RENESAS

F0448

Dual Matched Broadband RF DVGA 3.3GHz to 4.2GHz

The F0448 is a 3.3GHz to 4.2GHz dual RF digital variable gain amplifier (DVGA) designed for use in receivers.

This dual RF DVGA provides two independent receiver channels each with 13dB typical maximum gain and 6dB noise figure designed to operate with a single +5V supply. For each channel, gain control is split into three separate attenuators: DSA0, a single 6dB step using a single control pin; DSA1, a 23dB SPI-controlled gain adjustment in 1dB steps; and DSA2, includes 18dB attenuation in 6dB steps controlled using two control pins. The F0448 offers +37dBm nominal output IP3 using 220mA total ICC.

This device is packaged in a 6×6 mm, 36-QFN with 50 Ω single-ended RF input and RF output impedances for ease of integration into the signal-channel lineup for each of the two channels.

Figure 1. Block Diagram

Features

- RF Frequency Range: 3.3GHz to 4.2GHz
- Dual Channel RF amp and DSAs for Diversity / MIMO Receivers
- < 2dB overshoot between DSA transitions</p>
- 13dB typical maximum gain at 3.6GHz
- DSA0: Single 6dB coarse step
- DSA1: 23dB total gain range in 1dB steps
- DSA2: 18dB gain range in 6dB steps
- +37dBm OIP3 at 3.6GHz
- 6dB Noise figure at 3.6GHz
- +5V Supply voltage
- I_{CC} = 220mA
- Independent standby: 7mA standby current
- SPI interface for DSA1
- 1-bit control for DSA0
- 2-bit control for DSA2
- 50Ω input and output impedance
- Internally matched
- Temperature range: -40°C to +105°C
- 6 × 6 × 0.75 mm, 36-QFN package

Applications

- Multi-mode, Multi-carrier Receivers
- PHS/PAS Base Stations
- Distributed Antenna Systems
- Digital Radio

Contents

1.	Pin Ir	nformati	on	6				
	1.1	Pin Ass	ignments	6				
	1.2	Pin Des	criptions	6				
2.	Specifications							
	2.1	Absolut	e Maximum Ratings					
	2.2	Recom	mended Operating Conditions					
	2.3	Electric	al Characteristics (3.4GHz to 3.8GHz)					
	2.4	Electric	al Characteristics – For Wideband Performance (3.3GHz to 4.2GHz)					
	2.5	Therma	I Characteristics					
3.	Туріс	al Perfo	rmance Graphs					
	3.1	Typical	Performance Characteristics (3.4GHz to 3.8GHz)					
	3.2	Typical	Performance Characteristics (3.3GHz to 4.2GHz)					
4.	Prog	rammino	7					
	4.1	Serial C	control – DSA1					
5.	Paral	lel Cont	rol Mode – DSA0. DSA2. STBY					
6	Typic	al Annli	cation Circuit	30				
7	 6. Typical Application Circuit 7. Evaluation Board							
7.		Evaluat	ion Board Schematic	31 32				
	7.1	Evaluat	ion Board BOM (3.4GHz to 3.8GHz)					
	73	Evaluat	ion Board BOM (5.461 2 to 5.661 2)					
	7.5	Evaluat	ion Board Operation					
	1.4	741	Power Supply Setup	35				
		742	GND Jumpers	35				
		7.4.3.	Standby (STBY) Pin					
		7.4.4.	Serial Control					
		7.4.5.	Parallel Control Pins					
		7.4.6.	Power-On Procedure					
		7.4.7.	Power-Off Procedure					
8.	Appli	ication l	nformation					
1.2 2. 2.1 2.2 2.3 2.4 2.5 3. Typic 3.1 3.2 4. Progr 4.1 5. Paral 6. Typic 7.1 7.2 7.3 7.4 8. Appli 8.1 8.2 8.3 9. Pack 10. Mark 11. Orde 12. Revis		Power S	Supplies					
	8.2	RSET a	IND RDSET					
	8.3	Control	Pin Interface	39				
9.	Pack	age Out	line Drawings	40				
10.	Mark	ing Diag	ram	40				
11.	Orde	ring Info	ormation	40				
12	Revision History							

Figures

Figure 1. Block Diagram	1
Figure 2. Pin Assignments – Top View	6
Figure 3. Maximum Gain vs. Frequency	15
Figure 4. Gain vs. Frequency for DSA0 Settings	15
Figure 5. Gain vs. Frequency for DSA1 Settings	15
Figure 6. Gain vs. Frequency for DSA2 Settings	15
Figure 7. Stability vs. Frequency as a Function of Voltage and Temperature	15
Figure 8. Input Return Loss for DSA0 Settings	16
Figure 9. Output Return Loss for DSA0 Settings	16
Figure 10. Input Return Loss for DSA1 Settings	16
Figure 11. Output Return Loss for DSA1 Settings	16
Figure 12. Input Return Loss for DSA2 Settings	16
Figure 13. Output Return Loss for DSA2 Settings	16
Figure 14. Reverse Isolation for DSA0 Settings	17
Figure 15. Phase Deviation Between Adjacent States vs. DSA0 Setting (3.6GHz)	17
Figure 16. Reverse Isolation for DSA1 Settings	17
Figure 17. Phase Deviation Between Adjacent States vs. DSA1 Setting (3.6GHz)	17
Figure 18. Reverse Isolation for DSA2 Settings	17
Figure 19. Phase Deviation Between Adjacent States vs. DSA2 Setting (3.6GHz)	17
Figure 20. DSA0 Absolute Attenuation Error (INL) at 3.6GHz	18
Figure 21. DSA0 Attenuator Step Error (DNL) at 3.6GHz	18
Figure 22. DSA1 Absolute Attenuation Error (INL) at 3.6GHz	18
Figure 23. DSA1 Attenuator Step Error (DNL) at 3.6GHz	18
Figure 24. DSA2 Absolute Attenuation Error (INL) at 3.6GHz	18
Figure 25. DSA2 Attenuator Step Error (DNL) at 3.6GHz	18
Figure 26. OIP3 vs. Frequency with Pout = 0dBm/Tone and Max Gain	19
Figure 27. OIP3 vs. Frequency with Pout = -10dBm/Tone and Max Gain	19
Figure 28. OIP3 vs. Frequency with Pout = -18dBm/Tone and DSA2 = 18dB	19
Figure 29. OIP3 vs. Frequency as a Function of Tone Spacing with POUT = 0dBm/Tone at 3.6GHz	19
Figure 30. OIP3 vs. Frequency with P _{OUT} = 0dBm/Tone and DSA0 = 6dB	19
Figure 31. Wideband OIP2 vs. Frequency with Pout = -10dBm/Tone	20
Figure 32. Wideband OIP2 vs. Frequency with Pout = 0dBm/Tone	20
Figure 33. NF vs. Frequency as a Function of Temperature at Max Gain	20
Figure 34. NF vs. Frequency as a Function of Temperature with DSA1 = 22dB	20
Figure 35. Gain Compression at $f_{RF} = 3.6GHz$	20
Figure 36. EVKit Connector and Trace Losses	20
Figure 37. Maximum Gain vs. Frequency	21
Figure 38. Gain vs. Frequency for DSA0 Settings	21
Figure 39. Gain vs. Frequency for DSA1 Settings	21
Figure 40. Gain vs. Frequency for DSA2 Settings	21
Figure 41. Input Return Loss vs. Frequency	21
Figure 42. Output Return Loss vs. Frequency	21
Figure 43. Input Return Loss for DSA0 Settings	22
Figure 44. Output Return Loss for DSA0 Settings	22

Figure 45. Input Return Loss for DSA1 Settings	22
Figure 46. Output Return Loss for DSA1 Settings	22
Figure 47. Input Return Loss for DSA2 Settings	22
Figure 48. Output Return Loss for DSA2 Settings	22
Figure 49. Reverse Isolation for DSA0 Settings	23
Figure 50. Phase Deviation Between Adjacent States vs. DSA0 Setting (4GHz)	23
Figure 51. Reverse Isolation for DSA1 Settings	23
Figure 52. Phase Deviation Between Adjacent States vs. DSA1 Setting (4GHz)	23
Figure 53. Reverse Isolation for DSA2 Settings	23
Figure 54. Phase Deviation Between Adjacent States vs. DSA2 Setting (4GHz)	23
Figure 55. DSA0 Absolute Attenuation Error (INL) at 4GHz	24
Figure 56. DSA0 Attenuator Step Error (DNL) at 4GHz	24
Figure 57. DSA1 Absolute Attenuation Error (INL) at 4GHz	24
Figure 58. DSA1 Attenuator Step Error (DNL) at 4GHz	24
Figure 59. DSA2 Absolute Attenuation Error (INL) at 4GHz	24
Figure 60. DSA2 Attenuator Step Error (DNL) at 4GHz	24
Figure 61. OIP3 vs. Frequency with Pout = 0dBm/Tone and Max Gain	25
Figure 62. OIP3 vs. Frequency with P _{OUT} = -10dBm/Tone and Max Gain	25
Figure 63. OIP3 vs. Frequency with POUT = -18dBm/Tone and DSA2 = 18dB	25
Figure 64. OIP3 vs. Frequency with Pout = 0dBm/Tone and DSA0 = 6dB	25
Figure 65. Output 1dB Compression	25
Figure 66. Stability Factor (K)	25
Figure 67. NF vs. Frequency as a Function of Temperature at Max Gain	26
Figure 68. Serial Register Data Flow Diagram (LSB Clock in First)	26
Figure 69. DSA1 Default Condition	27
Figure 70. Serial Timing Diagram	28
Figure 71. Typical Application Schematic	30
Figure 72. Evaluation Board – Top View	31
Figure 73. Evaluation Board – Bottom View	31
Figure 74. Evaluation Board Schematic	32
Figure 75. Power Supply Connections – Top View	35
Figure 76. Power Supply Connections – Bottom View	35
Figure 77. Two Ground Jumper Connections	35
Figure 78. Two Standby Pin Connections	36
Figure 79. Two Jumpers for Serial Programming Connections	37
Figure 80. Jumpers for Serial Programming Connections	
Figure 81. Parallel Pin Connections	38
Figure 82. Control Pin Interface	39

Tables

Table 1. Absolute Maximum Ratings	8
Table 2. Recommended Operating Conditions	8
Table 3. Electrical Characteristics (3.4GHz to 3.8GHz)	9
Table 4. Electrical Characteristics (3.3GHz to 4.2GHz)	12
Table 5. Package Thermal Characteristics	13
Table 6. DSA1 Attenuation Word Truth Table (LSB = First In)	27
Table 7. SPI Timing Diagram Values for Figure 70	28
Table 8. DSA0 Truth Table	29
Table 9. DSA2 Truth Table	29
Table 10. STANDBY Truth Table	29
Table 11. Bill of Materials (3.4GHz to 3.8GHz)	33
Table 12. Bill of Materials – For Wideband Performance (3.3GHz to 4.2GHz)	34
Table 13. J13 Header Pins	37
Table 14. Attenuator Control Using One Latch Signal	

F0448 Datasheet

1. Pin Information

1.1 Pin Assignments

1.2 Pin Descriptions

Number	Name	Description		
1	RFIN_A	Input RF port for channel A which is internally matched to 50Ω . Must use external DC block.		
2, 8, 15, 16, 17, 29, 30, 31	GND	Internally grounded. This pin must be grounded with a via as close to the pin as possible.		

Number	Name	Description
3	VCTRL0_A	1-bit DSA0 6dB attenuator control for channel A. Logic HIGH is for 6dB attenuated and logic LOW is for 0dB attenuated.
4	DATA	Data input: 3.3V or 1.8V CMOS compatible.
5	CLK	Clock input: 3.3V or 1.8V CMOS compatible.
6, 21, 23, 25	V _{cc}	Power Supply. Use bypass capacitors as close to pin as possible.
7	VCTRL0_B	1-bit DSA0 6dB attenuator control for channel B. Logic HIGH is for 6dB attenuated and logic LOW is for 0dB attenuated.
9	RFIN_B	Input RF port for channel B that is internally matched to 50Ω . Must use external DC block.
10, 18, 20, 26, 28, 36	NC	No internal connection. These pins can be left unconnected or be connected to ground (recommended). Use a via as close to the pin as possible if grounded.
11	CSb_B	Chip Select bar input for channel B: 3.3V or 1.8V CMOS compatible. Logic LOW allows data to be shifted in.
12	STBY_B	Standby pin for channel B (LOW/Open = device power ON, HIGH = device power OFF with SPI still powered ON). An internal pull-down resistor of $57k\Omega$ connects between this pin and GND.
13	VCTRL1_B	Bit 0 for DSA2 channel B attenuator. Logic HIGH is for 6dB attenuated and logic LOW is for 0dB attenuated.
14	VCTRL2_B	Bit 1 for DSA2 channel B attenuator. Logic HIGH is for 12dB attenuated and logic LOW is for 0dB attenuated.
19	RFOUT_B	Output RF port for channel B. Use external DC block as close to the pin as possible.
22	RDSET	Connect external resistor to GND to optimize amplifier bias. Used with pin 24.
24	RSET	Connect external resistor to GND to optimize amplifier bias. Used with pin 22.
27	RFOUT_A	Output RF port for channel A. Use external DC block as close to the pin as possible.
32	VCTRL2_A	Bit 1 for DSA2 channel A attenuator. Logic HIGH is for 12dB attenuated and logic LOW is for 0dB attenuated.
33	VCTRL1_A	Bit 0 for DSA2 channel A attenuator. Logic HIGH is for 6dB attenuated and logic LOW is for 0dB attenuated.
34	STBY_A	Standby pin for channel A (LOW/Open = device power ON, HIGH = device power OFF with SPI still powered ON). An internal pull-down resistor of $57k\Omega$ connects between this pin and GND.
35	CSb_A	Chip Select bar input for channel A: 3.3V or 1.8V CMOS compatible. Logic LOW allows data to be shifted in.
	— EPAD	Exposed paddle. Internally connected to ground. Solder this exposed paddle to a printed circuit board (PCB) pad that uses multiple ground vias to provide heat transfer out of the device into the PCB ground planes. These multiple ground vias are also required to achieve the specified RF performance.

2. Specifications

2.1 Absolute Maximum Ratings

The absolute maximum ratings are stress ratings only. Stresses greater than those listed below can cause permanent damage to the device. Functional operation of the F0448 at absolute maximum ratings is not implied. Exposure to absolute maximum rating conditions may affect device reliability.

Parameter	Symbol	Minimum	Maximum	Unit
V _{CC} to GND	V _{cc}	-0.3	+5.5	V
DATA, CSb_A, CSb_B, CLK, VCTRL0_A, VCTRL0_B	V _{LOGIC1}	-0.3	Lower of (V _{CC} , 3.6)	V
STBY_A, STBY_B, VCTRL1_A, VCTRL1_B, VCTRL2_A, VCTRL2_B	V _{LOGIC2}	-0.3	V _{CC} + 0.25	V
RFIN_A, RFIN_B externally applied DC voltage	V _{RFIN}	+1.4	+3.6	V
RFOUT_A, RFOUT_B, externally applied DC voltage	V _{RFOUT}	+1.4	+3.6	V
RF Input Power (RFIN_A or RFIN_B) applied for 24 hours max. [1]	P _{MAX}		+22	dBm
Continuous Power Dissipation	P _{DISS}		1.5	W
Storage Temperature Range	T _{ST}	-65	150	°C
Lead Temperature (soldering, 10s)			260	°C
ElectroStatic Discharge – HBM (JEDEC/ESDA JS-001-2012)			2000 Class 2	V
ElectroStatic Discharge – CDM (JEDEC 22-C101F)			1000 Class C3	V

Table 1.	Absolute	Maximum	Ratings
----------	----------	---------	---------

1. Exposure to these maximum RF levels can result in significant V_{CC} current draw due to overdriving the amplifier stage.

2.2 Recommended Operating Conditions

Table 2. Recommended Operating Conditions

Parameter	Symbol	Condition	Minimum	Typical	Maximum	Unit
Supply Voltage	V _{CC}	All V_{cc} pins	4.75	5.00	5.25	V
Operating Temperature Range	T _{EPAD}	Exposed paddle	-40		+105	°C
Junction Temperature	TJ				+125	°C
RF Frequency Range	f _{RF}		3.3		4.2	GHz
Maximum RF Input Power	P _{IP}	DSA0 = DSA1 = 0dB			0	dBm
RF Source Impedance	Z _{RFI}	Single ended		50		Ω
RF Load Impedance	Z _{RFO}	Single ended		50		Ω

2.3 Electrical Characteristics (3.4GHz to 3.8GHz)

See F0448 Typical Application Circuit. $V_{CC} = +5V$, $T_C = +25^{\circ}C$, $f_{RF} = 3.6GHz$ specifications apply when operated as a dual-channel RF DVGA, maximum gain setting, $P_{OUT} = 0dBm$, $Z_{RFI} = Z_{RFO} = 50\Omega$, Evaluation Board (EVKit) traces and connectors are de-embedded, unless otherwise stated. For BOM details of this specific band, see Table 11.

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
Logic Input High	VIH	Applies for all logic levels.	1.07 [1]			V
Logic Input Low	V _{IL}	Applies for all logic levels.			0.63	V
Logic Current (CLK, DATA, CSb_A, CSb_B, VCTRL0_A, VCTRL1_A, VCTRL2_A, VCTRL0_B, VCTRL1_B, VCTRL2_B)	I _{IH,} I _{IL}		-5		5	μΑ
		5V logic	-5		127	
Logic Current for Standby (STBY_A, STBY_B) ^[2]	$I_{\text{IH-SB}}, I_{\text{IL-SB}}$	3.3V logic	-5		87	μA
		1.8V logic	-5		47	
	I _{CC_2}	Both channels on		220	270	
Supply Current	I _{CC_1}	One channel on		110	142	mA
	I _{CC_STBY}	Standby Mode		7	14	
Startup Time	t _{start}	50% of STBY going LOW to Gain within ± 1dB with no attenuation.		74		ns
DSA0 Adjustment Range	A _{ADJ0}	6dB step size		6		dB
DSA1 Adjustment Range	A _{ADJ1}	1dB step size		23		dB
DSA2 Adjustment Range	A _{ADJ2}	6dB step size		18		dB
Maximum Attenuation Glitch	$ATTN_G$			2		dB
DSA0 Coin Sottling Time	t _{DSA0_1}	50% CTRL to within 0.1dB final value, 0dB state to 6dB state		24	35	ns
DSAU Gain Setting Time	t _{DSA0_2}	50% CTRL to within 0.1dB final value, 6dB state to 0dB state		18	35	
DSA1 Gain Settling Time	t _{DSA1}	50% of CSb to within 0.1dB final value		300		ns
	t _{DSA2_1}	50% CTRL to within 0.1dB final value, 0dB state to 18dB state		16	35	
DOAZ Gain Setuing Time	t _{DSA2_2}	50% CTRL to within 0.1dB final value, 18dB state to 0dB state		15	35	ns

Table 3. Electrica	I Characteristics	(3.4GHz to 3.8GHz)

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
	t _{DSA0_1_} PH	50% CTRL to within 1 degree of final value, 0dB state to 6dB state		24	35	
DSAU Phase Setuing Time	t _{DSA0_2_PH}	50% CTRL to within 1 degree of final value, 6dB state to 0dB state		18	35	ns
DSA2 Dhace Settling Time	t _{DSA2_1_PH}	50% CTRL to within 1 degree of final value, 0dB state to 18dB state		16	35	20
DSA2 Phase Setuing Time	t _{DSA0_1_PH}	50% CTRL to within 1 degree of final value, 18dB state to 0dB state		15	35	ns
Stability K factor	K _{FACT}	Over entire temperature range	1.4			unit
Serial Clock Speed	SPI _{CLK}				10	MHz
CSb_A, CSb_B to first serial clock rising edge	t _{LS}	SPI 3 wire bus. 50% of CSb falling edge to 50% of CLK rising edge.	10			ns
Serial Data Hold Time	t _H	SPI 3 wire bus. 50% of CLK rising edge to 50% of Data falling edge.	10			ns
Final serial clock rising edge to CSb	t _{LC}	SPI 3 wire bus. 50% of CLK rising edge to 50% of CSb rising edge.	10			ns
RF Input Return Loss	RL _{IN}			15		dB
RF Output Return Loss	RL _{OUT}			20		dB
	G _{MAX}		12	13	13.5	
Ocia	G _{MIN}	Maximum attenuation	-38.1	-32	-26.4	
Gain	G _{TEMP}	Variation over temperature		±0.15		aв
	G _{VAR}	Variation over frequency [3]		±0.2		
DSA0 Absolute Accuracy	INL _{DSA0}			0.52		dB
DSA1 Step Error	DNL _{DSA1}			0.16		dB
DSA1 Absolute Accuracy	INL _{DSA1}			0.55		dB
DSA2 Step Error	DNL _{DSA2}			0.32		dB
DSA2 Absolute Accuracy	INL _{DSA2}			0.43		dB
Relative Phase DSA0	$\Phi_{\text{PH}_\text{DSA0}}$			6.6		deg
Phase Deviation DSA1	$\Phi_{\text{PH}_\text{DSA1}}$	Between adjacent states		3		deg

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
Relative Phase DSA2	$\Phi_{\text{PH}_\text{DSA2}}$	Any State		6.6		deg
	NF			5.9		
Noise Figure	NF _{HOT}	T _{EPAD} = +105°C		6.6		dB
	NF_{22}	DSA1 22dB attenuation		27.7		
	OIP3 ₁	1MHz tone separation	34	37		
Output Third Order Intercept Point	OIP3 ₂	1MHz tone separation P _{OUT} = -10dBm/tone	33	35		
	OIP3 _{6dB}	1MHz tone separation DSA0 full attenuation		37		dBm
	OIP3 ₃	1MHz tone separation Worst case over temp range	33	36		
	OIP3 _{18dB}	P _{OUT} = -18dBm/tone 1MHz tone separation DSA2 full 18dB attenuation		21		
Input 1dB Compression [4]	IP1dB	Full attenuation		24		dBm
Output 1dB Compression	OP1dB			18		dBm
Reverse Isolation	REV _{ISO}		19	22		dB
			35	39		dB
Channel Isolation ^[5]	CHISO	Over voltage and temperature		39		

1. Specifications in the minimum/maximum columns that are shown in **bold italics** are guaranteed by test. Specifications in these columns that are not shown in bold italics are guaranteed by design characterization.

2. During standby mode, SPI is to be left ON and previous state is maintained when device is powered up.

3. Including frequency and ripple variations valid within each individual 3GPP band.

4. Input 1dB compression point is a linearity figure of merit. For maximum RF input power, see Absolute Maximum Ratings.

5. Signal applied to RFIN_A (RFIN_B), measure desired signal at RFOUT_A (RFOUT_B) and compare to signal level at RFOUT_B (RFOUT_A). Maximum gain setting.

2.4 Electrical Characteristics – For Wideband Performance (3.3GHz to 4.2GHz)

 $V_{CC} = +5V$, $T_C = +25^{\circ}C$, $f_{RF} = 4.0$ GHz specifications apply when operated as a dual-channel RF DVGA, maximum gain setting, $P_{OUT} = 0$ dBm, $Z_{RFI} = Z_{RFO} = 50\Omega$, Evaluation Board (EVKit) traces and connectors are deembedded, unless otherwise stated. For BOM details of this specific band, see Table 12.

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
RF Input Return Loss	RL _{IN}			13		dB
RF Output Return Loss	RL _{OUT}			20		dB
	G _{MAX}			12		
	G _{MIN}	Maximum attenuation		-36.5		dP
Gain	G _{TEMP}	Variation over temperature		±0.4		dB
	G _{VAR}	Variation over frequency [3]		±0.6		
DSA0 Absolute Accuracy	INL _{DSA0}			2		dB
DSA1 Step Error	DNL _{DSA1}			0.7		dB
DSA1 Absolute Accuracy	INL _{DSA1}			2		dB
DSA2 Step Error	DNL _{DSA2}			0.6		dB
DSA2 Absolute Accuracy	INL _{DSA2}			0.7		dB
Relative Phase DSA0	$\Phi_{\text{PH}_{DSA0}}$			6.3		deg
Phase Deviation DSA1	$\Phi_{\text{PH}_\text{DSA1}}$	Between adjacent states		5.8		deg
Relative Phase DSA2	$\Phi_{\text{PH}_\text{DSA2}}$	Any State		5.9		deg
	NF			7.7		
Noise Figure	NF _{HOT}	T _{EPAD} = +105°C		8.4		dB
	NF ₂₂	DSA1 22dB attenuation		29.4		
	OIP31	1MHz tone separation		38		
	OIP3 ₂	1MHz tone separation P _{OUT} = -10dBm/tone		34		
Output Third Order Intercept Point	OIP3 _{6dB}	1MHz tone separation DSA0 full attenuation		32		dBm
	OIP3 ₃	1MHz tone separation Worst case over temp range		31.5		
	OIP3 _{18dB}	P _{OUT} = -18dBm/tone 1MHz tone separation DSA2 full 18dB attenuation		16		

Table 4. Electrical Characteristics (3.3GHz to 4.2GHz)

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
Input 1dB Compression [4]	IP1dB	Full attenuation		25.5		dBm
Output 1dB Compression	OP1dB			17.5		dBm
Reverse Isolation	REV _{ISO}			21.5		dB
Channel locietion ^[5]				49		٩D
	CIIISO	Over voltage and temperature		48		uБ
Stability K factor	K _{FACT}	Over entire temperature range Up to 9GHz, V_{CC} = 4.75V to 5.25V	1			unit

1. Specifications in the minimum/maximum columns that are shown in **bold italics** are guaranteed by test. Specifications in these columns that are not shown in bold italics are guaranteed by design characterization.

2. During standby mode, SPI is to be left ON and previous state is maintained when device is powered up.

3. Including frequency and ripple variations valid within each individual 3GPP band.

4. Input 1dB compression point is a linearity figure of merit. For maximum RF input power, see Absolute Maximum Ratings.

5. Signal applied to RFIN_A (RFIN_B), measure desired signal at RFOUT_A (RFOUT_B) and compare to signal level at RFOUT_B (RFOUT_A). Maximum gain setting.

2.5 Thermal Characteristics

Table 5. Package Thermal Characteristics

Parameter	Symbol	Value	Unit
Junction to Ambient Thermal Resistance.	θ_{JA}	37.1	°C/W
Junction to Case Thermal Resistance. (Case is defined as the exposed paddle)	$\theta_{\text{JC-BOT}}$	9.1	°C/W
Moisture Sensitivity Rating (Per J-STD-020)		MSL 1	

3. Typical Performance Graphs

Unless otherwise noted, for the typical performance graphs on the following pages, the following conditions apply:

- V_{cc} = 5.0V
- $Z_L = Z_S = 50\Omega$ Single ended
- f_{RF} = 3.6GHz
- T_{EPAD} = +25°C
- Gain setting = Maximum gain
- STBY = LOW
- POUT = 0dBm/tone
- 1MHz Tone Spacing
- ATTN setting = 0dB (Maximum gain; DSA0 = DSA1 = DSA2 = 0dB)
- All temperatures are referenced to the exposed paddle
- Evaluation Kit traces and connector losses are de-embedded

3.1 Typical Performance Characteristics (3.4GHz to 3.8GHz)

Figure 5. Gain vs. Frequency for DSA1 Settings

Figure 7. Stability vs. Frequency as a Function of Voltage and Temperature

Figure 4. Gain vs. Frequency for DSA0 Settings

Figure 6. Gain vs. Frequency for DSA2 Settings

Figure 8. Input Return Loss for DSA0 Settings

Figure 10. Input Return Loss for DSA1 Settings

Figure 9. Output Return Loss for DSA0 Settings

Figure 13. Output Return Loss for DSA2 Settings

Figure 14. Reverse Isolation for DSA0 Settings

Figure 17. Phase Deviation Between Adjacent States vs. DSA1 Setting (3.6GHz)

Figure 19. Phase Deviation Between Adjacent States vs. DSA2 Setting (3.6GHz)

Figure 24. DSA2 Absolute Attenuation Error (INL) at 3.6GHz

Figure 23. DSA1 Attenuator Step Error (DNL) at 3.6GHz

Figure 25. DSA2 Attenuator Step Error (DNL) at 3.6GHz

Figure 26. OIP3 vs. Frequency with $P_{OUT} = 0dBm/Tone$ and Max Gain

Figure 28. OIP3 vs. Frequency with P_{OUT} = -18dBm/Tone and DSA2 = 18dB

Figure 27. OIP3 vs. Frequency with $P_{OUT} = -10dBm/Tone$ and Max Gain

Figure 29. OIP3 vs. Frequency as a Function of Tone Spacing with $P_{OUT} = 0dBm/Tone$ at 3.6GHz

Figure 32. Wideband OIP2 vs. Frequency with POUT = 0dBm/Tone

Figure 34. NF vs. Frequency as a Function of Temperature with DSA1 = 22dB

3.2 Typical Performance Characteristics (3.3GHz to 4.2GHz)

Figure 37. Maximum Gain vs. Frequency

Figure 41. Input Return Loss vs. Frequency

Figure 40. Gain vs. Frequency for DSA2 Settings

Figure 45. Input Return Loss for DSA1 Settings

Figure 44. Output Return Loss for DSA0 Settings

Figure 46. Output Return Loss for DSA1 Settings

Figure 48. Output Return Loss for DSA2 Settings

Figure 50. Phase Deviation Between Adjacent States vs. DSA0 Setting (4GHz)

Figure 52. Phase Deviation Between Adjacent States vs. DSA1 Setting (4GHz)

Figure 54. Phase Deviation Between Adjacent States vs. DSA2 Setting (4GHz)

F0448 Datasheet

3

2.5

2

1.5

1

0.5

0

-0.5

-1

0

DSA0 Setting (dB)

3

Figure 57. DSA1 Absolute Attenuation Error (INL) at 4GHz

Absolute Error (dB)

20 22

Figure 58. DSA1 Attenuator Step Error (DNL) at 4GHz

-40 C/ 5V

105 C/ 5V

Step Error (dB)

- 25 C/ 5V

••• 105 C/ 5.25V

- · · 25 C/ 5.25V

Figure 60. DSA2 Attenuator Step Error (DNL) at 4GHz

Figure 56. DSA0 Attenuator Step Error (DNL) at 4GHz

Figure 61. OIP3 vs. Frequency with POUT = 0dBm/Tone

Figure 62. OIP3 vs. Frequency with POUT = -10dBm/Tone and Max Gain

-40 C/ 5.25V

25 C/ 5.25V

105 C/ 5.25V

-40 C/ 5.25V

25 C/ 5.25V 105 C/ 5.25V

7

6

25 C/ 5.25V

105 C/ 5.25V

8

4.2

4.4

4

4.2

4.4

4

Figure 67. NF vs. Frequency as a Function of Temperature at Max Gain

4. Programming

The F0448 is programmed in both the serial and parallel. The 23dB attenuator (DSA1) is programmed using a three-wire serial control line. You choose which channel is programmed by using either or both CSb lines. Parallel pins are used for the one-bit 6dB attenuator ((DSA0_A, DSA0_B) and two-bit 18dB (6dB step) attenuator (DSA2_A, DSA2_B). The standby pins are also controlled by the parallel pin. All logic is both 1.8V and 3.3V compatible.

4.1 Serial Control – DSA1

The serial interface uses an 8-bit word with only 5 bits used. The serial word is shifted in LSB (D0) first.

Figure 68. Serial Register Data Flow Diagram (LSB Clock in First)

When the device is first powered up, DSA1 will default to the Maximum Attenuation setting as shown.

Default Register Setting

Figure 69. DSA1 Default Condition

The F0448 includes a CLK inhibit feature designed to minimize sensitivity to CLK bus noise when the device is not being programmed. When CSb is high (> V_{IH}), the CLK input is disabled and serial data (DATA) is not clocked into the shift register. It is recommended that CSb be pulled high (> V_{IH}) when the device is not being programmed.

DZ (MED)	Attenuation word							Attenuation
D7 (WSB)	D6	D5	D4	D3	D2	D1	D0 (LSB)	Setting (dB)
х	LOW	LOW	LOW	LOW	LOW	x	х	0
х	LOW	LOW	LOW	LOW	HIGH	x	х	1
х	LOW	LOW	LOW	HIGH	LOW	x	x	2
х	LOW	LOW	HIGH	LOW	LOW	x	x	4
х	LOW	HIGH	LOW	LOW	LOW	x	x	8
х	HIGH	LOW	LOW	LOW	LOW	x	x	16
х	HIGH	LOW	HIGH	HIGH	LOW	x	x	22
х	HIGH	LOW	HIGH	HIGH	HIGH	x	х	23 (max)
х	HIGH	HIGH	LOW	LOW	LOW	x	x	23 (max)
х	HIGH	HIGH	LOW	LOW	HIGH	x	х	23 (max)
х	HIGH	HIGH	LOW	HIGH	LOW	x	x	23 (max)
х	HIGH	HIGH	LOW	HIGH	HIGH	x	x	23 (max)
х	HIGH	HIGH	HIGH	LOW	LOW	x	х	23 (max)
x	HIGH	HIGH	HIGH	LOW	HIGH	x	x	23 (max)
x	HIGH	HIGH	HIGH	HIGH	LOW	x	x	23 (max)
x	HIGH	HIGH	HIGH	HIGH	HIGH	x	х	23 (max)

Table 6. DSA1 Attenuation Word Truth Table (LSB = First In)

Figure 70. Serial Timing Diagram

Parameter	Symbol	Test Condition	Minimum	Typical	Maximum	Unit
CLK Frequency	f _C				10	MHz
CLK High Duration Time	t _{CH}		50			ns
CLK Low Duration Time	t _{CL}		50			ns
DATA to CLK Setup Time	t _S		10			ns
CLK Period ^[a]	t _P		100			ns
CLK to DATA Hold Time	t _H		10			ns
CSb to CLK Setup Time	t _{LS}		10			ns
CSb Trigger Pulse Width	tL		10			ns
CSb Trigger to CLK Setup Time [b]	t _{LC}		10			ns

fable 7. SPI Ti	ming Diagram	Values fo	r Figure 70
-----------------	--------------	-----------	-------------

 $[a] \quad \left(t_{CH} + t_{CL}\right) \geq 1/f_C$

[b] Once all desired DATA is clocked in, t_{LC} represents the time a CSb high needs to occur before any subsequent CLK signals.

5. Parallel Control Mode – DSA0, DSA2, STBY

Externally set the parallel control pins either logic LOW or HIGH.

Table 8. DSA0 Truth Table

VCTRL0_A (VCTRL0_B)	ATTENUATION SETTING (dB) DSA0_A or DSA0_B
LOW	0 (Reference IL)
HIGH	6

Table 9. DSA2 Truth Table

VCTRL1_A (VCTRL1_B)	VCTRL2_A (VCTRL2_B)	ATTENUATION SETTING (dB) DSA2_A or DSA2_B
LOW	LOW	0 (Reference IL)
HIGH	LOW	6
LOW	HIGH	12
HIGH	HIGH	18

Table 10. STANDBY Truth Table

Control Pins	Logic Level	Function	
STBY_A, STBY_B	LOW (or open)	Channel Powered On	
	HIGH	Channel Powered OFF	

6. Typical Application Circuit

Figure 71 is a typical circuit that can be used in a design for the F0448.

Figure 71. Typical Application Schematic

7. Evaluation Board

Figure 72. Evaluation Board – Top View

Figure 73. Evaluation Board – Bottom View

7.1 Evaluation Board Schematic

Figure 74 is the evaluation board schematic.

RENESAS

7.2 Evaluation Board BOM (3.4GHz to 3.8GHz)

Part Reference	Qty	Description	Manufacturer Part #	Manufacturer
C1, C2, C21, C28	4	47pF ±5%, 50V, C0G Ceramic Capacitor (0402)	GRM1555C1H470J	Murata
C3, C4, C6, C10, C11, C16, C22, C24, C26, C27	10	2pF ±0.1pF, 50V, C0G Ceramic Capacitor (0402)	GRM1555C1H2R0B	Murata
C12, C14, C17, C20	4	1000pF ±5%, 50V, C0G Ceramic Capacitor (0402)	GRM1555C1H102J	Murata
C13, C15, C18, C19	4	0.1µF ±10%, 16V, X7R Ceramic Capacitor (0402)	GRM155R71C104K	Murata
R1, R3, R4, R6, R10, R11, R13, R17, R18, R19	10	5.11kΩ ±1%, 1/10W, Resistor (0402)	ERJ-2RKF5111X	Panasonic
R21, R22, R23, R24	4	0Ω Resistor (0402)	ERJ-2GE0R00X	Panasonic
R25, R26	2	4.42kΩ ±1%, 1/10W, Resistor (0402)	ERJ-3EKF4421V	Panasonic
J1, J3, J5, J9, J14	5	Edge Launch SMA (0.375 inch pitch ground tabs)	142-0701-851	Emerson Johnson
J4, J11	2	CONN HEADER VERT SGL 3 X 1 POS GOLD	961103-6404-AR	3M
J6, J10, J12, J15	4	CONN HEADER VERT SGL 2 X 1 POS	961102-6404-AR	3M
J13	1	CONN HEADER VERT SGL 11 X 2 POS GOLD	67997-122HLF	FCI
U1	1	Dual DVGA	F0448NBGK	Renesas
	1	Printed Circuit Board	F0440 EVKIT REV 01	Renesas
C5, C7, C8, C9, C23, C25, C29, C30, R2, R5, R15, R20, R7, R8, R9, R12, R14, R16, J7, J8		DNP		

7.3 Evaluation Board BOM – For Wideband Performance (3.3GHz to 4.2GHz)

Part Reference	Qty	Description	Manufacturer Part #	Manufacturer
C1, C21, C2, C28	4	47pF ±5%, 50V, C0G Ceramic Capacitor (0402)	GRM1555C1H470J	Murata
C3, C4, C6, C10, C11, C16, C22, C24, C26, C27	10	2pF ±0.1pF, 50V, C0G Ceramic Capacitor (0402)	GRM1555C1H2R0B	Murata
C12, C14, C17, C20	4	1000pF ±5%, 50V, C0G Ceramic Capacitor (0402)	GRM1555C1H102J	Murata
C13, C15, C18, C19	4	0.1µF ±10%, 16V, X7R Ceramic Capacitor (0402)	GRM155R71C104K	Murata
R1, R3, R4, R6, R10, R11, R13, R17, R18, R19	10	5.11kΩ ±1%, 1/10W, Resistor (0402)	ERJ-2RKF5111X	Panasonic
R21, R22, R23, R24, C8, C25	6	0Ω Resistor (0402)	ERJ-2GE0R00X	Panasonic
R25, R26	2	4.42kΩ ±1%, 1/10W, Resistor (0402)	ERJ-3EKF4421V	Panasonic
R2, R15	2	0.6 pF ±1pF, 50V, Ceramic Capacitor (0402)	GRM0225C1HR60BA	Murata
J1, J3, J5, J9, J14	5	Edge Launch SMA (0.375 inch pitch ground tabs)	142-0701-851	Emerson Johnson
J4, J11	2	CONN HEADER VERT SGL 3 X 1 POS GOLD	961103-6404-AR	3M
J6, J10, J12, J15	4	CONN HEADER VERT SGL 2 X 1 POS	961102-6404-AR	3M
J13	1	CONN HEADER VERT SGL 11 X 2 POS GOLD	67997-122HLF	FCI
U1	1	Dual DVGA	F0448NBGK	Renesas
	1	Printed Circuit Board	F0440 EVKIT REV 01	Renesas
C5, C7, C9, C23, C29, C30, R5, R20, R7, R8, R9, R12, R14, R16, J7, J8		DNP		

Table 12. Bill of Materials – For Wideband Performance (3.3GHz to 4.2GHz)

7.4 Evaluation Board Operation

7.4.1. Power Supply Setup

Set up a power supply in the voltage range of 4.75V to 5.25V with the power supply output disabled. The voltage is applied via the SMA connector, J1, show in Figure 75 and Figure 76.

Figure 75. Power Supply Connections – Top View

Figure 76. Power Supply Connections – Bottom View

7.4.2. GND Jumpers

Headers J6 and J10 must be jumped (grounded) for optimum RF performance. Figure 77 shows the header locations.

Figure 77. Two Ground Jumper Connections

7.4.3. Standby (STBY) Pin

The Evaluation Board can control the F0448 for standby operation. The standby pin is the center pin of the J4 and J11 header as shown in Figure 78. VCC (logic HIGH) and ground (logic LOW) pins are available to make a connection with a jumper.

Figure 78. Two Standby Pin Connections

To place channel A in the normal operation mode (on), use one of these options:

- Make no connections on J4.
- Apply a logic LOW signal to STBY (pin 2 of J4 or the middle pin).
- Make a connection between pin 1 (GND) and pin 2 (STBY, the middle pin) of J4.

To place channel A in the standby mode (off), use one of these options:

- Apply a logic HIGH signal to the STBY (pin 2 of J4 or the middle pin).
- Make a connection between pin 3 (VCC) and pin 2 (STBY, the middle pin) of J4.

To place channel B in the normal operation mode (on), use one of these options:

- Make no connections on J11.
- Apply a logic LOW signal to STBY (pin 2 of J11 or the middle pin).
- Make a connection between pin 1 (GND) and pin 2 (STBY, the middle pin) of J11.

To place channel B in the standby mode (off), use one of these options:

- Apply a logic HIGH signal to the STBY (pin 2 of J11 or the middle pin).
- Make a connection between pin 3 (VCC) and pin 2 (STBY, the middle pin) of J11.

7.4.4. Serial Control

Both channels have a digital controlled attenuator, DSA1_A and DSA1_B, which share the serial control word. The serial control pins are on header J13 and are shown in Figure 79. Table 13 lists the pin functions on header J13.

Figure 79. Two Jumpers for Serial Programming Connections

Pin	Label	Pin	Label
1	GND	2	GND
3	DATA	4	GND
5	CLK	6	GND
7	CSb_A	8	GND
9	CSb_B	10	GND
11	VCTRL0_A	12	GND
13	VCTRL0_B	14	GND
15	VCTRL1_A	16	GND
17	VCTRL1_B	18	GND
19	VCTRL2_A	20	GND
21	VCTRL2_B	22	GND

Table 13. J13 Header Pins

Each channel has its own latch pins, CSB_A and CSB_B (pin 7 of J13 and pin 9 of J13) so each channel attenuator can be independently controlled. If you only have one latch signal, the ability to control each channel attenuator achieved using headers J12 and J15. The latch signal must be applied to CSb_A (pin 7 of J13). Table 14 lists the operation for the connections on these headers. Figure 54 shows the J12 and J15 headers.

CSb_A (J12)	CSb_B (J15)	Function
OPEN	OPEN	No control of attenuators
OPEN	CLOSED	DSA1_B attenuator is controlled
CLOSED	OPEN	DSA1_A attenuator is controlled
CLOSED	CLOSED	DSA1_A attenuator is controlled DSA1_B attenuator is controlled

Table 14. Attenuator Control Using One Latch Signal

Figure 80. Jumpers for Serial Programming Connections

7.4.5. Parallel Control Pins

Both channels have two other attenuators, DSA0 and DSA2, which are parallel controlled. These parallel pins are located on header J13 shown in Figure 81. Table 14 lists the pin functions on header J13.

Figure 81. Parallel Pin Connections

See Table 8 and Table 9 for the attenuation control.

7.4.6. Power-On Procedure

Set up the voltage supplies and Evaluation Board as described in "Power Supply Setup" with the "Standby Pin" set for logic LOW, then enable the power supply.

7.4.7. Power-Off Procedure

Disable the power supply.

8. Application Information

The F0448 is optimized for use in high-performance RF applications from 3.3GHz to 4.2GHz.

8.1 Power Supplies

Bypass supply pins with external capacitors to minimize noise and fast transients. Supply noise can degrade noise figure and fast transients can trigger ESD clamps and cause them to fail. Supply voltage change or transients should have a slew rate smaller than $1V/20\mu$ S. In addition, all control pins should remain at $0V (\pm 0.3V)$ while the supply voltage ramps or while it returns to zero.

8.2 RSET and RDSET

The F0448 is optimized for gain and intermodulation products by adjusting the bias resistors RSET and RDSET. For the optimized setting, RSET (R26) and RDSET (R25) are $4.42k\Omega$.

8.3 Control Pin Interface

If control signal integrity is a concern and clean signals cannot be guaranteed due to overshoot, undershoot, ringing, etc., the following circuit at the input of each control pin is recommended. This applies to control pins 3-7, 11-14, and 32-35 as shown below. Note the recommended resistor and capacitor values do not necessarily match the EVKit BOM for the case of poor control signal integrity.

Figure 82. Control Pin Interface

9. Package Outline Drawings

The package outline drawings are located at the end of this document and are accessible from the Renesas website. The package information is the most current data available and is subject to change without revision of this document.

10. Marking Diagram

IDTF0448
NBGK
ZW1707L
Q86A034MY
•

- Line 1 and 2 are the part number.
- Line 3 "ZW" is for die version.
- Line 3 "yyww = 1707 has two digits for the year and week that the part was assembled.
- Line 3 "L" denotes Assembly Site.
- Line 4 "Q86A034MY" is the Assembly Lot number.

11. Ordering Information

Orderable Part Number	Package Description	MSL Rating	Carrier Type	Temperature
F0448NBGK	$6 \times 6 \times 0.75$ mm, <u>36-QFN</u>	1	Tray	-40°C to +105°C
F0448NBGK8	$6 \times 6 \times 0.75$ mm, <u>36-QFN</u>	1	Tape and Reel	-40°C to +105°C
F0448EVB	Evaluation Board			
F0448EVS	Evaluation Solution			

12. Revision History

Revision	Date	Description
1.4	Feb 17, 2021	 Updated spec table, plots, and BOM for wideband frequency tune Added Plots and a BOM for wide band operation of the device from 3.3GHz to 4.2GHz. The Operating Range has also been appropriately adjusted. Updated the document to the latest template
1.3	Oct 24, 2018	 Removed "or pin open" from Pin Descriptions Removed "or open" from Table 8 and Table 9 Updated Figure 79
1.2	Oct 18, 2018	 Updated various logic levels Update Typical Performance Characteristics Completed other minor improvements
1.1	Aug 29, 2018	Added θ_{JA} and $\theta_{JC\text{-BOT}}$ values to Table 5
1.0	Aug 8, 2018	Initial release.

Package Outline Drawing

Package Code: NBG36P2 36-VFQFPN 6.0 x 6.0 x 0.75 mm Body, 0.5mm Pitch PSC-4311-02, Revision: 02, Date Created: Oct 9, 2024

© Renesas Electronics Corporation

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD-PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers who are designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only to develop an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third-party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising from your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

(Disclaimer Rev.1.01)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit <u>www.renesas.com/contact-us/</u>.