inter_{sil}"

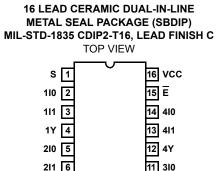
HCS157MS

Radiation Hardened Quad 2-Input Multiplexers

Features

- 3 Micron Radiation Hardened CMOS SOS
- Total Dose 200K RAD (Si)
- SEP Effective LET No Upsets: >100 MEV-cm²/mg
- Single Event Upset (SEU) Immunity < 2 x 10⁻⁹ Errors/ Bit-Day (Typ)
- Dose Rate Survivability: >1 x 10¹² RAD (Si)/s
- Dose Rate Upset >10¹⁰ RAD (Si)/s, 20ns Pulse
- Latch-Up Free Under Any Conditions
- Military Temperature Range: -55°C to +125°C
- Significant Power Reduction Compared to LSTTL ICs
- DC Operating Voltage Range: 4.5V to 5.5V
- Input Logic Levels
 - VIL = 30% of VCC Max
 - VIH = 70% of VCC Min
- Input Current Levels Ii \leq 5µA at VOL, VOH

Description

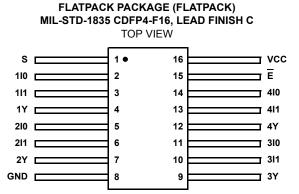

The Intersil HCS157MS is a Radiation Hardened quad 2-input multiplexers which select four bits of data from two sources under the control of a common select input (S). The Enable input (E NOT) is active low. When the enable pin is high all of the outputs (1Y-4Y) are forced low regardless of all other input conditions.

Moving data from two groups of registers to four common output busses is a common use of these devices. The state of the Select input determines the particular register from which the data comes. They can also be used as function generators.

The HCS157MS utilizes advanced CMOS/SOS technology to achieve high-speed operation. This device is a member of radiation hardened, high-speed, CMOS/SOS Logic Family.

The HCS157MS is supplied in a 16 lead Ceramic flatpack (K suffix) or a SBDIP Package (D suffix).

Pinouts


10 311

9 3Y

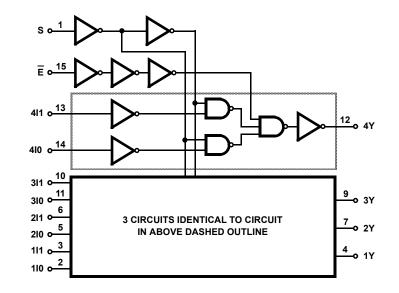
7

2Y

GND 8

16 LEAD CERAMIC METAL SEAL

Ordering Information


PART NUMBER	TEMPERATURE RANGE	SCREENING LEVEL	PACKAGE
HCS157DMSR	-55°C to +125°C	Intersil Class S Equivalent	16 Lead SBDIP
HCS157KMSR	-55°C to +125°C	Intersil Class S Equivalent	16 Lead Ceramic Flatpack
HCS157D/Sample	+25°C	Sample	16 Lead SBDIP
HCS157K/Sample	+25°C	Sample	16 Lead Ceramic Flatpack
HCS157HMSR	+25°C	Die	Die

FN3561 Rev 1.00 September 1995

DATASHEET

Functional Block Diagram

ENABLE	SELECT INPUTS	DATA I	OUTPUT	
Ē	S	10	11	Y
Н	Х	Х	Х	L
L	L	L	Х	L
L	L	Н	Х	Н
L	Н	Х	L	L
L	Н	Х	Н	Н

H = High Level L = Low Level

X = Immaterial

Absolute Maximum Ratings

Supply Voltage (VCC)	0.5V to +7.0V
Input Voltage Range, All Inputs	0.5V to VCC +0.5V
DC Input Current, Any One Input	±10mA
DC Drain Current, Any One Output	±25mA
(All Voltage Reference to the VSS Terminal)	
Storage Temperature Range (TSTG)	65°C to +150°C
Lead Temperature (Soldering 10sec)	+265 ^o C
Junction Temperature (TJ)	+175°C
ESD Classification	Class 1

Reliability Information

Thermal Resistance SBDIP Package	θ _{JA} 73ºC/W	θ _{JC} 24ºC/W			
Ceramic Flatpack Package	114ºC/W	29°C/W			
Maximum Package Power Dissipation at +12	5°C Ambien	t			
SBDIP Package		0.68W			
Ceramic Flatpack Package		0.44W			
If device power exceeds package dissipation capability, provide here					
sinking or derate linearly at the following rate	:				
SBDIP Package	1	3.7mW/ ^o C			
Ceramic Flatpack Package		8.8mW/ ^o C			

CAUTION: As with all semiconductors, stress listed under "Absolute Maximum Ratings" may be applied to devices (one at a time) without resulting in permanent damage. This is a stress rating only. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. The conditions listed under "Electrical Performance Characteristics" are the only conditions recommended for satisfactory device operation.

Operating Conditions

 $\label{eq:supply_voltage} \begin{array}{l} \text{Supply Voltage (VCC)} & +4.5 \text{V to } +5.5 \text{V} \\ \text{Input Rise and Fall Times at 4.5 V VCC (TR, TF)} & 100 \text{ns Max} \\ \text{Operating Temperature Range (T_A)} & \dots & -55^{\circ}\text{C to } +125^{\circ}\text{C} \end{array}$

Input Low Voltage (VIL).....VCC to 70% of VCC Input High Voltage (VIH).....0V to 30% of VCC

	GROUP		LIMITS				
PARAMETER	SYMBOL	(NOTE 1) CONDITIONS	A SUB- GROUPS	TEMPERATURE	MIN	MAX	UNITS
Supply Current	ICC	VCC = 5.5V, VIN = VCC or GND	1	+25°C	-	40	μΑ
			2, 3	+125°C, -55°C	-	750	μΑ
Output Current (Sink)	IOL	VCC = 4.5V, VIH = 4.5V, VOUT = 0.4V, VIL = 0V,	1	+25°C	7.2	-	mA
		(Note 2)	2, 3	+125°C, -55°C	6.0	-	mA
Output Current (Source)	IOH	VCC = 4.5V, VIH = 4.5V, VOUT = VCC - 0.4V.	1	+25°C	-7.2	-	mA
(Source)		VIL = 0V, (Note 2)	2, 3	+125°C, -55°C	-6.0	-	mA
Output Voltage Low	VOL	VCC = 4.5V, VIH = 3.15V, IOL = 50μA, VIL = 1.35V	1, 2, 3	+25°C, +125°C, -55°C	-	0.1	V
		VCC = 5.5V, VIH = 3.85V, IOL = 50μA, VIL = 1.65V	1, 2, 3	+25°C, +125°C, -55°C	-	0.1	V
Output Voltage High	VOH	VCC = 4.5V, VIH = 3.15V, IOH = -50μA, VIL = 1.35V	1, 2, 3	+25°C, +125°C, -55°C	VCC -0.1	-	V
		VCC = 5.5V, VIH = 3.85V, IOH = -50µA, VIL = 1.65V	1, 2, 3	+25°C, +125°C, -55°C	VCC -0.1	-	V
Input Leakage IIN Current	VCC = 5.5V, VIN = VCC or GND	1	+25°C	-	±0.5	μΑ	
		2, 3	+125°C, -55°C	-	±5.0	μΑ	
Noise Immunity Functional Test	FN	VCC = 4.5V, VIH = 3.15V, VIL = 1.35V, (Note 3)	7, 8A, 8B	+25°C, +125°C, -55°C	-	-	-

TABLE 1. DC ELECTRICAL PERFORMANCE CHARACTERISTICS

NOTES:

1. All voltages referenced to device GND.

2. Force/Measure functions may be interchanged.

3. For functional tests, VO \ge 4.0V is recognized as a logic "1", and VO \le 0.5V is recognized as a logic "0".

		(NOTES 1, 2) GROUP A SUB-			LIMITS		
PARAMETER	SYMBOL	CONDITIONS	GROUPS	TEMPERATURE	MIN	MAX	UNITS
Propagation Delay Data to Output	TPHL	VCC = 4.5V	9	+25°C	2	26	ns
			10, 11	+125°C, -55°C	2	30	ns
	TPLH	VCC = 4.5V	9	+25°C	2	20	ns
			10, 11	+125°C, -55°C	2	24	ns
Propagation Delay Enable to Output	TPHL	VCC = 4.5V	9	+25°C	2	22	ns
			10, 11	+125°C, -55°C	2	25	ns
	TPLH	VCC = 4.5V	9	+25°C	2	22	ns
			10, 11	+125°C, -55°C	2	25	ns
Propagation Delay Select to Output	TPHL	VCC = 4.5V	9	+25°C	2	31	ns
Select to Output			10, 11	+125°C, -55°C	2	37	ns
	TPLH	VCC = 4.5V	9	+25°C	2	25	ns
			10, 11	+125°C, -55°C	2	29	ns

TABLE 2. AC ELECTRICAL PERFORMANCE CHARACTERISTICS

NOTES:

1. All voltages referenced to device GND.

2. AC measurements assume RL = 500Ω , CL = 50pF, Input TR = TF = 3ns, VIL = GND, VIH = VCC

					LIMITS		
PARAMETER	SYMBOL	CONDITIONS	NOTES	TEMPERATURE	MIN	MAX	UNITS
Capacitance Power Dissipation	CPD	VCC = 5.0V, VIH = 5.0V, VIL = 0V, f = 1MHz	1	+25°C	-	68	pF
Dissipation			1	+125°C, -55°C	-	84	pF
Input Capacitance	CIN	VCC = 5.0V, VIH = 5.0V,	1	+25°C	-	10	pF
		VIL = 0V, f = 1MHz	1	+125°C, -55°C	-	10	pF
Output Transition Time	TTHL, TTLH	VCC = 4.5V VIH = 4.5V, VIL = 0V,	1	+25°C	-	15	ns
TIME	1120	VIL - UV,	1	+125°C, -55°C	-	22	ns

NOTE:

1. The parameters listed in Table 3 are controlled via design or process parameters. Min and Max Limits are guaranteed but not directly tested. These parameters are characterized upon initial design release and upon design changes which affect these characteristics.

		(NOTES 1, 2)		200K RAD LIMITS		
PARAMETER	SYMBOL	CONDITIONS	TEMPERATURE	MIN	MAX	UNITS
Supply Current	ICC	VCC = 5.5V, VIN = VCC or GND	+25°C	-	0.75	mA
Output Current (Sink)	IOL	VCC = 4.5V, VIN = VCC or GND, VOUT = 0.4V	+25°C	6.0	-	mA
Output Current (Source)	IOH	VCC = 4.5V, VIN = VCC or GND, VOUT = VCC -0.4V	+25°C	-6.0	-	mA
Output Voltage Low	VOL	VCC = 4.5V , VIH = 3.15, VIL = 1.35V, IOL = 50μA	+25°C	-	0.1	V
		VCC = 5.5V, VIH = 3.85, VIL =1.65V, IOL = 50μA	+25°C	-	0.1	V
Output Voltage High VOH	VCC = 4.5V, VIH = 3.15, VIL = 1.35V, IOH = -50µA	+25°C	VCC -0.1	-	V	
		VCC = 5.5V, VIH = 3.85, VIL = 1.65V, IOH = -50µA	+25°C	VCC -0.1	-	V
Input Leakage Current	IIN	VCC = 5.5V, VIN = VCC or GND	+25°C	-	±5	μΑ
Noise Immunity Functional Test	FN	VCC = 4.5V, VIH = 3.15V, VIL = 1.35V, (Note 3)	+25°C	-	-	-
Propagation Delay	TPHL	VCC = 4.5V	+25°C	2	30	ns
Data to Output TPLH		VCC = 4.5V	+25°C	2	24	ns
Propagation Delay TPHL Enable to Output TPLH		VCC = 4.5V	+25°C	2	25	ns
		VCC = 4.5V	+25°C	2	25	ns
Propagation Delay	TPHL	VCC = 4.5V	+25°C	2	37	ns
Select to Output TPLH		VCC = 4.5V	+25°C	2	29	ns

TABLE 4. DC POST RADIATION ELECTRICAL PERFORMANCE CHARACTERISTICS

NOTES:

1. All voltages referenced to device GND.

2. AC measurements assume RL = 500Ω , CL = 50pF, Input TR = TF = 3ns, VIL = GND, VIH = VCC.

3. For functional tests VO \geq 4.0V is recognized as a logic "1", and VO \leq 0.5V is recognized as a logic "0".

PARAMETER	GROUP B SUBGROUP	DELTA LIMIT
ICC	5	12µA
IOL/IOH	5	-15% of 0 Hour

TABLE 6. APPLICABLE SUBGROUPS

CONFORMANCE GROUPS		METHOD	GROUP A SUBGROUPS	READ AND RECORD
Initial Test (Preburn-In)		100%/5004	1, 7, 9	ICC, IOL/H, IOZL/H
Interim Test I (Postburn-In)		100%/5004	1, 7, 9	ICC, IOL/H, IOZL/H
Interim Test II (Po	ostburn-In)	100%/5004	1, 7, 9	ICC, IOL/H, IOZL/H
PDA		100%/5004	1, 7, 9, Deltas	
Interim Test III (P	Postburn-In)	100%/5004	1, 7, 9	ICC, IOL/H, IOZL/H
PDA		100%/5004	1, 7, 9, Deltas	
Final Test		100%/5004	2, 3, 8A, 8B, 10, 11	
Group A (Note 1)		Sample/5005	1, 2, 3, 7, 8A, 8B, 9, 10, 11	
Group B	Subgroup B-5	Sample/5005	1, 2, 3, 7, 8A, 8B, 9, 10, 11, Deltas	Subgroups 1, 2, 3, 9, 10, 11
	Subgroup B-6	Sample/5005	1, 7, 9	
Group D		Sample/5005	1, 7, 9	

NOTE:

1. Alternate Group A testing in accordance with Method 5005 of MIL-STD-883 may be exercised.

TABLE 7. TOTAL DOSE IRRADIATION

CONFORMANCE		TEST		READ AND RECORD	
GROUPS	METHOD	PRE RAD	POST RAD	PRE RAD	POST RAD
Group E Subgroup 2	5005	1, 7, 9	Table 4	1, 9	Table 4 (Note 1)

NOTE:

1. Except FN test which will be performed 100% Go/No-Go.

TABLE 8. STATIC BURN-IN AND DYNAMIC BURN-IN TEST CONNECTIONS

				OSCILI	ATOR	
OPEN	GROUND	1/2 VCC = 3V \pm 0.5V	VCC = 6V \pm 0.5V	50kHz	25kHz	
STATIC BURN-IN I TEST CONNECTIONS (Note 1)						
4, 7, 9, 12	1 - 3, 5, 6, 8, 10, 11, 13 - 15	-	16	-	-	
STATIC BURN	-IN II TEST CONNECTION	S (Note 1)				
4, 7, 9, 12	8	-	1 - 3, 5, 6, 10, 11, 13 - 16	-	-	
DYNAMIC BURN-IN TEST CONNECTIONS (Note 2)						
-	8, 15	4, 7, 9, 12	16	2, 3, 5, 6, 10, 11, 13, 14	1	

NOTES:

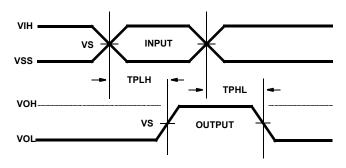
1. Each pin except VCC and GND will have a resistor of 10K $\Omega\pm5\%$ for static burn-in.

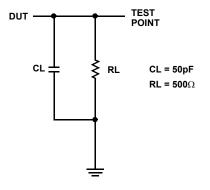
2. Each pin except VCC and GND will have a resistor of $680\Omega\pm5\%$ for dynamic burn-in.

TABLE 9. IRRADIATION TEST CONNECTIONS

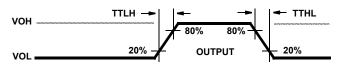
OPEN	GROUND	VCC = 5V \pm 0.5V
4, 7, 9, 12	8	1, 2, 3, 5, 6, 10, 11, 13 - 16

NOTE: Each pin except VCC and GND will have a resistor of $47K\Omega \pm 5\%$ for irradiation testing. Group E, Subgroup 2, sample size is 4 dice/wafer 0 failures.




Intersil Space Level Product Flow - 'MS'	
 Intersil Space Level Product Flow - 'MS' Wafer Lot Acceptance (All Lots) Method 5007 (Includes SEM) GAMMA Radiation Verification (Each Wafer) Method 1019, 4 Samples/Wafer, 0 Rejects 100% Nondestructive Bond Pull, Method 2023 Sample - Wire Bond Pull Monitor, Method 2011 Sample - Die Shear Monitor, Method 2019 or 2027 100% Internal Visual Inspection, Method 2010, Condition A 100% Constant Acceleration, Method 2001, Condition per Method 5004 100% PIND, Method 2020, Condition A 100% Serialization 100% Initial Electrical Test (T0) 100% Static Burn-In 1, Condition A or B, 24 hrs. min., +125°C min., Method 1015 	 100% Interim Electrical Test 1 (T1) 100% Delta Calculation (T0-T1) 100% Static Burn-In 2, Condition A or B, 24 hrs. min., +125°C min., Method 1015 100% Interim Electrical Test 2 (T2) 100% Delta Calculation (T0-T2) 100% PDA 1, Method 5004 (Notes 1and 2) 100% Dynamic Burn-In, Condition D, 240 hrs., +125°C or Equivalent, Method 1015 100% Interim Electrical Test 3 (T3) 100% Delta Calculation (T0-T3) 100% PDA 2, Method 5004 (Note 2) 100% Final Electrical Test 100% Fine/Gross Leak, Method 1014 100% Radiographic, Method 2012 (Note 3) 100% External Visual, Method 2009 Sample - Group A, Method 5005 (Note 4)
	100% Data Package Generation (Note 5)
NOTEO	

NOTES:


- 1. Failures from Interim electrical test 1 and 2 are combined for determining PDA 1.
- 2. Failures from subgroup 1, 7, 9 and deltas are used for calculating PDA. The maximum allowable PDA = 5% with no more than 3% of the failures from subgroup 7.
- 3. Radiographic (X-Ray) inspection may be performed at any point after serialization as allowed by Method 5004.
- 4. Alternate Group A testing may be performed as allowed by MIL-STD-883, Method 5005.
- 5. Data Package Contents:
 - Cover Sheet (Intersil Name and/or Logo, P.O. Number, Customer Part Number, Lot Date Code, Intersil Part Number, Lot Number, Quantity).
 - Wafer Lot Acceptance Report (Method 5007). Includes reproductions of SEM photos with percent of step coverage.
 - GAMMA Radiation Report. Contains Cover page, disposition, Rad Dose, Lot Number, Test Package used, Specification Numbers, Test equipment, etc. Radiation Read and Record data on file at Intersil.
 - · X-Ray report and film. Includes penetrometer measurements.
 - · Screening, Electrical, and Group A attributes (Screening attributes begin after package seal).
 - Lot Serial Number Sheet (Good units serial number and lot number).
 - · Variables Data (All Delta operations). Data is identified by serial number. Data header includes lot number and date of test.
 - The Certificate of Conformance is a part of the shipping invoice and is not part of the Data Book. The Certificate of Conformance is signed by an authorized Quality Representative.

Propagation Delay Timing Diagram and Load Circuit

Transition Timing Diagram

VOLTAGE LEVELS

PARAMETER	HCS	UNITS
VCC	4.50	V
VIH	4.50	V
VS	2.25	V
VIL	0	V
GND	0	V

Die Characteristics

DIE DIMENSIONS: 84 x 84 mils

METALLIZATION:

Type: SiAl Metal Thickness: $11k\dot{A} \pm 1k\dot{A}$

© Copyright Intersil Americas LLC 1999. All Rights Reserved. All trademarks and registered trademarks are the property of their respective owners.

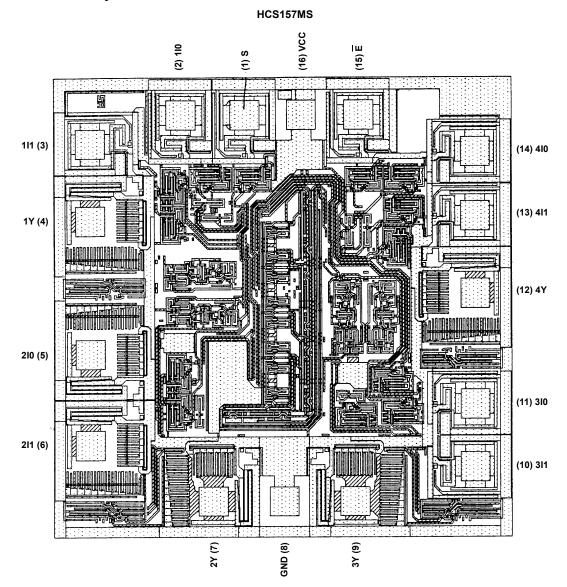
For additional products, see www.intersil.com/en/products.html

Intersil products are manufactured, assembled and tested utilizing ISO9001 quality systems as noted in the quality certifications found at www.intersil.com/en/support/qualandreliability.html

Intersil products are sold by description only. Intersil may modify the circuit design and/or specifications of products at any time without notice, provided that such modification does not, in Intersil's sole judgment, affect the form, fit or function of the product. Accordingly, the reader is cautioned to verify that datasheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.

For information regarding Intersil Corporation and its products, see www.intersil.com

FN3561 Rev 1.00 September 1995


GLASSIVATION:

Type: SiO₂ Thickness: $13k\dot{A} \pm 2.6k\dot{A}$ WORST CASE CURRENT DENSITY:

Metallization Mask Layout

<2.0 x 10⁵A/cm²

 $\begin{array}{c} \textbf{BOND PAD SIZE:} \\ 100 \mu m \ x \ 100 \mu m \\ 4 \ mils \ x \ 4 \ mils \end{array}$

NOTE: The die diagram is a generic plot from a similar HCS device. It is intended to indicate approximate die size and bond pad location. The mask series for the HCS157 is TA14371A.

inter_{si}