PRELIMINARY PRODUCT INFORMATION

MC-24212361-X

MCP (MULTI-CHIP PACKAGE) FLASH MEMORY AND MOBILE SPECIFIED RAM 64M-BIT FLASH MEMORY AND 16M-BIT MOBILE SPECIFIED RAM

Description

The MC-24212361-X is a stacked type MCP (Multi-Chip Package) of 67,108,864 bits (4,194,304 words by 16 bits) flash memory and 16,777,216 bits (1,048,576 words by 16 bits) Mobile specified RAM.

The MC-24212361-X is packaged in 85-pin TAPE FBGA.

Features

General Features

• Fast access time: tacc = 90 ns (MAX.) (Flash memory)

taa = 80, 90, 100 ns (MAX.) (Mobile specified RAM)

- Supply voltage: Vccf / Vccm = 2.6 to 3.1 V
- Wide operating temperature : $T_A = -25$ to +85 °C

Flash Memory Features

- Corresponded page read operation
- Four bank organization enabling simultaneous execution of erase / program and read
- Bank organization: 4 banks (8M bits + 24M bits + 24M bits + 8M bits)
- Memory organization: 4,194,304 words × 16 bits
- Sector organization : 142 sectors (4K words × 16 sectors, 32K words × 126 sectors)
- Boot sector allocated to the highest address (sector) and lowest address (sector)
- 3-state output
- Automatic program
 - Program suspend / resume
- Unlock bypass program
- Automatic erase
 - Chip erase
 - Sector erase (sectors can be combined freely)
 - Erase suspend / resume
- Program / Erase completion detection
 - Detection through data polling and toggle bits
 - Detection through RY (/BY) pin

The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version. Not all devices/types available in every country. Please check with local NEC representative for availability and additional information.

- Sector group protection
 - Any sector can be protected
 - Any protected sector can be temporary unprotected
 - Any sector group can be unprotected
- Sectors can be used for boot application
- Hardware reset and standby using /RESET pin
- Automatic sleep mode
- Boot block sector protect by /WP (ACC) pin
- Extra One Time Protect Sector provided
- Program / erase time
 - Program : 11.0 μs / word (TYP.)
 - Sector erase :

Erase / program cycle: 100,000 cycle

0.3 s (TYP.) (4K words sector), 0.5 s (TYP.) (32K words sector)

Erase / program cycle: 1,000,000 cycle

0.5 s (TYP.) (4K words sector), 0.7 s (TYP.) (32K words sector)

• Erase / program cycle: 100,000 cycle (MIN.)

Mobile specified RAM Features

• Memory organization: 1,048,576 words by 16 bits

• Supply current : At operating : 35 mA (MAX.)

At Standby Mode 1 : 70 μ A (MAX.)

At Standby Mode 2 : 10 μ A (MAX.) (Memory cell data hold invalid)

• Chip Enable inputs : /CEm

• Byte data control : /LB, /UB

• Standby Mode input : MODE

• Standby Mode 1 : Normal standby (Memory cell data hold valid)

• Standby Mode 2 : Memory cell data hold invalid

Ordering Information

Part number	Flash memory	Mobile specified	Operating s	upply	Package	Mounted
	access time	RAM Access time	voltage	V		Flash memory
	ns (MAX.)	ns (MAX.)	Chip I/O			
MC-24212361F9-E90X-CDx	90	80	1.8 ± 0.15	2.6 to 3.1	85-pin TAPE	μPD29F064115-Y
			1.8 ± 0.15 2.6 to 3.1 (Flash memory) (Flash		FBGA (11 x 8)	
MC-24212361F9-E95X-CDx		90	2.6 to 3.1	memory)		
			(Mobile specified			
MC-24212361F9-E10X-CDx		100	RAM)			

Remark "CDx" of part number is package specifications. However, this is not available.

COMMANDS, HARDWARE SEQUENCE FLASGS, HARD WARE DATA PROTECTION, READ MODE REGISTER SETTINGS, TIMING CHARTS and FLOW CHARTS for Flash memory, refer to PAGE MODE FLASH MEMORY, BURST MODE FLASH MEMORY Information (M15451E).

Timing charts for Mobile specified RAM, refer to SRAM AND MOBILE SPECIFIED RAM TAIMING CHARTS FOR MCP (IBB-EB-0291).

Pin Configuration (Marking side)

/xxx indicates active low signal.

85-pin TAPE FBGA (11 × 8) [MC-24212361F9-ExxX-CDx]

						Тор	View					
	Α	В	С	D	Е	F	G	Н	J	K	L	M
10	NC	NC				NC	NC				NC	NC
9	NC	NC		A15	A21	IC	A16	NC	Vss		NC	NC
8		NC	A11	A12	A13	A14	NC	I/O15	1/07	I/O14	NC	
7			A8	A19	A9	A10	1/06	I/O13	I/O12	I/O5		
6		NC	/WE	MODE	A20			I/O4	Vccm	VccQf	NC	
5		NC	/WP(ACC)/RESET	RY(/BY)			I/O3	Vccf	I/O11	NC	
4			/LB	/UB	A18	A17	I/O1	I/O9	I/O10	I/O2		
3		NC	A7	A6	A5	A4	Vss	/OE	I/O0	I/O8	NC	
2	NC	NC		А3	A2	A1	A0	/CEf	/CEm		NC	NC
1	NC	NC	NC			NC	NC				NC	NC

Common Pins

Flash memory Pins

A0 - A19 : Address Inputs
I/O0 - I/O15 : Data Inputs / Outputs

CEf : Chip Enable

/OE: Output EnableRY (/BY): Ready (Busy) Output/WE: Write Enable/RESET: Hardware Reset Input

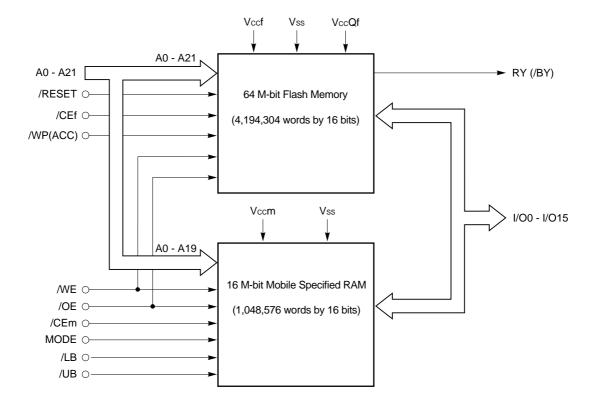
Vss : Ground /WP(ACC) : Hardware Write Protect (Acceleration) NC NO Connection Vccf : Supply Voltage

IC Note2 : Internal Connection VccQf : Input / Output Supply Voltage

Mobile specified RAM Pins

/CEm : Chip Enable

MODE : Standby Mode Select
/LB, /UB : Byte Data Select
Vccm : Supply Voltage


Notes 1. Some signals can be applied because this pin is not internally connected.

2. Leave this pin connected to Vss or unconnected (Recommended to connected to Vss).

Remark Refer to 8. Package Drawing for the index mark.

Block Diagram

CONTENTS

1.	Bus Operations	7
	Sector Organization / Sector Address Table (Flash memory)	
3.	Sector Group Address Table (Flash memory)	12
4.	Commands (Flash memory)	14
5.	Initialization (Mobile specified RAM)	16
6.	Standby Mode (Mobile specified RAM)	17
	6.1 Standby Mode State Machine	17
7.	Electrical Specifications	18
8.	Package Drawing	30
9.	Recommended Soldering Conditions	31

1. Bus Operations

Table 1-1. Bus Operations

Ор	peration	Fla	ash me	emory	Mol	oile speci	ified R	AM			Common	
		/RESET	/CEf	/WP(ACC)	/CEm	MODE	/LB	/UB	/OE	/WE	I/O0 - I/O7	I/O8 - I/O15
Full standby	Standby Mode 1	Н	Н	×	Н	Н	×	×	×	×	Hi-Z	Hi-Z
	Standby Mode 2				Н	L						
Output disab	le	Н	L	×	L	Н	×	×	Н	Н	Hi-Z	Hi-Z
Read (Flash	memory Note 1)	Н	L	×		Note	2		L	Н	Data Out	Data Out
Write (Flash	memory)	Н	L	×		Note	2		Н	L	Data In	Data In
Temporary se	emporary sector group		×	×		Note	2		×	×	Hi-Z or	Hi-Z or
unprotect											Data Out / In	Data Out / In
Boot block se	ector protect	×	×	L	×	×	×	×	×	×	Hi-Z or	Hi-Z or
											Data Out / In	Data Out / In
Flash memor	ry hardware reset	L	×	×	×	×	×	×	×	×	Hi-Z	Hi-Z
Read			Note	3	L	Н	L	L	L	Н	Data Out	Data Out
(Mobile spec	ified RAM)							Н				Hi-Z
							Н	L			Hi-Z	Data Out
Write			Note	3	L	Н	L	L	×	L	Data In	Data In
(Mobile spec	ified RAM)							Н				Hi-Z
							Н	L			Hi-Z	Data In

Caution Other operations except for indicated in this table are inhibited.

Notes 1. When /OE = VIL, VIL can be applied to /WE. When /OE = VIH, a write operation is started.

- 2. Mobile specified RAM should be Standby.
- 3. Flash memory should be Standby or Hardware reset.

Remarks 1. $H: V_{IH}, L: V_{IL}, \times: V_{IH} \text{ or } V_{IL}$

- 2. Sector group protection and read the product ID are using a command.
- **3.** MODE pin must be fixed to H during active operation.

2. Sector Organization / Sector Address Table (Flash memory)

(1/4)

Bank	Sector	Address	Sectors				Sec	or Ado	dress T	able			
	Organization		Address	Bank /	Address	Table							
	K words			A21	A20	A19	A18	A17	A16	A15	A14	A13	A12
Bank D	4	3FFFFFH 3FF000H	SA141	1	1	1	1	1	1	1	1	1	1
Ī	4	3FEFFFH 3FE000H	SA140	1	1	1	1	1	1	1	1	1	0
Ī	4	3FDFFFH 3FD000H	SA139	1	1	1	1	1	1	1	1	0	1
	4	3FCFFFH 3FC000H	SA138	1	1	1	1	1	1	1	1	0	0
	4	3FBFFFH	SA137	1	1	1	1	1	1	1	0	1	1
-	4	3FB000H 3FAFFFH	SA136	1	1	1	1	1	1	1	0	1	0
+	4	3FA000H 3F9FFFH	SA135	1	1	1	1	1	1	1	0	0	1
	4	3F9000H 3F8FFFH	SA134	1	1	1	1	1	1	1	0	0	0
1	32	3F8000H 3F7FFFH	SA133	1	1	1	1	1	1	0	Х	Х	Х
_	32	3F0000H 3EFFFFH	SA132	1	1	1	1	1	0	1	Х	Х	Х
_	32	3E8000H 3E7FFFH	SA131	1	1	1	1	1	0	0	Х	Х	Х
	32	3E0000H 3DFFFFH	SA130	1	1	1	1	0	1	1	Х	Х	х
	32	3D8000H 3D7FFFH	SA129	1	1	1	1	0	1	0	Х	Х	Х
	32	3D0000H 3CFFFFH	SA128	1	1	1	1	0	0	1	Х	Х	Х
-	32	3C8000H 3C7FFFH	SA127	1	1	1	1	0	0	0	Х	Х	х
	32	3C0000H 3B7FFFH	SA126	1	1	1	0	1	1	1	Х	Х	х
	32	3B8000H 3B7FFFH	SA125	1	1	1	0	1	1	0	Х	Х	х
-	32	3B0000H 3AFFFFH	SA124	1	1	1	0	1	0	1	Х	Х	Х
-	32	3A8000H 3A7FFFH	SA123	1	1	1	0	1	0	0	Х	Х	х
-	32	3A0000H 39FFFFH	SA122	1	1	1	0	0	1	1	X	X	X
-	32	3980000H 397FFFH	SA121	1	1	1	0	0	1	0	X	X	X
-	32	390000H 38FFFFH	SA120	1	1	1	0	0	0	1	X	X	X
 	32	388000H 387FFFH	SA119	1	1	1	0	0	0	0	X	X	X
Ponk C	32	380000H 37FFFFH	SA118	1	1	0	1	1	1	1			
Bank C		378000H			1						Х	Х	Х
-	32	377FFFH 370000H	SA117	1		0	1	1	1	0	Х	Х	Х
-	32	36FFFFH 368000H	SA116	1	1	0	1	1	0	1	Х	Х	Х
-	32	367FFFH 360000H	SA115	1	1	0	1	1	0	0	Х	Х	Х
<u> </u>	32	35FFFFH 358000H	SA114	1	1	0	1	0	1	1	Х	Х	Х
	32	357FFFH 350000H	SA113	1	1	0	1	0	1	0	Х	Х	Х
	32	34FFFFH 3480000H	SA112	1	1	0	1	0	0	1	Х	Х	Х
	32	347FFFH 340000H	SA111	1	1	0	1	0	0	0	Х	Х	Х
	32	33FFFFH 338000H	SA110	1	1	0	0	1	1	1	Х	Х	Х
	32	337FFFH 330000H	SA109	1	1	0	0	1	1	0	Х	Х	Х
	32	32FFFFH 328000H	SA108	1	1	0	0	1	0	1	х	х	Х
Ī	32	327FFFH 320000H	SA107	1	1	0	0	1	0	0	Х	Х	Х
Ī	32	31FFFFH 318000H	SA106	1	1	0	0	0	1	1	Х	Х	Х

(2/4)

Bank	Sector	Address	Sectors					or Add	dress T	able			
	Organization		Address		Address								
Bank C	K words	317FFFH	SA105	A21	A20	A19 0	A18 0	A17 0	A16	A15 0	A14	A13	A12
Dank C		310000H							_		Х	Х	Х
	32	30FFFFH 308000H	SA104	1	1	0	0	0	0	1	Х	Х	Х
	32	307FFFH 300000H	SA103	1	1	0	0	0	0	0	Х	Х	Х
	32	2FFFFFH 2F8000H	SA102	1	0	1	1	1	1	1	х	Х	Х
	32	2F7FFFH 2F0000H	SA101	1	0	1	1	1	1	0	х	Х	Х
	32	2EFFFFH 2E8000H	SA100	1	0	1	1	1	0	1	Х	х	Х
İ	32	2E7FFFH 2E0000H	SA99	1	0	1	1	1	0	0	Х	Х	Х
	32	2DFFFFH 2D8000H	SA98	1	0	1	1	0	1	1	х	х	х
	32	2D7FFFH 2D0000H	SA97	1	0	1	1	0	1	0	х	Х	Х
	32	2CFFFFH	SA96	1	0	1	1	0	0	1	х	х	Х
	32	2C8000H 2C7FFFH	SA95	1	0	1	1	0	0	0	х	Х	Х
t	32	2C0000H 2BFFFFH	SA94	1	0	1	0	1	1	1	Х	Х	Х
	32	2B8000H 2B7FFFH	SA93	1	0	1	0	1	1	0	Х	Х	Х
	32	2B0000H 2AFFFFH	SA92	1	0	1	0	1	0	1	Х	Х	Х
	32	2A8000H 2A7FFFH	SA91	1	0	1	0	1	0	0	Х	Х	Х
	32	2A0000H 29FFFFH	SA90	1	0	1	0	0	1	1	Х	Х	Х
	32	298000H 297FFFH	SA89	1	0	1	0	0	1	0	Х	Х	Х
	32	290000H 28FFFFH	SA88	1	0	1	0	0	0	1	Х	Х	Х
	32	288000H 287FFFH	SA87	1	0	1	0	0	0	0	Х	Х	Х
ł	32	280000H 27FFFH	SA86	1	0	0	1	1	1	1	х	Х	Х
	32	278000H 277FFFH	SA85	1	0	0	1	1	1	0	Х	Х	Х
	32	270000H 26FFFFH	SA84	1	0	0	1	1	0	1	Х	Х	Х
+	32	268000H 267FFFH	SA83	1	0	0	1	1	0	0	Х	Х	Х
	32	260000H 25FFFFH	SA82	1	0	0	1	0	1	1	Х	Х	Х
	32	258000H 257FFFH	SA81	1	0	0	1	0	1	0	x	x	x
		250000H		1 1		0	1	0	_	1			
	32	24FFFFH 248000H	SA80		0				0		Х	Х	Х
	32	247FFFH 240000H	SA79	1	0	0	1	0	0	0	Х	Х	Х
	32	23FFFFH 238000H	SA78	1	0	0	0	1	1	1	Х	Х	Х
	32	237FFFH 230000H	SA77	1	0	0	0	1	1	0	Х	Х	Х
	32	22FFFFH 228000H	SA76	1	0	0	0	1	0	1	Х	Х	Х
	32	227FFFH 220000H	SA75	1	0	0	0	1	0	0	Х	Х	Х
Ţ	32	21FFFFH 218000H	SA74	1	0	0	0	0	1	1	Х	Х	Х
Ţ	32	217FFFH 210000H	SA73	1	0	0	0	0	1	0	Х	Х	х
ļ	32	20FFFFH 208000H	SA72	1	0	0	0	0	0	1	Х	х	х
†	32	207FFFH 200000H	SA71	1	0	0	0	0	0	0	х	Х	Х

(3/4)

Bank	Sector	Address	Sectors					or Ado	dress T	able			
	Organization K words		Address	Bank /	Address A20	A19	A18	A17	A16	A15	A14	A13	A12
Bank B	32	1FFFFFH 1F8000H	SA70	0	1	1	1	1	1	1	X X	X	X
	32	1F7FFFH 1F0000H	SA69	0	1	1	1	1	1	0	Х	х	х
	32	1EFFFFH 1E8000H	SA68	0	1	1	1	1	0	1	х	х	х
Ì	32	1E7FFFH 1E0000H	SA67	0	1	1	1	1	0	0	х	х	х
	32	1DFFFFH 1D8000H	SA66	0	1	1	1	0	1	1	Х	Х	х
	32	1D7FFFH 1D0000H	SA65	0	1	1	1	0	1	0	Х	Х	Х
	32	1CFFFFH 1C8000H	SA64	0	1	1	1	0	0	1	Х	Х	Х
	32	1C7FFFH 1C0000H	SA63	0	1	1	1	0	0	0	Х	Х	Х
	32	1BFFFFH 1B8000H	SA62	0	1	1	0	1	1	1	Х	Х	Х
	32	1B7FFFH 1B0000H	SA61	0	1	1	0	1	1	0	Х	Х	Х
	32	1AFFFFH 1A8000H	SA60	0	1	1	0	1	0	1	Х	Х	Х
	32	1A7FFFH 1A0000H	SA59	0	1	1	0	1	0	0	Х	Х	Х
	32	19FFFFH 198000H	SA58	0	1	1	0	0	1	1	Х	Х	Х
	32	197FFFH 190000H	SA57	0	1	1	0	0	1	0	Х	Х	Х
	32	18FFFFH 188000H	SA56	0	1	1	0	0	0	1	Х	Х	Х
	32	187FFFH 180000H	SA55	0	1	1	0	0	0	0	Х	Х	Х
	32	17FFFFH 178000H 177FFFH	SA54 SA53	0	1	0	1	1	1	0	X	X	X
-	32	177FFFH 170000H	SA53 SA52	0	1	0	1	1	0	1	X	X	X
-	32	168000H 167FFFH	SA52 SA51	0	1	0	1	1	0	0	X	X	X
	32	160000H 15FFFFH	SA50	0	1	0	1	0	1	1	X	X	X
-	32	158000H 157FFFH	SA30 SA49	0	1	0	1	0	1	0	X	X	×
	32	150000H 14FFFFH	SA48	0	1	0	1	0	0	1	Х	х	X
}	32	148000H 147FFFH	SA47	0	1	0	1	0	0	0	Х	X	X
	32	140000H 13FFFFH	SA46	0	1	0	0	1	1	1	Х	Х	Х
ŀ	32	138000H 137FFFH	SA45	0	1	0	0	1	1	0	Х	Х	х
	32	130000H 12FFFFH	SA44	0	1	0	0	1	0	1	Х	Х	Х
	32	128000H 127FFFH	SA43	0	1	0	0	1	0	0	Х	Х	х
	32	120000H 11FFFFH	SA42	0	1	0	0	0	1	1	Х	Х	х
ł	32	118000H 117FFFH	SA41	0	1	0	0	0	1	0	Х	Х	х
ł	32	110000H 10FFFFH	SA40	0	1	0	0	0	0	1	Х	Х	х
†	32	108000H 107FFFH	SA39	0	1	0	0	0	0	0	х	х	х
ļ	32	100000H 0FFFFH 0F8000H	SA38	0	0	1	1	1	1	1	Х	х	х
ļ	32	0F8000H 0F7FFFH 0F0000H	SA37	0	0	1	1	1	1	0	х	х	х
ļ	32	0EFFFFH 0E8000H	SA36	0	0	1	1	1	0	1	х	х	х
ļ	32	0E7FFFH 0E0000H	SA35	0	0	1	1	1	0	0	Х	х	х

(4/4)

Bank	Sector	Address	Sectors	L			Sect	or Add	lress T	able			
	Organization		Address		Address								
D . D	K words	005555	0404	A21	A20	A19	A18	A17	A16	A15	A14	A13	A12
Bank B	32	0DFFFFH 0D8000H	SA34	0	0	1	1	0	1	1	Х	Х	Х
	32	0D7FFFH 0D0000H	SA33	0	0	1	1	0	1	0	Х	Х	Х
	32	0CFFFFH 0C8000H	SA32	0	0	1	1	0	0	1	Х	Х	Х
	32	0C7FFFH 0C0000H	SA31	0	0	1	1	0	0	0	Х	Х	Х
	32	0BFFFFH 0B8000H	SA30	0	0	1	0	1	1	1	Х	Х	Х
	32	0B7FFFH 0B0000H	SA29	0	0	1	0	1	1	0	Х	Х	Х
	32	0AFFFFH 0A8000H	SA28	0	0	1	0	1	0	1	х	х	Х
	32	0A7FFFH 0A0000H	SA27	0	0	1	0	1	0	0	х	х	х
	32	09FFFFH 098000H	SA26	0	0	1	0	0	1	1	Х	х	Х
	32	097FFFH 090000H	SA25	0	0	1	0	0	1	0	х	х	х
	32	08FFFFH 088000H	SA24	0	0	1	0	0	0	1	Х	х	Х
	32	087FFFH 080000H	SA23	0	0	1	0	0	0	0	Х	Х	Х
Bank A	32	07FFFFH 078000H	SA22	0	0	0	1	1	1	1	Х	Х	х
	32	077FFFH 070000H	SA21	0	0	0	1	1	1	0	Х	Х	х
	32	06FFFFH 068000H	SA20	0	0	0	1	1	0	1	Х	Х	Х
	32	067FFFH 060000H	SA19	0	0	0	1	1	0	0	Х	Х	Х
	32	05FFFFH 058000H	SA18	0	0	0	1	0	1	1	Х	Х	Х
	32	057FFFH 050000H	SA17	0	0	0	1	0	1	0	Х	Х	Х
	32	04FFFFH 048000H	SA16	0	0	0	1	0	0	1	Х	Х	Х
	32	047FFFH 040000H	SA15	0	0	0	1	0	0	0	Х	Х	Х
	32	03FFFFH 038000H	SA14	0	0	0	0	1	1	1	х	Х	х
	32	037FFFH 030000H	SA13	0	0	0	0	1	1	0	х	х	Х
	32	02FFFFH 028000H	SA12	0	0	0	0	1	0	1	Х	Х	х
	32	027FFFH 020000H	SA11	0	0	0	0	1	0	0	х	Х	х
	32	01FFFFH 018000H	SA10	0	0	0	0	0	1	1	Х	х	Х
	32	017FFFH 010000H	SA9	0	0	0	0	0	1	0	Х	Х	Х
	32	00FFFFH 008000H	SA8	0	0	0	0	0	0	1	Х	Х	Х
	4	007FFFH 007000H	SA7	0	0	0	0	0	0	0	1	1	1
	4	006FFFH 006000H	SA6	0	0	0	0	0	0	0	1	1	0
	4	005FFFH 005000H	SA5	0	0	0	0	0	0	0	1	0	1
	4	004FFFH 004000H	SA4	0	0	0	0	0	0	0	1	0	0
	4	003FFFH 003000H	SA3	0	0	0	0	0	0	0	0	1	1
	4	002FFFH 002000H	SA2	0	0	0	0	0	0	0	0	1	0
	4	001FFFH 001000H	SA1	0	0	0	0	0	0	0	0	0	1
ļ	4	000FFFH 000000H	SA0	0	0	0	0	0	0	0	0	0	0

3. Sector Group Address Table (Flash memory)

(1/2)

Sector group	A21	A20	A19	A18	A17	A16	A15	A14	A13	A12	Size	Sector
SGA0	0	0	0	0	0	0	0	0	0	0	4 Kwords (1 Sector)	SA0
SGA1	0	0	0	0	0	0	0	0	0	1	4 Kwords (1 Sector)	SA1
SGA2	0	0	0	0	0	0	0	0	1	0	4 Kwords (1 Sector)	SA2
SGA3	0	0	0	0	0	0	0	0	1	1	4 Kwords (1 Sector)	SA3
SGA4	0	0	0	0	0	0	0	1	0	0	4 Kwords (1 Sector)	SA4
SGA5	0	0	0	0	0	0	0	1	0	1	4 Kwords (1 Sector)	SA5
SGA6	0	0	0	0	0	0	0	1	1	0	4 Kwords (1 Sector)	SA6
SGA7	0	0	0	0	0	0	0	1	1	1	4 Kwords (1 Sector)	SA7
SGA8	0	0	0	0	0	0	1	×	×	×	96 Kwords (3 Sectors)	SA8 - SA10
						1	0					
						1	1					
SGA9	0	0	0	0	1	×	×	×	×	×	128 Kwords (4 Sectors)	SA11 – SA14
SGA10	0	0	0	1	0	×	×	×	×	×	128 Kwords (4 Sectors)	SA15 – SA18
SGA11	0	0	0	1	1	×	×	×	×	×	128 Kwords (4 Sectors)	SA19 – SA22
SGA12	0	0	1	0	0	×	×	×	×	×	128 Kwords (4 Sectors)	SA23 - SA26
SGA13	0	0	1	0	1	×	×	×	×	×	128 Kwords (4 Sectors)	SA27 - SA30
SGA14	0	0	1	1	0	×	×	×	×	×	128 Kwords (4 Sectors)	SA31 – SA34
SGA15	0	0	1	1	1	×	×	×	×	×	128 Kwords (4 Sectors)	SA35 – SA38
SGA16	0	1	0	0	0	×	×	×	×	×	128 Kwords (4 Sectors)	SA39 – SA42
SGA17	0	1	0	0	1	×	×	×	×	×	128 Kwords (4 Sectors)	SA43 – SA46
SGA18	0	1	0	1	0	×	×	×	×	×	128 Kwords (4 Sectors)	SA47 – SA50
SGA19	0	1	0	1	1	×	×	×	×	×	128 Kwords (4 Sectors)	SA51 – SA54
SGA20	0	1	1	0	0	×	×	×	×	×	128 Kwords (4 Sectors)	SA55 – SA58
SGA21	0	1	1	0	1	×	×	×	×	×	128 Kwords (4 Sectors)	SA59 – SA62
SGA22	0	1	1	1	0	×	×	×	×	×	128 Kwords (4 Sectors)	SA63 – SA66
SGA23	0	1	1	1	1	×	×	×	×	×	128 Kwords (4 Sectors)	SA67 - SA70

Remark ×: VIH or VIL

(2/2)

												(212)
Sector group	A21	A20	A19	A18	A17	A16	A15	A14	A13	A12	Size	Sector
SGA24	1	0	0	0	0	×	×	×	×	×	128 Kwords (4 Sectors)	SA71 – SA74
SGA25	1	0	0	0	1	×	×	×	×	×	128 Kwords (4 Sectors)	SA75 – SA78
SGA26	1	0	0	1	0	×	×	×	×	×	128 Kwords (4 Sectors)	SA79 – SA82
SGA27	1	0	0	1	1	×	×	×	×	×	128 Kwords (4 Sectors)	SA83 – SA86
SGA28	1	0	1	0	0	×	×	×	×	×	128 Kwords (4 Sectors)	SA87 – SA90
SGA29	1	0	1	0	1	×	×	×	×	×	128 Kwords (4 Sectors)	SA91 – SA94
SGA30	1	0	1	1	0	×	×	×	×	×	128 Kwords (4 Sectors)	SA95 – SA98
SGA31	1	0	1	1	1	×	×	×	×	×	128 Kwords (4 Sectors)	SA99 – SA102
SGA32	1	1	0	0	0	×	×	×	×	×	128 Kwords (4 Sectors)	SA103 – SA106
SGA33	1	1	0	0	1	×	×	×	×	×	128 Kwords (4 Sectors)	SA107 – SA110
SGA34	1	1	0	1	0	×	×	×	×	×	128 Kwords (4 Sectors)	SA111 – SA114
SGA35	1	1	0	1	1	×	×	×	×	×	128 Kwords (4 Sectors)	SA115 – SA118
SGA36	1	1	1	0	0	×	×	×	×	×	128 Kwords (4 Sectors)	SA119 – SA122
SGA37	1	1	1	0	1	×	×	×	×	×	128 Kwords (4 Sectors)	SA123 – SA126
SGA38	1	1	1	1	0	×	×	×	×	×	128 Kwords (4 Sectors)	SA127 – SA130
SGA39	1	1	1	1	1	0	0	×	×	×	96 Kwords (3 Sectors)	SA131 – SA133
						0	1					
						1	0					
SGA40	1	1	1	1	1	1	1	0	0	0	4 Kwords (1 Sector)	SA134
SGA41	1	1	1	1	1	1	1	0	0	1	4 Kwords (1 Sector)	SA135
SGA42	1	1	1	1	1	1	1	0	1	0	4 Kwords (1 Sector)	SA136
SGA43	1	1	1	1	1	1	1	0	1	1	4 Kwords (1 Sector)	SA137
SGA44	1	1	1	1	1	1	1	1	0	0	4 Kwords (1 Sector)	SA138
SGA45	1	1	1	1	1	1	1	1	0	1	4 Kwords (1 Sector)	SA139
SGA46	1	1	1	1	1	1	1	1	1	0	4 Kwords (1 Sector)	SA140
SGA47	1	1	1	1	1	1	1	1	1	1	4 Kwords (1 Sector)	SA141

Remark ×: VIH or VIL

Product ID Code (Manufacturer Code / Device Code) (Flash memory)

Product ID code									Outpu	ıt							
	I/O15	I/O14	I/O13	I/O12	I/O11	I/O10	I/O9	I/O8	1/07	I/O6	I/O5	I/O4	I/O3	I/O2	I/O1	I/O0	HEX
Manufacturer code	0	0	1	0	0	0	1	0	0	0	0	1	0	0	0	0	2210H
Device code																	TBD
Sector group protection	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	01H ^{Note}

Note If 01H is output, the sector group is protected. If 00H is output, the sector group is unprotected.

 $\textbf{Remark} \quad H: V_{IH}, \, L: V_{IL}, \, x: V_{IH} \, \, or \, \, V_{IL}$

4. Commands (Flash memory)

This sector explains the commands of the flash memory.

Table 4-1. Command Sequence

Command sequence	Bus	1st bus	Cycle	2nd bu	s Cycle	3rd bus	S Cycle	4th bus	Cycle	5th bus	S Cycle	6th bus	Cycle
	Cycle	Address	Data	Address	Data	Address	Data	Address	Data	Address	Data	Address	Data
Read / Reset Note1	1	×××Н	F0H	RA	RD	_	_	-	_	-	_	-	_
Read / Reset Note1	3	555H	AAH	2AAH	55H	555H	F0H	RA	RD	_	-	_	_
Program	4	555H	AAH	2AAH	55H	555H	A0H	PA	PD	_	ı	_	_
Program Suspend Note 2	1	ВА	вон	_	_	_	ı	_	-	_	ı	-	_
Program Resume Note 3	1	ВА	30H	_	-	-	ı	-	-	-	ı	-	_
Chip Erase	6	555H	AAH	2AAH	55H	555H	80H	555H	AAH	2AAH	55H	555H	10H
Sector Erase	6	555H	AAH	2AAH	55H	555H	80H	555H	AAH	2AAH	55H	SA	30H
Sector Erase Suspend Note 4, 5	1	ВА	ВОН	-	-	-	-	_	-	_	-	-	-
Sector Erase Resume Note 5, 6	1	ВА	30H	-	-	-	-	_	-	_	-	-	-
Unlock Bypass Set	3	555H	AAH	2AAH	55H	555H	20H	_	-	_	ı	_	1
Unlock Bypass Program Note 7	2	×××Н	A0H	PA	PD	-	ı	_	-	_	ı	_	1
Unlock Bypass Chip Erase Note 7	2	×××Н	80H	×××Н	10H	-	ı	_	-	_	ı	_	1
Unlock Bypass Sector Erase Note 7	2	×××Н	80H	SA	30H	1	1	-	-	_	ı	_	1
Unlock Bypass Reset Note 7	2	×××Н	90H	×××Н	00H ^{Note11}	-	ı	_	-	_	ı	_	1
Product ID /	3	555H	AAH	2AAH	55H	(BA)	90H	IA	ID	-	ı	_	1
Sector Group Protection Information /						555H							
Read Mode Register Information													
Sector Group Protection Note 8	4	×××Н	60H	SPA	60H	SPA	40H	SPA	SD	_	_	-	-
Sector Group Unprotect Note 9	4	×××Н	60H	SUA	60H	SUA	40H	SUA	SD	_	_	-	-
Extra One Time Protect Sector Entry	3	555H	AAH	2AAH	55H	555H	88H	_	-	_	-	_	-
Extra One Time Protect Sector	4	555H	AAH	2AAH	55H	555H	A0H	PA	PD	-	-	-	-
Program Note 10	_	55511		00.011	5511	55511	0011	55511		04411	5511		0011
Extra One Time Protect Sector Erase Note 10	6	555H	AAH	2AAH	55H	555H	80H	555H	AAH	2AAH	55H	EOTPSA	30H
	4		A A I I	04411	5511		0011	12	0011				
Extra One Time Protect Sector Reset Note 10	4	555H	AAH	2AAH	55H	555H	90H	×××Н	00H	_	-	_	_
Extra One Time Protect Sector Protection Note 10	4	×××H	60H	EOTPSA	60H	EOTPSA	40H	EOTPSA	SD	-	1	-	-
Read Mode Register Set	3	555H	AAH	2AAH	55H	REGD	C0H	_	_	_	_	_	_

Notes 1. Both these read / reset commands reset the device to the read mode.

- 2. Programming is suspended if B0H is input to the bank address being programmed to in a program operation.
- **3.** Programming is resumed if 30H is input to the bank address being suspended to in a program-suspend operation.
- **4.** Erasure is suspended if B0H is input to the bank address being erased in a sector erase operation.
- **5.** Erasure is resumed if 30H is input to the bank address being suspended in a sector-erase-suspend operation.
- **6.** If automatic erase resume and suspend are repeated at intervals of less than 100 μ s, the erasure operation may not be correctly completed.
- 7. Valid only in the unlock bypass mode.
- 8. Valid only when /RESET = VID (except in the Extra One Time Protect Sector mode).
- 9. The command sequence that protects a sector group is excluded.
- 10. Valid only in the Extra One Time Protect Sector mode.

11. This command can be used even if this data is F0H.

Remarks 1. Specify address 555H or 2AAH (A10 to A0).

2. RA: Read address

RD: Read data

IA : Address input as follows

Information	A21 to A12	A11 to A3	A2 to A0
Manufacturer code	Bank address	Don't care	000
Device code	Bank address	Don't care	001
Sector group protection information	Sector group address	Don't care	010
Read mode register information	Bank address	Don't care	011

ID : Code output. Manufacturer code, device code, sector group information, refer to the Product ID Code (Manufacturer Code / Device Code), read mode register information, refer to PAGE MODE FLASH MEMORY, BURST MODE FLASH MEMORY Information (M15451E).

PA: Program address

PD: Program data

SA: Erase sector address. The sector to be erased is selected by the combination of this address. Refer to 2. Sector Organization / Sector Address Table (Flash memory).

BA: Bank address. Refer to 2. Sector Organization / Sector Address Table (Flash memory).

SPA: Sector group address to be protected. Set sector group address (SGA) and (A6, A2, A1, A0) = (VIL, VIL, VIH, VIL).

SUA : Unprotect sector group address. Set sector group address (SGA) and (A6, A2, A1, A0) = (V_{IH} , V_{IL} , V_{IH} , V_{IL}).

EOTPSA: Extra One Time Protect Sector area addresses. These addresses are 000000H to 007FFFH.

SD: Data for verifying whether sector groups read from the address specified by SPA, SUA, and EOTPSA are protected or unprotected

REGD : Read mode register information. Description for setting, refer to **PAGE MODE FLASH**MEMORY, BURST MODE FLASH MEMORY Information (M15451E).

- **3.** The sector group address is don't care except when a program / erase address or read address are selected.
- 4. For the operation of the bus, refer to PAGE MODE FLASH MEMORY, BURST MODE FLASH MEMORY Information (M15451E).
- **5.** \times of address bit indicates Vih or Vil.

5. Initialization (Mobile specified RAM)

This device is initialized in the power-on sequence according to the following.

- (1) To stabilize internal circuits, before turning on the power, a 200 μ s or longer wait must precede any signal toggling.
- (2) After the wait time, read operation must be performed at least 8 times. After that, it can be normal operation.

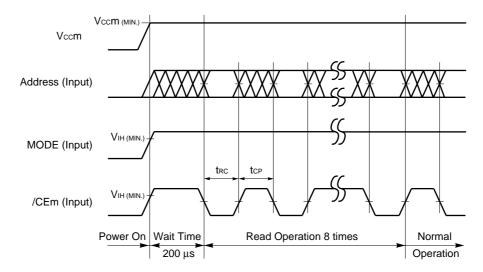


Figure 5-1. Initialization Timing Chart

Cautions 1. Following power application, make MODE and /CEm high level during the wait time interval.

- 2. Following power application, make MODE high level during the wait time and eight read operations.
- 3. The read operation must satisfy the specs (Read Cycle (Mobile specified RAM)).
- 4. The address is don't care (VIH or VIL) during read operation.
- 5. Read operation must be executed with toggled the /CEm pin.
- 6. To prevent bus contention, it is recommended to set /OE to high level. However, do not input data to the I/O pins if /OE is low level during a read operation.

6. Standby Mode (Mobile specified RAM)

Standby Mode 1 and Standby Mode 2 differ as shown below.

Table 6-1. Standby Mode Characteristics

Standby Mode	Memory Cell Data Hold	Standby Supply Current (μA)
Mode 1	Valid	70 (I _{SB1})
Mode 2	Invalid	10 (I _{SB2})

6.1 Standby Mode State Machine

(1) From Active

To shift from this state to Standby Mode 1, change /CEm from V_{IL} to V_{IH} .

To shift from this state to Standby Mode 2, change /CEm from V_{IL} to V_I and change MODE from V_I to V_I.

(2) From Standby Mode 1

To shift from this state to Active, change /CEm from VIH to VIL.

To shift from this state to Standby Mode 2, change MODE from VIH to VIL.

(3) From Standby Mode 2

When shifting from this state to the Active state or to Standby Mode 1, it is necessary to set MODE to V_{IH} and perform a Dummy Read operation 8 times after waiting for 200 μ s, in the same way as at power application. After shifting to Active state, change /CEm to V_{IL} .

After shifting to Standby Mode 1, do not change either MODE or /CEm.

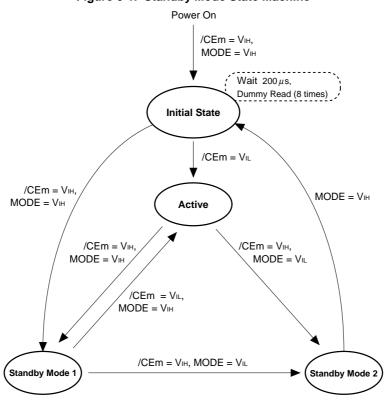


Figure 6-1. Standby Mode State Machine

7. Electrical Specifications

Before turning on power, input Vss ± 0.2 V to the /RESET pin until Vccf ≥ Vccf (MIN.) and keep that state for 200 µs.

Absolute Maximum Ratings

Parameter	Symbol		Condition	Rating	Unit
Supply voltage	Vccf	with respect to Vss		-0.5 to +2.4	V
	Vccm			-0.5 to +3.3	
Input / Output supply voltage	VccQf	with respect t	o Vss	-0.5 to +4.0	>
Input / Output voltage	VT	with respect	Except /WP(ACC), /RESET	-0.5 Note 1 to VccQf, Vccm + 0.4 Note 2(3.3 V MAX.)	٧
		to Vss	/WP(ACC), /RESET	-0.5 Note 1 to +13.0	
Ambient operation temperature	TA			−25 to +85	°C
Storage temperature	Tstg			-55 to +125	°C
	T _{bias}	at bias		-25 to +85	

Notes 1. -1.0 V (MIN.) (pulse width $\leq 20 \text{ ns}$)

2. VccQf + 2.0 V (MAX.) (pulse width $\leq 20 ns$) (Except Mobile specified RAM pins)

Caution Exposing the device to stress above those listed in Absolute Maximum Rating could cause permanent damage. The device is not meant to be operated under conditions outside the limits described in the operational section of this specification. Exposure to Absolute Maximum Rating conditions for extended periods may affect device reliability.

Recommended Operating Conditions

Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
Supply voltage	Vccf		1.65		1.95	V
	Vccm		2.6		3.1	
Input / Output supply voltage	VccQf		2.6		3.1	V
High level input voltage	ViH	Flash memory	2.0		VccQf+0.3 ^{Note1}	V
		Mobile specified RAM	Vccmx0.8		Vccm+0.3	
	VID	/RESET	9.0		11.0	
Low level input voltage	VIL	Flash memory	-0.5 ^{Note2}		+0.8	٧
		Mobile specified RAM	-0.3 ^{Note3}		Vccmx0.2	
Accelerated programming voltage	Vacc	Flash memory	8.5		9.5	V
Ambient operating temperature	TA		-25		+85	°C

Notes 1. VccQf + 0.6 V (MAX.) (pulse width $\leq 20 \text{ ns}$)

- **2.** -0.6 V (MIN.) (pulse width $\leq 20 \text{ ns}$)
- **3.** -0.5 V (MIN.) (pulse width $\leq 30 \text{ ns}$)

DC Characteristics (Recommended Operating Conditions Unless Otherwise Noted) Flash memory

	Parameter	Symbol	Test condition	MIN.	TYP.	MAX.	Unit
High lev	vel output voltage	Vон	IoH = -1.5 mA, Vccf = Vccf (MIN.), VccQf = VccQf (MIN.)	VccQfx0.8			V
Low lev	el output voltage	Vol	IoL = 1.0 mA, VccQf = VccQf (MIN.)			VccQfx0.8	٧
Input le	akage current	ILI1	Vi = Vss to VccQf, VccQf = VccQf (MAX.)			1.0	μΑ
	High voltage is applied	IL12	/RESET = 11.0 V			35	
Output	leakage current	lLO	Vo = Vss to VccQf, VccQf = VccQf (MAX.)			1.0	μΑ
Power	Read	Icc1	/CEf = V _{IL} , /OE = V _{IH} , Cycle = 5 MHz, I _{OUT} = 0 mA		8	15	mA
supply	Program, Erase	Icc2	/CEf = VIL, /OE = VIH,			25	mA
current			Automatic programming / read				
	Standby	Іссз	Vccf = Vccf (MAX.), /CEf = /RESET =		15	25	μΑ
			$/WP(ACC) = VccQf \pm 0.3 V, /OE = VIL$				
	Standby / Reset	Icc4	$Vccf = Vccf (MAX.), /RESET = Vss \pm 0.2 V$		15	25	μΑ
	Automatic sleep mode	Icc5	$V_{IH} = V_{CC}Qf \pm 0.2 \text{ V}, V_{IL} = V_{SS} \pm 0.2 \text{ V}$		15	25	μΑ
	Read during programming	Icc ₆	$V_{IH} = V_{CC}Qf \pm 0.2 \text{ V}, V_{IL} = V_{SS} \pm 0.2 \text{ V}$			40	mA
	Read during erasing	Ісст	$V_{IH} = V_{CC}Qf \pm 0.2 \text{ V}, V_{IL} = V_{SS} \pm 0.2 \text{ V}$			40	mA
	Programming	Icc8	/CEf = V _{IL} , /OEf = V _{IH} ,			25	mA
	during suspend		Automatic programming during suspend				
	Accelerated	IACC	/WP (ACC) pin		5	10	mA
	programming		Vccf		12	25	
Low Vcd	f lock-out voltage ^{Note}	VLKO		1.0			V

Note When Vccf is equal to or lower than VLKO, the device ignores all write cycles. Refer to PAGE MODE FLASH MEMORY, BURST MODE FLASH MEMORY Information (M15451E).

Mobile specified RAM

Parameter	Symbol	Test condition	Density of	MIN.	TYP.	MAX.	Unit
			data hold				
Input leakage current	lu	Vin = 0 V to Vccm		-1.0		+1.0	μΑ
I/O leakage current	ILO	V _{I/O} = 0 V to V _{CC} m, /CEm = V _{IH} or		-1.0		+1.0	μΑ
		/WE = VIL or /OE = VIH					
Operating supply current	Icca	/CEm = V _{IL} , Minimum cycle time,				35	mΑ
		Ivo = 0 mA					
Standby supply current	I _{SB1}	$/CEm \ge Vccm - 0.2 \text{ V}, \text{ MODE } \ge Vccm - 0.2 \text{ V}$	16 Mbits			70	μΑ
	I _{SB2}	/CEm ≥ Vccm - 0.2 V, MODE ≤ 0.2 V	0 Mbit			10	
High level output voltage	Vон	Іон = -0.5 mA		Vccm×0.8			V
Low level output voltage	Vol	IoL = 1 mA				Vccm×0.2	V

 $\textbf{Remark} \ \ V_{IN}: Input\ voltage,\ V_{I/O}: Input\ /\ Output\ voltage$

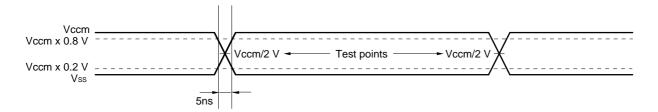
AC Characteristics (Recommended Operating Conditions Unless Otherwise Noted)

AC Test Conditions

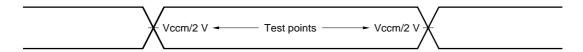
Flash memory

Input Waveform (Rise and Fall Time ≤ 5 ns)

Output Waveform

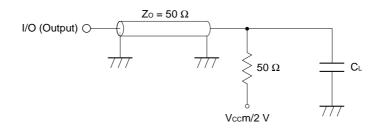

Output Load

1TTL + 30 pF



Mobile specified RAM

Input Waveform (Rise and Fall Time ≤ 5 ns)


Output Waveform

Output Load

AC characteristics directed with the note should be measured with the output load shown in Figure.

CL: 50 pF
5 pF (tcLz, toLz, tBLz, tCHz, tOHz, tBHz, tWHz, toW)

/CEf, /CEm Timing

Parameter	Symbol	Test Condition	MIN.	TYP.	MAX.	Unit	Notes
/CEf, /CEm recover time	tccr		0			ns	

Read Cycle (Flash memory)

	Parameter	Symbol	MIN.	MAX.	Unit	Notes
Read cycle time	ad cycle time		90		ns	
Address access tir	ne	tacc		90	ns	1
Page read cycle		t PRC	30		ns	
Page address acce	ess time	t PACC		30	ns	1
/CEf access time		t cef		90	ns	2
/OE access time		toe		25	ns	
Output disable time	e	tor		25	ns	
Output hold time		tон	0		ns	
/RESET pulse widt	th	t RP	500		ns	
/RESET hold time	/RESET hold time before read		50		ns	
/RESET low	At automatic mode	t READY		20	μs	
to read mode	Except automatic mode			500	ns	

Notes 1. /CEf = /OE = VIL

2. /OE = VIL

 $\textbf{Remark} \quad \textit{tdF} \text{ is the time from inactivation of /CEf or /OE to Hi-Z state output.}$

Write Cycle (Program / Erase) (Flash memory)

(1/2)

Parameter		Cumbal	MINI	TVD	MAY	Lloit	Note
	etei	Symbol	MIN.	TYP.	MAX.	Unit	Note
Write cycle time		twc	90			ns	
Address setup time (/WE to a	,	tas	0			ns	
Address setup time (/CEf to a	•	t as	0			ns	
,	Address hold time (/WE to address)		45			ns	
Address hold time (/CEf to ad	dress)	t AH	45			ns	
Input data setup time		tos	45			ns	
Input data hold time		tон	0			ns	
/OE hold time	Read	t oeh	0			ns	
	Toggle bit, Data polling		10				
Read recovery time before wr	ite (/OE to /CEf)	tGHEL	0			ns	
Read recovery time before wr	ite (/OE to /WE)	t GHWL	0			ns	
/WE setup time (/CEf to /WE)		tws	0			ns	
/CEf setup time (/WE to /CEf)		t cs	0			ns	
/WE hold time (/CEf to /WE)		twн	0			ns	
/CEf hold time (/WE to /CEf)		tсн	0			ns	
Write pulse width		twp	35			ns	
/CEf pulse width		t CP	35			ns	
Write pulse width high		t wph	30			ns	
/CEf pulse width high		t CPH	30			ns	
Word programming operation	time	twpg		11	TBD	μs	
Chip programming operation t	time	t CPG		47	TBD	s	
Sector erase operation time	4K words sector	tser		0.3	1.0	s	1,2
	32K words sector			0.5	1.5		
	4K words sector			0.5	3.0		1,3
	32K words sector			0.7	5.0		
Chip erase operation time	1	tcer		67.8	205	s	1,2
				96.2	678	1	1,3
Accelerated programming tim	e	taccpg		7	TBD	μs	
Erase / Program cycle			100,000	1,000,000		cycles	
Vccf setup time		tvcs	200			μs	
RY (/BY) recovery time		tпв	0			ns	
/RESET pulse width		trp	500			ns	
/RESET high-voltage (V _{ID}) hol	d time from high of	t rrb	20			μs	
RY(/BY) when sector group is	•					'	
/RESET hold time		tпн	50			ns	
From completion of automatic output time	program / erase to data	t EOE			70	ns	

 $\textbf{Notes 1.} \ \textbf{The preprogramming time prior to the erase operation is not included}.$

2. Erase / program cycle : 100,000 cycle3. Erase / program cycle : 1,000,000 cycle

Write Cycle (Program / Erase) (Flash memory)

(2/2)

Parameter		MIN.	TYP.	MAX.	Unit	Note
RY (/BY) delay time from valid program or erase	t BUSY	90			ns	
operation						
Address setup time to /OE low in toggle bit	taso	15			ns	
Address hold time to /CEf or /OE high in toggle bit	t aht	0			ns	
/CEf pulse width high for toggle bit	t CEPH	20			ns	
/OE pulse width high for toggle bit	t OEPH	20			ns	
Voltage transition time	t vlht	4			μs	1
Rise time to V _{ID} (/RESET)	tvidr	500			ns	
Rise time to VACC (/WP(ACC))	tvaccr	500			ns	
Erase timeout time	t TOW	50			μs	2
Erase suspend transition time	t spd			20	μs	2

Notes 1. Sector group protection only.

2. Table only.

Write operation (Erase / Program) Performance

Parameter	Description	า	MIN.	TYP.	MAX.	Unit	Note
Sector erase time	Excludes programming time	4K words sector		0.3	1.0	s	1
	prior to erasure	32K words sector		0.5	1.5		
		4K words sector		0.5	3.0		2
		32K words sector		0.7	5.0		
Chip erase time	Excludes programming time	orior to erasure		67.8	205	s	1
				96.2	678	s	2
Word programming time	Excludes system-level overhe	ead		11	TBD	μs	
Chip programming time	Excludes system-level overhe	l overhead 47 TBD s				s	
Accelerated programming time	Excludes system-level overhe	ead	7 TBD μs				
Erase / Program cycle			100,000	1,000,000		cycles	

Notes 1. Erase / program cycle : 100,000 cycle
2. Erase / program cycle : 1,000,000 cycle

Read Cycle (Mobile specified RAM)

Parameter	Symbol	MC-24212	2361-E90X	MC-24212	2361-E95X	MC-24212	2361-E10X	Unit	Note
		MIN.	MAX.	MIN.	MAX.	MIN.	MAX.		
Read cycle time	t RC	80	10,000	90	10,000	110	10,000	ns	1
Identical address read cycle time	t _{RC1}	80	10,000	90	10,000	110	10,000	ns	2
Address skew time	tskew		10		15		20	ns	3
/CEm pulse width	t CP	10		10		10		ns	
Address access time	t AA		80		90		100	ns	4
/CEm access time	tacs		80		90		100	ns	
/OE to output valid	toe		35		40		50	ns	5
/LB, /UB to output valid	t BA		35		40		50	ns	
Output hold from address change	tон	10		10		10		ns	
/CEm to output in low impedance	tcLz	10		10		10		ns	
/OE to output in low impedance	tolz	5		5		5		ns	
/LB, /UB to output in low impedance	t BLZ	5		5		5		ns	
/CEm to output in high impedance	t cHZ		25		25		25	ns	
/OE to output in high impedance	tонz		25		25		25	ns	
/LB, /UB to output in high impedance	t BHZ		25		25		25	ns	

Notes 1. One read cycle (tRC) must satisfy the minimum value (tRC(MIN.)) and maximum value (tRC(MAX.) = $10 \ \mu s$). tRC indicates the time from the /CEm low level input point or address determination point, whichever is later, to the /CEm high level input point or the next address change start point, whichever is earlier. As a result, there are the following four conditions for tRC.

1) Time from address determination point to /CEm high level input point (address access)
2) Time from address determination point to next address change start point (address access)
3) Time from /CEm low level input point to next address change start point (/CEm access)
4) Time from /CEm low level input point to /CEm high level input point (/CEm access)

- 2. The identical address read cycle time (tRc1) is the cycle time of one read operation when performing continuous read operations toggling /OE , /LB, and /UB with the address fixed and /CEm low level. Perform settings so that the sum (tRc) of the identical address read cycle times (tRc1) is 10 μs or less.
- 3. tskew indicates the following three types of time depending on the condition.
 - 1) When switching /CEm from high level to low level, tskew is the time from the /CEm low level input point until the next address is determined.
 - 2) When switching /CEm from low level to high level, tskew is the time from the address change start point to the /CEm high level input point.
 - 3) When /CEm is fixed to low level, tskew is the time from the address change start point until the next address is determined.

Since specs are defined for tskew only when /CEm is active, tskew is not subject to limitations when /CEm is switched from high level to low level following address determination, or when the address is changed after /CEm is switched from low level to high level.

- **4.** Regarding tax and tacs, only tax is satisfied during address access (refer to 1) and 2) of **Note 1**), and only tacs is satisfied during /CEm access (refer to 3) of **Note 1**).
- **5.** Regarding t_{BA} and t_{OE}, only t_{BA} is satisfied if /OE becomes active later than /UB and /LB, and only t_{OE} is satisfied if /UB and /LB become active before /OE.

Write Cycle (Mobile specified RAM)

Parameter	Symbol	MC-24212361-E90X		MC-24212361-E95X		MC-24212361-E10X		Unit	Note
		MIN.	MAX.	MIN.	MAX.	MIN.	MAX.		
Write cycle time	twc	80	10,000	90	10,000	110	10,000	ns	1
Identical address write cycle time	twc1	80	10,000	90	10,000	110	10,000	ns	2
Address skew time	tskew		10		15		20	ns	3
/CEm to end of write	tcw	40		50		60		ns	4
/LB, /UB to end of write	tвw	30		35		40		ns	
Address valid to end of write	taw	35		45		55		ns	
Write pulse width	twp	30		35		40		ns	
Write recovery time	twr	20		20		20		ns	5
/CEm pulse width	tcp	10		10		10		ns	
Address setup time	tas	0		0		0		ns	
Byte write hold time	tвwн	20		20		20		ns	
Data valid to end of write	tow	20		25		30		ns	
Data hold time	tон	0		0		0		ns	
/OE to output in low impedance	tolz	5		5		5		ns	
/WE to output in high impedance	twнz		25		25		25	ns	
/OE to output in high impedance	tонz		25		25		25	ns	
Output active from end of write	tow	5		5		5		ns	

Notes 1. One write cycle (twc) must satisfy the minimum value (twc(MIN.)) and the maximum value (twc(MAX.) = $10 \ \mu s$). two indicates the time from the /CEm low level input point or address determination point, whichever is after, to the /CEm high level input point or the next address change start point, whichever is earlier. As a result, there are the following four conditions for twc.

- 1) Time from address determination point to /CEm high level input point
- 2) Time from address determination point to next address change start point
- 3) Time from /CEm low level input point to next address change start point
- 4) Time from /CEm low level input point to /CEm high level input point
- 2. The identical address read cycle time (twc1) is the cycle time of one write cycle when performing continuous write operations with the address fixed and /CEm low level, changing /LB and /UB at the same time, and toggling /WE, as well as when performing a continuous write toggling /LB and /UB. Make settings so that the sum (twc) of the identical address write cycle times (twc1) is 10 μs or less.
- 3. tskew indicates the following three types of time depending on the condition.
 - 1) When switching /CEm from high level to low level, tskew is the time from the /CEm low level input point until the next address is determined.
 - 2) When switching /CEm from low level to high level, tskew is the time from the address change start point to the /CEm high level input point.
 - 3) When /CEm is fixed to low level, tskew is the time from the address change start point until the next address is determined.

Since specs are defined for tskew only when /CEm is active, tskew is not subject to limitations when /CEm is switched from high level to low level following address determination, or when the address is changed after /CEm is switched from low level to high level.

4. Definition of write start and write end

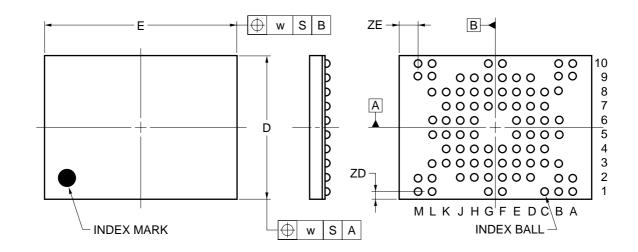
	/CEm	/WE	/LB, /UB	Status
Write start pattern 1	H to L	L	L	If /WE, /LB, /UB are low level, time when /CEm
				changes from high level to low level
Write start pattern 2	L	H to L	L	If /CEm, /LB, /UB are low level, time when /WE
				changes from high level to low level
Write start pattern 3	L	L	H to L	If /CEm, /WE are low level, time when /LB or
				/UB changes from high level to low level
Write end pattern 1	L	L to H	L	If /CEm, /WE, /LB, /UB are low level, time when
				/WE changes from low level to high level
Write end pattern 2	L	L	L to H	When /CEm, /WE, /LB, /UB are low level, time
				when /LB or /UB changes from low level to high
				level

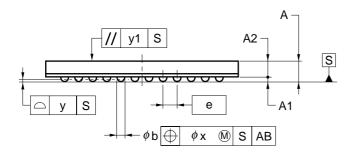
- **5.** Definition of write end recovery time (twR)
 - 1) Time from write end to address change start point, or from write end to /CEm high level input point
 - 2) When /CEm, /LB, /UB are low level and continuously written to the identical address, time from /WE high level input point to /WE low level input point
 - 3) When /CEm, /WE are low level and continuously written to the identical address, time from /LB or /UB high level input point, whichever is later, to /LB or /UB low level input point, whichever is earlier.
 - 4) When /CEm is low level and continuously written to the identical address, time from write end to point at which /WE, /LB, or /UB starts to change from high level to low level, whichever is earliest.

Read Write Cycle (Mobile specified RAM)

Parameter	Symbol	MC-24212361-E90X		MC-24212361-E95X		MC-24212361-E10X		Unit	Note
		MIN.	MAX.	MIN.	MAX.	MIN.	MAX.		
Read write cycle time	t RWC		10,000		10,000		10,000	ns	1, 2
Byte write setup time	t BWS	20		20		20		ns	
Byte read setup time	t BRS	20		20		20		ns	

- **Notes 1.** Make settings so that the sum (t_{RWC}) of the identical address read cycle time (t_{RC1}) and the identical address write cycle time (t_{WC1}) is 10 μ s or less when a write is performed at the identical address using /UB following a read using /LB with /CEm low level, or when a write is performed using /LB following a read using /UB.
 - **2.** Make settings so that the sum (tRWC) of the identical address read cycle time (tRC1) and the identical address write cycle time (tWC1) is 10 μs or less when a read is performed at the identical address using /UB following a write using /LB with /CEm low level, or when a read is performed using /LB following a write using /UB.


Standby Mode Entry / Exit (Mobile specified RAM)


Parameter	Symbol	MC-24212361-E90X		MC-24212361-E95X		MC-24212361-E10X		Unit	Note
		MIN.	MAX.	MIN.	MAX.	MIN.	MAX.		
/CEm High to MODE Low	tсм	0		0		0		ns	

- Cautions 1. Make MODE and /CEm high level during the wait time.
 - 2. Make MODE high level during the wait time and three read operations.
 - 3. The read operation must satisfy the read cycle specs.
 - 4. The read operation address can be either $V{\scriptscriptstyle IH}$ or $V{\scriptscriptstyle IL}.$
 - 5. Perform reading by toggling /CEm.
 - 6. To prevent bus contention, it is recommended to set /OE to high level. However, do not input data to the I/O pins if /OE is low level during a read operation.

8. Package Drawing

85-PIN TAPE FBGA (11x8)

This package drawing is a preliminary version. It may be changed in the future.

ITEM	MILLIMETERS
D	8.0
Е	11.0
W	0.2
е	0.8
Α	1.12
A1	0.27
A2	0.85
b	0.45
Х	0.08
у	0.1
y1	0.1
ZD	0.4
ZE	1.1
A1 A2 b x y y1 ZD	0.27 0.85 0.45 0.08 0.1 0.1 0.4

9. Recommended Soldering Conditions

Please consult with our sales offices for soldering conditions of the MC-24212361-X.

Types of Surface Mount Device

 $\begin{aligned} &\text{MC-}24212361F9-E90X-CDx: 85-pin TAPE FBGA (11 \times 8)\\ &\text{MC-}24212361F9-E95X-CDx: 85-pin TAPE FBGA (11 \times 8)\\ &\text{MC-}24212361F9-E10X-CDx: 85-pin TAPE FBGA (11 \times 8) \end{aligned}$

[MEMO]

NEC MC-24212361-X

[MEMO]

[MEMO]

NOTES FOR CMOS DEVICES

1 PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note:

Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it.

② HANDLING OF UNUSED INPUT PINS FOR CMOS

Note:

No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices.

3) STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note:

Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function.

- The information in this document is current as of June, 2001. The information is subject to change
 without notice. For actual design-in, refer to the latest publications of NEC's data sheets or data
 books, etc., for the most up-to-date specifications of NEC semiconductor products. Not all products
 and/or types are available in every country. Please check with an NEC sales representative for
 availability and additional information.
- No part of this document may be copied or reproduced in any form or by any means without prior written consent of NEC. NEC assumes no responsibility for any errors that may appear in this document.
- NEC does not assume any liability for infringement of patents, copyrights or other intellectual property rights of
 third parties by or arising from the use of NEC semiconductor products listed in this document or any other
 liability arising from the use of such products. No license, express, implied or otherwise, is granted under any
 patents, copyrights or other intellectual property rights of NEC or others.
- Descriptions of circuits, software and other related information in this document are provided for illustrative
 purposes in semiconductor product operation and application examples. The incorporation of these
 circuits, software and information in the design of customer's equipment shall be done under the full
 responsibility of customer. NEC assumes no responsibility for any losses incurred by customers or third
 parties arising from the use of these circuits, software and information.
- While NEC endeavours to enhance the quality, reliability and safety of NEC semiconductor products, customers
 agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize
 risks of damage to property or injury (including death) to persons arising from defects in NEC
 semiconductor products, customers must incorporate sufficient safety measures in their design, such as
 redundancy, fire-containment, and anti-failure features.
- NEC semiconductor products are classified into the following three quality grades:
 - "Standard", "Special" and "Specific". The "Specific" quality grade applies only to semiconductor products developed based on a customer-designated "quality assurance program" for a specific application. The recommended applications of a semiconductor product depend on its quality grade, as indicated below. Customers must check the quality grade of each semiconductor product before using it in a particular application.
 - "Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
 - "Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
 - "Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems and medical equipment for life support, etc.

The quality grade of NEC semiconductor products is "Standard" unless otherwise expressly specified in NEC's data sheets or data books, etc. If customers wish to use NEC semiconductor products in applications not intended by NEC, they must contact an NEC sales representative in advance to determine NEC's willingness to support a given application.

(Note)

- (1) "NEC" as used in this statement means NEC Corporation and also includes its majority-owned subsidiaries.
- (2) "NEC semiconductor products" means any semiconductor product developed or manufactured by or for NEC (as defined above).

M8E 00.4