# RENESAS

# RC191xx

PCIe Gen7 1.8V Fanout Buffer Family with LOS

# Description

The RC191xx (RC19108, RC19104, and RC19102) ultra-high performance fanout buffers support PCIe Gen1-7. They provide a Loss-Of-Signal (LOS) output for system monitoring and redundancy. The devices also incorporate Power Down Tolerant (PDT) and Flexible Startup Sequencing (FSS) features, easing system design. They can drive both sourceterminated and double-terminated loads, operating up to 400MHz.

The family offers 2, 4, or 8 Low-Power (LP) HCSL output pairs in  $3 \times 3$ ,  $4 \times 4$ , and  $5 \times 5$  mm packages. The RC191xx devices offer higher output counts in smaller packages compared to earlier buffer families. The buffers support both Common Clock (CC) and Independent Reference (IR) PCIe clock architectures.

# Applications

- Cloud/High-performance computing
- nVME storage
- Networking
- Al Accelerators

### Features

- Very low additive phase jitter:
  - PCIe Gen5: 5.9fs RMS (typ)
  - PCIe Gen6: 3.5fs RMS (typ)
  - PCIe Gen7: 2.4fs RMS (typ)
  - DB2000Q: 10fs RMS (typ)
  - 12kHz 20MHz (156.25MHz): 33fs RMS (typ.)
- Power Down Tolerant (PDT) inputs
- Flexible Startup Sequencing (FSS)
- Automatic Clock Parking (ACP) upon loss of CLKIN
- Spread-spectrum tolerant
- CLKIN accepts HCSL or LVDS signal levels
- -40 to +105°C, 1.8V ± 5% operation
- Devices provide:
  - Pin or SMBus selectable 34Ω, 85Ω, or 100Ω differential output impedance
  - Pin or SMBus selectable output slew rate
  - Pin or SMBus selectable output amplitude
  - 9 SMBus addresses plus write protection



3. RC19108A001 and RC19104A001 only.

Figure 1. RC191xx Block Diagram

# Contents

| 1. | Pin Inf | ormation       |                                                  | . 4 |
|----|---------|----------------|--------------------------------------------------|-----|
|    | 1.1     | Signal Ty      | /pes                                             | . 4 |
|    | 1.2     | RC19108        | 3 Pin Information                                | . 5 |
|    |         | 1.2.1          | RC19108 Pin Assignments                          | . 5 |
|    |         | 1.2.2          | RC19108 Pin Descriptions                         | . 5 |
|    | 1.3     | RC19108        | BA001 Pin Information                            | . 7 |
|    |         | 1.3.1          | RC19108A001 Pin Assignments                      | . 7 |
|    |         | 1.3.2          | RC19108A001 Pin Descriptions                     |     |
|    | 1.4     | RC19104        | 4 Pin Information                                |     |
|    |         | 1.4.1          | RC19104 Pin Assignments                          | . 9 |
|    |         | 1.4.2          | RC19104 Pin Descriptions                         |     |
|    | 1.5     |                | 4A001 Pin Information                            |     |
|    | -       | 1.5.1          | RC19104A001 Pin Assignments                      |     |
|    |         | 1.5.2          | RC19104A001 Pin Descriptions                     |     |
|    | 1.6     |                | 2 Pin Information                                |     |
|    | 1.0     | 1.6.1          | RC19102 Pin Assignments                          |     |
|    |         | 1.6.2          | RC19102 Pin Descriptions                         |     |
| 2  | Casal   |                |                                                  |     |
| 2. | -       |                |                                                  |     |
|    | 2.1     |                | Maximum Ratings                                  |     |
|    | 2.2     |                | ended Operating Conditions                       |     |
|    | 2.3     |                | Specifications                                   |     |
|    | 2.4     |                |                                                  |     |
|    |         | 2.4.1          | Additive Phase Jitter                            |     |
|    |         | 2.4.2          | Output Frequencies, Startup Time, and LOS Timing |     |
|    |         | 2.4.3          | CLK AC/DC Output Characteristics                 |     |
|    |         | 2.4.4          | CLKIN AC/DC Characteristics                      |     |
|    |         | 2.4.5          | Output-to-Output and Input-to-Output Skew        |     |
|    |         | 2.4.6          | I/O Electrical Characteristics                   |     |
|    |         | 2.4.7          | Power Supply Current                             |     |
|    |         | 2.4.8          | SMBus Electrical Characteristics                 | 27  |
| 3. | Test L  | oads           |                                                  | 29  |
| 4. | Gener   | al SMBus       | Serial Interface Information                     | 31  |
|    | 4.1     |                | Vrite                                            |     |
|    | 4.2     |                | Read                                             |     |
|    | 4.3     |                | Bit Types                                        |     |
|    | 4.4     |                | ck Functionality                                 |     |
|    | 4.5     |                | Address Decode                                   |     |
|    | 4.6     |                | Registers                                        |     |
|    | 1.0     | 4.6.1          | OUTPUT ENABLE                                    |     |
|    |         | 4.6.2          | OEB PIN READBACK                                 |     |
|    |         | 4.6.3          | LOS_CONFIG                                       |     |
|    |         | 4.6.4          | VENDOR_REVISION_ID                               |     |
|    |         | 4.0.4<br>4.6.5 |                                                  |     |
|    |         | 4.6.6          | BYTE COUNT                                       |     |
|    |         | 4.6.0<br>4.6.7 | SLEW AMP SELECT                                  |     |
|    |         | 4.6.7<br>4.6.8 | INPUT_PULLUP_PULLDOWN_4                          |     |
|    |         |                |                                                  |     |
|    |         | 4.6.9          |                                                  |     |
|    |         | 4.6.10         |                                                  |     |
|    |         | 4.6.11         | PD_RESTORE_LOSb_CONFIG                           |     |
|    |         | 4.6.12         | OUTPUT_IMPEDANCE_7_0                             |     |
|    |         | 4.6.13         | OUTPUT_REC_SEL_7_0                               | 39  |

RENESAS

|    |                                                | 4.6.14                   | OUTPUT_SLEW_RATE_7_0                          | С |  |  |  |  |  |
|----|------------------------------------------------|--------------------------|-----------------------------------------------|---|--|--|--|--|--|
|    |                                                | 4.6.15                   | LOW-LOW_DETECT                                | 1 |  |  |  |  |  |
|    |                                                | 4.6.16                   | RECEIVER_CONTROL                              | 1 |  |  |  |  |  |
|    |                                                | 4.6.17                   | WRITE LOCK                                    | 2 |  |  |  |  |  |
|    |                                                | 4.6.18                   | WRITE_LOCK_LOS_EVT                            | 2 |  |  |  |  |  |
| 5. | Applic                                         | cations Inf              | ormation                                      | 3 |  |  |  |  |  |
|    | 5.1                                            | Inputs, C                | Dutputs, and Output Enable Control            | 3 |  |  |  |  |  |
|    |                                                | 5.1.1                    | Recommendations for Unused Inputs and Outputs | 3 |  |  |  |  |  |
|    |                                                | 5.1.2                    | Differential CLKIN Configurations             | 3 |  |  |  |  |  |
|    |                                                | 5.1.3                    | Differential CLK Output Configurations 44     | 4 |  |  |  |  |  |
|    | 5.2                                            | Power Down Tolerant Pins |                                               |   |  |  |  |  |  |
|    | 5.3 Flexible Startup Sequencing                |                          |                                               |   |  |  |  |  |  |
|    | 5.4 Loss of Signal and Automatic Clock Parking |                          |                                               |   |  |  |  |  |  |
|    | 5.5                                            | nable Control            | 3                                             |   |  |  |  |  |  |
|    |                                                | 5.5.1                    | SMBus Output Enable Bits                      | 3 |  |  |  |  |  |
|    |                                                | 5.5.2                    | Output Enable (OEb) Pins 4                    | 3 |  |  |  |  |  |
| 6. | Packa                                          | ige Outlin               | e Drawings                                    | 7 |  |  |  |  |  |
| 7. | Marki                                          | ng Diagra                | ms                                            | 7 |  |  |  |  |  |
| 8. | Order                                          | ing Inform               | ation                                         | B |  |  |  |  |  |
| 9. | Revis                                          | ion Histor               | y 4                                           | 9 |  |  |  |  |  |



# 1. Pin Information

# 1.1 Signal Types

| Term | Description <sup>[1]</sup>                                                                                                               |
|------|------------------------------------------------------------------------------------------------------------------------------------------|
| I    | Input                                                                                                                                    |
| 0    | Input                                                                                                                                    |
| OD   | Open Drain Output                                                                                                                        |
| I/O  | Bi-Directional                                                                                                                           |
| PD   | Pull-down                                                                                                                                |
| PU   | Pull-up                                                                                                                                  |
| Z    | Tristate                                                                                                                                 |
| D    | Driven                                                                                                                                   |
| X    | Don't care                                                                                                                               |
| SE   | Single ended                                                                                                                             |
| DIF  | Differential                                                                                                                             |
| PWR  | 1.8 V power                                                                                                                              |
| GND  | Ground                                                                                                                                   |
| PDT  | Power Down Tolerant: These signals tolerate being driven when the device is powered down. For information, see Absolute Maximum Ratings. |

1. Some pins have both internal pull-up and pull-down resistors which bias the pins to VDD/2. Other pins are multimode and have an internal pull-up or internal pull-down depending on the mode.



# 1.2 RC19108 Pin Information

### 1.2.1 RC19108 Pin Assignments





### 1.2.2 RC19108 Pin Descriptions

#### Table 1. RC19108 Pin Descriptions

| Pin Number | Pin Name     | Туре              | Description                                                                                                                                                                                                                     |
|------------|--------------|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1          | LOSb         | O, OD,<br>PDT     | Output indicating Loss of Input Signal. This pin is an open-drain output and requires an external pull-up resistor for proper functionality. A low output on this pin indicates a loss of signal on the input clock.            |
| 2          | SLEWRATE_SEL | I, SE, PU,<br>PDT | Input to select default slew rate of the outputs.<br>0 = Slow Slew Rate, 1 = Fast Slew Rate.                                                                                                                                    |
| 3          | SADR_tri1    | I, SE, PD,<br>PU  | SMBus address bit. This is a tri-level input that works in conjunction with other SADR pins, if present, to decode SMBus Addresses. See the SMBus Address Decode table and tri-level input thresholds in the electrical tables. |
| 4          | SADR_tri0    | I, SE, PD,<br>PU  | SMBus address bit. This is a tri-level input that works in conjunction with other SADR pins, if present, to decode SMBus Addresses. See the SMBus Address Decode table and tri-level input thresholds in the electrical tables. |
| 5          | SDATA        | I/O, SE,<br>OD    | Data pin for SMBus interface.                                                                                                                                                                                                   |
| 6          | SCLK         | I, SE             | Clock pin of SMBus interface.                                                                                                                                                                                                   |
| 7          | VDDDIG       | PWR               | Digital power.                                                                                                                                                                                                                  |
| 8          | CLKIN        | I, DIF            | True clock input.                                                                                                                                                                                                               |
| 9          | CLKINb       | I, DIF            | Complementary clock input.                                                                                                                                                                                                      |
| 10         | VDDCLK       | PWR               | Clock Power supply.                                                                                                                                                                                                             |
| 11         | ZOUTSEL_tri  | I, SE, PD         | Input to select differential output impedance.<br>0 = 85 ohm, 1 = 100 ohm, M = 34 ohm                                                                                                                                           |



| Pin Number | Pin Name     | Туре              | Description                                                                                                                                                       |
|------------|--------------|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 12         | PWRGD_PWRDNb | I, SE, PU,<br>PDT | Input notifies device to sample latched inputs and start up on first high assertion. Low enters Power Down Mode, subsequent high assertions exit Power Down Mode. |
| 13         | VDDCLK       | PWR               | Clock power supply.                                                                                                                                               |
| 14         | OEb7         | I, SE, PU,<br>PDT | Active low input for enabling output 7.<br>0 = Enable output, 1 = Disable output.                                                                                 |
| 15         | CLK7         | O, DIF            | True clock output.                                                                                                                                                |
| 16         | CLKb7        | O, DIF            | Complementary clock output.                                                                                                                                       |
| 17         | CLK6         | O, DIF            | True clock output.                                                                                                                                                |
| 18         | CLKb6        | O, DIF            | Complementary clock output.                                                                                                                                       |
| 19         | OEb6         | I, SE, PU,<br>PDT | Active low input for enabling output 6.<br>0 = Enable output, 1 = Disable output.                                                                                 |
| 20         | VDDCLK       | PWR               | Clock power supply.                                                                                                                                               |
| 21         | OEb5         | I, SE, PU,<br>PDT | Active low input for enabling output 5.<br>0 = Enable output, 1 = Disable output.                                                                                 |
| 22         | CLK5         | O, DIF            | True clock output.                                                                                                                                                |
| 23         | CLKb5        | O, DIF            | Complementary clock output.                                                                                                                                       |
| 24         | CLK4         | O, DIF            | True clock output.                                                                                                                                                |
| 25         | CLKb4        | O, DIF            | Complementary clock output.                                                                                                                                       |
| 26         | VDDCLK       | PWR               | Clock Power supply.                                                                                                                                               |
| 27         | OEb4         | I, SE, PU,<br>PDT | Active low input for enabling output 4.<br>0 = Enable output, 1 = Disable output.                                                                                 |
| 28         | CLK3         | O, DIF            | True clock output.                                                                                                                                                |
| 29         | CLKb3        | O, DIF            | Complementary clock output.                                                                                                                                       |
| 30         | OEb3         | I, SE, PU,<br>PDT | Active low input for enabling output 3.<br>0 = Enable output, 1 = Disable output.                                                                                 |
| 31         | CLK2         | O, DIF            | True clock output.                                                                                                                                                |
| 32         | CLKb2        | O, DIF            | Complementary clock output.                                                                                                                                       |
| 33         | OEb2         | I, SE, PU,<br>PDT | Active low input for enabling output 2.<br>0 = Enable output, 1 = Disable output.                                                                                 |
| 34         | OEb1         | I, SE, PU,<br>PDT | Active low input for enabling output 1.<br>0 = Enable output, 1 = Disable output.                                                                                 |
| 35         | CLK1         | O, DIF            | True clock output.                                                                                                                                                |
| 36         | CLKb1        | O, DIF            | Complementary clock output.                                                                                                                                       |
| 37         | VDDCLK       | PWR               | Clock power supply.                                                                                                                                               |
| 38         | CLK0         | O, DIF            | True clock output.                                                                                                                                                |
| 39         | CLKb0        | O, DIF            | Complementary clock output.                                                                                                                                       |
| 40         | OEb0         | I, SE, PU,<br>PDT | Active low input for enabling output 0.<br>0 = Enable output, 1 = Disable output.                                                                                 |
| 41         | EPAD         | GND               | Connect Epad to ground.                                                                                                                                           |

### Table 1. RC19108 Pin Descriptions (Cont.)



# 1.3 RC19108A001 Pin Information

### 1.3.1 RC19108A001 Pin Assignments



Figure 3. RC19108 40-VFQFPN – Top View

### 1.3.2 RC19108A001 Pin Descriptions

#### Table 2. RC19108A001 Pin Descriptions

| Pin Number | Pin Name      | Туре             | Description                                                                                                                                                                                                                                                         |
|------------|---------------|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1          | LOSb          | O, OD,<br>PDT    | Output indicating Loss of Input Signal. This pin is an open-drain output and requires an external pull-up resistor for proper functionality. A low output on this pin indicates a loss of signal on the input clock.                                                |
| 2          | AMPLITUDE_SEL | I, SE, PD,<br>PD | Input to select output amplitude. The values are programmable with defaults listed below. For the default amplitude and AMP_CTRL_ALT for the alternate amplitude, see AMP_CTRL_DEF.<br>0 = Select Default Amplitude (800mV), 1 = Select Alternate Amplitude (900mV) |
| 3          | SADR_tri1     | I, SE, PD,<br>PU | SMBus address bit. This is a tri-level input that works in conjunction with other SADR pins, if present, to decode SMBus Addresses. See the SMBus Address Decode table and tri-level input thresholds in the electrical tables.                                     |
| 4          | SADR_tri0     | I, SE, PD,<br>PU | SMBus address bit. This is a tri-level input that works in conjunction with other SADR pins, if present, to decode SMBus Addresses. See the SMBus Address Decode table and tri-level input thresholds in the electrical tables.                                     |
| 5          | SDATA         | I/O, SE,<br>OD   | Data pin for SMBus interface.                                                                                                                                                                                                                                       |
| 6          | SCLK          | I, SE            | Clock pin of SMBus interface.                                                                                                                                                                                                                                       |
| 7          | VDDDIG        | PWR              | Digital power.                                                                                                                                                                                                                                                      |
| 8          | CLKIN         | I, DIF           | True clock input.                                                                                                                                                                                                                                                   |
| 9          | CLKINb        | I, DIF           | Complementary clock input.                                                                                                                                                                                                                                          |
| 10         | VDDCLK        | PWR              | Clock Power supply.                                                                                                                                                                                                                                                 |



| Pin Number | Pin Name     | Туре              | Description                                                                                                                                                       |
|------------|--------------|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 11         | ZOUTSEL_tri  | I, SE, PD         | Input to select differential output impedance.<br>0 = 85 ohm, 1 = 100 ohm, M = 34 ohm                                                                             |
| 12         | PWRGD_PWRDNb | I, SE, PU,<br>PDT | Input notifies device to sample latched inputs and start up on first high assertion. Low enters Power Down Mode, subsequent high assertions exit Power Down Mode. |
| 13         | VDDCLK       | PWR               | Clock power supply.                                                                                                                                               |
| 14         | OEb7         | I, SE, PU,<br>PDT | Active low input for enabling output 7.<br>0 = Enable output, 1 = Disable output.                                                                                 |
| 15         | CLK7         | O, DIF            | True clock output.                                                                                                                                                |
| 16         | CLKb7        | O, DIF            | Complementary clock output.                                                                                                                                       |
| 17         | CLK6         | O, DIF            | True clock output.                                                                                                                                                |
| 18         | CLKb6        | O, DIF            | Complementary clock output.                                                                                                                                       |
| 19         | OEb6         | I, SE, PU,<br>PDT | Active low input for enabling output 6.<br>0 = Enable output, 1 = Disable output.                                                                                 |
| 20         | VDDCLK       | PWR               | Clock power supply.                                                                                                                                               |
| 21         | OEb5         | I, SE, PU,<br>PDT | Active low input for enabling output 5.<br>0 = Enable output, 1 = Disable output.                                                                                 |
| 22         | CLK5         | O, DIF            | True clock output.                                                                                                                                                |
| 23         | CLKb5        | O, DIF            | Complementary clock output.                                                                                                                                       |
| 24         | CLK4         | O, DIF            | True clock output.                                                                                                                                                |
| 25         | CLKb4        | O, DIF            | Complementary clock output.                                                                                                                                       |
| 26         | VDDCLK       | PWR               | Clock Power supply.                                                                                                                                               |
| 27         | OEb4         | I, SE, PU,<br>PDT | Active low input for enabling output 4.<br>0 = Enable output, 1 = Disable output.                                                                                 |
| 28         | CLK3         | O, DIF            | True clock output.                                                                                                                                                |
| 29         | CLKb3        | O, DIF            | Complementary clock output.                                                                                                                                       |
| 30         | OEb3         | I, SE, PU,<br>PDT | Active low input for enabling output 3.<br>0 = Enable output, 1 = Disable output.                                                                                 |
| 31         | CLK2         | O, DIF            | True clock output.                                                                                                                                                |
| 32         | CLKb2        | O, DIF            | Complementary clock output.                                                                                                                                       |
| 33         | OEb2         | I, SE, PU,<br>PDT | Active low input for enabling output 2.<br>0 = Enable output, 1 = Disable output.                                                                                 |
| 34         | OEb1         | I, SE, PU,<br>PDT | Active low input for enabling output 1.<br>0 = Enable output, 1 = Disable output.                                                                                 |
| 35         | CLK1         | O, DIF            | True clock output.                                                                                                                                                |
| 36         | CLKb1        | O, DIF            | Complementary clock output.                                                                                                                                       |
| 37         | VDDCLK       | PWR               | Clock power supply.                                                                                                                                               |
| 38         | CLK0         | O, DIF            | True clock output.                                                                                                                                                |
| 39         | CLKb0        | O, DIF            | Complementary clock output.                                                                                                                                       |
| 40         | OEb0         | I, SE, PU,<br>PDT | Active low input for enabling output 0.<br>0 = Enable output, 1 = Disable output.                                                                                 |
| 41         | EPAD         | GND               | Connect Epad to ground.                                                                                                                                           |

### Table 2. RC19108A001 Pin Descriptions (Cont.)



# 1.4 RC19104 Pin Information

### 1.4.1 RC19104 Pin Assignments





### 1.4.2 RC19104 Pin Descriptions

#### Table 3. RC19104 Pin Descriptions

| Pin Number | Pin Name     | Туре              | Description                                                                                                                                                                                                                         |
|------------|--------------|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1          | SADR_tri1    |                   | SMBus address bit. This is a tri-level input that works in conjunction with other SADR pins, if present, to decode SMBus Addresses. See the SMBus Address Decode table and the tri-level input thresholds in the electrical tables. |
| 2          | SADR_tri0    | I, SE, PD,<br>PU  | SMBus address bit. This is a tri-level input that works in conjunction with other SADR pins, if present, to decode SMBus Addresses. See the SMBus Address Decode table and the tri-level input thresholds in the electrical tables. |
| 3          | SDATA        | I/O, SE,<br>OD    | Data pin for SMBus interface.                                                                                                                                                                                                       |
| 4          | SCLK         | I, SE             | Clock pin of SMBus interface.                                                                                                                                                                                                       |
| 5          | VDDDIG       | PWR               | Digital power.                                                                                                                                                                                                                      |
| 6          | CLKIN        | I, DIF            | True clock input.                                                                                                                                                                                                                   |
| 7          | CLKINb       | I, DIF            | Complementary clock input.                                                                                                                                                                                                          |
| 8          | ZOUTSEL_tri  | I, SE, PD         | Input to select differential output impedance.<br>0 = 85 ohm, 1 = 100 ohm, M = 34 ohm                                                                                                                                               |
| 9          | PWRGD_PWRDNb | I, SE, PU,<br>PDT | Input notifies device to sample latched inputs and start up on first high assertion. Low enters Power Down Mode, subsequent high assertions exit Power Down Mode.                                                                   |
| 10         | VDDCLK       | PWR               | Clock power supply.                                                                                                                                                                                                                 |
| 11         | OEb7         | I, SE, PU,<br>PDT | Active low input for enabling output 7.<br>0 = Enable output, 1 = Disable output.                                                                                                                                                   |
| 12         | CLK7         | O, DIF            | True clock output.                                                                                                                                                                                                                  |
| 13         | CLKb7        | O, DIF            | Complementary clock output.                                                                                                                                                                                                         |
| 14         | OEb5         | I, SE, PD,<br>PDT | Active low input for enabling output 5.<br>0 = Enable output, 1 = Disable output.                                                                                                                                                   |



| Pin Number | Pin Name     | Туре              | Description                                                                                                                                                                                                          |
|------------|--------------|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 15         | VDDCLK       | PWR               | Clock power supply.                                                                                                                                                                                                  |
| 16         | CLK5         | O, DIF            | True clock output.                                                                                                                                                                                                   |
| 17         | CLKb5        | O, DIF            | Complementary clock output.                                                                                                                                                                                          |
| 18         | VDDCLK       | PWR               | Clock power supply.                                                                                                                                                                                                  |
| 19         | CLK3         | O, DIF            | True clock output.                                                                                                                                                                                                   |
| 20         | CLKb3        | O, DIF            | Complementary clock output.                                                                                                                                                                                          |
| 21         | OEb3         | I, SE,<br>PDT, PU | Active low input for enabling output 3.<br>OE mode with internal pull-down:<br>0 = Enable output, 1 = Disable output.                                                                                                |
| 22         | OEb1         | I, SE,<br>PDT, PU | Active low input for enabling output 1.<br>0 = Enable output, 1 = Disable output.                                                                                                                                    |
| 23         | CLK1         | O, DIF            | True clock output.                                                                                                                                                                                                   |
| 24         | CLKb1        | O, DIF            | Complementary clock output.                                                                                                                                                                                          |
| 25         | VDDCLK       | PWR               | Clock power supply.                                                                                                                                                                                                  |
| 26         | NC           | NC                | No connect.                                                                                                                                                                                                          |
| 27         | SLEWRATE_SEL | I, SE, PU,<br>PDT | Input to select default slew rate of the outputs.<br>0 = Slow Slew Rate, 1 = Fast Slew Rate.                                                                                                                         |
| 28         | LOSb         | O, OD,<br>PDT     | Output indicating Loss of Input Signal. This pin is an open drain output and requires an external pull up resistor for proper functionality. A low output on this pin indicates a loss of signal on the input clock. |
| 29         | EPAD         | GND               | Connect to ground.                                                                                                                                                                                                   |

### Table 3. RC19104 Pin Descriptions (Cont.)



# 1.5 RC19104A001 Pin Information

1.5.1 RC19104A001 Pin Assignments





### 1.5.2 RC19104A001 Pin Descriptions

Table 4. RC19104A100 Pin Descriptions

| Pin Number | Pin Name     | Туре              | Description                                                                                                                                                                                                                         |
|------------|--------------|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1          | SADR_tri1    | I, SE, PD,<br>PU  | SMBus address bit. This is a tri-level input that works in conjunction with other SADR pins, if present, to decode SMBus Addresses. See the SMBus Address Decode table and the tri-level input thresholds in the electrical tables. |
| 2          | SADR_tri0    | I, SE, PD,<br>PU  | SMBus address bit. This is a tri-level input that works in conjunction with other SADR pins, if present, to decode SMBus Addresses. See the SMBus Address Decode table and the tri-level input thresholds in the electrical tables. |
| 3          | SDATA        | I/O, SE,<br>OD    | Data pin for SMBus interface.                                                                                                                                                                                                       |
| 4          | SCLK         | I, SE             | Clock pin of SMBus interface.                                                                                                                                                                                                       |
| 5          | VDDDIG       | PWR               | Digital power.                                                                                                                                                                                                                      |
| 6          | CLKIN        | I, DIF            | True clock input.                                                                                                                                                                                                                   |
| 7          | CLKINb       | I, DIF            | Complementary clock input.                                                                                                                                                                                                          |
| 8          | ZOUTSEL_tri  | I, SE, PD         | Input to select differential output impedance.<br>0 = 85 ohm, 1 = 100 ohm, M = 34 ohm                                                                                                                                               |
| 9          | PWRGD_PWRDNb | I, SE, PU,<br>PDT | Input notifies device to sample latched inputs and start up on first high assertion. Low enters Power Down Mode, subsequent high assertions exit Power Down Mode.                                                                   |
| 10         | VDDCLK       | PWR               | Clock power supply.                                                                                                                                                                                                                 |
| 11         | OEb7         | I, SE, PU,<br>PDT | Active low input for enabling output 7.<br>0 = Enable output, 1 = Disable output.                                                                                                                                                   |
| 12         | CLK7         | O, DIF            | True clock output.                                                                                                                                                                                                                  |
| 13         | CLKb7        | O, DIF            | Complementary clock output.                                                                                                                                                                                                         |



| Pin Number | Pin Name      | Туре              | Description                                                                                                                                                                                                          |
|------------|---------------|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 14         | OEb5          | I, SE, PD,<br>PDT | Active low input for enabling output 5.<br>0 = Enable output, 1 = Disable output.                                                                                                                                    |
| 15         | VDDCLK        | PWR               | Clock power supply.                                                                                                                                                                                                  |
| 16         | CLK5          | O, DIF            | True clock output.                                                                                                                                                                                                   |
| 17         | CLKb5         | O, DIF            | Complementary clock output.                                                                                                                                                                                          |
| 18         | VDDCLK        | PWR               | Clock power supply.                                                                                                                                                                                                  |
| 19         | CLK3          | O, DIF            | True clock output.                                                                                                                                                                                                   |
| 20         | CLKb3         | O, DIF            | Complementary clock output.                                                                                                                                                                                          |
| 21         | OEb3          | I, SE,<br>PDT, PU | Active low input for enabling output 3.<br>OE mode with internal pull-down:<br>0 = Enable output, 1 = Disable output.                                                                                                |
| 22         | OEb1          | I, SE,<br>PDT, PU | Active low input for enabling output 1.<br>0 = Enable output, 1 = Disable output.                                                                                                                                    |
| 23         | CLK1          | O, DIF            | True clock output.                                                                                                                                                                                                   |
| 24         | CLKb1         | O, DIF            | Complementary clock output.                                                                                                                                                                                          |
| 25         | VDDCLK        | PWR               | Clock power supply.                                                                                                                                                                                                  |
| 26         | NC            | NC                | No connect.                                                                                                                                                                                                          |
| 27         | AMPLITUDE_SEL | I, SE, PD,<br>PD  | Input to select output amplitude. The values are programmable. See register map for details.<br>0 = Select Amplitude 0, 1 = Select Amplitude 1                                                                       |
| 28         | LOSb          | O, OD,<br>PDT     | Output indicating Loss of Input Signal. This pin is an open drain output and requires an external pull up resistor for proper functionality. A low output on this pin indicates a loss of signal on the input clock. |
| 29         | EPAD          | GND               | Connect to ground.                                                                                                                                                                                                   |

### Table 4. RC19104A100 Pin Descriptions (Cont.)



# 1.6 RC19102 Pin Information

### 1.6.1 RC19102 Pin Assignments





### 1.6.2 RC19102 Pin Descriptions

#### Table 5. RC19102 Pin Descriptions

| Pin Number | Pin Name    | Туре              | Description                                                                                                                                                                                                          |
|------------|-------------|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1          | CLKIN0      | I, DIF, PDT       | True clock input.                                                                                                                                                                                                    |
| 2          | CLKINb0     | I, DIF, PDT       | Complementary clock input.                                                                                                                                                                                           |
| 3          | VDDCLK      | PWR               | Clock power supply.                                                                                                                                                                                                  |
| 4          | NC          | NC                | No connect.                                                                                                                                                                                                          |
| 5          | NC          | NC                | No connect.                                                                                                                                                                                                          |
| 6          | NC          | NC                | No connect.                                                                                                                                                                                                          |
| 7          | NC          | NC                | No connect.                                                                                                                                                                                                          |
| 8          | VDDCLK      | PWR               | Clock power supply.                                                                                                                                                                                                  |
| 9          | CLK5        | O, DIF            | True clock output.                                                                                                                                                                                                   |
| 10         | CLKb5       | O, DIF            | Complementary clock output.                                                                                                                                                                                          |
| 11         | ZOUTSEL_tri | I, SE, PD         | Input to select differential output impedance.<br>0 = 85 ohm, 1 = 100 ohm, M = 34 ohm                                                                                                                                |
| 12         | OEb5        | I, SE, PU,<br>PDT | Active low input for enabling output 5.<br>1 = disable output, 0 = enable output.                                                                                                                                    |
| 13         | LOSb        | O, OD,<br>PDT     | Output indicating Loss of Input Signal. This pin is an open drain output and requires an external pull up resistor for proper functionality. A low output on this pin indicates a loss of signal on the input clock. |
| 14         | VDDCLK      | PWR               | Clock power supply.                                                                                                                                                                                                  |
| 15         | OEb3        | I, SE, PU,<br>PDT | Active low input for enabling output 3.<br>1 = disable output, 0 = enable output.                                                                                                                                    |
| 16         | CLK3        | O, DIF            | True clock output.                                                                                                                                                                                                   |
| 17         | CLKb3       | O, DIF            | Complementary clock output.                                                                                                                                                                                          |
| 18         | VDDCLK      | PWR               | Clock power supply.                                                                                                                                                                                                  |
| 19         | VDDDIG      | PWR               | Digital power.                                                                                                                                                                                                       |
| 20         | GNDSUB      | GND               | Ground pin for substrate.                                                                                                                                                                                            |
| 21         | EPAD        | GND               | Connect to ground.                                                                                                                                                                                                   |



# 2. Specifications

# 2.1 Absolute Maximum Ratings

#### Table 6. Absolute Maximum Ratings

| Symbol              | Parameter                                    | Condition                                                    | Minimum | Maximum                | Unit |
|---------------------|----------------------------------------------|--------------------------------------------------------------|---------|------------------------|------|
| V <sub>DDx</sub>    | Supply Voltage with respect to Ground        | Any VDD pin                                                  | -0.5    | 2.2                    | V    |
| V <sub>IN</sub>     | Input Voltage for non-PDT inputs             | Input pins not labeled as PDT <sup>[1]</sup>                 | -0.5    | V <sub>DDx</sub> + 0.3 | V    |
| V <sub>INPDT</sub>  | Input Voltage for PDT inputs                 | PDT input pins, see below for LOSb output pin <sup>[2]</sup> | -0.5    | 3.6                    | V    |
| V <sub>PUPSMB</sub> | Pull up resistor voltage for SMBus interface | SCLK, SDATA pins                                             |         |                        |      |
| V <sub>PUPLOS</sub> | Pull up resistor voltage for LOSb pin        | LOSb pin <sup>[3]</sup>                                      | -0.5    | 1.9                    | V    |
| I <sub>IN</sub>     | Input Current                                | All SE inputs and CLKIN <sup>[1]</sup>                       | -       | <u>+</u> 50            | mA   |
|                     | Output Current – Continuous                  | CLK                                                          | -       | 30                     | mA   |
|                     |                                              | SDATA                                                        | -       | 25                     | mA   |
| IOUT                | Output Current Current                       | CLK                                                          | -       | 60                     | mA   |
|                     | Output Current – Surge                       | SDATA                                                        | -       | 50                     | mA   |
| ТJ                  | Maximum Junction Temperature                 | -                                                            | -       | 150                    | °C   |
| Τ <sub>S</sub>      | Storage Temperature                          | Storage Temperature                                          | -65     | 150                    | °C   |
| ESD                 | Human Body Model                             | JESD22-A114 (JS-001)<br>Classification                       | -       | 2000                   | V    |
|                     | Charged Device Model                         | JESD22-C101 Classification                                   | -       | 500                    | V    |

1. Inputs not designated Power Down Tolerant (PDT) in the pin description tables.

2. Inputs designated Power Down Tolerant (PDT) in the pin description tables.

3. The  $V_{PUP}$  voltage may be applied before main VDD is applied. The LOSb pin is PDT to this voltage, not to 3.6V.

# 2.2 Recommended Operating Conditions

#### **Table 7. Recommended Operation Conditions**

| Symbol           | Parameter                                                                                           | Condition                                                                                            | Minimum | Typical | Maximum | Unit |
|------------------|-----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|---------|---------|---------|------|
| TJ               | Maximum Junction Temperature                                                                        | -                                                                                                    | -       | -       | 125     | °C   |
| T <sub>A</sub>   | Ambient Operating Temperature                                                                       | -                                                                                                    | -40     | 25      | 105     | °C   |
| V <sub>DDx</sub> | Supply Voltage with respect to<br>Ground                                                            | Any VDD pin, 1.8V ±5% supply.                                                                        | 1.71    | 1.8     | 1.89    | V    |
| t <sub>PU</sub>  | Power-up time for all VDDs to reach<br>minimum specified voltage (power<br>ramps must be monotonic) | Power-up time for all VDDs to<br>reach minimum specified voltage<br>(power ramps must be monotonic). | 0.05    | -       | 5       | ms   |



# 2.3 Thermal Specifications

| Package <sup>[1]</sup> | Symbol           | Condition                           | Typical Value (°C/W) |
|------------------------|------------------|-------------------------------------|----------------------|
|                        | θ <sub>Jc</sub>  | Junction to Case                    | 37.0                 |
| -                      | θ <sub>Jb</sub>  | Junction to Base                    | 4.8                  |
| 5 × 5 mm 40-VFQFPN     | θ <sub>JA0</sub> | Junction to Ambient, still air      | 33.1                 |
| (3.3 × 3.3 mm ePad)    | $\theta_{JA1}$   | Junction to Ambient, 1 m/s air flow | 29.6                 |
|                        | θ <sub>JA3</sub> | Junction to Ambient, 3 m/s air flow | 28.0                 |
| -                      | $\theta_{JA5}$   | Junction to Ambient, 5 m/s air flow | 27.1                 |
|                        | θ <sub>Jc</sub>  | Junction to Case                    | 45.3                 |
| -                      | θ <sub>Jb</sub>  | Junction to Board                   | 2.2                  |
| 4 × 4 mm 28-VFQFPN     | θ <sub>JA0</sub> | Junction to Ambient, still air      | 36.3                 |
| (2.6 × 2.6 mm ePad)    | θ <sub>JA1</sub> | Junction to Ambient, 1 m/s air flow | 32.7                 |
| -                      | θ <sub>JA3</sub> | Junction to Ambient, 3 m/s air flow | 31.0                 |
|                        | $\theta_{JA5}$   | Junction to Ambient, 5 m/s air flow | 30.0                 |
|                        | θ <sub>Jc</sub>  | Junction to Case                    | 96.3                 |
|                        | θ <sub>Jb</sub>  | Junction to Board                   | 20.4                 |
| 3 × 3 mm 20-VFQFPN     | θ <sub>JA0</sub> | Junction to Ambient, still air      | 54.8                 |
| (1.65 × 1.65 mm Epad)  | $\theta_{JA1}$   | Junction to Ambient, 1 m/s air flow | 51.1                 |
|                        | $\theta_{JA3}$   | Junction to Ambient, 3 m/s air flow | 47.7                 |
|                        | $\theta_{JA5}$   | Junction to Ambient, 5 m/s air flow | 46.2                 |

#### Table 8. Thermal Characteristics

1. ePad soldered to board.



# 2.4 Electrical Specifications

### 2.4.1 Additive Phase Jitter

#### Table 9. PCIe Refclk Phase Jitter - Normal Conditions [1][2][3]

| Symbol                    | Parameter                                                                        | Condition                                | Typical | Maximum | Specification<br>Limit | Unit      |
|---------------------------|----------------------------------------------------------------------------------|------------------------------------------|---------|---------|------------------------|-----------|
| t <sub>jphPCleG1-CC</sub> |                                                                                  | PCle Gen1 (2.5 GT/s)                     | 321     | 501     | 86,000                 | fs p-p    |
|                           |                                                                                  | PCIe Gen2 Hi Band (5.0 GT/s)             | 44      | 60      | 3,100                  |           |
| <sup>t</sup> jphPCleG2-CC |                                                                                  | PCle Gen2 Lo Band (5.0 GT/s)             | 16      | 22      | 3,000                  | fs<br>RMS |
| t <sub>jphPCleG3-CC</sub> | Additive PCIe Phase Jitter                                                       | PCle Gen3 (8.0 GT/s)                     | 15      | 20      | 1,000                  |           |
| t <sub>jphPCleG4-CC</sub> | (Common Clocked Architecture)<br>SSC 0 or -0.5%                                  | PCle Gen4 (16.0 GT/s) [4][5]             | 15      | 20      | 500                    |           |
| t <sub>jphPCleG5-CC</sub> |                                                                                  | PCle Gen5 (32.0 GT/s) [4] [6]            | 5.9     | 8.0     | 150                    |           |
| t <sub>jphPCleG6-CC</sub> | ł                                                                                | PCIe Gen6 (64.0 GT/s) [4] [7]            | 3.5     | 4.7     | 100                    |           |
| t <sub>jphPCleG7-CC</sub> |                                                                                  | PCle Gen7 (128 GT/s) [4][8]              | 2.4     | 3.3     | 100                    |           |
| t <sub>jphPCleG2-IR</sub> | Additive PCIe Phase Jitter                                                       | PCle Gen2 (5.0 GT/s)                     | 37      | 48      |                        |           |
| t <sub>jphPCleG3-IR</sub> | (IR Architectures - SRIS, SRNS)                                                  | PCle Gen3 (8.0 GT/s)                     | 15      | 19      | -                      |           |
| t <sub>jphPCleG4-IR</sub> | SSC 0 or -0.5%                                                                   | PCle Gen4 (16.0 GT/s) [3] [4]            | 15      | 20      |                        |           |
| t <sub>jphPCleG5-IR</sub> | Additive PCIe Phase Jitter                                                       | PCle Gen5 (32.0 GT/s) <sup>[3] [5]</sup> | 4.3     | 5.6     | [9]                    | fs        |
| t <sub>jphPCIeG6-IR</sub> | (IR Architectures - SRIS, SRNS)<br>SSC 0 or -0.3%                                | PCle Gen6 (64.0 GT/s) <sup>[3] [7]</sup> | 3.0     | 3.9     |                        | RMS       |
| t <sub>jphPCleG7-IR</sub> | Additive PCIe Phase Jitter<br>(IR Architectures - SRIS, SRNS)<br>SSC 0 or -0.15% | PCle Gen7 (128 GT/s) <sup>[3][7]</sup>   | 2.1     | 2.7     |                        |           |

The Refclk jitter is measured after applying the filter functions found in the PCI Express Base Specification 7.0, Revision 0.7. For the exact
measurement setup, see Test Loads. The worst case results for each data rate are summarized in this table. Equipment noise is removed from all
measurements.

- 2. Jitter measurements are made with a capture of at least 100,000 clock cycles captured by a real-time oscilloscope (RTO) with a sample rate of 20GS/s or greater. Broadband oscilloscope noise must be minimized in the measurement. The measured PP jitter is used (no extrapolation) for RTO measurements. Alternately, jitter measurements can be made with a Phase Noise Analyzer (PNA) extending (flat) and integrating and folding the frequency content up to an offset from the carrier frequency of at least 200MHz (at 300MHz absolute frequency) below the Nyquist frequency. For PNA measurements for the 2.5GT/s data rate, the RMS jitter is converted to peak-to-peak jitter using a multiplication factor of 8.83.
- 3. Differential input swing ≥ 1600mV and input slew rate ≥ 3.5V/ns. The rms sum of the source jitter and the additive jitter (arithmetic sum for PCIe Gen1) must be less than the jitter specification listed
- 4. SSC spurs from the fundamental and harmonics are removed up to a cutoff frequency of 2MHz taking care to minimize removal of any non-SSC content.
- 5. Note that 0.7ps RMS is to be used in channel simulations to account for additional noise in a real system.
- 6. Note that 0.25ps RMS is to be used in channel simulations to account for additional noise in a real system.
- 7. Note that 0.15ps RMS is to be used in channel simulations to account for additional noise in a real system.
- 8. Note that 0.10ps RMS is to be used in channel simulations to account for additional noise in a real system.
- 9. The PCI Express Base Specification 7.0, Revision 0.7 provides the filters necessary to calculate SRIS jitter values; it does not provide specification limits, therefore, the reference to this footnote in the Limit column. SRIS values are informative only. A common practice is to split the common clock budget in half. For 16GT/s data rates and above, the user must choose whether to use the output jitter specification, or the input jitter specification for the jitter added by the channel. Using 32GT/s, the Refclk jitter budget is 150fs RMS. One half of the Refclk jitter budget is 106fs RMS. At the clock input, the system must deliver 250fs RMS. One half of this value is 177fs RMS. If the clock is placed next to the PCIe device in an SRIS system, the channel is very short and the user can choose to use this more relaxed value as the jitter limit.



| Symbol                    | Parameter                                                                        | Condition                                | Typical | Maximum | Specification<br>Limit | Unit      |
|---------------------------|----------------------------------------------------------------------------------|------------------------------------------|---------|---------|------------------------|-----------|
| t <sub>jphPCleG1-CC</sub> |                                                                                  | PCle Gen1 (2.5 GT/s)                     | 321     | 536     | 86,000                 | fs p-p    |
|                           |                                                                                  | PCIe Gen2 Hi Band (5.0 GT/s)             | 44      | 67      | 3,100                  |           |
| <sup>t</sup> jphPCleG2-CC |                                                                                  | PCIe Gen2 Lo Band (5.0 GT/s)             | 16      | 22      | 3,000                  |           |
| t <sub>jphPCleG3-CC</sub> | Additive PCIe Phase Jitter                                                       | PCIe Gen3 (8.0 GT/s)                     | 15      | 23      | 1,000                  | fs<br>RMS |
| t <sub>jphPCleG4-CC</sub> | (Common Clocked Architecture)<br>SSC 0 or -0.5%                                  | PCIe Gen4 (16.0 GT/s) [4][5]             | 15      | 23      | 500                    |           |
| t <sub>jphPCleG5-CC</sub> |                                                                                  | PCIe Gen5 (32.0 GT/s) [4] [6]            | 5.9     | 8.9     | 150                    |           |
| t <sub>jphPCleG6-CC</sub> | F                                                                                | PCIe Gen6 (64.0 GT/s) [4] [7]            | 3.5     | 5.2     | 100                    |           |
| t <sub>jphPCleG7-CC</sub> |                                                                                  | PCle Gen7 (128 GT/s) [4][8]              | 2.4     | 3.7     | 100                    |           |
| t <sub>jphPCleG2-IR</sub> | Additive PCIe Phase Jitter                                                       | PCle Gen2 (5.0 GT/s)                     | 37      | 54      |                        |           |
| t <sub>jphPCleG3-IR</sub> | (IR Architectures - SRIS, SRNS)                                                  | PCle Gen3 (8.0 GT/s)                     | 15      | 22      |                        |           |
| t <sub>jphPCleG4-IR</sub> | SSC 0 or -0.5%                                                                   | PCle Gen4 (16.0 GT/s) [3] [4]            | 15      | 22      |                        |           |
| t <sub>jphPCleG5-IR</sub> | Additive PCIe Phase Jitter                                                       | PCle Gen5 (32.0 GT/s) <sup>[3] [5]</sup> | 4.3     | 6.3     | [9]                    | fs        |
| t <sub>jphPCIeG6-IR</sub> | (IR Architectures - SRIS, SRNS)<br>SSC 0 or -0.3%                                | PCle Gen6 (64.0 GT/s) <sup>[3] [7]</sup> | 3.0     | 4.5     |                        | RMS       |
| <sup>t</sup> jphPCleG7-IR | Additive PCIe Phase Jitter<br>(IR Architectures - SRIS, SRNS)<br>SSC 0 or -0.15% | PCle Gen7 (128 GT/s) <sup>[3][7]</sup>   | 2.1     | 3.1     |                        |           |

#### Table 10. PCIe Refclk Phase Jitter - Degraded Conditions [1][2][3]

The Refclk jitter is measured after applying the filter functions found in the PCI Express Base Specification 7.0, Revision 0.7. For the exact
measurement setup, see Test Loads. The worst case results for each data rate are summarized in this table. Equipment noise is removed from all
measurements.

2. Jitter measurements are made with a capture of at least 100,000 clock cycles captured by a real-time oscilloscope (RTO) with a sample rate of 20GS/s or greater. Broadband oscilloscope noise must be minimized in the measurement. The measured PP jitter is used (no extrapolation) for RTO measurements. Alternately, jitter measurements can be made with a Phase Noise Analyzer (PNA) extending (flat) and integrating and folding the frequency content up to an offset from the carrier frequency of at least 200MHz (at 300MHz absolute frequency) below the Nyquist frequency. For PNA measurements for the 2.5GT/s data rate, the RMS jitter is converted to peak-to-peak jitter using a multiplication factor of 8.83.

3. Differential input swing ≥ 800mV and input slew rate ≥ 1.5V/ns. The rms sum of the source jitter and the additive jitter (arithmetic sum for PCIe Gen1) must be less than the jitter specification listed.

4. SSC spurs from the fundamental and harmonics are removed up to a cutoff frequency of 2MHz taking care to minimize removal of any non-SSC content.

5. Note that 0.7ps RMS is to be used in channel simulations to account for additional noise in a real system.

6. Note that 0.25ps RMS is to be used in channel simulations to account for additional noise in a real system.

7. Note that 0.15ps RMS is to be used in channel simulations to account for additional noise in a real system.

8. Note that 0.10ps RMS is to be used in channel simulations to account for additional noise in a real system.

9. The PCI Express Base Specification 7.0, Revision 0.7 provides the filters necessary to calculate SRIS jitter values; it does not provide specification limits, therefore, the reference to this footnote in the Limit column. SRIS values are informative only. A common practice is to split the common clock budget in half. For 16GT/s data rates and above, the user must choose whether to use the output jitter specification, or the input jitter specification, which includes an allocation for the jitter added by the channel. Using 32GT/s, the Refclk jitter budget is 150fs RMS. One half of the Refclk jitter budget is 106fs RMS. At the clock input, the system must deliver 250fs RMS. One half of this value is 177fs RMS. If the clock is placed next to the PCIe device in an SRIS system, the channel is very short and the user can choose to use this more relaxed value as the jitter limit.



| Symbol                  | Parameter | Condition                         | Typical | Maximum | Specification<br>Limit | Unit   |
|-------------------------|-----------|-----------------------------------|---------|---------|------------------------|--------|
| t <sub>jphDB2000Q</sub> |           | 100MHz, Intel-supplied filter [3] | 9.4     | 12.0    | 80 [5]                 |        |
| t <sub>jph12k-20M</sub> |           | 156.25MHz (12kHz to 20MHz)        | 37      | 45      | N/A                    | fs RMS |
| t <sub>jphDB2000Q</sub> |           | 100MHz, Intel-supplied filter [3] | 9.4     | 13.4    | 80 <sup>[5]</sup>      |        |
| t <sub>jph12k-20M</sub> |           | 156.25MHz (12kHz to 20MHz)        | 37      | 47      | N/A                    |        |

#### Table 11. Non-PCIe Refclk Phase Jitter [1][2][3]

1. See Test Loads for test configuration.

2. SMA100B used as signal source.

3. The RC19xxx devices meet all legacy QPI/UPI specifications by meeting the PCIe and DB2000Q specifications listed in this document.

4. Differential input swing = 1,600mV and input slew rate = 3.5V/ns.

5. The rms sum of the source jitter and the additive jitter (arithmetic sum for PCIe Gen1) must be less than the jitter specification listed.

6. Differential input swing = 800mV and input slew rate = 1.5V/ns.

### 2.4.2 Output Frequencies, Startup Time, and LOS Timing

#### Table 12. Output Frequencies, Startup Time, and LOS Timing

| Symbol                   | Parameter           | Condition                                                                       | Minimum | Typical | Maximum | Unit |
|--------------------------|---------------------|---------------------------------------------------------------------------------|---------|---------|---------|------|
| f                        | Operating Frequency | Automatic Clock Parking (ACP) Circuit disabled                                  | 0.00001 | -       | 400     | MHz  |
| f <sub>OP</sub>          |                     | Automatic Clock Parking (ACP) Circuit enabled                                   | 25      | -       | 400     | MHZ  |
| t <sub>STARTUP</sub>     | Start-up Time       | [1]                                                                             | -       | 0.55    | 1.6     | ms   |
| t <sub>STARTUP</sub>     | Start-up Time       | [2]                                                                             | -       | 70      | 87      | ns   |
| t <sub>latoeb</sub>      | OEb latency         | OEb assertion/de-assertion CLK start/stop latency. Input clock must be running. | 4       | 5       | 6       | clks |
| t <sub>LOSAssert</sub>   | LOS Assert Time     | Time from disappearance of input clock to LOS assert. <sup>[3][4]</sup>         | -       | 240     | 300     | ns   |
| t <sub>LOSDeassert</sub> | LOS De-assert Time  | Time from appearance of input clock to LOS de-assert. <sup>[3][5]</sup>         | -       | 6       | 7       | clks |

 Measured from when all power supplies have reached > 90% of nominal voltage to the first stable clock edge on the output. PWRGD\_PWRDNb tied to VDD in this case.

2. VDD stable, measured from de-assertion of PWRGD\_PWRDNb.

3. The clock detect circuit does not qualify the accuracy of the input clock. The first input clock must appear to release the power on reset and enable the LOS circuit at power up.

4. PWRGD\_PWRDNb high. The Automatic Clock Parking (ACP) circuit - if enabled - will park the outputs in a low/low state within this time. See Byte4, bit 4, LOSb\_ACP\_ENABLE.

5. PWRGD\_PWRDNb high. The device will drive the outputs to a high/low state within this time and then begin clocking the outputs.



### 2.4.3 CLK AC/DC Output Characteristics

Table 13. 85Ω CLK AC/DC Characteristics – Source-Terminated 100MHz PCIe Applications <sup>[1]</sup>

| Symbol              | Parameter                                                                         | Condition                                                           | Minimum | Typical | Maximum | Specification<br>Limit <sup>[2]</sup> | Unit    |
|---------------------|-----------------------------------------------------------------------------------|---------------------------------------------------------------------|---------|---------|---------|---------------------------------------|---------|
| V <sub>MAX</sub>    | Absolute Max Voltage<br>Includes 300mV of<br>Overshoot (Vovs) <sup>[3][4]</sup>   | Across all settings in this table at                                | -       | -       | 1066    | 1150                                  | mV      |
| V <sub>MIN</sub>    | Absolute Min Voltage<br>Includes -300mV of<br>Undershoot (Vuds) <sup>[3][5]</sup> | 100MHz.                                                             | -216    | -       | -       | -300                                  |         |
| V <sub>HIGH</sub>   | Voltage High <sup>[3]</sup>                                                       | V sot to 800mV                                                      | 703     | 832     | 960     | -                                     |         |
| V <sub>LOW</sub>    | Voltage Low <sup>[3]</sup>                                                        | V <sub>HIGH</sub> set to 800mV.                                     | -200    | -87     | 26      | -                                     |         |
| V <sub>CROSS</sub>  | Crossing Voltage (abs) <sup>[3] [6][7]</sup>                                      | V <sub>HIGH</sub> set to 800mV, scope                               | 349     | 417     | 486     | 250 to 550                            | mV      |
| ΔV <sub>CROSS</sub> | Crossing Voltage (var) <sup>[3] [6][8]</sup>                                      | averaging off.                                                      | 21      | 26      | 30      | 140                                   |         |
| dv/dt               | Slew Rate <sup>[9][10]</sup>                                                      | V <sub>HIGH</sub> set to 800mV, Fast slew rate, scope averaging on. | 1.9     | 2.9     | 3.9     | 1.8 to 4                              | V/ns    |
|                     |                                                                                   | V <sub>HIGH</sub> set to 800mV, Slow slew rate, scope averaging on. | 1.6     | 2.5     | 3.4     | 1.5 to 3.5                            | - 0/115 |
| ΔT <sub>R/F</sub>   | Rise/Fall Matching <sup>[3][11]</sup>                                             | V <sub>HIGH</sub> set to 800mV. Fast slew rate.                     | -       | 2       | 13      | 20                                    | %       |
|                     |                                                                                   | V <sub>HIGH</sub> set to 800mV. Slow slew rate.                     | -       | 3       | 11      | 20                                    | %       |
| V <sub>HIGH</sub>   | Voltage High <sup>[3]</sup>                                                       |                                                                     | 774     | 913     | 1052    | -                                     |         |
| V <sub>LOW</sub>    | Voltage Low <sup>[3]</sup>                                                        | V <sub>HIGH</sub> set to 900mV.                                     | -215    | -94     | 28      | -                                     |         |
| V <sub>CROSS</sub>  | Crossing Voltage (abs) <sup>[3]</sup><br><sup>[6][7]</sup>                        | V <sub>HIGH</sub> set to 900mV, scope                               | 371     | 449     | 526     | 300 to 600                            | mV      |
| ΔV <sub>CROSS</sub> | Crossing Voltage (var) <sup>[3]</sup><br><sup>[6][8]</sup>                        | averaging off.                                                      | 20      | 26      | 31      | 140                                   |         |
| dv/dt               | Slew Rate <sup>[9][10]</sup>                                                      | V <sub>HIGH</sub> set to 900mV, Fast slew rate, scope averaging on. | 2.0     | 3.1     | 4.1     | 1.9 to 4.2                            | V/ns    |
| uv/ui               | Siew Rate Louron                                                                  | V <sub>HIGH</sub> set to 900mV, Slow slew rate, scope averaging on. | 1.6     | 2.6     | 3.6     | 1.5 to 3.7                            | v/IIS   |
| ۸T                  | Diss/Fall Matching [3][11]                                                        | V <sub>HIGH</sub> set to 900mV. Fast slew rate.                     | -       | 2       | 12      | 20                                    | %       |
| ΔT <sub>R/F</sub>   | Rise/Fall Matching <sup>[3][11]</sup>                                             | V <sub>HIGH</sub> set to 900mV. Slow slew rate.                     | -       | 4       | 15      | 20                                    | %       |
| t <sub>DC</sub>     | Output Duty Cycle [9]                                                             | $V_{T} = 0V$ differential.                                          | 49      | 50.1    | 51      | 45 to 55                              | %       |

1. Standard high impedance load with  $C_L$ = 2pF. For more information, see Figure 9, ZOUTSEL\_tri = 0.

2. The specification limits are taken from either the PCIe Base Specification Revision 6.0 or from relevant x86 processor specifications, whichever is more stringent.

3. Measured from single-ended waveform.

- 4. Defined as the maximum instantaneous voltage including overshoot.
- 5. Defined as the minimum instantaneous voltage including undershoot.

6. Measured at crossing point where the instantaneous voltage value of the rising edge of REFCLK+ equals the falling edge of REFCLK-.

7. Refers to the total variation from the lowest crossing point to the highest, regardless of which edge is crossing. Refers to all crossing points for this measurement.

8. Defined as the total variation of all crossing voltages of Rising REFCLK+ and Falling REFCLK-. This is the maximum allowed variance in VCROSS for any particular system.

9. Measured from differential waveform.

10. Measured from -150mV to +150mV on the differential waveform (derived from REFCLK+ minus REFCLK-). The signal must be monotonic through the measurement region for rise and fall time. The 300mV measurement window is centered on the differential zero crossing.

11. Matching applies to rising edge rate for REFCLK+ and falling edge rate for REFCLK-. It is measured using a ±75mV window centered on the median cross point where REFCLK+ rising meets REFCLK- falling. The median cross point is used to calculate the voltage thresholds the oscilloscope is to use for the edge rate calculations. The Rise Edge Rate of REFCLK+ should be compared to the Fall Edge Rate of REFCLK-; the maximum allowed difference should not exceed 20% of the slowest edge rate.



| Symbol              | Parameter                                                                         | Condition                                                           | Minimum | Typical | Maximum | Specification<br>Limit <sup>[2]</sup> | Unit |  |
|---------------------|-----------------------------------------------------------------------------------|---------------------------------------------------------------------|---------|---------|---------|---------------------------------------|------|--|
| V <sub>MAX</sub>    | Absolute Max Voltage<br>Includes 300mV of<br>Overshoot (Vovs) <sup>[3][4]</sup>   | Across all settings in this table                                   | -       | -       | 1075    | 1150                                  | mV   |  |
| V <sub>MIN</sub>    | Absolute Min Voltage<br>Includes -300mV of<br>Undershoot (Vuds) <sup>[3][5]</sup> | at 100MHz.                                                          | -170    | -       | -       | -300                                  | · mv |  |
| V <sub>HIGH</sub>   | Voltage High <sup>[3]</sup>                                                       |                                                                     | 811     | 868     | 926     | -                                     |      |  |
| V <sub>LOW</sub>    | Voltage Low <sup>[3]</sup>                                                        | ─ V <sub>HIGH</sub> set to 800mV.                                   | -140    | -102    | -64     | -                                     |      |  |
| V <sub>CROSS</sub>  | Crossing Voltage (abs) <sup>[3]</sup><br><sup>[6][7]</sup>                        | V <sub>HIGH</sub> set to 800mV, scope                               | 346     | 445     | 543     | 250 to 550                            | mV   |  |
| ΔV <sub>CROSS</sub> | Crossing Voltage (var) <sup>[3]</sup><br><sup>[6][8]</sup>                        | averaging off.                                                      | 21      | 25      | 30      | 140                                   |      |  |
| -l. / -l4           | Slew Rate <sup>[9][10]</sup>                                                      | V <sub>HIGH</sub> set to 800mV, Fast slew rate, scope averaging on. | 2.4     | 3.3     | 4.2     | 2.3 to 4.3                            | V/ns |  |
| dv/dt S             |                                                                                   | V <sub>HIGH</sub> set to 800mV, Slow slew rate, scope averaging on. | 1.8     | 2.6     | 3.4     | 1.7 to 3.5                            | v/ns |  |
| A.T.                | Rise/Fall Matching <sup>[3][11]</sup>                                             | V <sub>HIGH</sub> set to 800mV. Fast slew rate.                     | -       | 8       | 18.6    | - 20                                  | %    |  |
| ∆T <sub>R/F</sub>   | Rise/Fail Matching (51.11)                                                        | V <sub>HIGH</sub> set to 800mV. Slow slew rate.                     | -       | 14      | 19.7    |                                       | 70   |  |
| V <sub>HIGH</sub>   | Voltage High <sup>[3]</sup>                                                       |                                                                     | 896     | 963     | 1030    | -                                     |      |  |
| V <sub>LOW</sub>    | Voltage Low <sup>[3]</sup>                                                        | ─ V <sub>HIGH</sub> set to 900mV.                                   | -183    | -       | -       | -                                     |      |  |
| V <sub>CROSS</sub>  | Crossing Voltage (abs) <sup>[3]</sup><br><sup>[6][7]</sup>                        | V <sub>HIGH</sub> set to 900mV, scope                               | 388     | 486     | 584     | 300 to 600                            | mV   |  |
| $\Delta V_{CROSS}$  | Crossing Voltage (var) <sup>[3]</sup><br><sup>[6][8]</sup>                        | averaging off.                                                      | 21      | 25      | 30      | 140                                   |      |  |
| -l. / -l4           | Slew Rate <sup>[9][10]</sup>                                                      | V <sub>HIGH</sub> set to 900mV, Fast slew rate, scope averaging on. | 2.5     | 3.5     | 4.5     | 2.4 to 4.6                            |      |  |
| dv/dt               |                                                                                   | V <sub>HIGH</sub> set to 900mV, Slow slew rate, scope averaging on. | 1.9     | 2.7     | 3.6     | 1.8 to 3.7                            | V/ns |  |
| ۸T                  | Pipo/Eall Matching [3][11]                                                        |                                                                     | 17.8    | 20      |         |                                       |      |  |
| ΔT <sub>R/F</sub> F |                                                                                   | V <sub>HIGH</sub> set to 900mV. Slow slew rate.                     | -       | 12      | 19.5    | 20                                    | %    |  |
| t <sub>DC</sub>     | Output Duty Cycle [9]                                                             | V <sub>T</sub> = 0V differential.                                   | 49      | 50.0    | 51      | 45 to 55                              | %    |  |

#### Table 14. 100Ω CLK AC/DC Characteristics – Source-Terminated 100MHz PCIe Applications <sup>[1]</sup>

1. Standard high impedance load with  $C_L$  = 2pF. For more information, see Figure 9, ZOUTSEL\_tri = 1.

2. The specification limits are taken from either the PCIe Base Specification Revision 6.0 or from relevant x86 processor specifications, whichever is more stringent.

- 3. Measured from single-ended waveform.
- 4. Defined as the maximum instantaneous voltage including overshoot.
- 5. Defined as the minimum instantaneous voltage including undershoot.
- 6. Measured at crossing point where the instantaneous voltage value of the rising edge of REFCLK+ equals the falling edge of REFCLK-.

7. Refers to the total variation from the lowest crossing point to the highest, regardless of which edge is crossing. Refers to all crossing points for this measurement.

- 8. Defined as the total variation of all crossing voltages of Rising REFCLK+ and Falling REFCLK-. This is the maximum allowed variance in VCROSS for any particular system.
- 9. Measured from differential waveform.

10. Measured from -150mV to +150mV on the differential waveform (derived from REFCLK+ minus REFCLK-). The signal must be monotonic through the measurement region for rise and fall time. The 300mV measurement window is centered on the differential zero crossing.

11. Matching applies to rising edge rate for REFCLK+ and falling edge rate for REFCLK-. It is measured using a ±75mV window centered on the median cross point where REFCLK+ rising meets REFCLK- falling. The median cross point is used to calculate the voltage thresholds the oscilloscope is to use for the edge rate calculations. The Rise Edge Rate of REFCLK+ should be compared to the Fall Edge Rate of REFCLK-; the maximum allowed difference should not exceed 20% of the slowest edge rate.



| Symbol             | Parameter                                            | Condition                                                                                                                             | Minimum | Typical | Maximum | Unit |
|--------------------|------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|---------|---------|---------|------|
| V <sub>OH</sub>    | Output High Voltage <sup>[2]</sup>                   |                                                                                                                                       | 645     | 808     | 989     |      |
| V <sub>OL</sub>    | Output Low Voltage <sup>[2]</sup>                    | V <sub>HIGH</sub> = 800mV, Fast Slew Rate,<br>156.25MHz, 312.5MHz.<br>(Slow slew rate is not recommended for<br>frequencies > 100MHz) | -220    | -39     | 39      |      |
| V <sub>CROSS</sub> | Crossing Voltage (abs) <sup>[3]</sup>                |                                                                                                                                       | 275     | 376     | 471     | mV   |
| $\Delta V_{CROSS}$ | Crossing Voltage (var) <sup>[3][4][5]</sup>          |                                                                                                                                       | 21      | 26      | 32      |      |
| t <sub>R</sub>     | Rise Time <sup>[2]</sup><br>VT = 20% to 80% of swing |                                                                                                                                       | 290     | 425     | 601     |      |
| t <sub>F</sub>     | Fall Time <sup>[2]</sup><br>VT = 20% to 80% of swing |                                                                                                                                       | 271     | 418     | 623     | ps   |
| V <sub>OH</sub>    | Output High Voltage <sup>[2]</sup>                   |                                                                                                                                       | 739     | 867     | 1094    |      |
| V <sub>OL</sub>    | Output Low Voltage <sup>[2]</sup>                    |                                                                                                                                       | -236    | -41     | 43      |      |
| V <sub>CROSS</sub> | Crossing Voltage (abs) <sup>[3]</sup>                | V <sub>HIGH</sub> = 900mV, Fast Slew Rate,                                                                                            | 285     | 391     | 475     | mV   |
| $\Delta V_{CROSS}$ | Crossing Voltage (var) <sup>[3][4][5]</sup>          | 156.25MHz, 312.5MHz.                                                                                                                  | 21      | 26      | 31      |      |
| t <sub>R</sub>     | Rise Time <sup>[2]</sup><br>VT = 20% to 80% of swing | (Slow slew rate is not recommended for<br>frequencies > 100MHz)                                                                       | 308     | 518     | 729     | 50   |
| t <sub>F</sub>     | Fall Time <sup>[2]</sup><br>VT = 20% to 80% of swing |                                                                                                                                       | 311     | 468     | 625     | ps   |
| t <sub>DC</sub>    | Output Duty Cycle [6]                                | Across all settings in this table, $V_T = 0V$ .                                                                                       | 48      | 50      | 52      | %    |

#### Table 15. 85 ohm CLK AC/DC Characteristics – Source-Terminated, Non-PCIe Applications <sup>[1]</sup>

1. Standard high impedance load with CL= 2pF. For more information, see Figure 9, ZOUTSEL\_tri = 0.

2. Measured from single-ended waveform.

3. Measured at crossing point where the instantaneous voltage value of the rising edge of CLK equals the falling edge of CLKb.

4. Refers to the total variation from the lowest crossing point to the highest, regardless of which edge is crossing. Refers to all crossing points for this measurement.

5. Defined as the total variation of all crossing voltages of Rising CLK and Falling CLKb. This is the maximum allowed variance in VCROSS for any particular system.

6. Measured from differential waveform.

#### Table 16. 85 ohm CLK AC/DC Characteristics – Double-Terminated, Non-PCIe Applications <sup>[1]</sup>

| Symbol             | Parameter                                            | Condition                                                                                                                                                                                        | Minimum | Typical | Maximum | Unit |
|--------------------|------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------|---------|------|
| V <sub>OH</sub>    | Output High Voltage <sup>[2]</sup>                   |                                                                                                                                                                                                  | 382     | 410     | 436     |      |
| V <sub>OL</sub>    | Output Low Voltage [2]                               | V <sub>HIGH</sub> = 800mV, Fast Slew Rate,<br>156.25MHz, 312.5MHz - amplitude is<br>reduced by ~50% due to double<br>termination. (Slow slew rate is not<br>recommended for frequencies >100MHz) | -8      | 13      | 33      |      |
| V <sub>CROSS</sub> | Crossing Voltage (abs) [3]                           |                                                                                                                                                                                                  | 186     | 207     | 226     | mV   |
| $\Delta V_{CROSS}$ | Crossing Voltage (var) [3][4][5]                     |                                                                                                                                                                                                  | -9      | 8       | 25      |      |
| t <sub>R</sub>     | Rise Time <sup>[2]</sup><br>VT = 20% to 80% of swing |                                                                                                                                                                                                  | 256     | 369     | 491     |      |
| t <sub>F</sub>     | Fall Time <sup>[2]</sup><br>VT = 20% to 80% of swing |                                                                                                                                                                                                  | 225     | 308     | 417     | ps   |
| V <sub>OH</sub>    | Output High Voltage <sup>[2]</sup>                   |                                                                                                                                                                                                  | 415     | 449     | 480     |      |
| V <sub>OL</sub>    | Output Low Voltage <sup>[2]</sup>                    |                                                                                                                                                                                                  | -6      | 14      | 35      | mV   |
| V <sub>CROSS</sub> | Crossing Voltage (abs) <sup>[3]</sup>                | V <sub>HIGH</sub> = 900mV, Fast Slew Rate,                                                                                                                                                       | 192     | 216     | 239     | mv   |
| $\Delta V_{CROSS}$ | Crossing Voltage (var) [3][4][5]                     | 156.25MHz, 312.5MHz - amplitude is<br>reduced by ~50% due to double                                                                                                                              | -9      | 8       | 27      |      |
| t <sub>R</sub>     | Rise Time <sup>[2]</sup><br>VT = 20% to 80% of swing | termination. (Slow slew rate is not<br>recommended for frequencies >100MHz)                                                                                                                      | 289     | 419     | 558     |      |
| t <sub>F</sub>     | Fall Time <sup>[2]</sup><br>VT = 20% to 80% of swing |                                                                                                                                                                                                  | 227     | 303     | 406     | ps   |
| t <sub>DC</sub>    | Output Duty Cycle [6]                                | Across all settings in this table, $V_T = 0V$ .                                                                                                                                                  | 49      | 50      | 51      | %    |

1. Both Tx and Rx are terminated (double-terminated) with C<sub>L</sub>= 2pF. This reduces amplitude by 50%. For more information, see Figure 10, ZOUTSEL\_tri = 0.



- 2. Measured from single-ended waveform.
- 3. Measured at crossing point where the instantaneous voltage value of the rising edge of CLK equals the falling edge of CLKb.
- 4. Refers to the total variation from the lowest crossing point to the highest, regardless of which edge is crossing. Refers to all crossing points for this measurement.
- 5. Defined as the total variation of all crossing voltages of Rising CLK and Falling CLKb. This is the maximum allowed variance in VCROSS for any particular system.
- 6. Measured from differential waveform.

#### Table 17. 100 ohm CLK AC/DC Characteristics – Source-Terminated, Non-PCIe Applications <sup>[1]</sup>

| Symbol             | Parameter                                            | Condition                                                                                                                             | Minimum | Typical | Maximum | Unit |
|--------------------|------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|---------|---------|---------|------|
| V <sub>OH</sub>    | Output High Voltage <sup>[2]</sup>                   |                                                                                                                                       | 636     | 833     | 958     |      |
| V <sub>OL</sub>    | Output Low Voltage [2]                               |                                                                                                                                       | -165    | -49     | 49      |      |
| V <sub>CROSS</sub> | Crossing Voltage (abs) [3]                           | V <sub>HIGH</sub> = 800mV, Fast Slew Rate,<br>156.25MHz, 312.5MHz.<br>(Slow slew rate is not recommended for<br>frequencies > 100MHz) | 285     | 420     | 571     | mV   |
| $\Delta V_{CROSS}$ | Crossing Voltage (var) [3][4][5]                     |                                                                                                                                       | 21      | 26      | 32      |      |
| t <sub>R</sub>     | Rise Time <sup>[2]</sup><br>VT = 20% to 80% of swing |                                                                                                                                       | 285     | 390     | 494     |      |
| t <sub>F</sub>     | Fall Time <sup>[2]</sup><br>VT = 20% to 80% of swing |                                                                                                                                       | 279     | 419     | 593     | ps   |
| V <sub>OH</sub>    | Output High Voltage [2]                              |                                                                                                                                       | 732     | 902     | 1070    |      |
| V <sub>OL</sub>    | Output Low Voltage [2]                               |                                                                                                                                       | -183    | -52     | 52      | mV   |
| V <sub>CROSS</sub> | Crossing Voltage (abs) <sup>[3]</sup>                | │<br>│ V <sub>HIGH</sub> = 900mV, Fast Slew Rate,                                                                                     | 325     | 449     | 598     | mv   |
| $\Delta V_{CROSS}$ | Crossing Voltage (var) [3][4][5]                     | 156.25MHz, 312.5MHz.                                                                                                                  | 21      | 26      | 33      |      |
| t <sub>R</sub>     | Rise Time <sup>[2]</sup><br>VT = 20% to 80% of swing | (Slow slew rate is not recommended for frequencies > 100MHz)                                                                          | 383     | 487     | 592     | 50   |
| t <sub>F</sub>     | Fall Time <sup>[2]</sup><br>VT = 20% to 80% of swing |                                                                                                                                       | 334     | 457     | 579     | ps   |
| t <sub>DC</sub>    | Output Duty Cycle [6]                                | Across all settings in this table, $V_T = 0V$ .                                                                                       | 48      | 50      | 52      | %    |

1. Standard high impedance load with CL= 2pF. For more information, see Figure 9, ZOUTSEL\_tri = 1.

2. Measured from single-ended waveform.

3. Measured at crossing point where the instantaneous voltage value of the rising edge of CLK equals the falling edge of CLKb.

4. Refers to the total variation from the lowest crossing point to the highest, regardless of which edge is crossing. Refers to all crossing points for this measurement.

5. Defined as the total variation of all crossing voltages of Rising CLK and Falling CLKb. This is the maximum allowed variance in VCROSS for any particular system.

6. Measured from differential waveform.

| Symbol             | Parameter                                            | Condition                                                                    | Minimum | Typical | Maximum | Unit |
|--------------------|------------------------------------------------------|------------------------------------------------------------------------------|---------|---------|---------|------|
| V <sub>OH</sub>    | Output High Voltage <sup>[2]</sup>                   |                                                                              | 399     | 428     | 456     |      |
| V <sub>OL</sub>    | Output Low Voltage [2]                               | -                                                                            | -7      | 13      | 34      |      |
| V <sub>CROSS</sub> | Crossing Voltage (abs) [3]                           | V <sub>HIGH</sub> = 800mV, Fast Slew Rate,                                   | 200     | 228     | 256     | mV   |
| $\Delta V_{CROSS}$ | Crossing Voltage (var) [3][4][5]                     | 156.25MHz, 312.5MHz - amplitude is<br>reduced by ~50% due to double          | -12     | 8       | 30      |      |
| t <sub>R</sub>     | Rise Time <sup>[2]</sup><br>VT = 20% to 80% of swing | termination. (Slow slew rate is not<br>recommended for frequencies > 100MHz) | 196     | 273     | 358     | 50   |
| t <sub>F</sub>     | Fall Time <sup>[2]</sup><br>VT = 20% to 80% of swing |                                                                              | 214     | 294     | 388     | ps   |

| Table 18  | 100 ohm CLK AC/DC  | Charactoristics .   | - Doublo-Torminated  | Non-PCle Applications <sup>[1]</sup> |
|-----------|--------------------|---------------------|----------------------|--------------------------------------|
| Table To. | 100 OHHI CLK AC/DC | - Unaracteristics - | – Double-Terminaleu, |                                      |



| Symbol             | Parameter                                            | Condition                                                                                | Minimum | Typical | Maximum | Unit |
|--------------------|------------------------------------------------------|------------------------------------------------------------------------------------------|---------|---------|---------|------|
| V <sub>OH</sub>    | Output High Voltage [2]                              |                                                                                          | 438     | 475     | 510     |      |
| V <sub>OL</sub>    | Output Low Voltage [2]                               | _                                                                                        | -7      | 14      | 36      |      |
| V <sub>CROSS</sub> | Crossing Voltage (abs) <sup>[3]</sup>                | V <sub>HIGH</sub> = 900mV, Fast Slew Rate,                                               | 218     | 247     | 276     | mV   |
| $\Delta V_{CROSS}$ | Crossing Voltage (var) [3][4][5]                     | <ul> <li>156.25MHz, 312.5MHz - amplitude is<br/>reduced by ~50% due to double</li> </ul> | -13     | 8       | 31      |      |
| t <sub>R</sub>     | Rise Time <sup>[2]</sup><br>VT = 20% to 80% of swing | termination. (Slow slew rate is not<br>recommended for frequencies >100MHz)              | 203     | 301     | 408     | ne   |
| t <sub>F</sub>     | Fall Time <sup>[2]</sup><br>VT = 20% to 80% of swing |                                                                                          | 207     | 279     | 369     | ps   |
| t <sub>DC</sub>    | Output Duty Cycle [6]                                | Across all settings in this table, $V_T = 0V$ .                                          | 49      | 50      | 51      | %    |

|  | Table 18. | 100 ohm CLK AC/DC | Characteristics - D | ouble-Terminated, | <b>Non-PCle Applications</b> | s <sup>[1]</sup> (Cont.) |
|--|-----------|-------------------|---------------------|-------------------|------------------------------|--------------------------|
|--|-----------|-------------------|---------------------|-------------------|------------------------------|--------------------------|

 Both Tx and Rx are terminated (double-terminated) with C<sub>L</sub>= 2pF. This reduces amplitude by 50%. For more information, see Figure 10, ZOUTSEL\_tri = 1.

2. Measured from single-ended waveform.

3. Measured at crossing point where the instantaneous voltage value of the rising edge of CLK equals the falling edge of CLKb.

4. Refers to the total variation from the lowest crossing point to the highest, regardless of which edge is crossing. Refers to all crossing points for this measurement.

5. Defined as the total variation of all crossing voltages of Rising CLK and Falling CLKb. This is the maximum allowed variance in VCROSS for any particular system.

6. Measured from differential waveform.

#### Table 19. 34ohm CLK AC/DC Characteristics - Rx-Terminated, Non-PCIe Applications <sup>[1]</sup>

| Symbol             | Parameter                                            | Condition                                                                    | Minimum | Typical | Maximum | Unit |
|--------------------|------------------------------------------------------|------------------------------------------------------------------------------|---------|---------|---------|------|
| V <sub>OH</sub>    | Output High Voltage <sup>[2]</sup>                   |                                                                              | 554     | 602     | 650     |      |
| V <sub>OL</sub>    | Output Low Voltage <sup>[2]</sup>                    |                                                                              | -3      | 19      | 40      |      |
| V <sub>CROSS</sub> | Crossing Voltage (abs) <sup>[3]</sup>                | V <sub>HIGH</sub> = 800mV, Fast Slew Rate,                                   | 281     | 317     | 352     | mV   |
| $\Delta V_{CROSS}$ | Crossing Voltage (var) [3][4][5]                     | T56.25MHz, 312.5MHz - amplitude is<br>reduced by ~50% due to double          | -21     | 11      | 42      |      |
| t <sub>R</sub>     | Rise Time <sup>[2]</sup><br>VT = 20% to 80% of swing | termination. (Slow slew rate is not<br>recommended for frequencies > 100MHz) | 130     | 267     | 404     |      |
| t <sub>F</sub>     | Fall Time <sup>[2]</sup><br>VT = 20% to 80% of swing |                                                                              | 133     | 317     | 500     | ps   |
| V <sub>OH</sub>    | Output High Voltage <sup>[2]</sup>                   |                                                                              | 564     | 630     | 695     |      |
| V <sub>OL</sub>    | Output Low Voltage <sup>[2]</sup>                    |                                                                              | -3      | 19      | 40      |      |
| V <sub>CROSS</sub> | Crossing Voltage (abs) <sup>[3]</sup>                | V <sub>HIGH</sub> = 900mV, Fast Slew Rate,                                   | 290     | 331     | 372     | mV   |
| $\Delta V_{CROSS}$ | Crossing Voltage (var) <sup>[3][4][5]</sup>          | 156.25MHz, 312.5MHz - amplitude is<br>reduced by ~50% due to double          | -22     | 11      | 45      |      |
| t <sub>R</sub>     | Rise Time <sup>[2]</sup><br>VT = 20% to 80% of swing | termination. (Slow slew rate is not<br>recommended for frequencies >100MHz)  | 122     | 263     | 404     | 20   |
| t <sub>F</sub>     | Fall Time <sup>[2]</sup><br>VT = 20% to 80% of swing |                                                                              | 124     | 312     | 501     | ps   |
| t <sub>DC</sub>    | Output Duty Cycle [6]                                | Across all settings in this table, $V_T = 0V$ .                              | 48      | 49.5    | 51      | %    |

 ZOUTSEL\_tri = M. This setting turns off the source termination, provided approximately 75% of the source-terminated amplitude at the receiver with C<sub>L</sub>= 2pF. For more information, see Figure 10,

2. Measured from single-ended waveform.

3. Measured at crossing point where the instantaneous voltage value of the rising edge of CLK equals the falling edge of CLKb.

4. Refers to the total variation from the lowest crossing point to the highest, regardless of which edge is crossing. Refers to all crossing points for this measurement.

5. Defined as the total variation of all crossing voltages of Rising CLK and Falling CLKb. This is the maximum allowed variance in VCROSS for any particular system.

6. Measured from differential waveform.



### 2.4.4 CLKIN AC/DC Characteristics

#### Table 20. CLKIN AC/DC Characteristics for DC-Coupled Operation<sup>[1]</sup>

| Symbol             | Parameter                         | Condition                                              | Minimum | Typical | Maximum | Unit |
|--------------------|-----------------------------------|--------------------------------------------------------|---------|---------|---------|------|
| VIHMAX             | Maximum Input Voltage             | Single-ended value.                                    | -       | -       | 1.2     | V    |
| V <sub>CROSS</sub> | Input Crossover Voltage           | LOW-LOW_DETECT enabled (default value). <sup>[2]</sup> | 131     | -       | -       | mV   |
|                    |                                   | LOW-LOW_DETECT disabled.                               | 100     | -       | -       | mV   |
| V <sub>SWING</sub> | Input Swing <sup>[3]</sup>        | LOW-LOW_DETECT enabled (default value). <sup>[2]</sup> | 528     | -       | -       | mV   |
|                    |                                   | LOW-LOW_DETECT disabled.                               | 200     | -       | -       | mV   |
| dv/dt              | Input Slew Rate <sup>[3][4]</sup> |                                                        | 0.6     | -       | -       | V/ns |

See the Additive Phase Jitter tables for values required for performance. The CLKIN is designed for a ground-referenced differential input where
the cross over voltage is approximately half of the swing. For example, a differential clock with a VOH of 1.2V would ideally have a crossover
voltage of approximately 600mV. For applications where the input clock is not ground-referenced (LVPECL for example), the input clock needs to
be AC-coupled and re-biased. Each RC191xx CLKIN has an internal bias circuit that may be enabled as well as internal terminations that may also
be enabled. This reduces external components for such scenarios to a single external AC-coupling capacitor. See the RECEIVER\_CONTROL
register for details.

- 2. Low/Low is an invalid differential state. LOW-LOW\_DETECT allows the receiver turn itself off when such a condition is detected
- 3. Differential value.
- 4. Measured from -150mV to +150mV on the differential waveform (derived from REFCLK+ minus REFCLK-). The signal must be monotonic through the measurement region for rise and fall time. The 300mV measurement window is centered on the differential zero-crossing.



#### Figure 7. Clock Input Bias Network

### 2.4.5 Output-to-Output and Input-to-Output Skew

#### Table 21. Output-to-Output and Input-to-Output Skew <sup>[1]</sup>

| Symbol          | Parameter                                         | Condition                                              | Minimum | Typical | Maximum | Unit  |
|-----------------|---------------------------------------------------|--------------------------------------------------------|---------|---------|---------|-------|
| t               | Output-to-Output Skew <sup>[2]</sup>              | Any two outputs, all outputs at fast slew rate.        | -       | 36      | 50      | ps    |
| t <sub>SK</sub> |                                                   | Any two outputs, all outputs at slow slew rate.        | -       | 32      | 60      | ps    |
| t               | Input-to-Output Delay <sup>[3]</sup>              | Clock in to any output, all outputs at fast slew rate. | 0.8     | 1.0     | 1.2     | ns    |
| t <sub>PD</sub> |                                                   | Clock in to any output, all outputs at slow slew rate. | 1.0     | 1.3     | 1.5     | ns    |
| $\Delta t_{PD}$ | Input-to-Output Delay<br>Variation <sup>[3]</sup> | A single device, over temperature and voltage.         | -       | 0.9     | 1.0     | ps/°C |

1. These parameters are measured with the loads in Figure 10.

2. This parameter is defined in accordance with JEDEC Standard 65.

3. Defined as the time between to output rising edge and the input rising edge that caused it.



### 2.4.6 I/O Electrical Characteristics

Table 22. I/O Electrical Characteristics

| Symbol          | Parameter                                            | Condition                                              | Minimum       | Typical   | Maximum       | Unit |
|-----------------|------------------------------------------------------|--------------------------------------------------------|---------------|-----------|---------------|------|
| V <sub>IH</sub> | Input High Voltage <sup>[1][2]</sup>                 | - Single-ended inputs, unless otherwise listed.        | 0.65 ×<br>VDD | -         | VDD + 0.3     | V    |
| V <sub>IL</sub> | Input Low Voltage <sup>[1][2]</sup>                  | – Single-ended inputs, unless otherwise listed.        | -0.3          | -         | 0.35 ×<br>VDD | V    |
| V <sub>IH</sub> | Input High Voltage                                   |                                                        | 0.75 ×<br>VDD | -         | VDD + 0.3     | V    |
| V <sub>IM</sub> | Input Mid Voltage                                    | SADR_tri[1:0].                                         | 0.45 ×<br>VDD | 0.5 × VDD | 0.55 ×<br>VDD | V    |
| V <sub>IL</sub> | Input Low Voltage                                    |                                                        | -0.3          | -         | 0.25 ×<br>VDD | V    |
| V <sub>OL</sub> | Output Low Voltage                                   | LOSb, I <sub>OL</sub> = 2mA.                           | -             | 0.1       | 0.4           | V    |
|                 |                                                      | CLKIN                                                  | 5             | -         | 15            |      |
| I <sub>IH</sub> | Input Leakage Current<br>High, V <sub>IN</sub> = VDD | CLKINb                                                 | -3            | -         | +3            |      |
|                 |                                                      | PWRGD_PWRDNb                                           | -35           | -         | -20           | μA   |
|                 |                                                      | SADR_tri[1:0]                                          | 25            | -         | 35            |      |
|                 |                                                      | Single-ended inputs not otherwise listed               | 25            | -         | 35            |      |
|                 |                                                      | CLKIN                                                  | -3            | -         | +3            |      |
|                 |                                                      | CLKINb                                                 | -12           | -         | -6            |      |
| IIL             | Input Leakage Current<br>Low, V <sub>IN</sub> = 0V   | PWRGD_PWRDNb                                           | -35           | -         | -20           | μA   |
|                 |                                                      | SADR_tri[1:0]                                          | -35           | -         | -20           | 1    |
|                 |                                                      | Single-ended inputs not otherwise listed               | -35           | -         | -20           |      |
|                 | PD_CLKIN                                             | Value of internal pull-down resistor to ground (CLKIN) | -             | 53        | -             |      |
| Rp              | Rp PU_CLKINb                                         | Value of internal pull-up resistor to 0.5V (CLKINb).   | -             | 57        | -             | kΩ   |
|                 | Pull-up/Pull-down<br>Resistor                        | Single-ended inputs.                                   | -             | 125       | -             |      |
|                 |                                                      | CLK/CLKb single-ended impedance, 85Ω setting           | -             | 34        | -             |      |
| Zo              | Output Impedance                                     | CLK/CLKb single-ended impedance, $100\Omega$ setting   | -             | 39        | -             | Ω    |
|                 |                                                      | CLK/CLKb single-ended impedance, 34Ω setting           | -             | 14        | -             |      |

1. For SCLK and SDATA, see the SMBus DC Electrical Characteristics table.

2. These values are compliant with JESD8-7A 1.8V Normal Range.

### 2.4.7 Power Supply Current

 Table 23. Power Supply Current <sup>[1][2][3]</sup>

| Symbol                | Parameter                                                                                | Condition                                                             | Minimum | Typical | Maximum | Uni |
|-----------------------|------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|---------|---------|---------|-----|
|                       |                                                                                          | Fast slew rate, source-terminated load at 100MHz.                     | -       | 8.6     | 9.3     |     |
| IDDCLK                | V <sub>DDCLK</sub> Operating Current<br>per Output Pair, 100Ω                            | Fast slew rate, double-terminated load at 100MHz.                     | -       | 9.4     | 11.7    | mA  |
|                       | impedance <sup>[4]</sup>                                                                 | Fast slew rate, source-terminated load at maximum output frequency.   | -       | 11.1    | 11.5    |     |
|                       |                                                                                          | Fast slew rate, double-terminated load at maximum output frequency.   | -       | 13.1    | 13.5    |     |
|                       |                                                                                          | Fast slew rate, source-terminated load at 100MHz.                     | -       | 9.9     | 10.7    |     |
|                       | V <sub>DDCLK</sub> Operating Current<br>per Output Pair, 85Ω                             | Fast slew rate, double-terminated load at 100MHz.                     | -       | 10.8    | 31.5    | mA  |
| IDDCLK                | impedance <sup>[4]</sup>                                                                 | Fast slew rate, source-terminated load at maximum output frequency.   | -       | 12.7    | 13.2    |     |
|                       |                                                                                          | Fast slew rate, double-terminated load at maximum output frequency.   | -       | 15      | 15.4    |     |
|                       |                                                                                          | Fast slew rate, source-terminated load at 100MHz.                     | -       | 9.9     | 11.4    |     |
|                       |                                                                                          | Fast slew rate, double-terminated load at 100MHz.                     | -       | 11.6    | 13.3    |     |
| IDDCLK                | V <sub>DDCLK</sub> Operating Current<br>per Output Pair, 34Ω<br>impedance <sup>[4]</sup> | Fast slew rate, source-terminated load at maximum output frequency.   | -       | 16.6    | 19.6    | m/  |
|                       |                                                                                          | Fast slew rate, double-terminated load at maximum output frequency.   | -       | 17.8    | 22.3    |     |
|                       |                                                                                          | Fast slew rate, receiver-terminated load at maximum output frequency. | -       | 17.8    | 22.3    |     |
|                       | V <sub>DDCLK</sub> Core Operating<br>Current, All Outputs                                | PWRGD_PWRDNb = 1, all outputs<br>disabled, CLKIN = 100MHz.            | -       | 4.2     | 4.7     | m/  |
| DDCLK_CORE            | Disabled.                                                                                | PWRGD_PWRDNb = 1, all outputs<br>disabled, CLKIN = 400MHz.            | -       | 11.5    | 13.5    |     |
| I <sub>DDDIG</sub>    | V <sub>DDDIG</sub> Current                                                               | PWRGD_PWRDNb = 0 or 1.                                                | -       | 0.14    | 0.3     | m/  |
| IDDCLK_PD             | V <sub>DDCLK</sub> Power-down Current                                                    | PWRGD_PWRDNb = 0. (Does not apply to RC19102).                        | -       | 3.7     | 5       | m/  |
| I <sub>DDDIG_PD</sub> | V <sub>DDDIG</sub> Power-down Current                                                    | PWRGD_PWRDNb = 0. (Does not apply to RC19102).                        | -       | 0.14    | 0.3     | m   |

1. For more information, see Test Loads.

2. Output voltage set to 800mV. Slew rate has negligible effect on current consumption, so only fast is listed.

3. Total operating current is obtained by adding (I<sub>DDCLK</sub> x number of outputs used) + I<sub>DDCLK\_CORE</sub> + I<sub>DDDIG</sub>. Power down current is obtained by adding I<sub>DDCLK\_PD</sub> + I<sub>DDDIG\_PD</sub>. For example let's assume that the RC19308 is being used at 100MHz with 100ohm source terminated outputs and that only 6 outputs are used. The operating current would be I<sub>DDCLK</sub> x 6 + I<sub>DDCLK\_CORE</sub> + I<sub>DDDIG</sub> or (8.6 x 6)mA + 4.2mA + 0.14mA = 56mA typical.

4. The value specified is for one output pair. Multiply this value by the number of outputs in use.



### 2.4.8 SMBus Electrical Characteristics

This section applies to all devices except the RC19102 because the RC19102 does not have an SMBus interface.

| Symbol           | Parameter                                      | Condition             | Minimum  | Typical | Maximum | Unit |
|------------------|------------------------------------------------|-----------------------|----------|---------|---------|------|
| V <sub>IH</sub>  | High-level Input Voltage for SMBCLK and SMBDAT | VDD = 1.8V            | 0.8 VDD  | -       | 3.4     |      |
| V <sub>IL</sub>  | Low-level Input Voltage for SMBCLK and SMBDAT  | VDD = 1.8V            | -        | -       | 0.3 VDD |      |
| V <sub>HYS</sub> | Hysteresis of Schmitt Trigger Inputs           | -                     | 0.05 VDD | -       | -       | v    |
| V <sub>OL</sub>  | Low-level Output Voltage for SMBCLK and SMBDAT | I <sub>OL</sub> = 4mA | -        | 0.28    | 0.4     |      |
| I <sub>IN</sub>  | Input Leakage Current per Pin                  | -                     | [2]      | -       | [2]     | μA   |
| CB               | Capacitive Load for Each Bus Line              | -                     | -        | -       | 400     | pF   |

 Table 24. SMBus DC Electrical Characteristics <sup>[1]</sup>

1.  $V_{OH}$  is governed by the  $V_{PUP}$ , the voltage rail to which the pull-up resistors are connected. The maximum  $V_{PUP}$  voltage is 3.6V.

2. See I/O Electrical Characteristics.



#### Figure 8. SMBus Target Timing Diagram

#### Table 25. SMBus AC Electrical Characteristics

| Symbol                | Parameter                                         | Condition | 100kHz Class |         | Unit |
|-----------------------|---------------------------------------------------|-----------|--------------|---------|------|
| Symbol                | Parameter                                         | Condition | Minimum      | Maximum |      |
| f <sub>SMB</sub>      | SMBus Operating Frequency                         | [1]       | 10           | 100     | kHz  |
| t <sub>BUF</sub>      | Bus free time between STOP and START Condition    | -         | 4.7          | -       | μs   |
| t <sub>HD:STA</sub>   | Hold Time after (REPEATED) START Condition        | [2]       | 4            | -       | μs   |
| t <sub>SU:STA</sub>   | REPEATED START Condition Setup Time               | -         | 4.7          | -       | μs   |
| t <sub>SU:STO</sub>   | STOP Condition Setup Time                         | -         | 4            | -       | μs   |
| t <sub>HD:DAT</sub>   | Data Hold Time                                    | [3]       | 0            | -       | ns   |
| t <sub>SU:DAT</sub>   | Data Setup Time                                   | -         | 250          | -       | ns   |
| t <sub>TIMEOUT</sub>  | Detect SCL_SCLK Low Timeout                       | [4]       | 25           | 35      | ms   |
| t <sub>TIMEOUT</sub>  | Detect SDA_nCS Low Timeout                        | [5]       | 25           | 35      | ms   |
| t <sub>LOW</sub>      | Clock Low Period                                  | -         | 4.7          | -       | μs   |
| t <sub>HIGH</sub>     | Clock High Period                                 | [6]       | 4            | 50      | μs   |
| t <sub>LOW:SEXT</sub> | Cumulative Clock Low Extend Time - Target (Slave) | [7]       | N            | /A      | ms   |
| t <sub>LOW:MEXT</sub> | Cumulative Clock Low Extend Time - Host (Master)  | [8]       | N            | /A      | ms   |
| t <sub>F</sub>        | Clock/Data Fall Time                              | [9]       | -            | 300     | ns   |
| t <sub>R</sub>        | Clock/Data Rise Time                              | [9]       | -            | 1000    | ns   |
| t <sub>SPIKE</sub>    | Noise Spike Suppression Time                      | [10]      | -            | -       | ns   |

1. Power must be applied and PWRGD\_PWRDNb must be a 1 for the SMBus to be active.

- 2. A host (master) should not drive the clock at a frequency below the minimum f<sub>SMB</sub>. Further, the operating clock frequency should not be reduced below the minimum value of fSMB due to periodic clock extending by target devices as defined in Section 5.3.3 of System Management Bus (SMBus) Specification, Version 3.2, dated 12 Jan, 2022. This limit does not apply to the bus idle condition, and this limit is independent from the t<sub>LOW: SEXT</sub> and t<sub>LOW: MEXT</sub> limits. For example, if the SMBCLK is high for t<sub>HIGH,MAX</sub>, the clock must not be periodically stretched longer than 1/f<sub>SMB,MIN</sub> t<sub>HIGH,MAX</sub>. This requirement does not pertain to a device that extends the SMBCLK low for data processing of a received byte, data buffering and so forth for longer than 100 μs in a non-periodic way.
- 3. A device must internally provide sufficient hold time for the SMBDAT signal (with respect to the VIH,MIN of the SMBCLK signal) to bridge the undefined region of the falling edge of SMBCLK.
- 4. Target devices may have caused other target devices to hold SDA low. This is the maximum time that a device can hold SMBDAT low after the host raises SMBCLK after the last bit of a transaction. A target device may detect how long SDA is held low and release SDA after the time out period.
- 5. Devices participating in a transfer can abort the transfer in progress and release the bus when any single clock low interval exceeds the value of t<sub>TIMEOUT,MIN</sub>. After the host in a transaction detects this condition, it must generate a stop condition within or after the current data byte in the transfer process. Devices that have detected this condition must reset their communication and be able to receive a new START condition no later than t<sub>TIMEOUT,MAX</sub>. Typical device examples include the host controller, and embedded controller, and most devices that can host the SMBus. Some simple devices do not contain a clock low drive circuit; this simple kind of device typically may reset its communications port after a start or a stop condition. A timeout condition can only be ensured if the device that is forcing the timeout holds the SMBCLK low for t<sub>TIMEOUT,MAX</sub> or longer.
- 6. The device has the option of detecting a timeout if the SMBDATA pin is also low for this time.
- 7. t<sub>HIGH,MAX</sub> provides a simple guaranteed method for hosts to detect bus idle conditions. A host can assume that the bus is free if it detects that the clock and data signals have been high for greater than t<sub>HIGH,MAX</sub>.
- 8. tLOW:MEXT is the cumulative time a host device is allowed to extend its clock cycles within each byte of a message as defined from START-to-ACK, ACK-to-ACK, or ACK-to-STOP. It is possible that a target device or another host will also extend the clock causing the combined clock low time to be greater than tLOW:MEXT on a given byte. This parameter is measured with a full-speed target device as the sole target of the host.
- 9. The rise and fall time measurement limits are defined as follows: Rise Time Limits: (V<sub>IL:MAX</sub> - 0.15 V) to (V<sub>IH:MIN</sub> + 0.15 V) Fall Time Limits: (V<sub>IH:MIN</sub> + 0.15 V) to (V<sub>IL:MAX</sub> - 0.15 V)
- 10. Devices must provide a means to reject noise spikes of a duration up to the maximum specified value.



# 3. Test Loads



Figure 9. AC/DC Test Load for Differential Outputs (Standard PCIe Source-Terminated)

| Table 26, Parameters for AC/DC Test L | oad (Standard PCIe Source-Terminated) |
|---------------------------------------|---------------------------------------|
|                                       |                                       |

| Clock Source | L (cm) | C <sub>L</sub> (pF) | ZOUTSEL_tri Pin | Zo (ohms)     | Rs (ohms)     |               |
|--------------|--------|---------------------|-----------------|---------------|---------------|---------------|
|              |        |                     | 0 (85 ohms)     | 85            | Internal      |               |
| SMA100B      | 25.4   | 2                   | 5.4 2 -         | 1 (100 ohms)  | 100           | Internal      |
| SIVIATUUB    | 25.4   |                     |                 | Mid (34 ohms) | 85            | External 25.5 |
|              |        |                     |                 | 100           | External 33.3 |               |



#### Figure 10. AC/DC Test Load for Differential Outputs (Double-Terminated or Receiver-Terminated)

| Table 27. Parameters for AC/DC | Test Load (Double-Terminated) |
|--------------------------------|-------------------------------|
|--------------------------------|-------------------------------|

| Clock Source | L (cm) | C <sub>L</sub> (pF) | ZOUTSEL_tri Pin | Zo (ohms)           | Rs (ohms) |              |     |          |
|--------------|--------|---------------------|-----------------|---------------------|-----------|--------------|-----|----------|
|              |        |                     | 0 (85 ohms)     | 85                  | Internal  |              |     |          |
| SMA100B      | 25.4   | 25.4                | 2               | 2                   | 2         | 1 (100 ohms) | 100 | Internal |
| SMA1006 25.4 | 2      | Mid (24 ohmo)       | 85              | None <sup>[1]</sup> |           |              |     |          |
|              |        |                     | Mid (34 ohms)   | 100                 | NOTE      |              |     |          |

1. This setting is designed to provide additional amplitude for receiver-terminated loads by turning off the source termination in the output driver. There is no reflection with receiver terminated loads since the receiver termination absorbs the incident waveform.





Figure 11. Test Load for PCIe Phase Jitter Measurements

| Clock Source | L (cm) <sup>[1]</sup> | C <sub>AC</sub> (uF) | ZOUTSEL_tri Pin | Zo (ohms) | Rs (ohms)    |     |          |
|--------------|-----------------------|----------------------|-----------------|-----------|--------------|-----|----------|
|              |                       |                      | 0 (85 ohms)     | 85        | Internal     |     |          |
| SMA100B      | 25.4                  | 0.1                  | 0.1             | 0.1       | 1 (100 ohms) | 100 | Internal |
|              |                       |                      | Mid (34 ohms)   | 100       | None         |     |          |

#### Table 28. Parameters for PCIe Phase Jitter Measurements

1. PCIe Gen6 specifies L = 0cm for 32 and 64 GT/s. L = 25.4cm is more conservative.



# 4. General SMBus Serial Interface Information

This section applies to all device except the RC19102 which does not have an SMBus interface.

### 4.1 How to Write

- Controller (host) sends a start bit
- Controller (host) sends the write address
- Renesas clock will acknowledge
- Controller (host) sends the beginning byte Location
   = N
- Renesas clock will acknowledge
- Controller (host) sends the byte count = X
- Renesas clock will acknowledge
- Controller (host) starts sending Byte N through Byte N+X-1
- Renesas clock will acknowledge each byte one at a time
- Controller (host) sends a stop bit

|           | Index Block Write Operation |        |                           |  |  |  |  |
|-----------|-----------------------------|--------|---------------------------|--|--|--|--|
| Controll  | er (Host)                   |        | Renesas (Target/Receiver) |  |  |  |  |
| Т         | starT bit                   |        |                           |  |  |  |  |
| Target    | Address                     |        |                           |  |  |  |  |
| WR        | WRite                       |        |                           |  |  |  |  |
|           |                             |        | ACK                       |  |  |  |  |
| Beginning | g Byte = N                  |        |                           |  |  |  |  |
|           |                             |        | ACK                       |  |  |  |  |
| Data Byte | Count = X                   |        |                           |  |  |  |  |
|           |                             | 1      | ACK                       |  |  |  |  |
| Beginnir  | ng Byte N                   |        |                           |  |  |  |  |
|           |                             | 1      | ACK                       |  |  |  |  |
| 0         |                             |        |                           |  |  |  |  |
| 0         |                             | X Byte | 0                         |  |  |  |  |
| 0         |                             | - e    | 0                         |  |  |  |  |
|           |                             | 1      | 0                         |  |  |  |  |
| Byte N    | + X - 1                     | 1      |                           |  |  |  |  |
|           |                             |        | ACK                       |  |  |  |  |
| Р         | stoP bit                    | 1      |                           |  |  |  |  |

### 4.2 How to Read

- Controller (host) will send a start bit
- Controller (host) sends the write address
- Renesas clock will acknowledge
- Controller (host) sends the beginning byte Location
   = N
- Renesas clock will acknowledge
- · Controller (host) will send a separate start bit
- Controller (host) sends the read address
- Renesas clock will acknowledge
- Renesas clock will send the data byte count = X
- Renesas clock sends Byte N+X-1
- Renesas clock sends Byte L through Byte X (if X(H) was written to Byte 7)
- Controller (host) will need to acknowledge each byte
- Controller (host) will send a not acknowledge bit
- Controller (host) will send a stop bit

|      | Index Block     | Read ( | Operation                 |
|------|-----------------|--------|---------------------------|
| Cor  | ntroller (Host) |        | Renesas (Target/Receiver) |
| Т    | starT bit       |        |                           |
| Та   | irget Address   |        |                           |
| WR   | WRite           |        |                           |
|      |                 |        | ACK                       |
| Begi | inning Byte = N |        |                           |
|      |                 |        | ACK                       |
| RT   | Repeat starT    |        |                           |
| Та   | rget Address    |        |                           |
| RD   | ReaD            |        |                           |
|      |                 |        | ACK                       |
|      |                 |        |                           |
|      |                 |        | Data Byte Count = X       |
|      | ACK             |        |                           |
|      |                 |        | Beginning Byte N          |
|      | ACK             |        |                           |
|      |                 | e.     | 0                         |
|      | 0               | X Byte | 0                         |
|      | 0               |        | 0                         |
|      | 0               |        |                           |
|      |                 |        | Byte N + X - 1            |
| N    | Not acknowledge |        |                           |
| Р    | stoP bit        |        |                           |



# 4.3 SMBus Bit Types

| Bit Description | Definition              |
|-----------------|-------------------------|
| RO              | Read-only               |
| RW              | Read-write              |
| RW1C            | Read/Write '1' to clear |
| RESERVED        | Undefined do not write  |

# 4.4 Write Lock Functionality

| WRITE_LOCK | WRITE_LOCK RW1C | SMBus Write Protect |
|------------|-----------------|---------------------|
| 0          | 0               | No                  |
| 0          | 1               | Yes                 |
| 1          | 0               | Yes                 |
| 1          | 1               | Yes                 |

# 4.5 SMBus Address Decode

| Address   | Address Selection |   | Binary Value |   |   |   |   |   |        | Haw Makua |
|-----------|-------------------|---|--------------|---|---|---|---|---|--------|-----------|
| SADR_tri1 | SADR_tri0         | 7 | 6            | 5 | 4 | 3 | 2 | 1 | Rd/Wrt | Hex Value |
|           | 0                 | 1 | 1            | 0 | 1 | 0 | 1 | 1 | 0      | D6        |
| 0         | М                 | 1 | 1            | 0 | 1 | 1 | 0 | 0 | 0      | D8        |
|           | 1                 | 1 | 1            | 0 | 1 | 1 | 0 | 1 | 0      | DA        |
|           | 0                 | 1 | 1            | 0 | 0 | 0 | 1 | 1 | 0      | C6        |
| Μ         | М                 | 1 | 1            | 0 | 0 | 1 | 0 | 0 | 0      | C8        |
|           | 1                 | 1 | 1            | 0 | 0 | 1 | 0 | 1 | 0      | CA        |
|           | 0                 | 1 | 1            | 0 | 0 | 0 | 1 | 1 | 0      | A6        |
| 1         | М                 | 1 | 1            | 0 | 0 | 1 | 0 | 0 | 0      | A8        |
|           | 1                 | 1 | 1            | 0 | 0 | 1 | 0 | 1 | 0      | AA        |



# 4.6 SMBus Registers

| Offset (Hex) | Offset    | Re                      | gister Module Base Address: 0x0                      |  |
|--------------|-----------|-------------------------|------------------------------------------------------|--|
| Ulisel (nex) | (Decimal) | Register Name           | Register Description                                 |  |
| 0x0          | 0         | OUTPUT_ENABLE           | Output Enable Register                               |  |
| 0x2          | 2         | OEB_PIN_READBACK        | OEb Pin Readback Register                            |  |
| 0x4          | 4         | LOS_CONFIG              | Loss of Signal and Async Mode Configuration Register |  |
| 0x5          | 5         | VENDOR_REVISION_ID      | Vendor ID, Revision ID Register                      |  |
| 0x6          | 6         | DEVICE_ID               | Device ID Register                                   |  |
| 0x7          | 7         | BYTE_COUNT              | Number of Bytes Returned on an SMBus Block Read      |  |
| 0xA          | 10        | SLEW_AMP_SELECT         | Multifunction Pin Configuration Register             |  |
| 0xE          | 14        | INPUT_PULLUP_PULLDOWN_4 | Internal Pull-up / Pull-down Configuration Register  |  |
| 0x10         | 16        | AMP_CTRL_ALT            | Alternate Amplitude Selection Register               |  |
| 0x11         | 17        | AMP_CTRL_DEF            | Default Amplitude Selection Register                 |  |
| 0x12         | 18        | PD_RESTORE_LOSb_CONFIG  | Configuration and Status Register                    |  |
| 0x14         | 20        | OUTPUT_IMPEDANCE_7_0    | Output Impedance Select Register 0                   |  |
| 0x15         | 21        | OUTPUT_REC_SEL_7_0      | Output Impedance Select Register 1                   |  |
| 0x16         | 22        | OUTPUT_SLEW_RATE_7_0    | Output Slewrate Select Register                      |  |
| 0x20         | 32        | LOW-LOW_DETECT          | CLKIN Low-Low Detect Enable Register                 |  |
| 0x23         | 35        | RECEIVER_CONTROL        | CLKIN Configuration Register                         |  |
| 0x26         | 38        | WRITE_LOCK              | Non-Clearable Write Lock Register                    |  |
| 0x27         | 39        | WRITE_LOCK_LOS_EVT      | Clearable Write Lock and LOS Event Sticky Register   |  |

#### Table 29. Register Index

# 4.6.1 OUTPUT\_ENABLE

Output Enable Register.

|           |            |                                     | OUTPUT_E | NABLE Bit Field Descriptions                                              |
|-----------|------------|-------------------------------------|----------|---------------------------------------------------------------------------|
| Bit Field | Field Name | Field Name Field Default Type Value |          | Description                                                               |
| 7         | clk7_en    | RW                                  | 0x1      | CLK7 enable.<br>0 = Output is disabled (low/low)<br>1 = Output is enabled |
| 6         | clk6_en    | RW                                  | 0x1      | CLK6 enable.<br>0 = Output is disabled (low/low)<br>1 = Output is enabled |
| 5         | clk5_en    | RW                                  | 0x1      | CLK5 enable.<br>0 = Output is disabled (low/low)<br>1 = Output is enabled |
| 4         | clk4_en    | RW                                  | 0x1      | CLK4 enable.<br>0 = Output is disabled (low/low)<br>1 = Output is enabled |
| 3         | clk3_en    | RW                                  | 0x1      | CLK3 enable.<br>0 = Output is disabled (low/low)<br>1 = Output is enabled |
| 2         | clk2_en    | RW                                  | 0x1      | CLK2 enable.<br>0 = Output is disabled (low/low)<br>1 = Output is enabled |



|           | OUTPUT_ENABLE Bit Field Descriptions |               |                  |                                                                           |  |  |  |  |
|-----------|--------------------------------------|---------------|------------------|---------------------------------------------------------------------------|--|--|--|--|
| Bit Field | Field Name                           | Field<br>Type | Default<br>Value | Description                                                               |  |  |  |  |
| 1         | clk1_en                              | RW            | 0x1              | CLK1 enable.<br>0 = Output is disabled (low/low)<br>1 = Output is enabled |  |  |  |  |
| 0         | clk0_en                              | RW            | 0x1              | CLK0 enable.<br>0 = Output is disabled (low/low)<br>1 = Output is enabled |  |  |  |  |

# 4.6.2 OEB\_PIN\_READBACK

OEb Pin Readback Register.

|           | OEB_PIN_READBACK Bit Field Descriptions |               |                  |                                                                                                    |  |  |  |
|-----------|-----------------------------------------|---------------|------------------|----------------------------------------------------------------------------------------------------|--|--|--|
| Bit Field | Field Name                              | Field<br>Type | Default<br>Value | Description                                                                                        |  |  |  |
| 7         | rb_oeb7                                 | RO            | 0x1              | State of OEb7 pin. The default pin state is 1 if not driven to a 0.<br>0 = Pin low<br>1 = Pin high |  |  |  |
| 6         | rb_oeb6                                 | RO            | 0x1              | State of OEb6 pin. The default pin state is 1 if not driven to a 0.<br>0 = Pin low<br>1 = Pin high |  |  |  |
| 5         | rb_oeb5                                 | RO            | 0x1              | State of OEb5 pin. The default pin state is 1 if not driven to a 0.<br>0 = Pin low<br>1 = Pin high |  |  |  |
| 4         | rb_oeb4                                 | RO            | 0x1              | State of OEb4 pin. The default pin state is 1 if not driven to a 0.<br>0 = Pin low<br>1 = Pin high |  |  |  |
| 3         | rb_oeb3                                 | RO            | 0x1              | State of OEb3 pin. The default pin state is 1 if not driven to a 0.<br>0 = Pin low<br>1 = Pin high |  |  |  |
| 2         | rb_oeb2                                 | RO            | 0x1              | State of OEb2 pin. The default pin state is 1 if not driven to a 0.<br>0 = Pin low<br>1 = Pin high |  |  |  |
| 1         | rb_oeb1                                 | RO            | 0x1              | State of OEb1 pin. The default pin state is 1 if not driven to a 0.<br>0 = Pin low<br>1 = Pin high |  |  |  |
| 0         | rb_oeb0                                 | RO            | 0x1              | State of OEb0 pin. The default pin state is 1 if not driven to a 0.<br>0 = Pin low<br>1 = Pin high |  |  |  |

### 4.6.3 LOS\_CONFIG

Loss of Signal and Async Mode Configuration Register.

| LOS_CONFIG Bit Field Descriptions |              |               |                  |                                                                                                                                                 |  |  |
|-----------------------------------|--------------|---------------|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Bit Field                         | Field Name   | Field<br>Type | Default<br>Value | Description                                                                                                                                     |  |  |
| 7                                 | reserved     | RW            | 0x0              | Reserved                                                                                                                                        |  |  |
| 6                                 | losb_rw1c_en | RW            | 0x1              | LOS sticky bit enable. Enables the LOS sticky bit (B0x27[1]). This bit must be<br>set to 1 if B0x4[2] is set to 0.<br>0 = Disable<br>1 = Enable |  |  |
| 5                                 | reserved     | RW            | 0x0              | Reserved                                                                                                                                        |  |  |



|           | LOS_CONFIG Bit Field Descriptions |               |                  |                                                                                                                                                                                                                  |  |  |  |
|-----------|-----------------------------------|---------------|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Bit Field | Field Name                        | Field<br>Type | Default<br>Value | Description                                                                                                                                                                                                      |  |  |  |
| 4         | losb_acp_en                       | RW            | 0x1              | Automatic clock parking enable. Enables Automatic Clock Parking of outputs<br>to a low/low state when LOS condition occurs.<br>0 = Disable<br>1 = Enable                                                         |  |  |  |
| 3         | reserved                          | RW            | 0x0              | Reserved                                                                                                                                                                                                         |  |  |  |
| 2         | losb_config                       | RW            | 0x1              | Configure LOSb pin operating mode. Determines if the LOSb pin is a real-time<br>or sticky. If sticky, the LOSb pin is driven by the LOSb RW1C sticky bit.<br>1 = LOSb real-time<br>0 = LOSb from RW1C sticky bit |  |  |  |
| 1:0       | reserved                          | RW            | 0x0              | Reserved                                                                                                                                                                                                         |  |  |  |

# 4.6.4 VENDOR\_REVISION\_ID

Vendor ID, Revision ID Register.

|           | VENDOR_REVISION_ID Bit Field Descriptions |               |                  |                                                    |  |  |  |  |
|-----------|-------------------------------------------|---------------|------------------|----------------------------------------------------|--|--|--|--|
| Bit Field | Field Name                                | Field<br>Type | Default<br>Value | Description                                        |  |  |  |  |
| 7:4       | rid                                       | RO            | 0x0              | REVISION ID. Silicon Revision.<br>0x0 = A revision |  |  |  |  |
| 3:0       | vid                                       | RO            | 0x1              | VENDOR ID. Vendor ID.<br>0x1 = Renesas             |  |  |  |  |

### 4.6.5 DEVICE\_ID

Device ID Register.

|           | DEVICE_ID Bit Field Descriptions |               |                  |                                                                          |  |  |  |
|-----------|----------------------------------|---------------|------------------|--------------------------------------------------------------------------|--|--|--|
| Bit Field | Field Name                       | Field<br>Type | Default<br>Value | Description                                                              |  |  |  |
| 7:0       | device_id                        | RO            | 0x18             | RC19108 device ID listed as default.<br>0x18 = RC19108<br>0x14 = RC19104 |  |  |  |

### 4.6.6 BYTE\_COUNT

Number of Bytes Returned on an SMBus Block Read.

|           | BYTE_COUNT Bit Field Descriptions |               |                  |                                                                                             |  |  |  |
|-----------|-----------------------------------|---------------|------------------|---------------------------------------------------------------------------------------------|--|--|--|
| Bit Field | Field Name                        | Field<br>Type | Default<br>Value | Description                                                                                 |  |  |  |
| 7:5       | reserved                          | RW            | 0x0              | Reserved                                                                                    |  |  |  |
| 4:0       | byte_count                        | RW            | 0x7              | Writing to this register configures how many bytes will be returned on an SMBus block read. |  |  |  |



### 4.6.7 SLEW\_AMP\_SELECT

Multifunction Pin Configuration Register.

| SLEW_AMP_SELECT Bit Field Descriptions |              |               |                  |                                                                                                                                                                                                                                                                        |  |  |
|----------------------------------------|--------------|---------------|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Bit Field                              | Field Name   | Field<br>Type | Default<br>Value | Description                                                                                                                                                                                                                                                            |  |  |
| 7                                      | slew_amp_sel | RW            | 0x0              | Multi-function pin selection. The pin is defined as either Slew Rate Select or<br>Amplitude Select. If Amplitude Select is chosen, refer to registers 0x10 and<br>0x11.<br>0 = Pin is Slew Rate Select pin (RC191xxA)<br>1 = Pin is Amplitude Select pin (RC191xxA001) |  |  |
| 6:0                                    | reserved     | RW            | 0x0              | Reserved                                                                                                                                                                                                                                                               |  |  |

# 4.6.8 INPUT\_PULLUP\_PULLDOWN\_4

Internal Pull-up / Pull-down Configuration Register.

|           | INPUT_PULLUP_PULLDOWN_4 Bit Field Descriptions |               |                  |                                                                                                                                                                                                                                                                                                                                 |  |  |  |
|-----------|------------------------------------------------|---------------|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Bit Field | Field Name                                     | Field<br>Type | Default<br>Value | Description                                                                                                                                                                                                                                                                                                                     |  |  |  |
| 7:4       | reserved                                       | RW            | 0x8              | Reserved                                                                                                                                                                                                                                                                                                                        |  |  |  |
| 3         | sdata_pullup                                   | RW            | 0x0              | Enable/disable internal pull-up. The default pin state is high when the internal<br>pull-up is enabled. If the SMBus is not used, this bit may be set to hold the<br>SDATA pin in an inactive state. It should not be set if the SMBus is used in the<br>system.<br>0 = Disable internal pull-up<br>1 = Enable internal pull-up |  |  |  |
| 2         | reserved                                       | RW            | 0x0              | Reserved                                                                                                                                                                                                                                                                                                                        |  |  |  |
| 1         | sclk_pullup                                    | RW            | 0x0              | Enable/disable internal pull-up. The default pin state is high when the internal pull-up is enabled. If the SMBus is not used, this bit may be set to hold the SDATA pin in an inactive state. It should not be set if the SMBus is used in the system.<br>0 = Disable internal pull-up<br>1 = Enable internal pull-up          |  |  |  |
| 0         | reserved                                       | RW            | 0x0              | Reserved                                                                                                                                                                                                                                                                                                                        |  |  |  |



## 4.6.9 AMP\_CTRL\_ALT

Alternate Amplitude Selection Register.

|           | AMP_CTRL_ALT Bit Field Descriptions |               |                  |                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |
|-----------|-------------------------------------|---------------|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Bit Field | Field Name                          | Field<br>Type | Default<br>Value | Description                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |
| 7:4       | amp_cntrl_alt                       | RW            | 0xB              | Alternate amplitude control. When the multifunction pin is configured as<br>Amplitude Select, this field defines the single-ended output amplitude when the<br>pin = 1. When the multifunction pin is configured as Slew Rate Selection, this<br>field has no impact.<br>0x0 = 625mV<br>0x1 = 650mV<br>0x2 = 675mV<br>0x3 = 700mV<br>0x4 = 725mV<br>0x5 = 750mV<br>0x6 = 775mV<br>0x7 = 800mV<br>0x8 = 825mV<br>0x9 = 850mV |  |  |  |
|           | amp_cntrl_alt (conf                 | inued)        |                  | 0xA = 875mV<br>0xB = 900mV<br>0xC = 925mV<br>0xD = 950mV<br>0xE = 975mV<br>0xF = 1000mV                                                                                                                                                                                                                                                                                                                                     |  |  |  |
| 3:0       | reserved                            | RW            | 0x0              | Reserved                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |

## 4.6.10 AMP\_CTRL\_DEF

Default Amplitude Selection Register.

|           | AMP_CTRL_DEF Bit Field Descriptions |               |                  |                                                                                                                                                                                                                                                                                                                                                                              |  |  |
|-----------|-------------------------------------|---------------|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Bit Field | Field Name                          | Field<br>Type | Default<br>Value | Description                                                                                                                                                                                                                                                                                                                                                                  |  |  |
| 7:4       | amp_cntrl_def                       | RW            | 0x7              | Default amplitude control. When the multifunction pin is configured as Slewrate<br>Select, or when the pin is configured as Amplitude Select and the pin = 0, this<br>field defines the single-ended output amplitude.<br>0x0 = 625mV<br>0x1 = 650mV<br>0x2 = 675mV<br>0x3 = 700mV<br>0x4 = 725mV<br>0x5 = 750mV<br>0x6 = 775mV<br>0x7 = 800mV<br>0x8 = 825mV<br>0x9 = 850mV |  |  |
|           | amp_cntrl_def (con                  | tinued)       |                  | 0xA = 875mV<br>0xB = 900mV<br>0xC = 925mV<br>0xD = 950mV<br>0xE = 975mV<br>0xF = 1000mV                                                                                                                                                                                                                                                                                      |  |  |
| 3:0       | reserved                            | RW            | 0x0              | Reserved                                                                                                                                                                                                                                                                                                                                                                     |  |  |



#### 4.6.11 PD\_RESTORE\_LOSb\_CONFIG

Configuration and Status Register.

|           |                   | PD_R          | ESTORE_L         | OSb_CONFIG Bit Field Descriptions                                                                                                                                                                                                                                          |
|-----------|-------------------|---------------|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Bit Field | Field Name        | Field<br>Type | Default<br>Value | Description                                                                                                                                                                                                                                                                |
| 7:5       | reserved          | RW            | 0x0              | Reserved                                                                                                                                                                                                                                                                   |
| 4         | ck_acquire_rb     | RO            | 0x0              | Clock acquired readback. This bit indicates if a clock was ever detected (LOSb de-asserted) for the current power cycle.<br>0 = Clock never acquired<br>1 = Clock acquired at least once before                                                                            |
| 3         | pd_restoreb       | RW            | 0x1              | Save configuration in power-down. This bit determines the behavior of the device when the PWRGD_PWRDNb pin is asserted low. This bit is automatically returned to 1 after PWRGD_PWRDNb is toggled 1-0-1 with the bit set to 0.<br>0 = Config Cleared<br>1 = Config Saved   |
| 2         | sdata_time_out_en | RW            | 0x1              | Enable SMB time out monitoring SDATA. This bit enables a timeout for the<br>SMBus data path. This timeout monitor is in addition to the mandatory SCLK<br>timeout monitor. These monitors release a hung SMBus.<br>0 = Disable SDATA time out<br>1 = Enable SDATA time out |
| 1         | reserved          | RO            | 0x0              | Reserved                                                                                                                                                                                                                                                                   |
| 0         | losb_rb           | RO            | 0x0              | Real-time read back of input clock detect. This bit provides a real-time status of<br>the clock input. The default value assumes no input clock present.<br>0 = LOS event detected (no CLKIN detected)<br>1 = No LOS event detected (CLKIN detected)                       |

#### 4.6.12 OUTPUT\_IMPEDANCE\_7\_0

Output Impedance Select Register 0.

|           |                 | OUT           | PUT_IMPE         | DANCE_7_0 Bit Field Descriptions                                                                                                                                                                                                                                                                                                        |
|-----------|-----------------|---------------|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Bit Field | Field Name      | Field<br>Type | Default<br>Value | Description                                                                                                                                                                                                                                                                                                                             |
| 7         | clk7_impedance0 | RW            | 0x0              | CLK7 impedance select bit 0. ZOUTSEL_tri = 0: this bit and B0x15[7] are set<br>to 0.<br>ZOUTSEL_tri = M: this bit is set to 0 and B0x15[7] is set to 1.<br>ZOUTSEL_tri= 1: this bit is set to 1 and B0x15[7] is set to 0.<br>0 = 85 ohm differential, 42.5 ohm single-ended<br>1 = 100 ohm differential, 50 ohm single-ended            |
| 6         | clk6_impedance0 | RW            | 0x0              | CLK6 impedance select bit 0. ZOUTSEL_tri = 0: this bit and B0x15[6] are set<br>to 0.<br>ZOUTSEL_tri = M: this bit is set to 0, ignored, and B0x15[6] is set to 1.<br>ZOUTSEL_tri = 1: this bit is set to 1 and B0x15[6] is set to 0.<br>0 = 85 ohm differential, 42.5 ohm single-ended<br>1 = 100 ohm differential, 50 ohm single-ended |
| 5         | clk5_impedance0 | RW            | 0x0              | CLK5 impedance select bit 0. ZOUTSEL_tri = 0: this bit and B0x15[5] are set<br>to 0.<br>ZOUTSEL_tri = M: this bit is set to 0, ignored, and B0x15[5] is set to 1.<br>ZOUTSEL_tri= 1: this bit is set to 1 and B0x15[5] is set to 0.<br>0 = 85 ohm differential, 42.5 ohm single-ended<br>1 = 100 ohm differential, 50 ohm single-ended  |
| 4         | clk4_impedance0 | RW            | 0x0              | CLK4 impedance select bit 0. ZOUTSEL_tri = 0: this bit and B0x15[4] are set<br>to 0.<br>ZOUTSEL_tri = M: this bit is set to 0, ignored, and B0x15[4] is set to 1.<br>ZOUTSEL_tri= 1: this bit is set to 1 and B0x15[4] is set to 0.<br>0 = 85 ohm differential, 42.5 ohm single-ended<br>1 = 100 ohm differential, 50 ohm single-ended  |



|           | OUTPUT_IMPEDANCE_7_0 Bit Field Descriptions |               |                  |                                                                                                                                                                                                                                                                                                                                        |  |  |
|-----------|---------------------------------------------|---------------|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Bit Field | Field Name                                  | Field<br>Type | Default<br>Value | Description                                                                                                                                                                                                                                                                                                                            |  |  |
| 3         | clk3_impedance0                             | RW            | 0x0              | CLK3 impedance select bit 0. ZOUTSEL_tri = 0: this bit and B0x15[3] are set<br>to 0.<br>ZOUTSEL_tri = M: this bit is set to 0, ignored, and B0x15[3] is set to 1.<br>ZOUTSEL_tri= 1: this bit is set to 1 and B0x15[3] is set to 0.<br>0 = 85 ohm differential, 42.5 ohm single-ended<br>1 = 100 ohm differential, 50 ohm single-ended |  |  |
| 2         | clk2_impedance0                             | RW            | 0x0              | CLK2 impedance select bit 0. ZOUTSEL_tri = 0: this bit and B0x15[2] are set<br>to 0.<br>ZOUTSEL_tri = M: this bit is set to 0, ignored, and B0x15[2] is set to 1.<br>ZOUTSEL_tri= 1: this bit is set to 1 and B0x15[2] is set to 0.<br>0 = 85 ohm differential, 42.5 ohm single-ended<br>1 = 100 ohm differential, 50 ohm single-ended |  |  |
| 1         | clk1_impedance0                             | RW            | 0x0              | CLK1 impedance select bit 0. ZOUTSEL_tri = 0: this bit and B0x15[1] are set<br>to 0.<br>ZOUTSEL_tri = M: this bit is set to 0, ignored, and B0x15[1] is set to 1.<br>ZOUTSEL_tri= 1: this bit is set to 1 and B0x15[1] is set to 0.<br>0 = 85 ohm differential, 42.5 ohm single-ended<br>1 = 100 ohm differential, 50 ohm single-ended |  |  |
| 0         | clk0_impedance0                             | RW            | 0x0              | CLK0 impedance select bit 0. ZOUTSEL_tri = 0: this bit and B0x15[0] are set<br>to 0.<br>ZOUTSEL_tri = M: this bit is set to 0, ignored, and B0x15[0] is set to 1.<br>ZOUTSEL_tri= 1: this bit is set to 1 and B0x15[0] is set to 0.<br>0 = 85 ohm differential, 42.5 ohm single-ended<br>1 = 100 ohm differential, 50 ohm single-ended |  |  |

## 4.6.13 OUTPUT\_REC\_SEL\_7\_0

Output Impedance Select Register 1.

|           | OUTPUT_REC_SEL_7_0 Bit Field Descriptions |               |                  |                                                                                                                                                                                                                                                                                                     |  |  |
|-----------|-------------------------------------------|---------------|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Bit Field | Field Name                                | Field<br>Type | Default<br>Value | Description                                                                                                                                                                                                                                                                                         |  |  |
| 7         | clk7_impedance1                           | RW            | 0x1              | CLK7 impedance select bit 1. ZOUTSEL_tri = 0 or 1: this bit is set to 0 at power<br>up and the appropriate value is set in B0x14[7].<br>ZOUTSEL_tri = M: this bit is set to 1 at power up, B0x14[7] is set to 0 and<br>ignored.<br>0 = See B0x14[7]<br>1 = 34 ohm differential, 17 ohm single-ended |  |  |
| 6         | clk6_impedance1                           | RW            | 0x1              | CLK6 impedance select bit 1. ZOUTSEL_tri = 0 or 1: this bit is set to 0 at power<br>up and the appropriate value is set in B0x14[6].<br>ZOUTSEL_tri = M: this bit is set to 1 at power up, B0x14[6] is set to 0 and<br>ignored.<br>0 = See B0x14[6]<br>1 = 34 ohm differential, 17 ohm single-ended |  |  |
| 5         | clk5_impedance1                           | RW            | 0x1              | CLK5 impedance select bit 1. ZOUTSEL_tri = 0 or 1: this bit is set to 0 at power<br>up and the appropriate value is set in B0x14[5].<br>ZOUTSEL_tri = M: this bit is set to 1 at power up, B0x14[5] is set to 0 and<br>ignored.<br>0 = See B0x14[5]<br>1 = 34 ohm differential, 17 ohm single-ended |  |  |
| 4         | clk4_impedance1                           | RW            | 0x1              | CLK4 impedance select bit 1. ZOUTSEL_tri = 0 or 1: this bit is set to 0 at power<br>up and the appropriate value is set in B0x14[4].<br>ZOUTSEL_tri = M: this bit is set to 1 at power up, B0x14[4] is set to 0 and<br>ignored.<br>0 = See B0x14[4]<br>1 = 34 ohm differential, 17 ohm single-ended |  |  |



|           | OUTPUT_REC_SEL_7_0 Bit Field Descriptions |               |                  |                                                                                                                                                                                                                                                                                                     |  |  |
|-----------|-------------------------------------------|---------------|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Bit Field | Field Name                                | Field<br>Type | Default<br>Value | Description                                                                                                                                                                                                                                                                                         |  |  |
| 3         | clk3_impedance1                           | RW            | 0x1              | CLK3 impedance select bit 1. ZOUTSEL_tri = 0 or 1: this bit is set to 0 at power<br>up and the appropriate value is set in B0x14[3].<br>ZOUTSEL_tri = M: this bit is set to 1 at power up, B0x14[3] is set to 0 and<br>ignored.<br>0 = See B0x14[3]<br>1 = 34 ohm differential, 17 ohm single-ended |  |  |
| 2         | clk2_impedance1                           | RW            | 0x1              | CLK2 impedance select bit 1. ZOUTSEL_tri = 0 or 1: this bit is set to 0 at power<br>up and the appropriate value is set in B0x14[2].<br>ZOUTSEL_tri = M: this bit is set to 1 at power up, B0x14[2] is set to 0 and<br>ignored.<br>0 = See B0x14[2]<br>1 = 34 ohm differential, 17 ohm single-ended |  |  |
| 1         | clk1_impedance1                           | RW            | 0x1              | CLK1 impedance select bit 1. ZOUTSEL_tri = 0 or 1: this bit is set to 0 at power<br>up and the appropriate value is set in B0x14[1].<br>ZOUTSEL_tri = M: this bit is set to 1 at power up, B0x14[1] is set to 0 and<br>ignored.<br>0 = See B0x14[1]<br>1 = 34 ohm differential, 17 ohm single-ended |  |  |
| 0         | clk0_impedance1                           | RW            | 0x1              | CLK0 impedance select bit 1. ZOUTSEL_tri = 0 or 1: This bit is set to 0 at<br>power up and the appropriate value is set in B0x14[0].<br>ZOUTSEL_tri = M: This bit is set to 1 at power up, B0x14[0] is set to 0 and<br>ignored.<br>0 = See B0x14[0]<br>1 = 34 ohm differential, 17 ohm single-ended |  |  |

## 4.6.14 OUTPUT\_SLEW\_RATE\_7\_0

Output Slewrate Select Register.

|           |               | OUT           | PUT_SLEW         | V_RATE_7_0 Bit Field Descriptions                                                                                                                                                                                                      |
|-----------|---------------|---------------|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Bit Field | Field Name    | Field<br>Type | Default<br>Value | Description                                                                                                                                                                                                                            |
| 7         | clk7_slewrate | RW            | 0x1              | CLK7 slew rate select. If B0xA[7] = 0 at power up, the SLEWRATE_SEL pin<br>sets the default. After power up, the value can be changed via SMBus.<br>If B0xA[7] = 1 at startup, default = 1<br>0 = Slow slew rate<br>1 = Fast slew rate |
| 6         | clk6_slewrate | RW            | 0x1              | CLK6 slew rate select. If B0xA[7]= 0 at power up, the SLEWRATE_SEL pin<br>sets the default. After power up, the value can be changed via SMBus.<br>If B0xA[7]= 1 at startup, default=1<br>0 = Slow slew rate<br>1 = Fast slew rate     |
| 5         | clk5_slewrate | RW            | 0x1              | CLK5 slew rate select. If B0xA[7]= 0 at power up, the SLEWRATE_SEL pin<br>sets the default. After power up, the value can be changed via SMBus.<br>If B0xA[7]= 1 at startup, default=1<br>0 = Slow slew rate<br>1 = Fast slew rate     |
| 4         | clk4_slewrate | RW            | 0x1              | CLK4 slew rate select. If B0xA[7]= 0 at power up, the SLEWRATE_SEL pin<br>sets the default. After power up, the value can be changed via SMBus.<br>If B0xA[7]= 1 at startup, default=1<br>0 = Slow slew rate<br>1 = Fast slew rate     |
| 3         | clk3_slewrate | RW            | 0x1              | CLK3 slew rate select. If B0xA[7]= 0 at power up, the SLEWRATE_SEL pin<br>sets the default. After power up, the value can be changed via SMBus.<br>If B0xA[7]= 1 at startup, default=1<br>0 = Slow slew rate<br>1 = Fast slew rate     |



|           | OUTPUT_SLEW_RATE_7_0 Bit Field Descriptions |               |                  |                                                                                                                                                                                                                                    |  |  |
|-----------|---------------------------------------------|---------------|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Bit Field | Field Name                                  | Field<br>Type | Default<br>Value | Description                                                                                                                                                                                                                        |  |  |
| 2         | clk2_slewrate                               | RW            | 0x1              | CLK2 slew rate select. If B0xA[7]= 0 at power up, the SLEWRATE_SEL pin<br>sets the default. After power up, the value can be changed via SMBus.<br>If B0xA[7]= 1 at startup, default=1<br>0 = Slow slew rate<br>1 = Fast slew rate |  |  |
| 1         | clk1_slewrate                               | RW            | 0x1              | CLK1 slew rate select. If B0xA[7]= 0 at power up, the SLEWRATE_SEL pin<br>sets the default. After power up, the value can be changed via SMBus.<br>If B0xA[7]= 1 at startup, default=1<br>0 = Slow slew rate<br>1 = Fast slew rate |  |  |
| 0         | clk0_slewrate                               | RW            | 0x1              | CLK0 slew rate select. If B0xA[7]= 0 at power up, the SLEWRATE_SEL pin<br>sets the default. After power up, the value can be changed via SMBus.<br>If B0xA[7]= 1 at startup, default=1<br>0 = Slow slew rate<br>1 = Fast slew rate |  |  |

#### 4.6.15 LOW-LOW\_DETECT

CLKIN Low-Low Detect Enable Register.

|           | LOW-LOW_DETECT Bit Field Descriptions |               |                  |                                                                                                                                                                                                       |  |
|-----------|---------------------------------------|---------------|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Bit Field | Field Name                            | Field<br>Type | Default<br>Value | Description                                                                                                                                                                                           |  |
| 7:3       | reserved                              | RW            | 0x12             | Reserved                                                                                                                                                                                              |  |
| 2         | low_low_det_enable                    | RW            | 0x1              | Enable low-low detect circuit on CLKIN. Allows the device to detect a low-low condition on CLKIN and turn off the receiver. (Low-low is not a valid differential state).<br>0 = Disable<br>1 = Enable |  |
| 1:0       | reserved                              | RW            | 0x0              | Reserved                                                                                                                                                                                              |  |

## 4.6.16 RECEIVER\_CONTROL

CLKIN Configuration Register.

|           | RECEIVER_CONTROL Bit Field Descriptions |               |                  |                                                                                                                                                                                                                                                                                                                               |  |  |
|-----------|-----------------------------------------|---------------|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Bit Field | Field Name                              | Field<br>Type | Default<br>Value | Description                                                                                                                                                                                                                                                                                                                   |  |  |
| 7:2       | reserved                                | RW            | 0x0              | Reserved                                                                                                                                                                                                                                                                                                                      |  |  |
| 1         | ac_in                                   | RW            | 0x0              | AC-couple CLKIN. When AC-coupling CLKIN, set this bit to enable internal<br>bias circuitry on the CLKIN. This eliminates the need for external bias<br>components on the CLKIN side of the AC-coupling capacitor.<br>0 = Disable internal bias (DC-coupled)<br>1 = Enable internal bias (AC-coupled)                          |  |  |
| 0         | rx_term                                 | RW            | 0x0              | Enable internal termination for CLKIN. Applications requiring receiver<br>terminations may set this bit to enable termination resistors to ground on both<br>the CLKIN and CLKINb pins. PCIe applications generally require Rx_TERM to<br>be 0.<br>0 = Disable internal termination (PCIe)<br>1 = Enable internal termination |  |  |



#### 4.6.17 WRITE\_LOCK

Non-Clearable Write Lock Register.

|           | WRITE_LOCK Bit Field Descriptions |               |                  |                                                                                                                                                                                                                                                       |  |  |
|-----------|-----------------------------------|---------------|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Bit Field | Field Name                        | Field<br>Type | Default<br>Value | Description                                                                                                                                                                                                                                           |  |  |
| 7:1       | reserved                          | RW            | 0x0              | Reserved                                                                                                                                                                                                                                              |  |  |
| 0         | write_lock                        | RW            | 0x0              | Non-clearable SMBus write lock bit. When written to one, the SMBus registers cannot be written. They may be read. This bit can only be cleared by cycling power.<br>0 = SMBus writes are not prohibited by WRITE_LOCK<br>1 = SMBus locked for writing |  |  |

#### 4.6.18 WRITE\_LOCK\_LOS\_EVT

Clearable Write Lock and LOS Event Sticky Register.

|           | WRITE_LOCK_LOS_EVT Bit Field Descriptions      |      |     |                                                                                                                                                                                                                                                                     |  |
|-----------|------------------------------------------------|------|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Bit Field | t Field Field Name Field Default<br>Type Value |      |     | Description                                                                                                                                                                                                                                                         |  |
| 7:2       | reserved                                       | RW1C | 0x0 | Reserved                                                                                                                                                                                                                                                            |  |
| 1         | los_evt_rw1c                                   | RW1C | 0x0 | LOS event sticky bit. A 1 indicates that an LOS event occurred. The bit can be<br>cleared by writing a 1.<br>0 = No LOS event detected<br>1 = LOS event detected.                                                                                                   |  |
| 0         | write_lock_rw1c                                | RW1C | 0x0 | Clearable SMBus write lock bit. When written to one, the SMBus control<br>registers cannot be written. They may be read. This bit may be cleared by<br>writing a 1 to it.<br>0 = SMBus writes are not prohibited by WRITE_LOCK_RW1C<br>1 = SMBus locked for writing |  |



# 5. Applications Information

## 5.1 Inputs, Outputs, and Output Enable Control

The CLKIN/CLKINb inputs of the RC191xx devices have an internal bias network that prevents self-oscillation from floating input clock condition.

#### 5.1.1 Recommendations for Unused Inputs and Outputs

#### 5.1.1.1 Unused Single-ended Control Inputs

The single-ended control pins have internal pull-up and/or internal pull-down resistors and do not require external resistors. They can be left floating if the default pin state is the desired state. If external resistors are needed to change the pin state or are desired for design robustness, 10kohm is the recommended value.

#### 5.1.1.2 Unused Differential CLK Outputs

All unused CLK outputs can be left floating. Renesas recommends that no trace be attached to unused CLK outputs. While not required (but highly recommended), the best design practice is to disable unused CLK outputs. This is easily accomplished with the dedicated OEb pin for each output.

#### 5.1.1.3 Unused SMBus Clock and Data Pins

If the SMBus interface is not used, the clock and data pins must be pulled high with an external resistor. The two pins can share a resistor if there is no possibility of using the SMBus interface for debug purposes. If the interface might be used for debug, separate resistors must be used. 10kohm is the recommended value. The SMBus pins are 3.3V tolerant and may be used with a 3.3V pull-up voltage.

#### 5.1.2 Differential CLKIN Configurations

The RC191xx clock input buffer supports four configurations:

- Direct connection to HCSL-level clocks
- AC-coupled connection to LVDS-level clocks with *external* termination resistor
- Internal self-bias circuit for applications that *externally* AC-couple the input clock This feature is enabled by the AC\_IN bit.
- Internal pull-down resistors (Rp) to terminate the clock input at the receiver. This feature is enabled by the Rx\_TERM bit.

Devices with multiple input clocks have individual AC\_IN and Rx\_TERM configuration bits for each input. The internal input clock terminations prevent reflections and are useful for non-PCIe applications, where the frequency and transmission line length vary from the 100MHz PCIe standard.

The following table summarize the CLKIN configuration bit settings for the various configurations that are displayed in Figure 12 to Figure 15.

| Table 30. | CLKIN | Configuration | Bits |
|-----------|-------|---------------|------|
|-----------|-------|---------------|------|

| Configuration                     | AC_IN<br>B35[1] | RX_TERM<br>B35[0] | Notes                                                               |
|-----------------------------------|-----------------|-------------------|---------------------------------------------------------------------|
| HCSL Input Levels (PCIe Standard) | 0               | 0                 | Default Values                                                      |
| LVDS Input Levels                 | 1               | 0                 | Eliminates need for external bias circuit.<br>Must use external RT. |
| External AC-Coupling              | 1               | 0                 | Eliminates need for external bias circuit.                          |
| Receiver Termination              | 0               | 1                 | Prevents reflections for non-PCIe applications.                     |





Figure 12. HCSL Input Levels (PCIe Standard)



Figure 14. External AC-Coupling



Figure 13. LVDS Input Levels



Figure 15. Receiver Termination

#### 5.1.3 Differential CLK Output Configurations

#### 5.1.3.1 Direct-Coupled HCSL Loads

The RC191xx LP-HCSL CLK outputs have internal source terminations and directly drive industry-standard HCSL-level inputs with no external components. They support both 85 ohm and 100 ohm differential impedances. The CLK outputs can also drive receiver-terminated HCSL loads. The combination of source termination and receiver termination results in a double-terminated load. When double-terminated, the CLK output swing will be half of the source-terminated values.

#### 5.1.3.2 AC-Coupled non-HCSL Loads

The RC191xx CLK output can directly drive AC-coupling capacitors without any termination components. The clock input side of the AC-coupling capacitor may require an input-dependent bias network (BN). For examples of terminating the RC191xx CLK outputs to other logic families such as LVDS, LVPECL, or CML, see AN-891.

Figure 16 to Figure 19 show the various CLK output configurations.



Figure 16. Direct-Coupled Source-Terminated HCSL (ZOUT\_SEL\_tri = 0 or 1)





Figure 17. Direct-Coupled Double-Terminated HCSL



Figure 18. Receiver-Terminated Load (ZOUT\_SEL\_tri = M)



Figure 19. AC-Coupled Non-PCIe Load

#### 5.2 Power Down Tolerant Pins

Power Down Tolerant (PDT) pins can be driven even though VDD is not present (the device is not powered). There will be no ill effects to the device and it will power up normally. This feature supports disaggregation, where the RC191xx may be on one circuit board and devices that interface with it are on other boards. These boards may power up at different times, driving pins on the RC191xx before it has received power. See the pin descriptions to identify which pins are PDT. PDT pins are also 3.3V tolerant.

## 5.3 Flexible Startup Sequencing

RC191xx devices support Flexible Startup Sequencing (FSS). FSS allows application of CLKIN at different times in the device/system startup sequence. FSS is an additional feature that helps the system designer manage the impact of disaggregation. Table 31 shows the supported sequences; that is, the RC191xx devices can have CLKIN running before VDD is applied, and can have VDD applied and sit for extended periods with no input clock.

| VDD         | PWRGD_PWRDNb | CLKIN/CLKINb |
|-------------|--------------|--------------|
|             |              | Running      |
| Not present | X            | Floating     |
|             |              | Low/Low      |
|             |              | Running      |
| Present     | 0 or 1       | Floating     |
|             |              | Low/Low      |

| Table | 31  | Flexible  | Startun | Sec | nences |
|-------|-----|-----------|---------|-----|--------|
| lable | 51. | I IEVIDIE | Startup | Jey | uences |



## 5.4 Loss of Signal and Automatic Clock Parking

The RC191xx devices have a Loss of Signal (LOS) circuit to detect the presence or absence of an input clock. The LOS circuit drives the open-drain LOSb pin (the "b" suffix indicates "bar", or active-low) and sets the LOS\_EVT bit in the SMBus register space. CLKIN is represented differentially in Figure 20, which shows the LOSb de-assertion timing for the RC191xx clock buffers. LOSb defaults to low at power up.



Figure 20. LOSb De-assert Timing RC191xx Devices

The following diagram shows the LOSb assertion sequence when the CLKIN is lost. It also shows the Automatic Clock Parking (ACP) circuit bring the inputs to a Low/Low state after an LOS event. For exact timing, see Electrical Specifications.



Figure 21. LOSb Assert Timing

#### 5.5 Output Enable Control

The RC191xx buffer family provides two mechanisms to enable or disable clock outputs. All three mechanisms start and stop the output clocks in a synchronous, glitch-free manner. A clock output is enabled only when all mechanisms indicate "enabled." The following sections describe the mechanisms.

#### 5.5.1 SMBus Output Enable Bits

This section does not apply to the RC19102 because it does not have an SMBus.

The RC191xx clock buffer family has a traditional SMBus output enable bit for each output. The power-up default is 1, or enabled. Changing this bit to a 0 disables the output to a low/low state. The transitions between the enable and disable states are glitch-free in both directions.

*Note*: The glitch-free synchronization logic requires the CLKIN be running to enable or disable the outputs with this mechanism.

#### 5.5.2 Output Enable (OEb) Pins

The OEb (Note: the "b" suffix indicates "bar", or active-low) pins on the RC191xx family provide flexible CLKREQb functionality for PCIe slots and/or banked OE control for 'motherboard-down' devices (depending on the device). If



the OEb pin is low the controlled output is enabled. If the OEb pin is high, the controlled output is disabled to a low/low state. All OEb pins enable and disable the controlled outputs in a glitch-free, synchronous manner.

*Note*: The glitch-free synchronization logic requires the CLKIN be running to enable or disable the outputs with this mechanism.

## 6. Package Outline Drawings

The package outline drawings are located at the end of this document and are accessible from the Renesas website (see the package links in Ordering Information). The package information is the most current data available and is subject to change without revision of this document.

# 7. Marking Diagrams



RC19104A





# 8. Ordering Information

| Part Number        | Carrier Type              | Pin Function<br>Option | Number of<br>Outputs | Package                             | Temp. Range   |
|--------------------|---------------------------|------------------------|----------------------|-------------------------------------|---------------|
| RC19108AGND#BB0    | Тгау                      | - Slewrate Selection   |                      |                                     |               |
| RC19108AGND#KB0    | Tape and Reel (EIA-481-D) |                        | - 8                  | 5 × 5 mm, 0.4mm pitch,<br>40-VFQFPN | -40 to +105°C |
| RC19108A001GND#BB0 | Tray                      | Amplitude              |                      |                                     |               |
| RC19108A001GND#KB0 | Tape and Reel (EIA-481-D) | Selection              |                      |                                     |               |
| RC19104AGNL#BB0    | Тгау                      | Slewrate Selection     |                      |                                     |               |
| RC19104AGNL#KB0    | Tape and Reel (EIA-481-D) |                        | 4                    | 4 × 4 mm, 0.4mm pitch,<br>28-VFQFPN | -40 to +105°C |
| RC19104A001GNL#BB0 | Tray                      | Amplitude              |                      |                                     |               |
| RC19104A001GNL#KB0 | Tape and Reel (EIA-481-D) | Selection              |                      |                                     |               |
| RC19102AGNT#BD0    | Tray                      | NI/A                   | N/A 2                | 3 × 3 mm, 0.4mm<br>pitch, 20-VFQFPN | -40 to +105°C |
| RC19102AGNT#KD0    | Tape and Reel (EIA-481-D) |                        |                      |                                     |               |



# 9. Revision History

| Revision | Date         | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|----------|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.03     | Mar 27, 2025 | <ul> <li>Completed a minor re-arrangement of Features section.</li> <li>Corrected footnote 3 in Table 10.</li> <li>Update reference in footnote 2 of SMBus AC Electrical Characteristics from Version 3.1, dated 19 Mar, 2018 to Version 3.2, dated 12 Jan, 2022.</li> <li>Updated t<sub>HD:DAT</sub> to 0ns per SMBus Version 3.2.</li> <li>Added decimal values to Register Index.</li> <li>Changed all references 33ohm differential output impedance to 34ohm for consistency.</li> <li>Simplified Power Supply Current.</li> </ul> |
| 1.02     | Jan 31, 2025 | <ul> <li>Updated the binary values of [3:1] in SMBus Address Decode.</li> <li>Changed master/slave to host/target where appropriate.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                         |
| 1.01     | Nov 6, 2024  | <ul> <li>Added PCIe Gen7 information to Table 9 and Table 10. Also updated front page text accordingly.</li> <li>Corrected Table 11.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                         |
| 1.00     | Jul 31, 2024 | Initial release.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |





#### **Package Outline Drawing**

Package Code:NDG40P2 40-VFQFPN 5.0 x 5.0 x 0.9 mm Body, 0.4 mm Pitch PSC-4292-02, Revision: 02, Date Created: Aug 30, 2022





#### **Package Outline Drawing**

Package Code:NDG28P1 28-VFQFPN 4.0 x 4.0 x 0.9 mm Body, 0.4mm Pitch PSC-4249-01, Revision: 02, Date Created: Feb 06, 2024



# RENESAS

## **Package Outline Drawing**

Package Code:NDG20P2 20-VFQFPN 3.0 x 3.0 x 0.9 mm Body, 0.4mm Pitch PSC-4179-02, Revision: 02, Date Created: Jan 29, 2024



#### IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD-PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers who are designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only to develop an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third-party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising from your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

(Disclaimer Rev.1.01)

#### **Corporate Headquarters**

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com

#### Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

#### **Contact Information**

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit <u>www.renesas.com/contact-us/</u>.