diagram (1/2)

main process
PMBus

Middleware
RIIC TXI

interrupt
RIIC RXI

interrupt

call R_PMBUS_Slave_Open

RIIC EEI
interrupt

call R_Config_RIIC0_Slave_Start

call R_Config_RIIC0_Slave_Receive

Start condition detect interrupt
execute motor module main loop

Receive empty interrupt

read ICDRR (dummy read)

set ICDRR to rx buffer

calt:receive first byte (read slave address) and write

call R_Config_TMR0_Start

c

check command code

Update result (CMD_WAIT)

c

c

call receive callback

No operation

call start callback

call start callback

Update status (RX)

alt: first detection

Update status (START)

calculate PEC data from slave address

alt:PEC enabled

Check command is supported

Continued on next
page

set ICDRR to rx buffer

call receive callback

alt:receive over second byte (command)

alt: data_size < data_len (data)

alt:command is write command

NOTE : status is expressed by omitting the element defined in the e_pmbus_nwk_status_s_t.
Result is expressed by omitting the element defined in the e_pmbus_packet_result_s_t.

RX Family/RA Family PMBus Master-Slave communication using I2C bus interface (RIIC/I3C)

R01AN7660EJ0100 Rev.1.00 Page 95 of 178

Jan.14.25

Figure 33 PMBus Slave Write protocol Sequence Diagram (2/2）

c

call R_PMBUS_Slave_Close

call R_Config_RIIC0_Slave_Stop

Stop condition detect

call receive end callback

calt: system stop by user

call R_Config_TMR0_Stop

Update status (IDLE)

exexute motor control

Update result (OK)

alt:rxIndex = 0

Update result (CMD_QCMD)

alt:PEC enabled

call R_Config_RIIC0_Slave_Receive

execute supplementary processing for motor control/PMBUS control

main process
PMBus

Middleware
RIIC TXI

interrupt
RIIC RXI

interrupt
RIIC EEI

interrupt

alt:result = CMD_COMP or result = CMD_QMCD

calculate PEC data from rx_buffer

call command execute callback

RX Family/RA Family PMBus Master-Slave communication using I2C bus interface (RIIC/I3C)

R01AN7660EJ0100 Rev.1.00 Page 96 of 178

Jan.14.25

Figure 34 PMBus Slave Read and Write Read protocol Sequence Diagram (1/2）

main process
PMBus

Middleware
RIIC TXI

interrupt
RIIC RXI

interrupt

call R_PMBUS_Slave_Open

RIIC EEI
interrupt

RIIC TEI
interrupt

call R_Config_RIIC0_Slave_Start

call R_Config_RIIC0_Slave_Receive

Start condition detect interruptexecute motor module main loop

Receive empty interrupt

read ICDRR (dummy read)

set ICDRR to rx buffer

calt:receive first byte (read slave address)

call R_Config_TMR0_Start

calt:receive second byte (command)

check command code

Update result (CMD_WAIT)

c

call receive callback

call start callback

calt: data_size < data_len (data)

calt: data_size == data_len (last data)

call start callback

Update status (RX)

calcurate PEC data from rx_buffer

alt:PEC enabled

Update result (CMD_COMP)

alt: start

Update status (START)

Continued on next page

call receive callback

No operation

set ICDRR to rx buffer

call receive callback

alt:command is write command

set ICDRR to rx buffer

NOTE : status is expressed by omitting the element defined in the e_pmbus_nwk_status_s_t.
Result is expressed by omitting the element defined in the e_pmbus_packet_result_s_t.

RX Family/RA Family PMBus Master-Slave communication using I2C bus interface (RIIC/I3C)

R01AN7660EJ0100 Rev.1.00 Page 97 of 178

Jan.14.25

Figure 35 PMBus Slave Read and Write Read protocol Sequence Diagram (2/2）

Set write buffer data to ICDRT

Transmit empty interrupt
alt:transmit interrupt after detect restart condition

Transmit end interrupt

Stop condition detect interrupt

Update status (IDLE)

call R_Config_TMR0_Stop

call transmit end callback

Update status (TX_RESP)

Update result (OK)

call R_PMBUS_Slave_Close

call R_Config_RIIC0_Slave_Stop

calt: system stop by user

exexute motor control set response data to tx buffer

R_Config_RIIC0_Slave_Send

calcurate PEC data from tx_buffer

call start callback

Transmit empty interrupt

Set write buffer data to ICDRT

alt:other

alt:status is RX

call R_Config_RIIC0_Slave_Receive

execute supplementary processing for motor control/PMBUS control

main process
PMBus

Middleware
RIIC TXI

interrupt
RIIC RXI

interrupt
RIIC EEI
interrupt

RIIC TEI
interrupt

alt:PEC enabled

call command execute callback

RX Family/RA Family PMBus Master-Slave communication using I2C bus interface (RIIC/I3C)

R01AN7660EJ0100 Rev.1.00 Page 98 of 178

Jan.14.25

Figure 36 PMBus Slave Alert Response Address protocol Sequence Diagram（1/2）

main process
PMBus

Middleware
RIIC TXI

interrupt
RIIC RXI

interrupt

call R_PMBUS_Slave_Open

RIIC EEI
interrupt

RIIC TEI
interrupt

call R_Config_RIIC0_Slave_Start

call R_Config_RIIC0_Slave_Receive

Start condition detect interrupt

execute motor module main loop

call R_Config_TMR0_Start

call start callback

detect ALERT

call R_PMBUS_Slave_SendARA

execute motor module main

clear pec result

alt:PEC enabled

Update status (START)

alt: start

set ara flag

reset slave addres and restart i2c

stop i2c driver

set response data to tx buffer

Continued on next page

NOTE : status is expressed by omitting the element defined in the e_pmbus_nwk_status_s_t.
Result is expressed by omitting the element defined in the e_pmbus_packet_result_s_t.

RX Family/RA Family PMBus Master-Slave communication using I2C bus interface (RIIC/I3C)

R01AN7660EJ0100 Rev.1.00 Page 99 of 178

Jan.14.25

Figure 37 PMBus Slave Alert Response Address protocol Sequence Diagram（2/2）

Set write buffer data to ICDRT

Transmit empty interrupt

Transmit end interrupt

Stop condition detect interrupt

Update status (IDLE)

call R_Config_TMR0_Stop

call transmit end callback

Update result (OK)

call R_PMBUS_Slave_Restart

calt: chane normal protocol by user

execute motor module main loop

Update status (TX)

call start callback

alt:ara_flag setting and write

R_Config_RIIC0_Slave_Send

calcurate PEC data from tx_buffer

alt:PEC enabled

alt:other

No operation

call R_Config_RIIC0_Slave_Receive

clear ara flag

reset slave addres and restart i2c driver

stop i2c driver

execute supplementary processing for motor control/PMBUS control

main process
PMBus

Middleware
RIIC TXI

interrupt
RIIC RXI

interrupt
RIIC EEI

interrupt
RIIC TEI

interrupt

RX Family/RA Family PMBus Master-Slave communication using I2C bus interface (RIIC/I3C)

R01AN7660EJ0100 Rev.1.00 Page 100 of 178

Jan.14.25

5.2.2 PMBus Slave status transitions

The status of PMBus Slave middleware is managed by each of Application Layer and Driver Layer. API part
manages protocol status transitions, and the driver part manages data transmission/reception numbers.
Section 5.2.2.1 shows the status transitions of API part and Section 5.2.2.2 shows the status transitions of
the driver part.

5.2.2.1 PMBus Slave Middleware Application Layer status transitions

 Middleware Application Layer status transitions of PMBus Slave are waiting in IDLE status in preparation for
reception from PMBus Master. When a command is subsequently sent from PMBus Master, the status of
transmission, reception, and error handling is managed in accordance with the command code. Application
Layer status transitions of the following PMBus Slave are shown in Figure 38, Figure 39, Figure 40, Figure
41, Table 26, Table 27 and Table 28.

Figure 38 PMBus Slave Middleware Application Layer status transitions diagram

Bold or bold indicates the default destination and Event.
A thin line or thin character indicates the transition point and Event when an error occurs.
The transition order of each protocol is shown below. It is represented by "(Transition source status:
[Event](supplementary information)".)

RX Family/RA Family PMBus Master-Slave communication using I2C bus interface (RIIC/I3C)

R01AN7660EJ0100 Rev.1.00 Page 101 of 178

Jan.14.25

Figure 39 PMBus Slave Middleware Application Layer status transitions diagram Supplement to

Figure 38

[Event List]
*[Exx] indicates normal Event, and [errxx] indicates Event when an error occurs.

E00/err0_Open ,E01_Close *1 ,E02_EnablePEC *1
E03_DisablePEC *1 ,E04_SendARA ,E05/err05_Restart
E06_Interrupt (Start Condition detect) ,
E07/err07_Interrupt (Receive buffer full when the RW bit of the slave address is set to write) *2,
E08/err08_Interrupt (Receive Buffer Full),
E09/err09_Interrupt (Transmit buffer empty when the RW bit of the slave address is read) *2,
E0A/err0A_Interrupt (Transmit Interrupt) ,E0B_Interrupt (Transmit End Interrupt) *1,
E0C/err0C_Interrupt (Stop Condition detect),
err0D_Interrupt (Arbitlation Lost) *1 ,err0E_Interrupt (NACK detect) *1 ,err0F_Interrupt (Timeout Detect)

*1. A Event in which no status transitions occur.
*2. Whether a Receive Buffer full interrupt or a Transmit Buffer empty interrupt occurs when a slave address is received,

The hardware is determined by RW of the slave address.
*3. Set an error code in PACKET RESULT and enter ERROR in the following cases.

- The number of received data exceeds the receive buffer size. PACKET RESULT=DATA_SIZE
- When the receive buffer is not registered. PACKET RESULT=NOT_READY
- The first data (command) received is unsupported. PACKET RESULT=CMD_NOT_SUPPORT

*4. Set an error code in PACKET RESULT and enter ERROR in the following cases.
- The transmit buffer has not been registered. PACKET RESULT = NOT_READY

*5. Check PACKET RESULT and execute the callback. Refer to the status diagram of PACKET RESULT for the term to execute
the callback.

RX Family/RA Family PMBus Master-Slave communication using I2C bus interface (RIIC/I3C)

R01AN7660EJ0100 Rev.1.00 Page 102 of 178

Jan.14.25

⚫ PACKET RESULT status transitions

Figure 40 PMBus Slave Middleware Application Layer status transitions diagram for PACKET

RESULT

Figure 41 PMBus Slave Middleware Application Layer status transitions diagram for PACKET

RESULT Supplement to Figure 40

*1. Calls a callback function and executes command processing.

*2. [Exx] stands for one of the following events:。

 [E07/err07]
 [E08/err08]
 [E09/err09]
 [E0A/err0A]
 [err0F]
*3. Call the callback function and Executes error notification.
<ERROR> means one of the following.

DATA_SIZE_ERROR
PEC_ERROR
TIMEOUT
INTERNAL_ERROR
NOT_READY
CMD_NOT_SUPPORT

*4. Call the callback function and execute ARA reply completion process.

RX Family/RA Family PMBus Master-Slave communication using I2C bus interface (RIIC/I3C)

R01AN7660EJ0100 Rev.1.00 Page 103 of 178

Jan.14.25

Table 26 PMBus Slave Application Layer status transitions table (ara_flag = 0)

This table shows the state transition table when ara_flag is 0.
Explanations of the annotations are summarized in Figure 27

This table and.Figure 27 should be interpreted as follows.

 event consists of an abbreviation for the API name and the interrupt cause.
 status consists of an abbreviation for the "e_pmbus_nwk_status_s_t" element name.
 "If (<condition>)" means a conditional transition.
 [→<state>] means a transition to a state.
 "ERROR (<error name>)" means the API return value.
 "PACKET RESULT(<error name>)" means the error information stored in the API argument p_e_packet_result).
 [-] means no state transition.
 Light green indicates state transitions when ara_flag=0 in Figure 38.

 Light blue indicates state transitions when ara_flag=1 in Figure 38.
 IDLE START RX TX_RESP ERROR *5

E00/err00_Open →

IDLE*7

→
IDLE*7

→
IDLE*7

→
IDLE*7

→
IDLE*7

E01_Close - - - - -

E02_EnablePEC - - - - -

E03_DisablePEC - - - - -

E04_SendARA →

ara_flag = 1

→
IDLE

PACKET RESULT
(OK)

ara_flag = 1

→
IDLE

PACKET RESULT
(OK)

ara_flag = 1

→
IDLE

PACKET RESULT
(OK)

ara_flag = 1

→
IDLE

PACKET RESULT
(OK)

ara_flag = 1

E05/err05_Restar
t

→

ara_flag = 0

→
IDLE

PACKET RESULT
(OK)

ara_flag = 0

→
IDLE

PACKET RESULT
(OK)

ara_flag = 0

→
IDLE

PACKET RESULT
(OK)

ara_flag = 0

→
IDLE

PACKET RESULT
(OK)

ara_flag = 0

E06_Interrupt
(Start

Condition detect)

→

START

- - - -

E07/err07_Interru
pt

(Receive Buffer
Full with slave

address is write)

- if (detect start
condition)

→
RX

PACKET RESULT
(PEC_ERROR)

→
ERROR

PACKET RESULT
(PEC_ERROR)

→
ERROR

-

E08/err08_Interru
pt

(Receive Buffer
Full)

- - read receive data from
ICDRR

if (rx_index over buffer
size)

PACKET RESULT
(DATA_SIZE)

→
ERROR

if (buffer size is NULL)
PACKET RESULT

(NOT_READY)
→

ERROR
if (rx_index ==0) &

(command supported)
PACKET RESULT

(CMD_WAIT)

if (rx_index ==0) &
(command not support)

PACKET RESULT
(CMD_NOT_SUPPORT)

→
ERROR

PACKET RESULT
(INTERNAL)

→
ERROR

-

E09/err09_Interru
pt

(Transmit
Interrupt with

slave address is
read)

- PACKET RESULT
(INTERNAL)

→
ERROR

if (PACKET RESULT ==
CMD_WAIT) & (detect

restart condition)
PACKET RESULT

(CMD_COMP)

→

TX_RESP*1*
if (PACKET RESULT !=

CMD_WAIT)
PACKET RESULT

- -

RX Family/RA Family PMBus Master-Slave communication using I2C bus interface (RIIC/I3C)

R01AN7660EJ0100 Rev.1.00 Page 104 of 178

Jan.14.25

(PEC_ERROR)
→

ERROR

E0A/err0A_Interr
upt

(Transmit
Interrupt)

- - - set transmit data to
ICDRT

-

E0B_Interrupt
(Transmit End

Interrupt)

- - - - -

E0C/err0C_Interr
upt

(Stop Condition
detect)

- →

IDLE

if (PACKET RESULT ==
CMD_WAIT)

PACKET RESULT
(CMD_COMP)*3

→

IDLE
if(rx_index==0)

PACKET RESULT
(CMD_QUICK)*3

→
IDLE

if (tx bufer size is
NULL)

PACKET RESULT
(NOT_READY)

→
ERROR

if (PACKET
RESULT ==
CMD_WAIT)

PACKET RESULT
(CMD_COMP)*3

→
IDLE

if (b_ara_flag ==
true)

PACKET RESULT
(CMD_ARA_COMP)

*3

→

IDLE

→
IDLE

err0D_Interrupt
(Arbitlation Lost)

- - - - -

err0E_Interrupt
(NACK detect)

- - - - -

err0F_Interrupt
(Timeout Detect)

- PACKET RESULT
(TIMEOUT)

→
ERROR

→

IDLE*6

PACKET RESULT
(TIMEOUT)

→
ERROR

→
IDLE*6

PACKET RESULT
(TIMEOUT)

→
ERROR

→
IDLE*6

-

Table 27 PMBus Slave Application Layer status transitions table (ara_flag = 1)

This table shows the state transition table when ara_flag is 1.

 IDLE START TX ERROR *5

E00/err00_Open →
IDLE*7

→
IDLE*7

→
IDLE*7

→
IDLE*7

E01_Close - - - -

E02_EnablePEC - - - -

E03_DisablePEC - - - -

E04_SendARA ara_flag = 1 →
IDLE

PACKET RESULT
(OK)

ara_flag = 1

→
IDLE

PACKET RESULT
(OK)

ara_flag = 1

→
IDLE

PACKET RESULT
(OK)

ara_flag = 1

E05/err05_Restart ara_flag = 0 →
IDLE

PACKET RESULT
(OK)

ara_flag = 0

→
IDLE

PACKET RESULT
(OK)

ara_flag = 0

→
IDLE

PACKET RESULT
(OK)

ara_flag = 0

E06_Interrupt
(Start

Condition detects)

→

START

- - -

E07/err07_Interrupt
(Receive Buffer Full

with slave address is
write)

- PACKET RESULT
(PEC ERROR)

→
→ERROR

PACKET RESULT
(INTERNAL)

→
ERROR

-

RX Family/RA Family PMBus Master-Slave communication using I2C bus interface (RIIC/I3C)

R01AN7660EJ0100 Rev.1.00 Page 105 of 178

Jan.14.25

E08/err08_Interrupt
(Receive Buffer Full)

- - - -

E09/err09_Interrupt
(Transmit Interrupt

with slave address is
read)

- if (detect start
condition)

→
TX

PACKET RESULT
(PEC_ERROR)

→
ERROR

-

E0A/err0A_Interrupt
(Transmit Interrupt)

- - set transmit data to
ICDRT

if (buffer size is NULL)
PACKET RESULT

(NOT_READY)
→

ERROR

-

E0B_Interrupt
(Transmit End

Interrupt)

- - - -

E0C/err0C_Interrupt
(Stop Condition

detect)

- →

IDLE

→

IDLE

→
IDLE

err0D_Interrupt
(Arbitlation Lost)

- - - -

err0E_Interrupt
(NACK detect)

- - - -

err0F_Interrupt
(Timeout Detect)

- - PACKET RESULT
(TIMEOUT)

→
ERROR

→
IDLE*6

-

E00/err00_Open →
IDLE*7

→
IDLE*7

→
IDLE*7

→
IDLE*7

E01_Close - - - -

E02_EnablePEC - - - -

E03_DisablePEC - - - -

E04_SendARA ara_flag = 1 →
IDLE

PACKET RESULT
(OK)

ara_flag = 1

→
IDLE

PACKET RESULT
(OK)

ara_flag = 1

→
IDLE

PACKET RESULT
(OK)

ara_flag = 1

[NOTE]
*1. Execute user callback after state transition.
*2. Start sending response data.
*3. Start receiving the next command after executing the callback.
*4. Execute a callback to notify the user that the command is not supported.
*5. Execute a callback after ERROR status is changed, and notifies the user of the occurrence of the error.
*6. The callback is executed after ERROR state transition, and Restart process is executed immediately, and IDLE state is entered.
*7. Switches to Idle only when Open occurs after Close.

RX Family/RA Family PMBus Master-Slave communication using I2C bus interface (RIIC/I3C)

R01AN7660EJ0100 Rev.1.00 Page 106 of 178

Jan.14.25

Table 28 PACKET_RESULT State Transition Table

This table shows the state transition table for PACKET_RESULT corresponding to Figure 40.

This table should be interpreted as follows.

 event consists of an abbreviation for the API name and the interrupt cause.
 status consists of an abbreviation for the "e_pmbus_nwk_status_s_t" element name.
 "If (<condition>)" means a conditional transition.
 [→<state>] means a transition to a state.
 [-] means no state transition.

 Light green indicates state transitions in Figure 40.

OK CMD_WAIT CMD_COMP CMD_QUICK
CMD_ARA_C

OMP
<ERROR> *

E00/err00_Op
en - - - - - -

E01_Close
- - - - - -

E02_EnableP
EC

- - - - - -

E03_DisableP
EC

- - - - - -

E04_SendAR
A -

→

OK

→

OK

→

OK

→

OK

→

OK

E05/err05_Re
start -

→

OK

→

OK

→

OK

→

OK

→

OK

E06_Interrupt
(Start

Condition
detect)

- - - - - -

E07/err07_Int
errupt

(Receive
Buffer Full
with slave
address is

write)

→

<ERROR>

→

<ERROR>

→

<ERROR>

→

<ERROR>

→

<ERROR>
-

E08/err08_Int
errupt

(Receive
Buffer Full)

if (first receive data
and command is

supported)

→

CMD_WAIT
else

→

<ERROR>

→

<ERROR>

→

<ERROR>

→

<ERROR>

→

<ERROR>
-

E09/err09_Int
errupt

(Transmit
Interrupt with

slave
address is

read)

→

<ERROR>

if (slave
address (read)

detect with
restart

condition)

→

CMD_CMP
else

→

<ERROR>

→

<ERROR>

→

<ERROR>

→

<ERROR>
-

E0A/err0A_In
terrupt

(Transmit
Interrupt)

→

<ERROR>

→

<ERROR>

→

<ERROR>

→

<ERROR>

→

<ERROR>

E0B_Interrup
t

(Transmit
End

Interrupt)

- - - - - -

E0C/err0C_In
terrupt
(Stop

Condition
detect)

if (rx_index is zero
(no receive data))

→

CMD_QUICK

→

CMD_CMP
- - - -

RX Family/RA Family PMBus Master-Slave communication using I2C bus interface (RIIC/I3C)

R01AN7660EJ0100 Rev.1.00 Page 107 of 178

Jan.14.25

err0D_Interru
pt

(Arbitlation
Lost)

- - - - - -

err0E_Interru
pt

(NACK
detect)

- - - - - -

err0F_Interru
pt

(Timeout
Detect)

→

<ERROR>

→

<ERROR>

→

<ERROR>

→

<ERROR>

→

<ERROR>
-

callback end

- -

if (ara_flag ==
false)

→

OK
if (ara_flag ==

true)

→

CMD_ARA_CO
MP

→

OK

→

OK

→

OK

* For detailed conditions under which an <ERROR> occurs, see the PMBus Slave Application Layer state
transition tables shown in Table 26 and Table 27.

RX Family/RA Family PMBus Master-Slave communication using I2C bus interface (RIIC/I3C)

R01AN7660EJ0100 Rev.1.00 Page 108 of 178

Jan.14.25

5.2.2.2 PMBus Slave Driver Layer status transitions

The state transition of the PMBus Slave Driver Layer is divided into the transmit operation part and the
receive operation part to PMBus Master, and the specified data is transmitted and received by the specified
number of bytes. PMBus Slave Driver Layer status transitions are shown in Figure 42, Figure 43, Table 29
and Table 30.

Figure 42 PMBus Slave Driver Layer status transitions

Figure 43 PMBus Master Driver status transition diagram (Supplement to Figure 42)

Black-bold line (bold): Normal route
Thin wire (thin): Route at error or restart

[Event List]
*[Exx] indicates normal Event, and [errxx] indicates Event when an error occurs.

Abnormal Event that are not shown in the list occur in any status, and Notify an error by callback error.
E00/err00_Send
E01/err01_Rreceive
E02_Interrupt (Receive Buffer Full)
E03_Interrupt (Transmit)
E04_Interrupt (Transmit End)
E05/err05_Interrupt (Start Condition Detect)
E06/err06_Interrupt (Stop Condition Detect)
err07_Interrupt (Arbitlation Lost)
E08/err08_Interrupt (NACK detect)

*1. PMBus demonstration system normally executes a Receive and waits for a read from master.

The receive data count initial value (total_data_size) specified in Receive API specifies the maximum number of Block Write
protocols (35(command (1) + Data Size (1) + Data(32) + PEC (1)) so that the receive data count does not change to STOP
condition reception wait during reception.

*2. If a Stop condition is detected prior to transition to 14, a Receive Event[E01 is generated in callback receivend to initialize the
receive buffer settings, since reception operation is not completed.
Even when the maximum number of receive data is received, Receive Event[E01 is generated in callback receiveend and
the receive buffer setting is initialized.

*3. Send Event[E00] is raised in callback transmit, mode_flag is updated to 17, and status is updated to 11. (Corresponds to
detection of restart condition.)

*4. In transmitend callback, if Receive Event[E01] (PMBUS middleware is command receive mode for the next communication,
or if Send Event[E00] (PMBus middleware is ARA send mode).

RX Family/RA Family PMBus Master-Slave communication using I2C bus interface (RIIC/I3C)

R01AN7660EJ0100 Rev.1.00 Page 109 of 178

Jan.14.25

Table 29 PMBus Slave Driver Layer status transition table（when transmit）

This table shows the state transition when mode_flag is _17_IIC_SLAVE_TRANSMIT.
Explanations of the annotations are summarized in Table 30.

This table and Table 30 should be interpreted as follows.

 Since slave-address 10-bit is not used in PMBus, status control is omitted.
 The status control is omitted because RIIC0 timeout detection interrupt is not used in PMBus.
 [→<number>] is the number of the transition destination. (<number>) indicates the number of the transition destination of

mode_flag.
 [-] means no state transition.
 [Callback <xxx>] refers to executing a callback. Callback error (<number>) means the error-information passed to callback

error.
 [If (<Condition>)] refers to conditional operation.
 Red text indicates the process changed for PMBus middleware.
 Light green indicates state transitions when mode_flag=17 in Figure 42.

 Light blue indicates state transitions when mode_flag=16 in Figure 42.
 _15_IIC_SLAVE_WAIT

_START_CONDITION
_11_IIC_SLAVE_SEN
DS_DATA

_12_IIC_SLAVE_SEN
DS_END

13_IIC_SLAVE_SEND
S_STOP

E00/err00_Send →

15
(17)

→
15

(17)

→
15

(17)

→
15

(17)

E01/err01_Rreceive →

15
(16)

→
15

(16)

→
15

(16)

→
15

(16)

E02_Interrupt
(Receive Buffer Full)

- - - -

E03_Interrupt
(Transmit)

- if (0==remain data)

→

12

- -

E04_Interrupt
(Transmit End)

- - →

13

-

E05/err05_Interrupt
(Start Condition
Detect)

→
11

callback start

- callback error
(MD_ERROR4)

-

E06/err06_Interrupt
(Stop Condition
Detect)

- →
15

callback error
(MD_ERROR4)

callback transmitend *3

err07_Interrupt
(Arbitlation Lost)

- callback error
(MD_ERROR1)

callback error
(MD_ERROR1)

callback error
(MD_ERROR1)

E08/err08_Interrupt
(NACK detect)

- if (0 == remain data)
→
13

if (0 < remain data)
callback transmitend *3

callback error

(MD_ERROR3)

if (0 == remain data)
→
13

if (0 < remain data)
callback transmitend *3

callback error

(MD_ERROR3)

if (0 == remain data)
→
13

if (0 < remain data)
callback transmitend *3

callback error

(MD_ERROR3)

RX Family/RA Family PMBus Master-Slave communication using I2C bus interface (RIIC/I3C)

R01AN7660EJ0100 Rev.1.00 Page 110 of 178

Jan.14.25

Table 30 PMBus Slave Driver Layer status transition table（when receive）

This table shows the state transition when mode_flag is _16_IIC_SLAVE_RECEIVE.
 _15_IIC_SLAVE_WAIT_START_

CONDITION
_10_IIC_SLAVE_RECEIVE_DAT
A

_14_IIC_SLAVE_RECEIVE_STO
P

E00/err00_Send →
15

(17)

→
15

(17)

→
15

(17)

E01/err01_Rreceive →
15

(16)

→
15

(16)

→
15

(16)

E02_Interrupt
(Receive Buffer
Full)

- if (dummy_count < 1)
callback receive

if (ICSR2.STOP == 1) || (rx_count
== rx_len)

→
14

callback receive

-

E03_Interrupt
(Transmit)

- if (ICSR2.START == 1)
callback transmit*1

→
11

(15)

-

E04_Interrupt
(Transmit End)

- *1
→
15

(17)

-

E05/err05_Interrupt
(Start Condition
Detect)

→

10
callback start

- -

E06/err06_Interrupt
(Stop Condition
Detect)

- →
15

callback receiveend*2

callback receiveend *2

err07_Interrupt
(Arbitlation Lost)

- callback error (MD_ERROR1) callback error (MD_ERROR1)

E08/err08_Interrupt
(NACK detect)

- callback error (MD_ERROR3) callback error (MD_ERROR3)

[NOTE]
*1. Raises an Send Event in callback transmit, updates mode_flag to 17, and then updates the status to 11. (Corresponds to detection

of restart condition.)
*2. If a Stop condition is detected prior to transition to 14, a Receive Event[E01 is generated in callback receivend to initialize the

receive buffer settings, since the receive operation is not completed. Even when the maximum number of receive data is received,
Receive Event[E01 is generated in callback receiveend and the receive buffer setting is initialized.

*3. In transmit end callback, if Receive Event[E01] (PMBUS middleware is command receive mode for the next communication, or if
Send Event[E00] (PMBus middleware is ARA send mode).

RX Family/RA Family PMBus Master-Slave communication using I2C bus interface (RIIC/I3C)

R01AN7660EJ0100 Rev.1.00 Page 111 of 178

Jan.14.25

5.2.3 PMBus Slave Function List

PMBus Slave functions are divided into Table 31 and Table 32 of Application functions, API functions in
Table 33, Middleware functions in Table 34, and driver functions in Table 35 and Table 36 generated by the
Smart Configurator and FSP. Some of the driver functions have been changed according to PMBus Slave
process. Refer to Customizing 5.2.4 PMBus Slave Driver section for details.

Table 31 PMBus Slave Application RX26T Function List

File Name Function Name Function

pmbus_app\ r_a

pp_pmbus_main

.c

main The main process for the application in which the initialization

process of PMBus Middleware is added to the existing motor

sample.

r_app_main_start_p

mbus_ctrl

Open PMBUS middleware.

pmbus_ctrl Execute the process corresponding to PMBUS command

received in the main process.

r_pmbus_callback Callback to register with PMBus Middleware. Execute process

corresponding to the received command code.

r_app_pmbus_exe_

write_command

Execute the process corresponding to the write transaction

code command. Called from the callback function.

r_app_pmbus_exe_r

ead_command

Execute the process corresponding to the read transaction

code command. Called from the callback function.

pmbus_app\r_a

pp_board_ui.c

r_app_board_ui_mai

nloop

This process comment the motor rotation start control when

SW1 is ON in the motor sample.

Table 32 PMBus Slave Application RA6T3 Function List

File Name Function Name Function

src\hal_entry.c hal_entry The main process for the application in which the initialization

process of PMBus Middleware is added to the existing motor

sample.

pmbus_app\mai

n\ mtr_main.c

r_app_main_start_p

mbus_ctrl

Open PMBus Middleware.

mtr_main The main process for the application in which the initialization

process of PMBus Middleware is added to the existing motor

sample.

board_ui This process monitors the status of the board UI of the motor

sample and controls the motor.

pmbus_ctrl Execute the process corresponding to PMBUS command

received in the main process.

r_pmbus_callback Callback to register with PMBus Middleware. Execute process

corresponding to the received command code.

r_app_pmbus_exe_

write_command

Execute the process corresponding to the write transaction

code command. Called from the callback function.

r_app_pmbus_exe_r

ead_command

Execute the process corresponding to the read transaction

code command. Called from the callback function.

RX Family/RA Family PMBus Master-Slave communication using I2C bus interface (RIIC/I3C)

R01AN7660EJ0100 Rev.1.00 Page 112 of 178

Jan.14.25

Table 33 PMBus Slave API Function List

File Name Function Name Function

r_pmbus_app_sl

ave.c

R_PMBUS_Slave_Open Open PMBus Middleware and wait for a command from

the master.

R_PMBUS_Slave_Close Close PMBus Middleware.

R_PMBUS_Slave_EnableP

EC

Enable sending and receiving packets to which PEC

has been added.

R_PMBUS_Slave_Disable

PEC

Disable sending and receiving packets with PEC.

R_PMBUS_Slave_SendAR

A

Change to wait for Alert Response protocol-response.

R_PMBUS_Slave_Restart Return from Alert Response protocol-response wait

state to the command-reception wait state.

Table 34 PMBus Slave Middleware Function List

File Name Function Name Function

r_pmbus_app_sl

ave.c

r_pmbus_app_InitCtrl Initialize PMBus Middleware parameters.

r_pmbus_app_int_Transmit

End

Execute transmit end callback process.

r_pmbus_app_int_Receive

End

Execute receive end callback process.

r_pmbus_app_int_Receive Execute receive callback process.

r_pmbus_app_int_Transmit Execute transmit callback process.

r_pmbus_app_int_Notify Execute error detection callback process.

r_pmbus_app_CheckComm

andSupport

Check whether the received command is supported by

PMBus spec.

r_pmbus_nwk_s

lave.c

r_pmbus_nwk_Startlave Start PMBus slave-receive operation.

r_pmbus_nwk_Stoplave Stop PMBus slave-operation.

r_pmbus_nwk_ResetSlave Reset PMBus slave-operation.

r_pmbus_nwk_StartendAR

A

Start PMBus ARA protocol-response operation.

r_pmbus_nwk_ReStartlave Restart PMBus slave-receive process.

r_pmbus_nwk_ProcessStart Execute PMBus start condition detecting process.

r_pmbus_nwk_ProcessRx Execute PMBus slave-receive process.

r_pmbus_nwk_ProcessTx Execute PMBus slave-transmit process.

r_pmbus_nwk_ProcessStop Execute PMBus stop condition detecting process.

r_pmbus_nwk_ProcessErro

rNotice

Execute the process when an interrupt is detected at an

unexpected timing of PMBus.

r_pmbus_nwk_ProcessStart

Read

Execute preprocess when the slave receive mode is

detected.

r_pmbus_nwk_ProcessStart

Write

Execute preprocess when slave transmit mode is

detected.

r_pmbus_nwk_ProcessAfter

Stop

Execute post-processing after PMBus stop condition

detection.

r_pmbus_nwk_ProcessCall

back

Execute a user-registered callback function.

r_pmbus_nwk_AddCrc8 Execute a CRC operation on a single file.

r_pmbus_nwk_CaluculateP

ECAtSlave

Execute a CRC operation on more than one data.

(Slave address is not included.)

r_pmbus_wrapp

er.c

r_pmbus_wrapper_I2cStart Start the I2C Driver. This function is a wrapper function

that absorbs the differences in driver code between

RX26T and RA6T3.

RX Family/RA Family PMBus Master-Slave communication using I2C bus interface (RIIC/I3C)

R01AN7660EJ0100 Rev.1.00 Page 113 of 178

Jan.14.25

r_pmbus_wrapper_I2cStop Stop the I2C Driver. This function is a wrapper function

that absorbs the differences in driver code between

RX26T and RA6T3.

r_pmbus_wrapper_I2cRecei

ve

Start the I2C driver slave receive operation. This

function is a wrapper function that absorbs the

differences in driver code between RX26T and RA6T3.

r_pmbus_wrapper_I2cSend Start the I2C driver slave transmit operation. This

function is a wrapper function that absorbs the

differences in driver code between RX26T and RA6T3.

r_pmbus_wrapper_TimerOp

en

Start the timer driver. This function is a wrapper function

that absorbs the differences in driver code between

RX26T and RA6T3.

r_pmbus_wrapper_TimerCl

ose

Stop the timer driver. This function is a wrapper function

that absorbs the differences in driver code between

RX26T and RA6T3.

r_pmbus_wrapper_TimerSt

art

Start the timer driver count operation. This function is a

wrapper function that absorbs the differences in driver

code between RX26T and RA6T3.

r_pmbus_wrapper_TimerSt

op

Stop the timer driver count operation. This function is a

wrapper function that absorbs the differences in driver

code between RX26T and RA6T3.

r_smbus_handle_callback Callback function for I3C interrupt. This function is only

used RA6T3.

g_gpt5_i2c_timeout_callbac

k

Callback function for the GPT interrupt of the channel

that monitors communication timeout. This function is

only used RA6T3.

RX Family/RA Family PMBus Master-Slave communication using I2C bus interface (RIIC/I3C)

R01AN7660EJ0100 Rev.1.00 Page 114 of 178

Jan.14.25

Table 35 Smart Configurator Function List (RX26T)

File Name Function Name Function Changes

from

diversio

n source

Config_RIIC0.c R_Config_RIIC0_Create Initialize RIIC0 drivers that can specify slave

addresses.

Yes

R_Config_RIIC0_Stop Stop the operation of RIIC0 in slave mode,

including the slave address detection disable

setting.

Yes

R_Config_RIIC0_SLave_

Receive

Start the slave receive operation. Yes

Config_TMR0.c r_Config_TMR0_Start Start the timer count. Yes

Config_TMR0_

User.c

r_Config_TMR0_cmia0_in

terrupt

Interrupt process for the compare match

interrupt A.

Yes

Config_RIIC0_u

ser.c

r_Config_RIIC0_transmit_

interrupt

Interrupt process for the transmit buffer

empty interrupt.

Yes

r_Config_RIIC0_receive_i

nterrupt

Interrupt process for the receive buffer full

interrupt.

Yes

r_Config_RIIC0_error_int

errupt

Interrupt process for error detection interrupt. Yes

r_Config_RIIC0_callback_

transmitend

Transmit end callback function. Yes

r_Config_RIIC0_callback_

receiveend

Receive end callback function. Yes

r_Config_RIIC0_callback_

error

Error callback function when error is detected

by various interrupts of RIIC0.

Yes

r_User_RIIC0_callback_st

art

Start condition detection callback function. New

r_User_RIIC0_callback_tr

ansmit

Transmit callback function. New

r_User_RIIC0_callback_r

eceive

Receive callback function. New

RX Family/RA Family PMBus Master-Slave communication using I2C bus interface (RIIC/I3C)

R01AN7660EJ0100 Rev.1.00 Page 115 of 178

Jan.14.25

Table 36 FSP Function List (RA6T3)

File Name Function Name Function Changes

from

diversion

source

\pmbus_sla

ve\r_smbus

_slave.c

R_SMBUS_SLAVE_Open Execute the open process of SMBUS drivers. New

r_smbus_slave_read_writ

e

Execute the transmission start/reception start

process of SMBUS drivers.

New

r_smbus_slave_notify Calls the post-process and callback when the

error interrupt of SMBUS driver is detected.

New

r_smbus_slave_callback_

request

Calls the callback function when an interrupt

occurs in SMBUS drivers.

New

r_smbus_open_hw_slave Initialize I3C registers. New

r_smbus_slave_call_callb

ack

Call the callback function of SMBUS driver. New

r_smbus_rxi_check_illega

l_start

Check Start condition detection status when the

receive buffer full interrupt of SMBUS drivers is

generated.

New

r_smbus_rxi_slave Receive buffer full interrupt process of SMBUS

drivers.

New

r_smbus_txi_slave Transmit buffer empty interrupt process of

SMBUS drivers.

New

r_smbus_tei_slave Transmit completion interrupt process of

SMBUS drivers.

New

r_smbus_err_slave Error-detection interrupt process of SMBUS

drivers.

New

RX Family/RA Family PMBus Master-Slave communication using I2C bus interface (RIIC/I3C)

R01AN7660EJ0100 Rev.1.00 Page 116 of 178

Jan.14.25

5.2.4 Customizing PMBus Slave Drivers

PMBus Slave driver code (RIIC0, TMR) is generated by the smart configurator of RX26T and FSP of RA6T3.
RX26T modifies and adds some of RIIC0, and TMR processes by protecting the user code in the Smart
Configurator. RA6T3 registers the code generated by FSP as a separate function. The driver is dedicated to
PMBus Slave. The following shows RX26T smart configurator settings, FSP settings for RA6T3 to change
the generated driver code, and the changes for the generated driver.

(1) Customizing Smart Configurator (RX26T)

⚫ Setting Smart Configurator RIIC0 (RX26T)

RX Family/RA Family PMBus Master-Slave communication using I2C bus interface (RIIC/I3C)

R01AN7660EJ0100 Rev.1.00 Page 117 of 178

Jan.14.25

⚫ List of Changes in RIIC0 Driver Codes Generated by Smart Configurator (RX26T)

Function Name r_Config_RIIC0_Slave_Create()

File Name Config_RIIC0.c

Change Details RIIC0's initialfunction.

Adds the process of overwriting SARL0 by adding a global-variable

g_riic0_user_slave_addr so that the user-specified slaveaddress can be set to

SARL0 register.

Before change After change

Function Name R_Config_RIIC0_Stop()

File Name Config_RIIC0.c

Change Details This function disable the function by disabling the interrupt in RIIC0.

Adds clearing of ISCER register to disable slave address detection when RIIC0

function is stopped.

Before change After change

Function Name R_Config_RIIC0_Slave_Receive()

File Name Config_RIIC0.c

Change Details This function Start the reception operation of RIIC0 (slaves).

Add the g_riic0_start_detect_at_receive initialization process.

Before change After change

Function Name r_User_RIIC0_callback_Start()

File Name Config_RIIC0_user.c

Change Details This is a new callback function added to execute when a Start condition detection

interrupt occurs in Slave. Execute the r_pmbus_app_int_Notify

(E_PMBUS_INT_EVENT_S_START) to execute the process of starting slave

transmission/reception.

Before change After change

None.

RX Family/RA Family PMBus Master-Slave communication using I2C bus interface (RIIC/I3C)

R01AN7660EJ0100 Rev.1.00 Page 118 of 178

Jan.14.25

Function Name r_User_RIIC0_callback_Receive()

File Name Config_RIIC0_user.c

Change Details This is the callback function for the receive buffer full interrupt added by PMBus

Middleware. r_pmbus_app_int_Receive() is executed to check and update PMBus

Middleware status each time a receive buffer full interrupt is generated.

Within r_pmbus_app_int_Receive(),

If the "g_riic0_rx_count" (currently received data count) is 0, the

r_pmbus_nwk_ProcessStart() is internally executed, and the reception Start after

the "p_pmbusSlaveCmdCallback" command-process is executed. If

"g_riic0_rx_count" is not 0, the r_pmbus_nwk_ProcessRx is executed internally

and reception is executed.

Before change After change

None.

Function
Name

r_Config_RIIC0_transmit_interrupt ()

File Name Config_RIIC0_user.c

Change

Details

Transmit buffer empty interrupt handler.

In response to a start condition (restart condition) detected by RIIC0 driver in transmit

mode, the following process is executed when ICSR2.START is 1 or the

g_riic0_start_detect_at_receive is 1.

-Clear ICSR2.START.

-The g_riic0_start_detect_at_receive is cleared.

-Execute r_User_RIIC0_callback_transmit() and Execute PMBus Middleware process

when a restart condition is detected.

-Set the *gp_riic0_tx_address in ICDRT.

-If the g_riic9_tx_count is greater than 0, increment the gp_riic0_tx_address and

decrement the g_riic0_tx_count.

Before change After change

RX Family/RA Family PMBus Master-Slave communication using I2C bus interface (RIIC/I3C)

R01AN7660EJ0100 Rev.1.00 Page 119 of 178

Jan.14.25

Function Name r_Config_RIIC0_receive_interrupt ()

File Name Config_RIIC0_user.c

Change Details Receive buffer full interrupt handler.

When the g_riic0_state is _10_IIC_SLAVE_RECEIVE_DATA, add the following
process.

-When ICSR2.START is 1, ICDRR is dummy-read and "g_riic0_dummy_read_count"
is incremented to execute the r_Config_RIIC9_callback_error (MD_ERROR4).

-Adds PMBus Middleware operation by executing r_User_RIIC0_callback_receive() to
the operation when the g_riic0_dummy_read_count is greater than 1.

-After reading RIIC0.ICDRR, add PMBus Middleware action by executing
r_User_RIIC0_callback_receive().

When the g_riic0_state is _10_IIC_SLAVE_SEND_DATA, PMBus Middleware process

by executing r_User_RIIC0_callback_receive() is added.

Before change After change

RX Family/RA Family PMBus Master-Slave communication using I2C bus interface (RIIC/I3C)

R01AN7660EJ0100 Rev.1.00 Page 120 of 178

Jan.14.25

Function
Name

r_Config_RIIC0_error_interrupt ()

File Name Config_RIIC0_user.c

Change

Details

This is a callback function for error detection interrupts.

To enable PMbus communication startup process when a Start condition is detected,

Execute r_User_RIIC0_callback_start() when "g_riic0_state" is

"_15_IIC_SLAVE_WAIT_START_CONDITION". (2 places)

In addition, initialize the g_riic0_start_detect_at_receive in reception mode

(_16_IIC_SLAVE_RECEIVE = g_riic0_mode_flag).

In reception mode (_16_IIC_SLAVE_RECEIVE = g_riic0_mode_flag), if "g_riic0_state"

is "_18_IIC_SLAVE_WAIT_RESTART_CONDITION", add a branch that does not

disable Start condition interrupt by "RIIC0.ICIER.BIT.SPIE".

Before change After change

Function
Name

r_Config_RIIC0_callback_transmitend ()

File Name Config_RIIC0_user.c

Change

Details

This is the callback function for Stop condition detection interrupt during transmit

operation.

Execute r_pmbus_app_int_TransmitEnd() to execute PMBus Middleware transmit

completion process after Stop condition detected interrupt.

Before change After change

RX Family/RA Family PMBus Master-Slave communication using I2C bus interface (RIIC/I3C)

R01AN7660EJ0100 Rev.1.00 Page 121 of 178

Jan.14.25

Function Name r_Config_RIIC0_callback_receiveend ()

File Name Config_RIIC0_user.c

Change Details This is the callback function for Stop condition detection interrupt during receive

operation.

After Stop condition is detected, execute r_pmbus_app_int_ReceiveEnd() to

execute PMBus Middleware reception completion process and

"r_pmbusSlaveCmdCallback".

Before change After change

Function Name r_Config_RIIC0_callback_error ()

File Name Config_RIIC0_user.c

Change Details This is a callback function to be executed when the interrupt source is an

error when an error is detected.

For "MD_ERROR4" (Start condition detected outside driver sequence):

If the START bit in ICSR2 is 1, clear the START bit in ICSR2 and then

execute

r_pmbus_app_int_Notify(E_PMBUS_INT_EVENT_S_START_UNEXPECTE

D) to update the state of PMBus Middleware.

Before change After change

RX Family/RA Family PMBus Master-Slave communication using I2C bus interface (RIIC/I3C)

R01AN7660EJ0100 Rev.1.00 Page 122 of 178

Jan.14.25

⚫ Setting smart configurator TMR (RX26T)

⚫ List of Changes in TMR Driver Codes Generated by Smart Configurator (RX26T)

Function Name r_Config_TMR0_cmia0_interrupt ()

File Name Config_TMR0_User.c

Change Details This is a callback function to be executed when the interrupt source is an error

when an error is detected.

Execute r_pmbus_app_int_Notify(E_PMBUS_INT_EVENT_S_TIMEOUT) to

update the status of PMBus Middleware.

Before change After change

Function Name r_Config_TMR0_Start()

File Name Config_TMR0.c

Change Details This API Start counting.

Add process to initialize the counter register (TCNT) at the start of the function.

Before change After change

RX Family/RA Family PMBus Master-Slave communication using I2C bus interface (RIIC/I3C)

R01AN7660EJ0100 Rev.1.00 Page 123 of 178

Jan.14.25

(2) Customizing FSP (RA6T3)

⚫ Setting FSP I3C (RA6T3)

RX Family/RA Family PMBus Master-Slave communication using I2C bus interface (RIIC/I3C)

R01AN7660EJ0100 Rev.1.00 Page 124 of 178

Jan.14.25

RX Family/RA Family PMBus Master-Slave communication using I2C bus interface (RIIC/I3C)

R01AN7660EJ0100 Rev.1.00 Page 125 of 178

Jan.14.25

⚫ List of Changes to I3C Driver Codes Generated by FSP (RA6T3)

【NOTE】 The symbolic name of the code generated by FSP is replaced in PMBus Middleware for:

Symbol name replacement is not described in detail in this table.
- I2C_SLAVE -> SMBUS_SLAVE
- i2c_slave -> smbus_slave
- IIC_B_SLAVE -> SMBUS_SLAVE
- Iic_b_slave -> smbus_slave

Data Type i2c_slave_event_t

File Name r_i2c_slave_api.h

Change Details -Added EVENT_START_REQUEST.

-Added EVENT_STOP_REQUEST.

-Added EVENT_ARB_LOST.

-Added EVENT_TIMEOUT.

-Added EVENT_NACK.

-Added EVENT_START_ERR.

Before change After change

Data Type iic_b__slave_instance_ctrl_t

File Name r_iic_b_slave.h

Change Details Add volatile bool start_detect.

Before change After change

RX Family/RA Family PMBus Master-Slave communication using I2C bus interface (RIIC/I3C)

R01AN7660EJ0100 Rev.1.00 Page 126 of 178

Jan.14.25

Macro Name IIC_B_SLAVE_PRV_BIE_INIT_MASK

File Name r_iic_b_slave.c

Change Details Removed R_I3C0_BIE_ALIE_Mask and R_I3C0_BIE_TODIE_Msk.

Before change After change

Macro Name IIC_B _SLAVE_PRV_BIE_INIT_MASK

File Name r_iic_b_slave.c

Change Details Removed R_I3C0_BSTE_ALE_Mask and R_I3C0_BSTE_TODE_Msk.

Before change After change

Table Name g_iic_b_slave0_extend

File Name r_iic_b_slave.c

Change Details Move global tables generated in hal.data.c.

Before change After change

None

Table Name g_iic_b_slave0_cfg

File Name r_iic_b_slave.c

Change Details Move global tables generated in hal.data.c.

Before change After change

None

Table Name g_iic_slave0

File Name r_iic_b_slave.c

Change Details Move global tables generated in hal.data.c.

Before change After change

None

RX Family/RA Family PMBus Master-Slave communication using I2C bus interface (RIIC/I3C)

R01AN7660EJ0100 Rev.1.00 Page 127 of 178

Jan.14.25

Function Name R_IICB_B_SLAVE_Open

File Name r_iic_b_slave.c

Change Details p_ctrl->Added start_detect initialization.

Before change After change

Function Name iic_b_slave_read_write

File Name r_iic_b_slave.c

Change Details -Bytes is cast to uint16_t when internally assigned.

-p_ctrl->Removed direction checking.

-p_ctrl-> Added a process to initialize the p_ctrl-> start_detect when direction
is "MASTER_WRITE_SLAVE_READ".

Before change After change

Function Name iic_b_slave_notify

File Name r_iic_b_slave.c

Change Details -The setting to set STCNDDE bit and SPCNDDE bit to 1 was added to BSTE
setting.

-Change the type of the local transaction_count to uint16_t.

Before change After change

RX Family/RA Family PMBus Master-Slave communication using I2C bus interface (RIIC/I3C)

R01AN7660EJ0100 Rev.1.00 Page 128 of 178

Jan.14.25

Function Name iic_b_slave_callback_request

File Name r_iic_b_slave.c

Change Details -Removed the setting of BSTE.TODE bit and BIE.TODIE bit before and after
iic_b_slave_call_callback().

Before change After change

RX Family/RA Family PMBus Master-Slave communication using I2C bus interface (RIIC/I3C)

R01AN7660EJ0100 Rev.1.00 Page 129 of 178

Jan.14.25

Function Name iic_b_open_hw_slave

File Name r_iic_b_slave.c

Change Details -Added the setting of BFCTL.SMBS=1 (select SMBus).

-Change the setting to BFCTL.SALE=0 (slave arbitration-lost detection is

disabled).

-Change the setting to BFCTL.NALE=0 (disable NACK transmit arbitration-

lost detection).

-OUTCTL.SDOD[2:0] =111b(13 or 14 I3Cφ cycles (I3Cφ/2 when

OUTCTL.SDODCS=1)), OUTCTL.SDODCS=1 (internal reference clock

divided by 2 is selected as the clock source for SDA output delay counter.)

-TMOCTL.TOLCTL=0 (SCL L-period timeout detection disabled),

TMOCTL.TOHCTL=0 (SCL H-period timeout detection disabled)

-Set BIE.NACKDIE to 1 (NACK detect interrupt enabled).

-Set BIE.STCNDIE=1 (Start condition detected interrupt is enabled).

-Set BIE.NACKDIE to 1 (Stop condition detection interrupt enabled).

-Addition of BFRECDT.FRECYC[8:0] (bus-free interval) setting.

(1/I3Cφ(100MHz)*4.7μs=470(0x1D6hex)

Before change After change

None.

None.

RX Family/RA Family PMBus Master-Slave communication using I2C bus interface (RIIC/I3C)

R01AN7660EJ0100 Rev.1.00 Page 130 of 178

Jan.14.25

Function Name iic_b_slave_initiate_transaction

File Name r_iic_b_slave.c

Change Details This function is deleted because the calling function is replaced with

iic_b_slave_callback_request.

Before change After change

Delete

RX Family/RA Family PMBus Master-Slave communication using I2C bus interface (RIIC/I3C)

R01AN7660EJ0100 Rev.1.00 Page 131 of 178

Jan.14.25

Function Name iic_b_rxi_slave

File Name r_iic_b_slave.c

Change Details -Callback calls changed to use iic_b_slave_callback_request().

-Add a r_smbus_rxi_check_illegal_start to check whether a Start condition is

detected, and Execute the following:

-When STCNDDF bit of BST is "1", STCNDDF bit of BST is cleared after

NTDTBP0 register is dummy read, and iic_b_slave_callback_request() is

executed by specifying EVENT_START_ERR.

-- If p_ctrl->direction is "MASTER_READ_SLAVE_WRITE", NTDTBP0

register is dummy-read, and then iic_b_slave_callback_request() is executed

with EVENT_RX_REQUEST specified.

-- If other than the above, the next process of the reception buffer empty

interrupt process is executed.

-The handling of unexpected reception interrupts is changed to ACKCTL.ACKT

bit-based NACK response. Instead, dummy read of NTDTBP0 register and

callback function of iic_b_slave_callback_request() are executed.

-When setting BIE register when dummy read p_ctrl->do_dummy_read is 0,

STCNDDIE bit is not set, and NACKDIE bit and SPCNDDIE bit are set.

Before change After change

None.

RX Family/RA Family PMBus Master-Slave communication using I2C bus interface (RIIC/I3C)

R01AN7660EJ0100 Rev.1.00 Page 132 of 178

Jan.14.25

deleted.

RX Family/RA Family PMBus Master-Slave communication using I2C bus interface (RIIC/I3C)

R01AN7660EJ0100 Rev.1.00 Page 133 of 178

Jan.14.25

Function Name iic_b_txi_slave

File Name r_iic_b_slave.c

Change Details -Callback calls changed to use iic_b_slave_callback_request().

-The term for calling iic_b_slave_callback_request() is changed when

BST.STCNDDF=1 (Start condition detected) or p_ctrl->start_detect = true

(start condition detected in receive mode). In this case, the process of

initializing p_ctrl->start_detect to false is added.

Before change After change

Function Name iic_b_tei_slave

File Name r_iic_b_slave.c

Change Details The data to be written to NTDTBP0 when ACKCTL.ACKR=1 (ACK detected)

is changed to dummy data.

Before change After change

RX Family/RA Family PMBus Master-Slave communication using I2C bus interface (RIIC/I3C)

R01AN7660EJ0100 Rev.1.00 Page 134 of 178

Jan.14.25

Function Name iic_b_err_slave

File Name r_iic_b_slave.c

Change Details -Change the branching of error events so that BST.TODF=1 (time-out

detection), BST.ALFDF=1 (arbitration-lost detection), BST.STCNDDF=1 (Start

condition detection), BST.SPCDDF=1 (Stop condition detection), and

BST.NACKDF=1 (NACK detection).

-When BST.TODF=1, the event set to iic_b_slave_notify() is changed to

"EVENT_TIMEOUT".

-When BST.ALFDF=1, the event set to iic_b_slave_notify() is changed to

"EVENT_ARB_LOST".

-When BST.STCNDDF=1, set BIE.STCNDDIE=0 (Start condition detection

interrupt is disabled) and BIE.SPCNDDIE=1 (Stop condition detection

interrupt is enabled), and then change to notify "EVENT_START_REQUEST"

by iic_b_slave_callback_request.

-When BST.SPCNDDF=1, set BIE.SPCNDDIE=0 (Stop condition detection

interrupt is disabled), BIE.STCNDDIE=1 (Start condition detection interrupt is

enabled), set true to p_ctrl->start_detect, and change to notify

"EVENT_RX_COMPLETE" or "EVENT_TX_COMPLETE" in

iic_b_slave_callback_request.

-When BST.NACKDF=1, the setting of BIE.NACKDIE=0 (NACK detected

interrupt disabled) is deleted,

Change iic_b_slave_notify() to set the event "EVENT_NACK".

Before change After change

None.

RX Family/RA Family PMBus Master-Slave communication using I2C bus interface (RIIC/I3C)

R01AN7660EJ0100 Rev.1.00 Page 135 of 178

Jan.14.25

RX Family/RA Family PMBus Master-Slave communication using I2C bus interface (RIIC/I3C)

R01AN7660EJ0100 Rev.1.00 Page 136 of 178

Jan.14.25

⚫ Setting GPT of FSP (RA6T3)

⚫

RX Family/RA Family PMBus Master-Slave communication using I2C bus interface (RIIC/I3C)

R01AN7660EJ0100 Rev.1.00 Page 137 of 178

Jan.14.25

⚫ List of Changes to GPT Driver Codes Generated by FSP (RA6T3)

Function Name p_callback

File Name r_pmbus_wrapper_slave.c

Change Details A callback function executed by an overflow interrupt, which is registered as a
parameter during R_GPT_Open. The actual state of this function is placed in the
r_pmbus_wrapper_slave.c in PMBus Middleware.

Execute r_pmbus_nwk_slave_process_Timeout() to refresh PMBus Middleware
status.

Before change After change

None.

RX Family/RA Family PMBus Master-Slave communication using I2C bus interface (RIIC/I3C)

R01AN7660EJ0100 Rev.1.00 Page 138 of 178

Jan.14.25

⚫ Comparing RX26T and RA6T3 Drivers API

Peripheral
functions

API name of RX26T RIIC0 API name of RA6T3 I3C Function overview

I2C (I3C) void

R_Config_RIIC0_Create(void

)

fsp_err_t

R_IIC_B_SLAVE_Open

(i2c_slave_ctrl_t * const

p_api_ctrl, i2c_slave_cfg_t

const * const p_cfg)

Initialization/communicat

ion start.

void

R_Config_RIIC0_Create_Us

erInit(void)

void

R_Config_RIIC0_Start(void)

MD_STATUS

R_User_RIIC0_Slave_Recei

ve (uit8_t * const rx_buf,

uint16_t rx_num)*1

fsp_err_t

R_IIC_B_SLAVE_Read

(i2c_slave_ctrl_t * const

p_api_ctrl, uint8_t * const

p_dest, uint32_t const bytes)

Start reception.

MD_STATUS

R_Conig_RIIC0_Slave_Send

(uint8_t * const txbuf,

uint16_t tx_num)

fsp_err_t

R_IIC_B_SLAVE_Write

(i2c_slave_ctrl_t * const

p_api_ctrl, uint8_t * const p_src,

uint32_t const bytes)

Start transmission.

void

R_Config_RIIC0_Stop(void)

fsp_err_t

R_IIC_B_SLAVE_Close

(i2c_slave_ctrl_t * const

p_api_ctrl)

Stop communication.

void

R_Config_RIIC0_IIC_StartCo

ndition(void)

- Start condition issuance.

void

R_Config_RIIC0_IIC_StopCo

ndition(void)

- Stop condition issuance.

- R_IIC_B_SLAVE_CallbackSet

(i2c_slave_ctrl_t * const

p_api_ctrl, void (*

p_callback)(i2c_slave_callback_

args_t *), void const * const

p_context,

i2c_slave_callback_args_t *

const p_callback_memory)

Modify a callback

function.

Timer void

R_Config_TMR0_Create(voi

d)

fsp_err_t R_GPT_Open

(timer_ctrl_t * const p_ctrl,

timer_cfg_t const * const p_cfg)

Initialization.

void

R_Config_TMR0_Create_Us

erInit(void)

void R_User

_TMR0_Start(void) *1

fsp_err_t R_GPT_Start

(timer_ctrl_t * const p_ctrl)

Timer start.

fsp_err_t R_GPT_Reset

(timer_ctrl_t * const p_ctrl)

Counter reset.

void

R_Config_TMR0_Stop(void)

fsp_err_t R_GPT_Stop

(timer_ctrl_t * const p_ctrl)

Timer stop.

fsp_err_t R_GPT_Close

(timer_ctrl_t * const p_ctrl)

Timer End.

RX Family/RA Family PMBus Master-Slave communication using I2C bus interface (RIIC/I3C)

R01AN7660EJ0100 Rev.1.00 Page 139 of 178

Jan.14.25

5.2.5 PMBus Slave Data Types and Structure List

The following table lists the Data Types and Structure used in this control program.

⚫ Data Types and Structure for PMBus Slave Application Functions

e_app_req_event_t

Enumeration Name e_app_req_event_t

Description This enumeration type is used to notify the main process of the
cause of a PMBUS callback or the occurrence of other events.

Declared header file r_app_main.h

Remarks -

Element name Description Value

E_PMBUS_REQ_EVENT_NONE No event occurred. 0

E_PMBUS_REQ_EVENT_ERROR This is used when I2C error interrupt occurs and the

callback will notify the main process of the error.

Depending on the needs of the user system, the main

process should Execute post-error process such as

calling R_PMBUS_Slave_Restart, or

R_PMBUS_Slave_Close/R_PMBUS_Slave_Open.

1

E_PMBUS_REQ_EVENT_ARA_START This event is an optional event for checking the

ALERT RESPONSE response operation. If you want

to check the operation of the ALERT RESPONSE

process by detecting an ALERT signal, etc., you can

use it by changing the PMBus Slave Application.

When this event is detected, execute

R_PMBUS_Slave_SendARA in the main process.

2

E_PMBUS_REQ_EVENT_ARA_STOP This event is an optional event to check the return

from ALERT RESPONSE response operation to

normal operation. If you want to return from ALERT

RESPONSE process operation to normal operation,

the user should change the PMBus Slave Application

to use this event. When this event is detected,

execute R_PMBUS_Slave_Restart in the main

process.

3

E_PMBUS_REQ_EVENT_PEC_ENA This event is an optional event for checking

communication with PEC. If you want to communicate

with PEC without resetting the slave during slave

operation, you should change the PMBus slave

application and use it. When this event is detected,

execute R_PMBUS_Slave_PEC_Enable in the main

process.

4

E_PMBUS_REQ_EVENT_PEC_DIS This event is an optional event for returning to normal

operation from an operating state of communication

with PEC. If you want to return to normal

communication from communication with PEC without

resetting the slave during the slave's operation, the

user should change the PMBus slave application and

use this event. When this event is detected, execute

R_PMBUS_Slave_PEC_Disavle in the main process.

5

RX Family/RA Family PMBus Master-Slave communication using I2C bus interface (RIIC/I3C)

R01AN7660EJ0100 Rev.1.00 Page 140 of 178

Jan.14.25

⚫ Data Types and Structure for PMBus Slave API

e_pmbus_packet_result_s_t

Enumeration Name e_pmbus_packet_result_s_t

Description This enumeration type is used to indicate the
execution result of PMBus communication (slave).

It is used as the argument type for each PMBus Slave
API. It indicates the details of the error cause when the
PMBus API return value is PMBUS_RET_ERROR.

Declared header file r_pmbus_app_slave.h

Remarks -

Element name Description Value

E_PMBUS_PACKET_S_OK Normal operation. 0

E_PMBUS_PACKET_S_DATA_SIZE_ERROR A packet size error was detected. 1

E_PMBUS_PACKET_S PEC_ERROR An error was detected in PEC operation. 2

E_PMBUS_PACKET_S_TIMEOUT A timeout error was detected. (TTIMEOUT error

detected)

3

E_PMBUS_PACKET_S_CMD_WAIT Command code and received data are being

received.

4

E_PMBUS_PACKET_S_CMD_COMP The command code and received data have

been received.

5

E_PMBUS_PACKET_S_CMD_QUICK Quick Command is being taken. 6

E_PMBUS_PACKET_S_INTERNAL_ERROR An internal error was detected. 7

E_PMBUS_PACKET_S_NOT_READY Command reception is not ready. 8

E_PMBUS_PACKET_S_CMD_NOT_SUPPORT A command not supported by PMBUS spec is

received.

9

E_PMBUS_PACKET_S_ARA_COMP SendARA process completed. 10

p_pmbusSlaveCmdCallback

Callback Function Type Name void (* p_pmbusSlaveCmdCallback)(st_pmbus_nwk_ctrl_s_t

*p_st_nwk_ctrl, e_pmbus_packet_result_s_t

e_pmbus_result)

Description Callback calls from PMBus interrupt handlers. It is specified

when you R_PMBUS_Slave_Open().

The user must use this callback function to implement the

execution process corresponding to the command code.

Declared header file r_pmbus_app_slave.h

Remarks -

Element name Description

st_pmbud_nwk_ctrl_s_t

*p_st_pmbus_nwk_ctrl

Pointer to the storage of PMBus Middleware's network-

control information.

e_pmbus_packet_result_s

e_pmbus_result

Pointer to store PMBus Middleware packet-information.

RX Family/RA Family PMBus Master-Slave communication using I2C bus interface (RIIC/I3C)

R01AN7660EJ0100 Rev.1.00 Page 141 of 178

Jan.14.25

st_pmbus_cfg_s_t

Structure Name r_pmbus_cfg_s_t

Description This is a structure for PMBus Slave configuration

data. It is used as the argument type for

R_PMBUS_Slave_Open. It is used to register the

configuration data to the internal global variables of

the PMBus Slave Middleware.

Declared header file r_pmbus_app_slave.h

Remarks -

Member name Description

uint16_t u2_rx_size *The dimensions of the p_u1_rx_buf. (1～35)

uint8_t *p_u1_rx_buf Pointer to the receive data storage buffer. The data

received from master is stored in this buffer.

uint16_t u2_tx_size *The dimensions of the p_u1_tx_buf. (1～35)

uint8_t *p_u1_tx_buf Pointer to the transmit data storage buffer. Stores the

data to be sent to master.

uint8_t u1_slave_addr Own slave address. (0x01～0x0F)

void (*

p_pmbusSlaveCmdCallback)(st_pmbus_nwk_ctr

l_s_t * const p_st_nwk_ctrl,

e_pmbus_packet_result_s_t * const

p_e_pmbus_result)

Callback calls from PMBus interrupt handlers. The

user must execute the control process of motor

module corresponding to the command in this

function.

⚫ Data Types and Structure for PMBus Slave Middleware functions

e_pmbus_nwk_status_s_t

Enumeration Name e_pmbus_nwk_status_s_t

Description This enumeration type indicates the internal state of the

PMBus network layer (slave). It is used to manage the

internal state of the PMBus Slave Middleware.

Declared header file r_pmbus_app_slave.h

Remarks -

Element name Description Value

E_PMBUS_NWK_STATUS_S_IDLE Waiting for new packet reception. 0

E_PMBUS_NWK_STATUS_S_START Detects start condition. 1

E_PMBUS_NWK_STATUS_S_RX Receiving packet. 2

E_PMBUS_NWK_STATUS_S_TX Transmitting Receive Byte packet. 3

E_PMBUS_NWK_STATUS_S_TX_RESP Transmitting packet. 4

E_PMBUS_NWK_STATUS_S_ERROR Detects Packet error. 5

RX Family/RA Family PMBus Master-Slave communication using I2C bus interface (RIIC/I3C)

R01AN7660EJ0100 Rev.1.00 Page 142 of 178

Jan.14.25

e_pmbus_int_event_s_t

Enumeration Name e_pmbus_int_event_s_t

Description This enumeration type indicates the cause of an

I2C error detection interrupt. It is used to execute

process for each interrupt cause in the internal

process of the PMBus Slave Middleware.

Declared header file r_pmbus_app_slave.h

Remarks -

Element name Description Valu

e

E_PMBUS_INT_EVENT_S_NONE No interrupt detected 0

E_PMBUS_INT_EVENT_S_ARB_LOST Arbitration lost is detected. 1

E_PMBUS_INT_EVENT_S_TIMEOUT Timeout detected. 2

E_PMBUS_INT_EVENT_S_NACK NACK reception is detected. 3

E_PMBUS_INT_EVENT_S_START A Start condition is detected. 4

E_PMBUS_INT_EVENT_S_STOP A Stop condition is detected. 5

E_PMBUS_INT_EVENT_S_START_UNEXPECTED Detects an unexpected timed Start

condition.

6

st_pmbus_nwk_ctrl_s_t

Structure Name st_pmbus_nwk_ctrl_s_t

Description This is a structure that manages PMBus network layer

(slave) parameters. It is used to manage communication

status inside the PMBus Slave Middleware.

Declared header file r_pmbus_app_slave.h

Remarks -

Member name Description

volatile e_pmbus_nwk_status_s_t

e_status

Network layer status

uint8_t u1_current_addr_rw Currently executing slave address (including RW)

uint8_t u1_current_cmd Currently executing command

uint16_t u2_rx_index Current number of received data bytes

uint16_t u2_rx_len Number of data bytes to be received

uint16_t u2_rx_size *p_u1_rx_buf Size

uint8_t *p_u1_rx_buf Pointer to receive data storage buffer

uint16_t u2_tx_index Current number of transmission data bytes

uint16_t u2_tx_len Number of data bytes to be transmitted

uint16_t u2_tx_size *p_u1_tx_buf Size

uint8_t *p_u1_tx_buf Pointer to transmit data storage buffer

uint8_t u1_pec Present PEC calculation

RX Family/RA Family PMBus Master-Slave communication using I2C bus interface (RIIC/I3C)

R01AN7660EJ0100 Rev.1.00 Page 143 of 178

Jan.14.25

st_pmbus_ctrl_s_t

Structure Name st_pmbus_ctrl_s_t

Description This is the control data structure of the

PMBus Middleware (slave). It is used to

manage the PMBus Slave Middleware setting

information and communication status.

Declared header file r_pmbus_app_slave.h

Remarks -

Member name Description

st_pmbus_nwk_ctrl_s_t st_nwk_ctrl_s Parameter-managed struct of PMBus network

Layer (slave)

volatile e_pmbus_packet_result_s_t e_pmbus_result_s Executing PMBus communication (slave)

bool b_open_flag OPEN status (No false: Open or true: Open).

bool b_pec_flag PEC enable/disable information (false:

disable, true: enable)

uint8_t u1_own_slave_addr Its own slave address.

void (*

p_pmbusSlaveCmdCallback)(st_pmbus_nwk_ctrl_s_t *

const p_st_nwk_ctrl, e_pmbus_packet_result_s_t * const

p_e_pmbus_result)

Callback calls from PMBus interrupt handlers.

RX Family/RA Family PMBus Master-Slave communication using I2C bus interface (RIIC/I3C)

R01AN7660EJ0100 Rev.1.00 Page 144 of 178

Jan.14.25

5.2.6 PMBus Slave Global variables List

The following table lists the global variables used in this control program.

Table 37 PMBus Slave Application global variable list

File Name Global Variables Usage

r_app_main.c static uint8_t

s_u1_pmbus_config_d

ata

Global-variable that manages ON_OFF_CONFIG command-

specification values. Only bit3 is valid in this demonstration.

static uint8_t

s_u1_pmbus_operatio

n_data

Global-variable that manages OPERATION command-

specification values. Only bit7 is valid in this demonstration.

static uint8_t

s_u1_pmbus_tx_buf[P

MBUS_BUF_SIZE_M

AX]

Buffer for storing transmit data for PMBUS. This buffer is set

to the member *p_u1_tx_buf of s_user_pmbus_cfg and is

used inside PMBus Middleware.

static uint8_t

s_u1_pmbus_rx_buf[P

MBUS_BUF_SIZE_M

AX]

Buffer for storing received data for PMBUS. This buffer is set

to the member *p_u1_rx_buf of s_user_pmbus_cfg and is

used inside PMBus Middleware.

static volatile

e_app_req_event_t

s_e_req_status

Variable used to notify the main process of the cause of a

PMBUS callback or the occurrence of other events.

static

st_pmbus_cfg_s_t

s_st_pmbus_cfg

Variable that stores the configuration data to be registered by

R_PMBUS_Slave_Open.

Table 38 PMBus Slave Middleware global variable list

File Name Global Variables Usage

r_app_main.c static

st_pmbus_ctrl_s_t

g_st_pmbus_ctrl

Global variable that manages the control information of

PMBUS Slave Middleware. It is used only within PMBUS

Slave Middleware.

Config_RIIC0.

c

volatile uint8_t

g_riic0_user_slave_ad

dr

In the RX26T, this is used to set the slave address specified

by the user with R_PMBUS_Slave_Open to the SARL0

register.

volatile uint8_t

g_riic0_start_detect_at

_receive

In the RX26T, this is a flag that manages the detection of a

Start condition detection interrupt when the RIIC0 driver's

g_riic0_mode_flag is in receive mode.

r_pmbus_wrap

per_slave.c

static

gpt_instance_ctrl_t

s_st_gpt_ctrl

In the RA6T3, this variable is used as the control handler for

the GPT driver.

static

smbus_slave_instance

_ctrl_t s_st_smbus_ctrl

In the RA6T3, this variable is used as the control handler for

the SMBUS driver.

static

smbus_slave_cfg_t

s_st_smbus_cfg

In the RA6T3, this variable stores the configuration data set in

the SMBUS driver by R_SMBUS_SLAVE_Oepn.

smbus_slave_instance

_t g_smbus_slave0

In the RA6T3, this instance used inside SMBUS drivers.

RX Family/RA Family PMBus Master-Slave communication using I2C bus interface (RIIC/I3C)

R01AN7660EJ0100 Rev.1.00 Page 145 of 178

Jan.14.25

5.2.7 PMBus Slave macro-definition list

The following table lists the macro definitions used in this control program.

Table 39 PMBus Master Application macro definition list

File

name

Macro name Usage Defined

Value

r_app_

main.h

PMBUS_APP_

CMD_xxx

 Define the command code for PMBUS. (Refe to below for macro

names)

-

PMBUS_APP_CMD_OPERAION : OPERAION command 0x01

PMBUS_APP_CMD_ON_OFF_CONFIG : ON_OFF_CONFIG

command

0x02

PMBUS_APP_CMD_CLEAR_FAULTS : CLEAR_FAULTS

command

0x03

PMBUS_APP_CMD_STATUS_FAN_1_2 : STATUS_FAN_1_2

command

0x81

PMBUS_APP_CMD_READ_VOUT : READ_VOUT command 0x8B

PMBUS_APP_CMD_READ_IOUT : READ_IOUT command 0x8C

PMBUS_APP_CMD_READ_FAN_SPEED_1 :

REA_DFAN_SPEED_1 command

0x90

PMBUS_APP_CMD_READ_FREQUENCY :

READ_FREQUENCY command

0x95

PMBUS_APP_CMD_RESERVED : RESERVED command 0x09

PMBUS_APP_CMD_PMBUS_REVISION : PMBUS_REVISION

command

0x98

PMBUS_APP_CMD_STORE_DEFAULT_CODE :

STORE_DEFAULT_CODE command

0x13

PMBUS_APP_CMD_FAN_COMMAND_1 : FAN_COMMAND_1

command

0x38

PMBUS_APP_CMD_READ_EOUT : READ_EOUT command 0x87

PMBUS_APP_CMD_PAGE_PLUS_WRITE :

PAGE_PLUS_WRITE command

0x05

SLAVE_ADDR

ESS

This defines the slave address to be set in the PMBus Slave

Middleware.

0x0A

OPERATION_

OPE_START_B

IT

Defined OPERATION command-motor control indication bit. 0x80

ON_OFF_CON

FIG_OPE_

ENABLE_BIT

The data-definition used in ON_OFF_CONONFIG command.

Specifies whether to use the motor control instruction setting of

OPERATION command when controlling the motor.

0x08

RET_OK Return value of the application internal function. Normal end. 0

RET_ERROR Return value of the application internal function. Abnormal end. 1

RX Family/RA Family PMBus Master-Slave communication using I2C bus interface (RIIC/I3C)

R01AN7660EJ0100 Rev.1.00 Page 146 of 178

Jan.14.25

Table 40 PMBus Slave API macro definition list

File

name

Macro name Usage Defined

Value

r_pmb

us_ap

p_slav

e.h

PMBUS_RET_x

xx

 Error code returned from PMBus middleware API. (See below for

macro names)

-

PMBUS_RET_OK : Normal end. 0

PMBUS_RET_ERROR : Abnormal end. See the

st_pmbus_cfg_s_t.e_pmbus_result_m for more information about

the source.

1

PMBUS_RET_PARAM : Specified argument is invalid. 2

PMBUS_RET_NOT_OPENED : No OPEN. 3

PMBUS_RET_OPENED : Already OPEN. 4

Table 41 PMBus Slave Middleware function macro definition list

File

name

Macro name Usage Defined

Value

r_pmb

us_ap

p_slav

e.h

PMBUS_TRAN

S_xxx

 Defines the transaction code used to determine the protocol

supported by each command code. (See below for macro

names)

-

PMBUS_TRANS_RESERVED : Command code is RESERVED. 0x00

PMBUS_TRANS_READ_BYTE : Command Code Supports

READ BYTE Transactions.

0x01

PMBUS_TRANS_READ_WORD : Command Code Supports

READ WORD Transactions.

0x02

PMBUS_TRANS_BLOCK_READ : Command Code Supports

BLOCK READ Transactions.

0x03

PMBUS_TRANS_SEND_BYTE : Command Code Supports

SEND BYTE Transactions.

0x10

PMBUS_TRANS_WRITE_BYTE : Command Code Supports

WRITE BYTE Transactions

0x20

PMBUS_TRANS_WRITE_WORD : Command Code Supports

WRITE WORD Transactions.

0x30

PMBUS_TRANS_BLOCK_WRITE : Command Code Supports

BLOCK WRITE Transactions.

0x40

PMBUS_TRANS_WRITE_QUICK : Command Code Supports

Write Quick Command Transactions.

0x50

PMBUS_TRANS_PROCESS_CALL : Command Code Supports

PROCESS CALL Transactions.

0x60

PMBUS_TRANS_BLOCK_PROCESS_CALL : Command Code

Supports Block Write-Block Read Process Call Transactions.

0x70

PMBUS_COM

MAND_CODE_

MAX

The maximum number of commands supported by the PMBus

middleware.

256

PMBUS_BLOC

K_SIZE_MIN

Min. amount of data that can be sent/received by Block

commandI will.

1

PMBUS_BLOC

K_SIZE_MAX

Max. amount of data that can be sent/received by Block

commandI will.

32

PMBUS_BUF_

SIZE_MIN

The smallest buffer size that can be registered in PMBUS

Middleware during Open.

1

PMBUS_BUF_

SIZE_MAX

The largest buffer size that can be registered in PMBUS

Middleware during Open. (Max. number of data to write during

PMBUS_

BLOCK_

RX Family/RA Family PMBus Master-Slave communication using I2C bus interface (RIIC/I3C)

R01AN7660EJ0100 Rev.1.00 Page 147 of 178

Jan.14.25

Block Read/Block Write (32) + Command code (1) + Number of

data to write/Number of data to read (1) + PEC (1))

SIZE_MA

X + 3

PMBUS_CRC8

_USE_IP

Defined value that specifies the PEC calculation method. Set to

"1 (uses the calculator built into the MCU)" or "0 (specifies

whether to use a table for calculation)." If you want to use the

calculator built into the MCU, you must implement code that uses

a CRC calculator in the r_pmbus_nwk_AddCrc8() function and

then change the setting to "1 (uses the calculator built into the

MCU)."

0

PMBUS_ALER

T_RESPONSE

_ADDR

Slave address (ARA) for responding to ALERT information set at

execution time R_PMBUS_Slave_SendARA. Values conforming

to the SMBus specifications are defined.

0x0C

PMBUS_SLAV

E_ADDR_MIN

Defines the highest slave address that can be specified as a

parameter in the slave API of PMBUS.

0x01

PMBUS_SLAV

E_ADDR_MAX

Defines the highest slave address that can be specified as a

parameter in the slave API of PMBUS.

0x10

r_pmb

us_wr

apper_

slave.

h

PMBUS_CFG_

DEVICE_RX26

T

Used when using the wrapper function of the driver provided in

r_pmbus_wrapper_slave.c with the RX26T.

0

PMBUS_CFG_

DEVICE_RA6T

3

Used when using the wrapper function of the driver provided in

r_pmbus_wrapper_slave.c with the RA6T3.

1

PMBUS_CFG_

DEVICE

Definition of the MCU that executes the wrapper function of the

driver provided in r_pmbus_wrapper_slave.c. Specify

PMBUS_CFG_DEVICE_RX26T or

PMBUS_CFG_DEVICE_RA6T3.

Follow

MCU

used.

RX Family/RA Family PMBus Master-Slave communication using I2C bus interface (RIIC/I3C)

R01AN7660EJ0100 Rev.1.00 Page 148 of 178

Jan.14.25

5.2.8 PMBus Slave Control Flowchart

The flow of PMBus Slave Application part is shown in 5.2.8.1, the flow of PMBus Slave API part is shown in
5.2.8.2, and the flow of PMBus Slave driver part is shown in 5.2.8.3. Please refer to the project code for
PMBus Slave Middleware part.

5.2.8.1 PMBus Slave Application section flowchart

PMBus Slave Application section controls the Motor Control Middleware and API calls to PMBus Slave
Middleware section that communicates with PMBus Master. The flowchart of PMBus Slave Application part
is shown below.

◼ PMBus slave overall outline flow

⚫ PMBus slave overall outline flow (RX26T)

RX Family/RA Family PMBus Master-Slave communication using I2C bus interface (RIIC/I3C)

R01AN7660EJ0100 Rev.1.00 Page 149 of 178

Jan.14.25

note: For details, refer to RX Famiky Sensorless Vector Control of a Permanent Magnet Synchronous Motor

- For MCK (R01AN6858)

https://www.renesas.com/document/apn/sensorless-vector-control-permanent-magnet-synchronous-motor-mck-rev110
https://www.renesas.com/document/apn/sensorless-vector-control-permanent-magnet-synchronous-motor-mck-rev110

RX Family/RA Family PMBus Master-Slave communication using I2C bus interface (RIIC/I3C)

R01AN7660EJ0100 Rev.1.00 Page 150 of 178

Jan.14.25

⚫ PMBus slave overall outline flow (RA6T3)

note: For details, refer to Sensorless vector control for permanent magnetic synchronous motor For Renesas

Flexible Motor Control (R01AN6839)

https://www.renesas.com/document/apn/sensorless-vector-control-permanent-magnet-synchronous-motor-mckmcb-ra-family?language=en
https://www.renesas.com/document/apn/sensorless-vector-control-permanent-magnet-synchronous-motor-mckmcb-ra-family?language=en

RX Family/RA Family PMBus Master-Slave communication using I2C bus interface (RIIC/I3C)

R01AN7660EJ0100 Rev.1.00 Page 151 of 178

Jan.14.25

◼ PMBus slave function detailed flow

⚫ main (RX26T), hal_entry (RA6T3)

Application part of the motor control middleware is used for various initialization processes and main-loop
processes. Refer to Motor Middle application notes for details. The red framed and red text parts of each
PAD diagram are the parts to be corrected, and the blue framed and blue text parts are the parts to be
deleted.

⚫ r_app_main_start_pmbus_ctrl (RX26T, RA6T3)

RX Family/RA Family PMBus Master-Slave communication using I2C bus interface (RIIC/I3C)

R01AN7660EJ0100 Rev.1.00 Page 152 of 178

Jan.14.25

⚫ pmbus_ctrl (RX26T, RA6T3)

RX Family/RA Family PMBus Master-Slave communication using I2C bus interface (RIIC/I3C)

R01AN7660EJ0100 Rev.1.00 Page 153 of 178

Jan.14.25

⚫ r_pmbus_callback (RX26T, RA6T3)

RX Family/RA Family PMBus Master-Slave communication using I2C bus interface (RIIC/I3C)

R01AN7660EJ0100 Rev.1.00 Page 154 of 178

Jan.14.25

⚫ r_app_pmbus_exe_write_command (RX26T, RA6T3)

[Note] The motor sample API names in the diagram are different for RA6T3. Please refer to the project for
details.

RX Family/RA Family PMBus Master-Slave communication using I2C bus interface (RIIC/I3C)

R01AN7660EJ0100 Rev.1.00 Page 155 of 178

Jan.14.25

⚫ r_app_pmbus_exe_read_command (RX26T, RA6T3)

[Note] The motor sample API names in the diagram are different for RA6T3. Please refer to the project for

details.

RX Family/RA Family PMBus Master-Slave communication using I2C bus interface (RIIC/I3C)

R01AN7660EJ0100 Rev.1.00 Page 156 of 178

Jan.14.25

5.2.8.2 PMBus Slave API section flowchart

PMBus Slave API part controls PMBus Slave Middleware part. The flowchart for PMBus Slave API part is
shown below.

⚫ R_PMBUS_Slave_Open

RX Family/RA Family PMBus Master-Slave communication using I2C bus interface (RIIC/I3C)

R01AN7660EJ0100 Rev.1.00 Page 157 of 178

Jan.14.25

⚫ R_PMBUS_Slave_Close

⚫ R_PMBUS_Slave_EnablePEC

⚫ R_PMBUS_Slave_DisablePEC

RX Family/RA Family PMBus Master-Slave communication using I2C bus interface (RIIC/I3C)

R01AN7660EJ0100 Rev.1.00 Page 158 of 178

Jan.14.25

⚫ R_PMBUS_Slave_SendARA

RX Family/RA Family PMBus Master-Slave communication using I2C bus interface (RIIC/I3C)

R01AN7660EJ0100 Rev.1.00 Page 159 of 178

Jan.14.25

⚫ R_PMBUS_Slave_Restart

RX Family/RA Family PMBus Master-Slave communication using I2C bus interface (RIIC/I3C)

R01AN7660EJ0100 Rev.1.00 Page 160 of 178

Jan.14.25

5.2.8.3 PMBus Slave Drivers Flowchart

PMBus Slave driver section is a smart configurator in RX26T, and in RA6T3, it is partially changed according
to PMBus Slave process from the code generated in FSP. Refer to Customizing 5.2.4 PMBus Slave Drivers
for details. The deficit in each pad diagram is the correction part. The red framed and red text parts of each
PAD diagram are the parts to be corrected, and the blue framed and blue text parts are the parts to be
deleted.

(1) Smart Configurator (RX26T)

⚫ R_Config_RIIC0_Create

⚫ R_Config_RIIC0_Stop

RX Family/RA Family PMBus Master-Slave communication using I2C bus interface (RIIC/I3C)

R01AN7660EJ0100 Rev.1.00 Page 161 of 178

Jan.14.25

⚫ r_Config_RIIC0_Slave_Receive

RX Family/RA Family PMBus Master-Slave communication using I2C bus interface (RIIC/I3C)

R01AN7660EJ0100 Rev.1.00 Page 162 of 178

Jan.14.25

⚫ r_Config_RIIC0_transmit_interrupt

RX Family/RA Family PMBus Master-Slave communication using I2C bus interface (RIIC/I3C)

R01AN7660EJ0100 Rev.1.00 Page 163 of 178

Jan.14.25

⚫ r_Config_RIIC0_receive_interrupt

RX Family/RA Family PMBus Master-Slave communication using I2C bus interface (RIIC/I3C)

R01AN7660EJ0100 Rev.1.00 Page 164 of 178

Jan.14.25

⚫ r_Config_RIIC0_error_interrupt

RX Family/RA Family PMBus Master-Slave communication using I2C bus interface (RIIC/I3C)

R01AN7660EJ0100 Rev.1.00 Page 165 of 178

Jan.14.25

⚫ r_Config_RIIC0_callback_transmitend

⚫ r_Config_RIIC0_callback_receiveend

⚫ r_Config_RIIC0_callback_error

RX Family/RA Family PMBus Master-Slave communication using I2C bus interface (RIIC/I3C)

R01AN7660EJ0100 Rev.1.00 Page 166 of 178

Jan.14.25

⚫ r_User_RIIC0_callback_start

⚫ r_User_RIIC0_callback_transmit

⚫ r_User_RIIC0_callback_receive

RX Family/RA Family PMBus Master-Slave communication using I2C bus interface (RIIC/I3C)

R01AN7660EJ0100 Rev.1.00 Page 167 of 178

Jan.14.25

⚫ R_Config_TMR0_Start

(2) FSP functional (RA6T3)

⚫ R_SMBUS_SLAVE_Open

RX Family/RA Family PMBus Master-Slave communication using I2C bus interface (RIIC/I3C)

R01AN7660EJ0100 Rev.1.00 Page 168 of 178

Jan.14.25

⚫ r_smbus_slave_read_write

⚫ r_smbus_slave_notify

RX Family/RA Family PMBus Master-Slave communication using I2C bus interface (RIIC/I3C)

R01AN7660EJ0100 Rev.1.00 Page 169 of 178

Jan.14.25

⚫ r_smbus_slave_callback_request

RX Family/RA Family PMBus Master-Slave communication using I2C bus interface (RIIC/I3C)

R01AN7660EJ0100 Rev.1.00 Page 170 of 178

Jan.14.25

⚫ r_smbus_open_hw_slave

RX Family/RA Family PMBus Master-Slave communication using I2C bus interface (RIIC/I3C)

R01AN7660EJ0100 Rev.1.00 Page 171 of 178

Jan.14.25

⚫ r_smbus_slave_call_callback

⚫ r_smbus_rxi_check_illegal_start

RX Family/RA Family PMBus Master-Slave communication using I2C bus interface (RIIC/I3C)

R01AN7660EJ0100 Rev.1.00 Page 172 of 178

Jan.14.25

⚫ r_smbus_rxi_slave

RX Family/RA Family PMBus Master-Slave communication using I2C bus interface (RIIC/I3C)

R01AN7660EJ0100 Rev.1.00 Page 173 of 178

Jan.14.25

⚫ r_smbus_txi_slave

⚫ r_smbus_tei_slave

RX Family/RA Family PMBus Master-Slave communication using I2C bus interface (RIIC/I3C)

R01AN7660EJ0100 Rev.1.00 Page 174 of 178

Jan.14.25

⚫ r_smbus_err_slave

RX Family/RA Family PMBus Master-Slave communication using I2C bus interface (RIIC/I3C)

R01AN7660EJ0100 Rev.1.00 Page 175 of 178

Jan.14.25

6. PMBus command-transmit/receive test-result

The following shows sample communication using tera term.

⚫ ON_OFF_CONFIG (write) WRITE_BYTE protocol

Transmission :
Slave address: 0x0A, READ/WRITE orientation: W, Command code: 0x02, Write data: 0x00

Reception :
Return code: 0x00, Packet result: 0x00

⚫ ON_OFF_CONFIG (read) READ_BYTE protocol

Transmission :
Slave address: 0x0A, READ/WRITE orientation: R, Command code: 0x02

Reception :
Read data: 0x00, Return code: 0x00, Packet result: 0x00

*1: This is due to ACK timing and does not affect PMBus communication.

*1

*1

RX Family/RA Family PMBus Master-Slave communication using I2C bus interface (RIIC/I3C)

R01AN7660EJ0100 Rev.1.00 Page 176 of 178

Jan.14.25

7. FAQ

◼ Question1:

Are there any PMBUS specifications that cannot be checked by this application?

Answer :

The following specifications cannot be checked.

・Group command protocol

・Extended command protocol

・Zone Command Protocol

・Bus master protocol

・Quick Command (read) Protocol

・Address resolution protocol(ARP)

・Control of Control signals (including Alert signals)

・Failure Management and Reporting Features

・Multi-master operation

・Clock stretching function

・Suspend mode notification by SMBUS signal

・Slave bus master switching function

・Host communication

・Internal-memory protective function by Write Protect signal

・General Call Operation

・Functionality added in SMBUS 3.0.0 or later and PMBUS 1.3.0 or later.

You can also use the following specifications by adjusting your application and PMBUS middleware. This
item should be evaluated by yourself.

・Commands Using Block Write

・Commands Using Block Read

・Commands Using Process Call

・Commands Using Block Write-Block Read Process Call

・Quick Command (write) Protocol

・Packet Error Check (PEC) Communication with

・Alert reply using Alert Response Address (ARA)

◼ Question2 :

What is the setting of terminal software for communication between PC and master?

Answer :

Make the following settings.
Bit rate :115200 bps
Data length :8 bit
Parity: None
Stop bit: 1 bit
Data-transfer-direction: LSB first
Line feed: Receive: LF, Send: CR+LF

◼ Question3 :

In this application, CRC calculation for communication with PEC uses a conversion table. Is it feasible to use
CRC calculator installed in MCU?

Answer :

Yes Possible. When using CRC calculator in this application, change 4.1.6 PMBus Master macro definition
list and 4.2.6 PMBus_Slave macro definition list to define "PMBUS_CRC8_USE_IP" to "1", and then
change "r_pmbus_nwk_AddCrc8()" which is implemented as an empty function to operate using CRC of
MCU. API for controlling CRC calculator of MCU can be generated by the smart configurator and FSP.

RX Family/RA Family PMBus Master-Slave communication using I2C bus interface (RIIC/I3C)

R01AN7660EJ0100 Rev.1.00 Page 177 of 178

Jan.14.25

◼ Question4 :

If the motor does not stop, what action should be taken?

Answer :

The motor can be stopped regardless of PMBUS command-receiving status by turning OFF SW1 (toggled
SW). When restarting the motor rotation, eliminate the reason for the error, set SW1 (toggle SW) to the
position where the motor can rotate, and then send the required ON_OFF_CONFIG command and
OPERATION command of PMBUS to restart the motor rotation.
It may also stop if an error is detected in the motor sample used in this application. Refer also to the
application notes for each motor sample for details.

◼ Question5 :

When a user application on the slave side is customized and evaluated, a "packet result:0x03" (timeout
detection) is returned from the terminal software. What are the possible causes?

Answer :

The problem may be caused by the high load of process added to the slave by the customer.
This application monitors the completion of the protocol-specified PMBUS(SMBUS within 25ms (TTIMEOUT).
For protocols that include Master receive /Slave transmissions, such as READ BYTE protocol, the callback
process on the slave is executed prior to sending Slave, so a timeout occurs if the callback process is
overloaded. If you want to Execute high-load process, consider executing high-load process in main
process by sending an event notification to main loop process from the callback using the pmbus_ctrl() and
e_pmbus_int_event_s_t that are executed periodically in the loop process.

RX Family/RA Family PMBus Master-Slave communication using I2C bus interface (RIIC/I3C)

R01AN7660EJ0100 Rev.1.00 Page 178 of 178

Jan.14.25

Revision History

Rev. Date

Description

Page Summary

1.00 Jan.14.25 - First Edition

General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit
Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the
products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Precaution against Electrostatic Discharge (ESD)

A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps

must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be

adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity.

Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and

measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor

devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.

2. Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of

register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset

pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins

in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power reaches the

level at which resetting is specified.

3. Input of signal during power-off state

Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O

pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal

elements. Follow the guideline for input signal during power-off state as described in your product documentation.

4. Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are

generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of

the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal

become possible.

5. Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program

execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator

during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal

produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.

6. Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL

(Max.) and VIH (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the

input level is fixed, and also in the transition period when the input level passes through the area between VIL (Max.) and VIH (Min.).

7. Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these

addresses as the correct operation of the LSI is not guaranteed.

8. Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems.

The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms

of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values,

operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-

evaluation test for the given product.

© 2025 Renesas Electronics Corporation. All rights reserved.

Notice

1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products

and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of

your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the

use of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights,

or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this

document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics

or others.

4. You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export,

manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.

5. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any

and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.

6. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for

each Renesas Electronics product depends on the product’s quality grade, as indicated below.

 "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home

electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.

 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key

financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas

Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to

human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space

system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas

Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas

Electronics product that is inconsistent with any Renesas Electronics data sheet, user’s manual or other Renesas Electronics document.

7. No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics

hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but

not limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS

ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING

RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE,

HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION (“Vulnerability Issues”). RENESAS ELECTRONICS DISCLAIMS ANY AND

ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT

PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH

RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO

THE IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.

8. When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General Notes for

Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by

Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc.

Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products

outside of such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific

characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability

product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics

products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily

injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as

safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for

aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you

are responsible for evaluating the safety of the final products or systems manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas

Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of

controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these

applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance

with applicable laws and regulations.

11. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is

prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations

promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.

12. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or

transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

13. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

14. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas

Electronics products.

(Note1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled

subsidiaries.

(Note2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

(Rev.5.0-1 October 2020)

Corporate Headquarters Contact information
TOYOSU FORESIA, 3-2-24 Toyosu,

Koto-ku, Tokyo 135-0061, Japan

www.renesas.com

 For further information on a product, technology, the most up-to-date

version of a document, or your nearest sales office, please visit:

www.renesas.com/contact/.

Trademarks
Renesas and the Renesas logo are trademarks of Renesas Electronics

Corporation. All trademarks and registered trademarks are the property

of their respective owners.

https://www.renesas.com/
https://www.renesas.com/contact/

	1. Overview
	1.1 Development Environment

	2. PMBus Outline
	2.1 PMBus protocols
	2.2 PMBus Command

	3. Hardware Description
	3.1 Hardware configuration
	3.2 Hardware Setup
	3.3 Configuration of MCU Function
	3.4 MCU peripheral function
	3.5 Port interface

	4. Operation procedure
	5. Software Description
	5.1 PMBus Master softwares
	5.1.1 PMBus Master Operation Sequence
	5.1.2 PMBus Master status transitions
	5.1.2.1 PMBus Master Middleware Application Layer status transitions
	5.1.2.2 PMBus Master Driver Layer status transitions

	5.1.3 PMBus Master Function List
	5.1.4 Customizing PMBus Master Driver section
	5.1.5 PMBus Master Data Types and Structure list
	5.1.6 PMBus Master global variables List
	5.1.7 PMBus Master macro Definition List
	5.1.8 PMBus Master Control Flowchart
	5.1.8.1 PMBus Master Application Flowchart
	5.1.8.2 PMBus Master API flowchart
	5.1.8.3 PMBus Master Drivers Flowchart

	5.2 PMBus Salve softwares
	5.2.1 PMBus Slave operation Sequence
	5.2.2 PMBus Slave status transitions
	5.2.2.1 PMBus Slave Middleware Application Layer status transitions
	5.2.2.2 PMBus Slave Driver Layer status transitions

	5.2.3 PMBus Slave Function List
	5.2.4 Customizing PMBus Slave Drivers
	(1) Customizing Smart Configurator (RX26T)
	(2) Customizing FSP (RA6T3)

	5.2.5 PMBus Slave Data Types and Structure List
	5.2.6 PMBus Slave Global variables List
	5.2.7 PMBus Slave macro-definition list
	5.2.8 PMBus Slave Control Flowchart
	5.2.8.1 PMBus Slave Application section flowchart
	5.2.8.2 PMBus Slave API section flowchart
	5.2.8.3 PMBus Slave Drivers Flowchart
	(1) Smart Configurator (RX26T)
	(2) FSP functional (RA6T3)

	6. PMBus command-transmit/receive test-result
	7. FAQ
	Revision History
	General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products
	Notice

