RENESAS

RL78/G24

RENESAS MCU

Datasheet

R01DS0432EJ0120 Rev.1.20 Jan 17, 2025

High-performance with 48-MHz CPU operation on true low-power platform, 50-µA/MHz operating current, flexible application accelerator (FAA), enhanced timers and analog functions for motor control, digital power supply, and lighting applications, providing PMBus/SMBus, and DALI-2 communications, from 20 to 64 pins, 1.6- to 5.5-V operation

1. Outline

1.1 Features

Ultra-low power consumption technology

- VDD = single power supply voltage of 1.6 to 5.5 V
- HALT mode
- STOP mode
- High-speed wakeup from the STOP mode is possible.
- SNOOZE mode

RL78 CPU core

- CISC architecture with 3-stage pipeline
- The minimum instruction execution time can be changed from high to ultra-low speed.
- High speed: 0.02083 µs at 48 MHz operation with the high-speed on-chip oscillator clock or the PLL clock
- Ultra-low speed: 30.5 µs at 32.768 kHz operation with the subsystem clock
- Multiply/divide/multiply & accumulate instructions are supported.
- Address space: 1 Mbyte
- General-purpose registers: (8-bit register × 8) × 4 banks
- On-chip RAM: 12 Kbytes

FAA core

- Multiplication: 32-bit signed × 32-bit signed \rightarrow 32-bit signed
- Results of 64-bit multiplication can be right-shifted by a desired number of bits.
- Addition: 32-bit signed + 32-bit signed → 32-bit signed (internally calculated with 33-bit precision)
- Subtraction: 32-bit signed 32-bit signed → 32-bit signed (internally calculated with 33-bit precision)
- Limit operation: Operation parameter registers (33 bits × 4) in which upper and lower limits can be set.
- Operation parameter registers (32 bits × 6)
- Address pointer registers (12 bits × 6)
- On-chip code RAM: 4 Kbytes
- On-chip data RAM: 2 Kbytes
- Multiple interrupts available

• A 32-byte shared memory is included for sharing of data by the RL78 CPU and FAA core.

Divider

32-bit ÷ 32-bit = 32-bit unsigned

Code flash memory

- 64 or 128 Kbytes
- Block size: 2 Kbytes
- Security function: Prohibition of block erase and rewriting
- On-chip debugging
- Self-programming with boot swapping and flash shield window

Data flash memory

- 4 Kbytes
- Background operation (BGO): Instructions can be executed from the program memory while rewriting the data flash memory.
- Number of rewrites: 1,000,000 times (typ.)

High-speed on-chip oscillator

- Selectable from among 64 MHz, 48 MHz, 32 MHz, 24 MHz, 16 MHz, 12 MHz, 8 MHz, 6 MHz, 4 MHz, 3 MHz, 2 MHz, and 1 MHz
- High accuracy:

±1.0% (VDD = 1.8 to 5.5 V, TA = -20 to +85°C)

Middle-speed on-chip oscillator

• Selectable from among 4 MHz, 2 MHz, and 1 MHz with adjustability

Low-speed on-chip oscillator

• 32.768 kHz (typ.) with adjustability

Operating ambient temperature

- TA = -40 to +85°C (2D: Consumer applications)
- TA = -40 to +105°C (3C: Industrial applications)
- TA = -40 to +125°C (4C: Industrial applications)

- Power management and resetting
- Power-on-reset circuit (POR)
- Voltage detectors (LVD0 and LVD1)

Data transfer controller (DTC)

- Transfer modes: Normal transfer mode, repeat transfer mode, and block transfer mode
- Activated by interrupt sources
- Chain transfer

Event link controller (ELC)

• 34 event signals can be set up between specified peripheral functions.

Serial interfaces

- Two to six simplified SPIs (CSIsNote 1)
- Two to three UART/UART (LIN-bus supported) interfaces
- Two to six I²C/Simplified I²C interfaces
- Single digital addressable lighting interface (DALI)
- Single I²C (SM/PM bus) interface

Timers

- 16-bit timers:
 - 4-channel timer array unit (TAU)Single-channel timer RJ2-channel timer RD2 with PWMOPASingle-channel timer RG2Single-channel timer RX
- 32-bit interval timer:

Single channel in 32-bit counter mode Two channels in 16-bit counter mode Four channels in 8-bit counter mode

- Single-channel realtime clock: Counting of one second to 99 years, alarm interrupt, and clock correction
- Single-channel watchdog timer: Operates with the low-speed on-chip oscillator clock

- Three 16-bit timers KB30, KB31, and KB32: Two outputs each (up to six outputs),
 - rwo outputs each (up to six outputs),
 complementary output timers for power
 control, timer restart, smooth start,
 PWM output gating, dithering, fast and
 asynchronous forced output stop
 triggered by a comparator or external
 interrupt, single or interleaved power
 factor correction (PFC) control,
 maximum frequency limit, fixed off
 control, pulse characteristics
 measurement, multi-phase operation,
 output with 651-ps average resolution
 (operation at 96 MHz and with the
 dithering being applied)

A/D converter

- 8-/10-/12-bit resolution
- 12 to 23 analog input channels: Two of the channels are each connected to separate sample & hold circuits for use in simultaneous sampling.
- Internal reference voltage (1.48 V) and temperature sensor

D/A converter

- 8-/10-bit resolution (VDD = 2.7 to 5.5 V)
- Two to three analog output channels
- Output voltage: 0 V to VDD
- Realtime output

Comparator module

- Four channels
- The external reference voltage and the D/A converter output are selectable as the reference voltage.
- Time window output functioning with the timer array unit

Programmable gain amplifier

Single amplifier

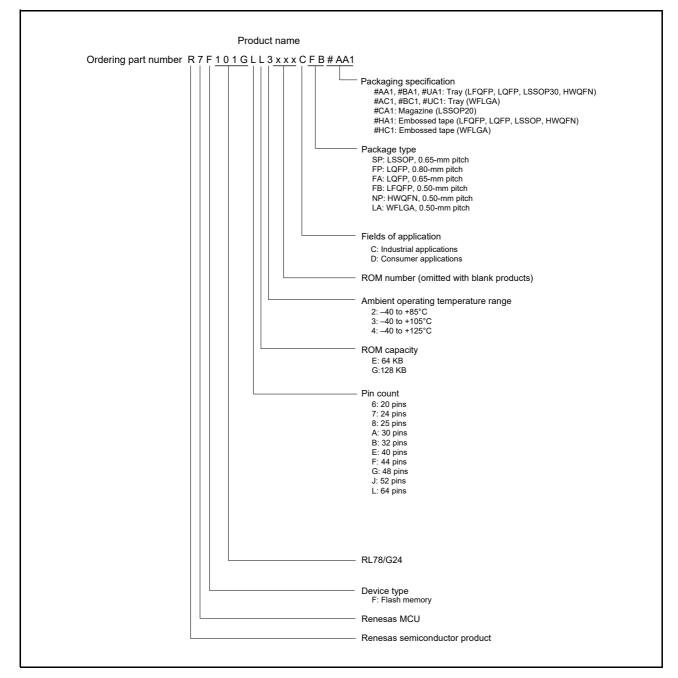
Input/output port pins

- Number of port pins: 26 to 120
- N-ch open drain I/O pins (withstand voltage of 6 V): 2 to 4
- N-ch open drain I/O pins (withstand voltage of VDDNote 2/withstand voltage of EVDDNote 3): 7 to 19
- Controlled current drive port pins: 2 to 8
- Can be set to N-ch open drain or TTL input buffer, and use of an on-chip pull-up resistor can be specified.
- Connectable to a device with different voltage (1.8, 2.5, or 3 V)

Others

- Key interrupt
- Clock output/buzzer output controller
- Binary-coded decimal (BCD) correction circuit
- Note 1. Although the CSI function is generally called SPI, it is also called CSI in this product, so it is referred to as such in this manual.
- Note 2. This applies to the 20- to 52-pin products.
- **Note 3.** This applies to the 64-pin products.
- Remark The functions mounted depend on the product. See 1.6 Outline of Functions.

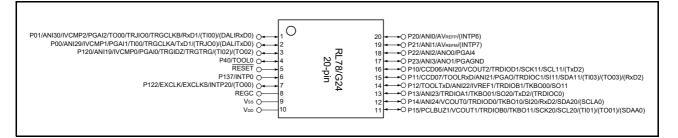
• ROM and RAM capacities


Code flash	Data				RL78/G24		
memory	flash memory	RAM	20 pins	24 pins	25 pins	30 pins	32 pins
128 KB	4 KB	12 KB	R7F101G6G	R7F101G7G	R7F101G8G	R7F101GAG	R7F101GBG
64 KB			R7F101G6E	R7F101G7E	R7F101G8E	R7F101GAE	R7F101GBE

Code flash	Data				RL78/G24		
memory	flash memory	RAM	40 pins	44 pins	48 pins	52 pins	64 pins
128 KB	4 KB	12 KB	R7F101GEG	R7F101GFG	R7F101GGG	R7F101GJG	R7F101GLG
64 KB			R7F101GEE	R7F101GFE	R7F101GGE	R7F101GJE	R7F101GLE

1.2 List of Part Numbers

<r></r>	Table 1 - 1	List of Ordering Part Numbers
---------	-------------	-------------------------------


Pin		Fields of	Ordering Part Number		
Count	Package	Application Note	Product Name	Packaging Specification	Renesas Code
20	20-pin plastic LSSOP (4.4 × 6.5 mm, 0.65-mm pitch)	С	R7F101G6G4CSP, R7F101G6E4CSP, R7F101G6G3CSP, R7F101G6E3CSP	#CA1, #HA1	PLSP0020JB-A
		D	R7F101G6G2DSP, R7F101G6E2DSP		
24	24-pin plastic HWQFN (4 × 4 mm, 0.50-mm pitch)	С	R7F101G7G4CNP, R7F101G7E4CNP, R7F101G7G3CNP, R7F101G7E3CNP	#AA1, #BA1, #UA1, #HA1	PWQN0024KG-A
		D	R7F101G7G2DNP, R7F101G7E2DNP		
25	25-pin plastic WFLGA	С	R7F101G8G3CLA, R7F101G8E3CLA	#AC1, #BC1,	PWLG0025KB-A
	(3 × 3 mm, 0.50-mm pitch)	D	R7F101G8G2DLA, R7F101G8E2DLA	- #UC1, #HC1	
30	30-pin plastic LSSOP (7.62 mm (300), 0.65-mm pitch)	С	R7F101GAG4CSP, R7F101GAE4CSP, R7F101GAG3CSP, R7F101GAE3CSP	#AA1, #BA1, #UA1, #HA1	PLSP0030JB-B
		D			
32	32-pin plastic HWQFN (5 × 5 mm, 0.50-mm pitch)	С	R7F101GBG4CNP, R7F101GBE4CNP, R7F101GBG3CNP, R7F101GBE3CNP	#AA1, #BA1, #UA1, #HA1	PWQN0032KE-A
		D	R7F101GBG2DNP, R7F101GBE2DNP		
	32-pin plastic LQFP	С	R7F101GBG3CFP, R7F101GBE3CFP	#AA1, #BA1,	PLQP0032GB-A
	(7 × 7 mm, 0.80-mm pitch)	D	R7F101GBG2DFP, R7F101GBE2DFP	#UA1, #HA1	
40	40-pin plastic HWQFN (6 × 6 mm, 0.50-mm pitch)	С	R7F101GEG4CNP, R7F101GEE4CNP, R7F101GEG3CNP, R7F101GEE3CNP	#AA1, #BA1, #UA1, #HA1	PWQN0040KD-A
		D	R7F101GEG2DNP, R7F101GEE2DNP		
44	44-pin plastic LQFP	С	R7F101GFG3CFP, R7F101GFE3CFP	#AA1, #BA1,	PLQP0044GC-A
	(10 × 10 mm, 0.80-mm pitch)	D	R7F101GFG2DFP, R7F101GFE2DFP	#UA1, #HA1	
48	48-pin plastic LFQFP (7 × 7 mm, 0.50-mm pitch)	С	R7F101GGG4CFB, R7F101GGE4CFB, R7F101GGG3CFB, R7F101GGE3CFB	#AA1, #BA1, #UA1, #HA1	PLQP0048KB-B
		D	R7F101GGG2DFB, R7F101GGE2DFB		
	48-pin plastic HWQFN	С	R7F101GGG3CNP, R7F101GGE3CNP	#AA1, #BA1,	PWQN0048KC-A
	(7 × 7 mm, 0.50-mm pitch)	D	R7F101GGG2DNP, R7F101GGE2DNP	- #UA1, #HA1	
52	52-pin plastic LQFP (10 × 10 mm, 0.65-mm pitch)	С	R7F101GJG4CFA, R7F101GJE4CFA, R7F101GJG3CFA, R7F101GJE3CFA	#AA1, #BA1, #UA1, #HA1	PLQP0052JA-A
		D	R7F101GJG2DFA, R7F101GJE2DFA		
64	64-pin plastic LQFP	С	R7F101GLG3CFA, R7F101GLE3CFA	#AA1, #BA1,	PLQP0064JA-A
	(12 × 12 mm, 0.65-mm pitch)	D	R7F101GLG2DFA, R7F101GLE2DFA	#UA1, #HA1	
	64-pin plastic LFQFP	С	R7F101GLG3CFB, R7F101GLE3CFB	#AA1, #BA1,	PLQP0064KB-C
	$10 \times 10 \text{ mm} = 0.50 \text{-mm} \text{ pitch}$	D	R7F101GLG2DFB, R7F101GLE2DFB	#UA1, #HA1	

Note For the fields of application, see Figure 1 - 1 Part Number, Memory Size, and Package of RL78/G24.

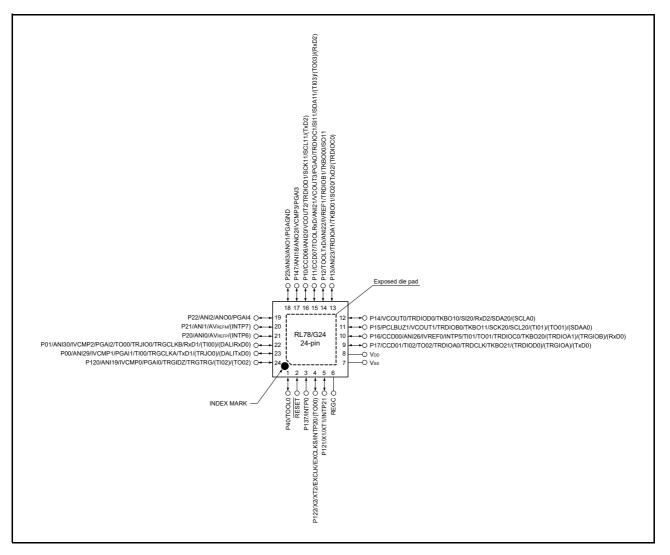
1.3 Pin Configuration (Top View)

1.3.1 20-pin products

• 20-pin plastic LSSOP (4.4 × 6.5 mm, 0.65-mm pitch)

Caution Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F).

- Remark 1. For pin identification, see 1.4 Pin Identification.
- Remark 2. Functions in parentheses in the above figure can be assigned via settings in the corresponding peripheral I/O redirection register (PIORx). Refer to Figure 7 8 Format of Peripheral I/O Redirection Register (PIOR0) to Figure 7 11 Format of Peripheral I/O Redirection Register (PIOR3) in the RL78/G24 User's Manual.



Pin Number	I	/0	bugging		Anal	og Circuits		HN	/Is			Tin	ners			Comm	nunication	s Interfaces
20LSSOP	Digital port	Controlled current drive port	Power supply, system clock, and debugging	A/D converter (ADC)	D/A converter (DAC)	Comparator (CMP)	Programmable gain amplifier (PGA)	Interrupt	Key interrupt	Timer array unit (TAU)	Timer RJ	Timer RD2	Timer RG2	16-bit timers KB30, KB31, and KB32	Realtime clock (RTC)	Serial array unit (SAU)	Serial interface IICA (IICA)	Digital addressable lighting interface (DALI)
1	P01	_	_	ANI30	_	IVCMP2	PGAI2	_	_	TO00/ (TI00)	TRJIO0	—	TRGCLKB		_	RxD1	_	(DALIRxD0)
2	P00	_	_	ANI29	_	IVCMP1	PGAI1	_	_	TI00	(TRJO0)	_	TRGCLKA			TxD1	_	(DALITxD0)
3	P120	_	_	ANI19	_	IVCMP0	PGAI0		_	(TI02)/ (TO02)	_	_	TRGIDZ/ TRGTRG	_	_	_	_	—
4	P40	_	TOOL0	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
5	_	_	RESET	_	_	_	_	_	_	_	_	_	_		_	_	_	_
6	P137	_		_	_		_	INTP0		_	_	_	_	_	_	_	_	_
7	P122	_	EXCLK/ EXCLKS	_	_	_	_	INTP20	_	(TO00)	_	_	—	_	_	_	_	—
8	_	_	REGC	_	_		_	_	_	_	_	_	_	_	_	_	_	_
9	_	_	Vss		_	_	_	_	_	_	_	_	_	_		_	_	_
10	_	_	Vdd	_		_	_	_					_				_	_
11	P15	_	PCLBUZ1	_		VCOUT1	_			(TI01)/ (TO01)		TRDIOB0	_	TKBO11		SCK20/ SCL20	(SDAA0)	
12	P14			ANI24	_	VCOUT0	_	_	_	_	_	TRDIOD0	_	ТКВО10	_	SI20/ RxD2/ SDA20	(SCLA0)	—
13	P13	_		ANI23	_				_	_	_	TRDIOA1/ (TRDIOC0)	_	TKBO01		SO20/ TxD2		—
14	P12	_	TOOLTxD	ANI22		IVREF1	_	_		_	_	TRDIOB1	_	TKBO00	_	SO11	_	_
15	P11	CCD07	TOOLRxD	ANI21	_		PGAO	_	_	(TI03)/ (TO03)	_	TRDIOC1	_	_	_	SI11/ SDA11/ (RxD2)	_	—
16	P10	CCD06		ANI20		VCOUT2	_					TRDIOD1	_			SCK11/ SCL11/ (TxD2)	_	_
17	P23	_	_	ANI3	ANO1	_	PGAGND	_	_	_	_	_	_	_	_	_	_	_
18	P22	_	_	ANI2	ANO0	_	PGAI4	_	_	_	_	_	_	—		_	—	_
19	P21	—		ANI1/ AVrefm	_			(INTP7)	_	_		_	_			-	_	_
20	P20	_		ANI0/ AVrefp			_	(INTP6)		_			_			_		—

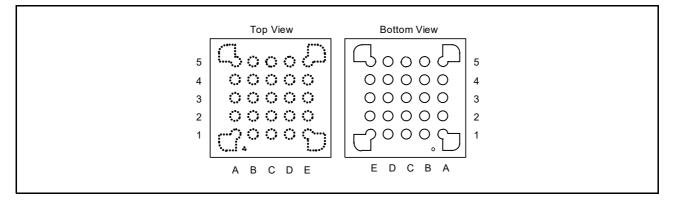
Table 1 - 2 Multiplexed Pin Functions of the 20-pin Products

1.3.2 24-pin products

• 24-pin plastic HWQFN (4 × 4 mm, 0.50-mm pitch)

Caution Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F).

- Remark 1. For pin identification, see 1.4 Pin Identification.
- Remark 2. Functions in parentheses in the above figure can be assigned via settings in the corresponding peripheral I/O redirection register (PIORx). Refer to Figure 7 8 Format of Peripheral I/O Redirection Register (PIOR0) to Figure 7 11 Format of Peripheral I/O Redirection Register (PIOR3) in the RL78/G24 User's Manual.
- **Remark 3.** For the product in a QFN package, we recommend soldering the exposed die pad onto a plated area of the printed circuit board that has no electrical connections.



Pin Number	1	1/0	bugging		Anal	og Circuits		н	/Is			Tin	ners			Comm	unications	s Interfaces
24HWQFN	Digital port	Controlled current drive port	Power supply, system clock, and debugging	A/D converter (ADC)	D/A converter (DAC)	Comparator (CMP)	Programmable gain amplifier (PGA)	Interrupt	Key interrupt	Timer array unit (TAU)	Timer RJ	Timer RD2	Timer RG2	16-bit timers KB30, KB31, and KB32	Reattime clock (RTC)	Serial array unit (SAU)	Serial interface IICA (IICA)	Digital addressable lighting interface (DALI)
1	P40	_	TOOL0	_		_	_	_	_	—	_	_	_	_	_	_	_	_
2	_	_	RESET				_			—	_	_	_	_	_	_		_
3	P137		_	_		_	_	INTP0	_	_	_	_	_	_	_	_	_	_
4	P122		X2/XT2/ EXCLK/ EXCLKS	_			_	INTP20		(TO00)	_	_	_	_	_	_	_	—
5	P121	_	X1/XT1	_		_	_	INTP21		_	_	_	_	_	_	_	_	_
6	_		REGC	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
7	_		Vss		_	_	_			_	_	_	_	_		_		_
8	_	_	Vdd	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
9	P17	CCD01		_	_		_	_		TI02/ TO02	_	TRDIOA0/ (TRDIOD0)/ TRDCLK	(TRGIOA)	TKBO21	_	(TxD0)	_	—
10	P16	CCD00	_	ANI26	—	IVREF0	_	INTP5	—	TI01/ TO01	_	TRDIOC0/ (TRDIOA1)	(TRGIOB)	ТКВО20	_	(RxD0)	_	_
11	P15	_	PCLBUZ1	_	_	VCOUT1	_	_	_	(TI01)/ (TO01)	—	TRDIOB0	_	TKBO11	_	SCK20/ SCL20	(SDAA0)	_
12	P14	_	_	_		VCOUT0	_	_		_	_	TRDIOD0	_	ТКВО10	_	SI20/ RxD2/ SDA20	(SCLA0)	_
13	P13	_	_	ANI23	_	_	_	_	—	_	—	TRDIOA1/ (TRDIOC0)	_	TKBO01	_	SO20/ TxD2	_	—
14	P12	_	TOOLTxD	ANI22		IVREF1	_	_	_	—	_	TRDIOB1	_	TKBO00	_	SO11	_	—
15	P11	CCD07	TOOLRxD	ANI21		VCOUT3	PGAO	_		(TI03)/ (TO03)	_	TRDIOC1	_	_	_	SI11/ SDA11/ (RxD2)	_	_
16	P10	CCD06	_	ANI20		VCOUT2	_	_			_	TRDIOD1	_	_	_	SCK11/ SCL11/ (TxD2)	_	_
17	P147		_	ANI18	ANO2	IVCMP3	PGAI3	_		_	_	_	_	_	_	_	_	_
18	P23	_	_	ANI3	ANO1	_	PGAGND	_	_	_	_	_	_	_	_	_	_	_
19	P22	_	_	ANI2	ANO0	_	PGAI4	_	_	_	_	_	_	_	_	_	_	_
20	P21	_	_	ANI1/ AVrefm	_	_	_	(INTP7)	_	_	_	_	—	_	_	_	_	—
21	P20	_	_	ANI0/ AVREFP	_	_	_	(INTP6)	_	_	<u> </u>	_	_			_	_	—
22	P01	_	_	ANI30	_	IVCMP2	PGAI2	_	_	TO00/ (TI00)	TRJIO0	-	TRGCLKB	_	_	RxD1	_	(DALIRxD0)
23	P00	_	_	ANI29	_	IVCMP1	PGAI1	_		T100	(TRJO0)	_	TRGCLKA	<u> </u>		TxD1		(DALITxD0)
24	P120	_	_	ANI19	_	IVCMP0	PGAI0	—	—	(TI02)/ (TO02)	—	_	TRGIDZ/ TRGTRG	—	_	_	—	—

Table 1 - 3 Multiplexed Pin Functions of the 24-pin Products

1.3.3 25-pin products

• 25-pin plastic WFLGA (3 × 3 mm, 0.50-mm pitch)

	А	В	С	D	E
5	P40/TOOL0	RESET	P01/ANI30/IVCMP2/PGAI2/ TO00/TRJIO0/TRGCLKB/ RxD1/(TI00)/(DALIRxD0)	P22/ANI2/ANO0/PGAI4	P147/ANI18/ANO2/ IVCMP3/PGAI3
4	P122/X2/XT2/EXCLK/ EXCLKS/INTP20/(TO00)	P137/INTP0	P00/ANI29/IVCMP1/PGAI1/ TI00/TRGCLKA/TxD1/ (TRJO0)/(DALITxD0)	P21/ANI1/AVREFM/(INTP7)	P10/CCD06/ANI20/ VCOUT2/TRDIOD1/SCK11/ SCL11/(TxD2)
3	P121/X1/XT1/INTP21	VDD	P20/ANI0/AVREFP/(INTP6)	P12/TOOLTxD/ANI22/ IVREF1/TRDIOB1/ TKBO00/SO11	P11/CCD07/TOOLRxD/ ANI21/VCOUT3/PGAO/ TRDIOC1/SI11/SDA11/ (TI03)/(TO03)/(RxD2)
2	REGC	Vss	P23/ANI3/ANO1/PGAGND	P14/ANI24/VCOUT0/ TRDIOD0/TKBO10/SI20/ RxD2/SDA20/(SCLA0)	P13/ANI23/TRDIOA1/ TKB001/S020/TxD2/ (TRDIOC0)
1	P17/CCD01/ANI27/TI02/ TO02/TRDIOA0/TRDCLK/ TKB021/(TRDIOD0)/ (TRGIOA)/(TxD0)	P16/CCD00/ANI26/ IVREF0/INTP5/TI01/TO01/ TRDIOC0/TKBO20/ (TRDIOA1)/(TRGIOB)/ (RxD0)	P120/ANI19/IVCMP0/ PGAI0/TRGIDZ/TRGTRG/ (TI02)/(TO02)	P15/PCLBUZ1/ANI25/ VCOUT1/TRDIOB0/ TKBO11/SCK20/SCL20/ (TI01)/(TO01)/(SDAA0)	P130

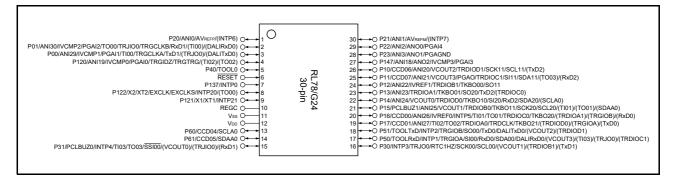

Pin Number	1	I/O E Analog Circuits						HN	/Is			Tin	ners			Comm	unications	s Interfaces
25WFLGA	Digital port	Controlled current drive port	Power supply, system clock, and debugging	A/D converter (ADC)	D/A converter (DAC)	Comparator (CMP)	Programmable gain amplifier (PGA)	Interrupt	Key interrupt	Timer array unit (TAU)	Timer RJ	Timer RD2	Timer RG2	16-bit timers KB30, KB31, and KB32	Realtime clock (RTC)	Serial array unit (SAU)	Serial interface IICA (IICA)	Digital addressable lighting interface (DALI)
A1	P17	CCD01	_	ANI27			_	_		TI02/ TO02	_	TRDIOA0/ (TRDIOD0)/ TRDCLK	(TRGIOA)	TKBO21	_	(TxD0)	_	_
A2	_	_	REGC	_	_	_	_	_	_	-	_	_	_	_	_	_	_	_
A3	P121		X1/XT1		_	_	_	INTP21	_	_	_	_	_	_	_	_	_	_
A4	P122	_	X2/XT2/ EXCLK/ EXCLKS	_	_	_	_	INTP20	_	(TO00)	_	_	_	_	_	_	_	-
A5	P40	_	TOOL0	_	_		_	_	_	_	_	_	_	_	_	_	_	_
B1	P16	CCD00	—	ANI26	—	IVREF0	_	INTP5	_	TI01/ TO01		TRDIOC0/ (TRDIOA1)	(TRGIOB)	TKBO20	—	(RxD0)	_	—
B2	_	_	Vss	_	_	_	_	_	_	_	_	—	_	_	_	_	_	_
В3	_		Vdd		_					<u> </u>								_
B4	P137		_	_	_	_	_	INTP0	_	<u> </u>	_	_		_		_	_	_
B5	—	_	RESET	_	_		_	_	_	-	_	_	_	_	_	—	_	—
C1	P120	_	—	ANI19	_	IVCMP0	PGAI0		_	(TI02)/ (TO02)		_	TRGIDZ/ TRGTRG			_	_	—
C2	P23	_		ANI3	ANO1	_	PGAGND	_	_	<u> </u>		_	_	_			_	-
C3	P20	_	_	ANI0/ AVrefp	_	_	_	(INTP6)	_	-	_	_	_	_	_	_	_	—
C4	P00	_	_	ANI29	_	IVCMP1	PGAI1		_	TI00	(TRJO0)	_	TRGCLKA	_	_	TxD1	_	(DALITxD0)
C5	P01	_		ANI30			PGAI2	_		TO00/ (TI00)	TRJIO0		TRGCLKB			RxD1	_	(DALIRxD0)
D1	P15		PCLBUZ1	ANI25		VCOUT1	-	_		(TI01)/ (TO01)	_	TRDIOB0		TKBO11	_	SCL20	(SDAA0)	_
D2	P14	_	_	ANI24		VCOUT0	_	_	_	_	_	TRDIOD0	_	TKBO10	_	SI20/ RxD2/ SDA20	(SCLA0)	_
D3	P12	_	TOOLTxD	ANI22	_	IVREF1		_		<u> </u>		TRDIOB1	_	ТКВО00		SO11		_
D4	P21	_	_	ANI1/ AVrefm	_	_	-	(INTP7)	_	-	_	_	_	_	_	-	_	_
D5	P22	_	_	ANI2	ANO0		PGAI4		_	_	_	_	_	_	_	—	_	_
E1	P130				_		_	_	_	<u> </u>			_		_	—		_
E2	P13	_	_	ANI23	_	_	-	_	_	_	_	TRDIOA1/ (TRDIOC0)	_	TKBO01		SO20/ TxD2	_	—
E3	P11	CCD07	TOOLRxD	ANI21		VCOUT3	PGAO	_	_	(TI03)/ (TO03)	_	TRDIOC1		_	_	SI11/ SDA11/ (RxD2)	_	—
E4	P10	CCD06		ANI20		VCOUT2	_	_	_	_		TRDIOD1	_		_	SCK11/ SCL11/ (TxD2)	_	_
E5	P147			ANI18	ANO2	IVCMP3	PGAI3		_	_						_		_

Table 1 - 4 Multiplexed Pin Functions of the 25-pin Products

1.3.4 30-pin products

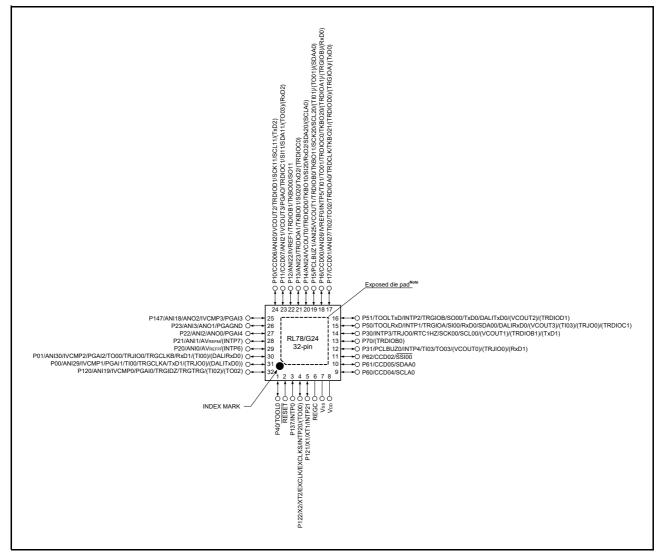
• 30-pin plastic LSSOP (7.62 mm (300), 0.65-mm pitch)

Caution Connect the REGC pin to Vss via a capacitor (0.47 to 1 µF).

- Remark 1. For pin identification, see 1.4 Pin Identification.
- Remark 2. Functions in parentheses in the above figure can be assigned via settings in the corresponding peripheral I/O redirection register (PIORx). Refer to Figure 7 8 Format of Peripheral I/O Redirection Register (PIOR0) to Figure 7 11 Format of Peripheral I/O Redirection Register (PIOR3) in the RL78/G24 User's Manual.

Tab	Fable 1 - 5 Multiplexed Pin Functions of the 30-pin							J-pin Products (1/2)										
Pin Number	1	I/O	bugging		Anal	og Circuits		н	Als			Tin	ners			Comm	unications	Interfaces
30LSSOP	Digital port	Controlled current drive port	Power supply, system clock, and debugging	A/D converter (ADC)	D/A converter (DAC)	Comparator (CMP)	Programmable gain amplifier (PGA)	Interrupt	Key interrupt	Timer array unit (TAU)	Timer RJ	Timer RD2	Timer RG2	16-bit timers KB30, KB31, and KB32	Reattime clock (RTC)	Serial array unit (SAU)	Serial interface IICA (IICA)	Digital addressable lighting interface (DALI)
1	P20	_	_	ANI0/ AVrefp	_	—	_	(INTP6)	_	-	_	_	—	_	_	_	_	-
2	P01	_		ANI30	_	IVCMP2	PGAI2	_	_	TO00/ (TI00)	TRJIO0	_	TRGCLKB	_	_	RxD1	_	(DALIRxD0)
3	P00	_	_	ANI29	_	IVCMP1	PGAI1	_	_	TI00	(TRJO0)	_	TRGCLKA	_	_	TxD1	_	(DALITxD0)
4	P120	_	_	ANI19	_	IVCMP0	PGAI0	_	_	(TI02)/ (TO02)	_	_	TRGIDZ/ TRGTRG	_	_	_	_	_
5	P40		TOOL0	_	_		_	_		_		_	_	_	_	_	_	_
6	_	_	RESET	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
7	P137		_	_	_		_	INTP0		_		_	_			_	_	_
8	P122		X2/XT2/ EXCLK/ EXCLKS	_	—	_	_	INTP20	_	(TO00)	_	_	—	_	_	_	_	_
9	P121		X1/XT1	_	_		_	INTP21		_			_	_	_	_	_	_
10	_	_	REGC	_	_	_	_	_	_	_	_		_	_	_	_	_	_
11	—		Vss		—	_	_	_			_	—	_	_	_	_	_	_
12	—		Vdd	_	_	_	_	_			_		_	_	_	_	_	_
13	P60	CCD04	_	_	_	_	_	—	—	_	_	—	_	—	—	—	SCLA0	_
14	P61	CCD05	_	_	—	_	_	_	_	_	_	—	_	_	_	_	SDAA0	_
15	P31		PCLBUZ0	—		(VCOUT0)	_	INTP4		TI03/ TO03	(TRJIO0)		—	—	_	SSI00/ (RxD1)	_	_
16	P30			_	_	(VCOUT1)	_	INTP3		_	TRJO0	(TRDIOB1)	_	_	RTC1HZ	SCK00/ SCL00/ (TxD1)	_	_
17	P50	_	TOOLRxD	_		(VCOUT3)	_	INTP1		(TI03)	(TRJO0)	(TRDIOC1)	TRGIOA	_	_	SI00/ RxD0/ SDA00	_	DALIRxD0
18	P51		TOOLTxD	_	_	(VCOUT2)	_	INTP2		_	_	(TRDIOD1)	TRGIOB	_	_	SO00/ TxD0	_	DALITxD0
19	P17	CCD01		ANI27		_		_		TI02/ TO02	_	TRDIOA0/ (TRDIOD0)/ TRDCLK	(TRGIOA)	TKBO21	_	(TxD0)	_	-
20	P16	CCD00		ANI26		IVREF0	_	INTP5	_	TI01/ TO01	_	TRDIOC0/ (TRDIOA1)	(TRGIOB)	ТКВО20	_	(RxD0)	_	-
21	P15	_	PCLBUZ1	ANI25	_	VCOUT1	_	_	_	(TI01)/ (TO01)	_	TRDIOB0	_	TKBO11	_	SCK20/ SCL20	(SDAA0)	-
22	P14	_	—	ANI24	_	VCOUT0		_	_	_	_	TRDIOD0	—	ТКВО10	_	SI20/ RxD2/ SDA20	(SCLA0)	_
23	P13	_	_	ANI23	—	_	_		—	_	_	TRDIOA1/ (TRDIOC0)	_	TKBO01		SO20/ TxD2	_	—
24	P12	_	_	ANI22	_	IVREF1	_	_				TRDIOB1	_	ткво00		SO11	_	_
25	P11	CCD07		ANI21	_	VCOUT3	PGAO	_		(TO03)	_	TRDIOC1	_			SI11/ SDA11/ (RxD2)	_	_
26	P10	CCD06		ANI20	_	VCOUT2		_		_	_	TRDIOD1	_	_	_	SCK11/ SCL11/ (TxD2)	_	_

 Table 1 - 5
 Multiplexed Pin Functions of the 30-pin Products (1/2)


 Table 1 - 5
 Multiplexed Pin Functions of the 30-pin Products (2/2)

<R>

1.3.5 32-pin products

- 32-pin plastic HWQFN (5 × 5 mm, 0.50-mm pitch)
- 32-pin plastic LQFP (7 × 7 mm, 0.80-mm pitch)

Note The 32-pin plastic LQFP (7 × 7 mm, 0.80-mm pitch) products do not have an exposed die pad.

Caution Connect the REGC pin to Vss via a capacitor (0.47 to 1 µF).

- Remark 1. For pin identification, see 1.4 Pin Identification.
- Remark 2. Functions in parentheses in the above figure can be assigned via settings in the corresponding peripheral I/O redirection register (PIORx). Refer to Figure 7 8 Format of Peripheral I/O Redirection Register (PIOR0) to Figure 7 11 Format of Peripheral I/O Redirection Register (PIOR3) in the RL78/G24 User's Manual.
- **Remark 3.** For the product in a QFN package, we recommend soldering the exposed die pad onto a plated area of the printed circuit board that has no electrical connections.

Pin Number	I/O E Analog Circuits							HN	/Is			Tin	ners			Comm	nunication	s Interfaces
32HWQFN, 32LQFP	Digital port	Controlled current drive port	Power supply, system clock, and debugging	A/D converter (ADC)	D/A converter (DAC)	Comparator (CMP)	Programmable gain amplifier (PGA)	Interrupt	Key interrupt	Timer array unit (TAU)	Timer RJ	Timer RD2	Timer RG2	16-bit timers KB30, KB31, and KB32	Realtime clock (RTC)	Serial array unit (SAU)	Serial interface IICA (IICA)	Digital addressable lighting interface (DALI)
1	P40	_	TOOL0			_		_		—	_	_	_	_	_	_	_	_
2	_		RESET	_	_		_			_		_	_			_	_	_
3	P137	_	_	_	_		_	INTP0				_	_	_	_	_	_	_
4	P122		X2/XT2/ EXCLK/ EXCLKS	_				INTP20		(TO00)	_		_			_	_	_
5	P121	_	X1/XT1	_	_		_	INTP21	_		_	_	_	_		_	_	—
6	_	_	REGC	_	_	_	_		_	_	_	_	_	_	_			_
7		_	Vss	_	—	_	_	_	_				_			-	<u> </u>	
8	—	_	Vdd	_	_		_					_	_					_
9	P60	CCD04	_	_	_	_	_	_	—	_	_	_	_	—	_		SCLA0	_
10	P61	CCD05	_	_	_			_		_		_	_	_	_		SDAA0	_
11	P62	CCD02	_	_	_	_	_			_		_	_	_	_	SSI00	_	—
12	P31	_	PCLBUZ0		_	(VCOUT0)	_	INTP4	_	TI03/ TO03	(TRJIO0)	_	—	_	—	(RxD1)	_	—
13	P70	_	_	_	_		_	_	_	_	_	(TRDIOB0)	_	_	_		_	_
14	P30	_		_		(VCOUT1)		INTP3			TRJO0	(TRDIOB1)			RTC1HZ	SCK00/ SCL00/ (TxD1)		
15	P50	_	TOOLRxD	_		(VCOUT3)	_	INTP1	_	(TI03)	(TRJO0)	(TRDIOC1)	TRGIOA	_	_	SI00/ RxD0/ SDA00	_	DALIRxD0
16	P51	_	TOOLTxD	_	_	(VCOUT2)		INTP2		_	_	(TRDIOD1)	TRGIOB	_	_	SO00/ TxD0	_	DALITxD0
17	P17	CCD01	_	ANI27				_		TI02/ TO02	_	TRDIOA0/ (TRDIOD0)/ TRDCLK	(TRGIOA)	TKBO21	_	(TxD0)	_	_
18	P16	CCD00		ANI26	_	IVREF0		INTP5	—	TI01/ TO01	_	TRDIOC0/ (TRDIOA1)	(TRGIOB)	TKBO20		(RxD0)	—	_
19	P15	_	PCLBUZ1	ANI25	_	VCOUT1			_	(TI01)/ (TO01)	_	TRDIOB0	_	ТКВО11	_	SCK20/ SCL20	(SDAA0)	_
20	P14	_		ANI24		VCOUT0		_		_	_	TRDIOD0	—	ТКВО10	_	SI20/ RxD2/ SDA20	(SCLA0)	—
21	P13		_	ANI23				_	_			TRDIOA1/ (TRDIOC0)	_	TKBO01		SO20/ TxD2	_	_
22	P12		—	ANI22		IVREF1		_			_	TRDIOB1	_	ткво00		SO11	-	_
23	P11	CCD07	_	ANI21		VCOUT3	PGAO	_		(TO03)		TRDIOC1	_	_	_	SI11/ SDA11/ (RxD2)	_	—
24	P10	CCD06		ANI20		VCOUT2	_	_			_	TRDIOD1	—	_	_	SCK11/ SCL11/ (TxD2)	_	_
25	P147		_	ANI18	ANO2	IVCMP3	PGAI3	_		_	_	_	_	_	_	_	_	_
26	P23	_		ANI3	ANO1		PGAGND	_		_	_				_	_		
27	P22	_	_	ANI2	ANO0	_	PGAI4	_	L	L	_	_	_	_	_	L	_	_

 Table 1 - 6
 Multiplexed Pin Functions of the 32-pin Products (1/2)

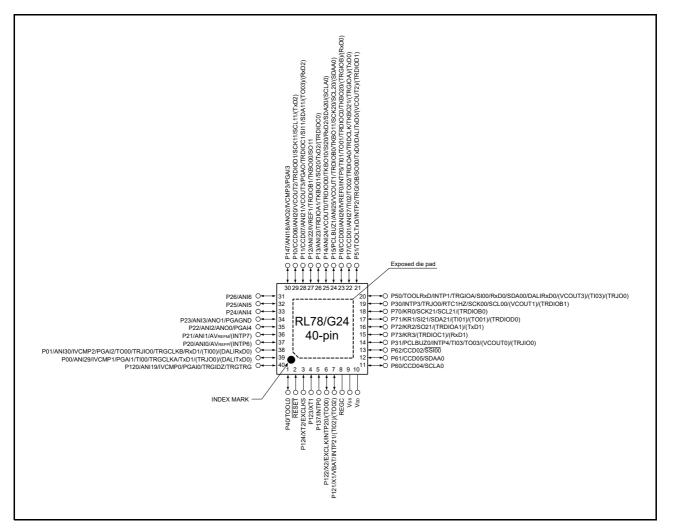

Pin Number	I	/0	and debugging		Anal	og Circuits		HN	lls			Tin		Comm	unication	s Interfaces		
32HWQFN, 32LQFP	Digital port	Controlled current drive port	Power supply, system clock, and de	A/D converter (ADC)	D/A converter (DAC)	Comparator (CMP)	Programmable gain amplifier (PGA)	Interrupt	Key interrupt	Timer array unit (TAU)	Timer RJ	Timer RD2	Timer RG2	16-bit timers KB30, KB31, and KB32	Realtime clock (RTC)	Serial array unit (SAU)	Serial interface IICA (IICA)	Digital addressable lighting interface (DALI)
28	P21	_	_	ANI1/ AVrefm	_	_	_	(INTP7)		_	_	_	—			_		—
29	P20		_	ANI0/ AVrefp	_	_	_	(INTP6)	_		_	_	_			_	_	—
30	P01		_	ANI30	_	IVCMP2	PGAI2	_	_	TO00/ (TI00)	TRJIO0	_	TRGCLKB	_		RxD1	_	(DALIRxD0)
31	P00		_	ANI29	_	IVCMP1	PGAI1	_		T100	(TRJO0)	_	TRGCLKA			TxD1	_	(DALITxD0)
32	P120	_	_	ANI19	_	IVCMP0	PGAI0	_	_	(TI02)/ (TO02)	_		TRGIDZ/ TRGTRG		_	_	_	_

 Table 1 - 6
 Multiplexed Pin Functions of the 32-pin Products (2/2)

1.3.6 40-pin products

• 40 -pin plastic HWQFN (6 × 6 mm, 0.50-mm pitch)

Caution Connect the REGC pin to Vss via a capacitor (0.47 to 1 µF).

Remark 1. For pin identification, see 1.4 Pin Identification.

- Remark 2. Functions in parentheses in the above figure can be assigned via settings in the corresponding peripheral I/O redirection register (PIORx). Refer to Figure 7 8 Format of Peripheral I/O Redirection Register (PIOR0) to Figure 7 11 Format of Peripheral I/O Redirection Register (PIOR3) in the RL78/G24 User's Manual.
- **Remark 3.** For the product in a QFN package, we recommend soldering the exposed die pad onto a plated area of the printed circuit board that has no electrical connections.

Pin Number	I	1/0	bugging		Anal	log Circuits		HN	Als			Tin	ners			Comm	unications	s Interfaces
40HWQFN	Digital port	Controlled current drive port	Power supply, system clock, and debugging	A/D converter (ADC)	D/A converter (DAC)	Comparator (CMP)	Programmable gain amplifier (PGA)	Interrupt	Key interrupt	Timer array unit (TAU)	Timer RJ	Timer RD2	Timer RG2	16-bit timers KB30, KB31, and KB32	Realtime clock (RTC)	Serial array unit (SAU)	Serial interface IICA (IICA)	Digital addressable lighting interface (DALI)
1	P40		TOOL0		—	_		_		_		—	_	_		-	_	—
2	—	_	RESET	_	—	_	_	_	_	_	_	_	_	_	_		_	—
3	P124		XT2/ EXCLKS	_	—	—	_		_		_	_	—		_	_	_	—
4	P123	_	XT1	_	—	_	_	_	_	_	_	_	_	_	_		_	—
5	P137		_	_		-		INTP0		<u> </u>	_	_	_	_	_	<u> </u>	_	_
6	P122		X2/EXCLK	_		-	_	INTP20		(TO00)	_		_	_	_		_	_
7	P121		X1/VBAT	_	_	_	_	INTP21		(TI02)/ (TO02)	_	_	—			_	_	_
8	—		REGC		—	_		_		_		—	_	_		-	_	—
9	—	_	Vss	_	—	_	_	_		_	_	_	_	_	_		_	_
10	—	_	Vdd	_	—	_	_	_		_	_	—	_	_	_		_	_
11	P60	CCD04	_	_	—	_	_	_		_		—	_	_	_		SCLA0	_
12	P61	CCD05	_	_	_	_	_	_		_	_	_	_	_	_		SDAA0	_
13	P62	CCD02	_		_	_	_	_		_			_			SSI00	—	_
14	P31		PCLBUZ0	_		(VCOUT0)	_	INTP4	_	TI03/ TO03	(TRJIO0)	_	—		_	_	_	—
15	P73		_	_	_	_	_	_	KR3	_		(TRDIOC1)	_	_	_	(RxD1)	_	_
16	P72	_	_	_	_	_	_	_	KR2		_	(TRDIOA1)	_		_	SO21/ (TxD1)	_	—
17	P71	_	_	_	_	_	_	_	KR1	(TI01)/ (TO01)	_	(TRDIOD0)	_	_	_	SI21/ SDA21	_	—
18	P70			—	_	_	_	_	KR0	_	_	(TRDIOB0)	_	—	_	SCK21/ SCL21	—	_
19	P30				_	(VCOUT1)		INTP3			TRJO0	(TRDIOB1)	—		RTC1HZ	SCK00/ SCL00		—
20	P50	_	TOOLRxD	_		(VCOUT3)	_	INTP1	_	(TI03)	(TRJO0)	_	TRGIOA	_	_	SI00/ RxD0/ SDA00	_	DALIRxD0
21	P51	_	TOOLTxD	_	_	(VCOUT2)	_	INTP2	_	_	_	(TRDIOD1)	TRGIOB	_	_	SO00/ TxD0	_	DALITxD0
22	P17	CCD01	_	ANI27	_	_			_	TI02/ TO02	_	TRDIOA0/ TRDCLK	(TRGIOA)	TKBO21	_	(TxD0)	—	—
23	P16	CCD00	_	ANI26	—	IVREF0		INTP5	_	TI01/ TO01	_	TRDIOC0	(TRGIOB)	ТКВО20	_	(RxD0)	_	_
24	P15	_	PCLBUZ1	ANI25	—	VCOUT1			—	—	_	TRDIOB0	_	TKBO11		SCK20/ SCL20	(SDAA0)	—
25	P14			ANI24		VCOUT0		_				TRDIOD0	_	ТКВО10		SI20/ RxD2/ SDA20	(SCLA0)	_
26	P13	_	_	ANI23	-	_	_		_	_	_	TRDIOA1/ (TRDIOC0)	_	TKBO01	_	SO20/ TxD2	_	_
27	P12	_	_	ANI22		IVREF1	_	_		_	_	TRDIOB1		ткво00	_	SO11	_	_
28	P11	CCD07	_	ANI21		VCOUT3	PGAO			(TO03)		TRDIOC1				SI11/ SDA11/ (RxD2)	_	_

 Table 1 - 7
 Multiplexed Pin Functions of the 40-pin Products (1/2)

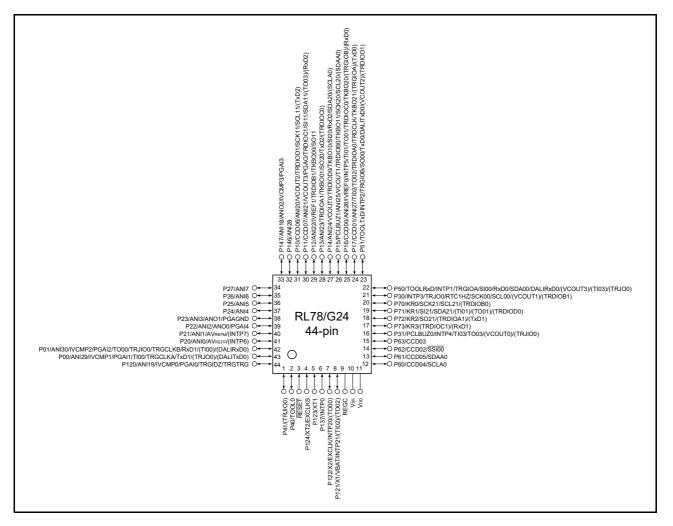

Pin Number	1	1/0	bugging		Anal	og Circuits	-	HN	Als		-	Tin	ners			Comm	unication	s Interfaces
40HWQFN	Digital port	Controlled current drive port	Power supply, system clock, and debugging	A/D converter (ADC)	D/A converter (DAC)	Comparator (CMP)	Programmable gain amplifier (PGA)	Interrupt	Key interrupt	Timer array unit (TAU)	Timer RJ	Timer RD2	Timer RG2	16-bit timers KB30, KB31, and KB32	Realtime clock (RTC)	Serial array unit (SAU)	Serial interface IICA (IICA)	Digital addressable lighting interface (DALI)
29	P10	CCD06	_	ANI20	_	VCOUT2	_	_		_	_	TRDIOD1	_		_	SCK11/ SCL11/ (TxD2)	_	—
30	P147		_	ANI18	ANO2	IVCMP3	PGAI3	_			_			_		—	_	—
31	P26		_	ANI6	_	_	_	_			_	_	_	_	_	_	_	_
32	P25	_	_	ANI5		_	_		_	_	_	_	_	_	_	_		—
33	P24			ANI4		_		_	_		_	_	_			_		—
34	P23	_	_	ANI3	ANO1	_	PGAGND	_	_	_	_	_	_	_	_	_	_	_
35	P22	_	_	ANI2	ANO0	_	PGAI4							_		_	_	_
36	P21	_	_	ANI1/ AVREFM	—	_	_	(INTP7)		_	—	_	_	_			_	_
37	P20	_	_	ANI0/ AVrefp	_	_	_	(INTP6)	_	_	_		_	_	_	_	_	_
38	P01			ANI30		IVCMP2	PGAI2			TO00/ (TI00)	TRJIO0	_	TRGCLKB			RxD1	_	(DALIRxD0)
39	P00	_	_	ANI29	_	IVCMP1	PGAI1	_	_	T100	(TRJO0)	_	TRGCLKA	_	_	TxD1	_	(DALITxD0)
40	P120		_	ANI19	—	IVCMP0	PGAI0	_		_			TRGIDZ/ TRGTRG			_	_	_

 Table 1 - 7
 Multiplexed Pin Functions of the 40-pin Products (2/2)

1.3.7 44-pin products

• 44-pin plastic LQFP (10 × 10 mm, 0.80-mm pitch)

Caution Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F).

Remark 1. For pin identification, see 1.4 Pin Identification.

Remark 2. Functions in parentheses in the above figure can be assigned via settings in the corresponding peripheral I/O redirection register (PIORx). Refer to Figure 7 - 8 Format of Peripheral I/O Redirection Register (PIOR0) to Figure 7 - 11 Format of Peripheral I/O Redirection Register (PIOR3) in the RL78/G24 User's Manual.

Pin Number	I	/0	bugging		Anal	og Circuits	_	HN	Als			Tin	ners			Comm	unications	s Interfaces
44LQFP	Digital port	Controlled current drive port	Power supply, system clock, and debugging	A/D converter (ADC)	D/A converter (DAC)	Comparator (CMP)	Programmable gain amplifier (PGA)	Interrupt	Key interrupt	Timer array unit (TAU)	Timer RJ	Timer RD2	Timer RG2	16-bit timers KB30, KB31, and KB32	Realtime clock (RTC)	Serial array unit (SAU)	Serial interface IICA (IICA)	Digital addressable lighting interface (DALI)
1	P41	_	_	_	_	_	_	_	_	_	(TRJIO0)	_	_	_	_	_	_	_
2	P40	_	TOOL0	_		—	_	_		_	—	—	—	—	_	_	_	_
3	_	_	RESET	_	_		_			_	_		_			—		_
4	P124	_	XT2/ EXCLKS		_		_	_	_	_	—		_	_	_		—	
5	P123	_	XT1	_	—	_	_	_	_	_	—	—	_	_	_	_	_	_
6	P137	_	—	_		_	_	INTP0	_	_	_	_	_	_	_	_	_	_
7	P122	_	X2/EXCLK	_	—	_	_	INTP20	_	(TO00)	—	—	_	_	_	_	_	_
8	P121	—	X1/VBAT	_	_	_	_	INTP21		(TI02)/ (TO02)	_	_	_				_	_
9	_	_	REGC	_		_	_	_	_	_	_	_	_		_	_	_	_
10	_	_	Vss	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
11	_	_	Vdd	_		_	_	_	_	_	_	_	_	_	_	_	_	_
12	P60	CCD04	_	_		_	_	_	_	_		_	_	_	_	_	SCLA0	_
13	P61	CCD05	_	_		_	_	_		_	_	_	_		_	_	SDAA0	_
14	P62	CCD02	_	_	_	_	_	_	_	_	_	_	_	_	_	SSI00	_	_
15	P63	CCD03	_	_		_	_	_	_	_	_	_	_	_	_	_	_	_
16	P31		PCLBUZ0		_	(VCOUT0)	_	INTP4		TI03/ TO03	(TRJIO0)	_	_				_	
17	P73	_	_	_		_	_	_	KR3	_	_	(TRDIOC1)	_	_	_	(RxD1)	_	_
18	P72	_		_	_	_	_	_	KR2	—	_	(TRDIOA1)	_	_	_	SO21/ (TxD1)	_	_
19	P71	_	_	_	_	_	_	_	KR1	(TI01)/ (TO01)	_	(TRDIOD0)	_	_	_	SI21/S DA21	—	_
20	P70		-		_	_	_	_	KR0	_	_	(TRDIOB0)	_	_	_	SCK21/ SCL21	_	
21	P30	-	-	_	_	(VCOUT1)	_	INTP3	_	_	TRJO0	(TRDIOB1)	_	_	RTC1HZ	SCK00/ SCL00	_	
22	P50	—	TOOLRxD	_	_	(VCOUT3)	_	INTP1		(TI03)	(TRJO0)	_	TRGIOA		_	SI00/ RxD0/ SDA00	_	DALIRxD0
23	P51	_	TOOLTxD	_	_	(VCOUT2)	_	INTP2	_	_	_	(TRDIOD1)	TRGIOB	_	_	SO00/ TxD0	_	DALITxD0
24	P17	CCD01		ANI27	—	_		_	_	TI02/ TO02		TRDIOA0/ TRDCLK	(TRGIOA)	TKBO21		(TxD0)		
25	P16	CCD00	_	ANI26	_	IVREF0	_	INTP5	_	TI01/ TO01	-	TRDIOC0	(TRGIOB)	TKBO20	_	(RxD0)	_	_
26	P15	_	PCLBUZ1	ANI25	_	VCOUT1		_	_	_	—	TRDIOB0	_	ТКВО11		SCK20/ SCL20	—	(SDAA0)
27	P14	—	—	ANI24		VCOUT0		_		_	_	TRDIOD0		ТКВО10	_	SI20/ RxD2/ SDA20	(SCLA0)	_
28	P13	-	_	ANI23	_	_	_	_	_	_		TRDIOA1/ (TRDIOC0)	_	TKBO01		SO20/ TxD2		_
29	P12	_	_	ANI22	_	IVREF1	_	_	_	_	_	TRDIOB1	_	ткво00	_	SO11	_	_

 Table 1 - 8
 Multiplexed Pin Functions of the 44-pin Products (1/2)


Pin Number	I	/0	gniggind		Anal	log Circuits		HN	/Is			Tin	ners			Comm	unication	s Interfaces
44LQFP	Digital port	Controlled current drive port	Power supply, system clock, and debugging	A/D converter (ADC)	D/A converter (DAC)	Comparator (CMP)	Programmable gain amplifier (PGA)	Interrupt	Key interrupt	Timer array unit (TAU)	Timer RJ	Timer RD2	Timer RG2	16-bit timers KB30, KB31, and KB32	Realtime clock (RTC)	Serial array unit (SAU)	Serial interface IICA (IICA)	Digital addressable lighting interface (DALI)
30	P11	CCD07	_	ANI21		VCOUT3	PGAO	_	_	(TO03)	_	TRDIOC1		_	_	SI11/ SDA11/ (RxD2)	_	—
31	P10	CCD06		ANI20		VCOUT2	_	_			_	TRDIOD1	_	_	_	SCK11/ SCL11/ (TxD2)	_	—
32	P146	_	_	ANI28		_	_	_	_	_	_	_	_	_	_	_	_	_
33	P147	_	_	ANI18	ANO2	IVCMP3	PGAI3	_	_	_	_	_	_	_	_	_	_	_
34	P27	_		ANI7		_	_	_	_	_	_		_	_	_	_	_	_
35	P26	_		ANI6	_	_	_	_	_	_	_	_	_	_	_	_	_	_
36	P25	_	_	ANI5	_	_	_	_	_	_	_	—	_	_	_	_	_	_
37	P24	_	_	ANI4	_	_	—	—	—	—	—	—	_	_	_	_	_	—
38	P23	_	_	ANI3	ANO1	_	PGAGND	_	_	_	_	_	_	_	_	_	_	—
39	P22	—	_	ANI2	ANO0	_	PGAI4	_	—	_	_	—	_	_	_	_	_	—
40	P21	—	_	ANI1/ AVREFM	_		_	(INTP7)	_		—		_	_	_	_	—	_
41	P20	—	_	ANI0/ AVREFP	_	_	_	(INTP6)	_	_	-	_	-	_	_		—	—
42	P01	_	—	ANI30	—	IVCMP2	PGAI2	—	_	TO00/ (TI00)	TRJIO0	_	TRGCLKB	_	_	RxD1	—	(DALIRxD0)
43	P00	—	_	ANI29		IVCMP1	PGAI1	_	_	T100	(TRJO0)	—	TRGCLKA	_	_	TxD1	_	(DALITxD0)
44	P120	—	—	ANI19	—	IVCMP0	PGAI0	—	_	_	—	_	TRGIDZ/ TRGTRG		_	_	—	_

 Table 1 - 8
 Multiplexed Pin Functions of the 44-pin Products (2/2)

1.3.8 48-pin products

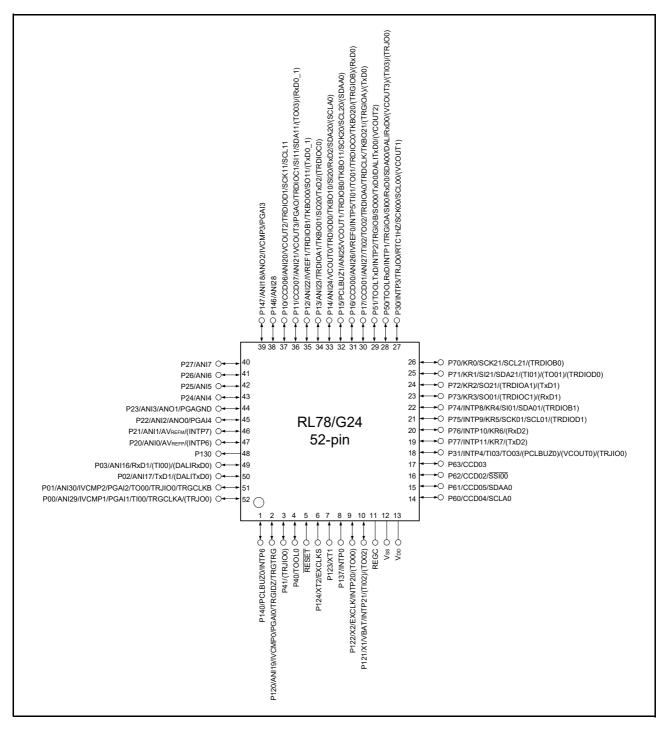
- 48-pin plastic LFQFP (7 × 7 mm, 0.50-mm pitch)
- 48-pin plastic HWQFN (7 × 7 mm, 0.50-mm pitch)

Note The 48-pin plastic LQFP (7 × 7 mm, 0.50-mm pitch) products do not have an exposed die pad.

- Caution Connect the REGC pin to Vss via a capacitor (0.47 to 1 µF).
- Remark 1. For pin identification, see 1.4 Pin Identification.
- Remark 2. Functions in parentheses in the above figure can be assigned via settings in the corresponding peripheral I/O redirection register (PIORx). Refer to Figure 7 8 Format of Peripheral I/O Redirection Register (PIOR0) to Figure 7 11 Format of Peripheral I/O Redirection Register (PIOR3) in the RL78/G24 User's Manual.
- **Remark 3.** For the product in a QFN package, we recommend soldering the exposed die pad onto a plated area of the printed circuit board that has no electrical connections.

Pin Number	I	1/0	bugging		Anal	og Circuits		НМ	/Is			Tin	ners			Comm	nunications	s Interfaces
48LFQFP, 48HWQFN	Digital port	Controlled current drive port	Power supply, system clock, and debugging	A/D converter (ADC)	D/A converter (DAC)	Comparator (CMP)	Programmable gain amplifier (PGA)	Interrupt	Key interrupt	Timer array unit (TAU)	Timer RJ	Timer RD2	Timer RG2	16-bit timers KB30, KB31, and KB32	Realtime clock (RTC)	Serial array unit (SAU)	Serial interface IICA (IICA)	Digital addressable lighting interface (DALI)
1	P60	CCD04	_				_		_	_			_	_	_	_	SCLA0	_
2	P61	CCD05						_	_	_		_	_	_	_	_	SDAA0	_
3	P62	CCD02	_	_	_	_	_			_		_	_	_	_	SSI00	_	_
4	P63	CCD03	_	_		_	_			_						_	_	_
5	P31		(PCLBUZ0)	_	_	(VCOUT0)	_	INTP4	_	TI03/ TO03	(TRJIO0)	_	_	_	_	_	_	_
6	P75		_	_	—	_	_	INTP9	KR5	—	_	(TRDIOD1)	_	_	_	SCK01/ SCL01	—	_
7	P74	_	_	_	_	_	_	INTP8	KR4	—	_	(TRDIOB1)	—	_	_	SI01/ SDA01	—	—
8	P73	_	_	_		_	_	_	KR3		_	(TRDIOC1)	—			SO01/ (RxD1)	_	—
9	P72	_	_	_		_	_	_	KR2		_	(TRDIOA1)	—			SO21/ (TxD1)	_	—
10	P71	_	_	_	_	_	_	_	KR1	(TI01)/ (TO01)	_	(TRDIOD0)	_	_	_	SI21/ SDA21	_	_
11	P70	_	_	_	_	_	_	_	KR0	_	_	(TRDIOB0)	_	_	_	SCK21/ SCL21	_	_
12	P30	_	_	_	_	(VCOUT1)	_	INTP3	_	_	TRJO0	_	_	_	RTC1HZ	SCK00/ SCL00	_	_
13	P50		TOOLRxD	_		(VCOUT3)	_	INTP1		(TI03)	(TRJO0)	_	TRGIOA	_	_	SI00/ RxD0/ SDA00	_	DALIRxD0
14	P51		TOOLTxD	_	_	(VCOUT2)	_	INTP2		_	_	_	TRGIOB			SO00/ TxD0	_	DALITxD0
15	P17	CCD01	_	ANI27	_	_	_	_		TI02/ TO02	_	TRDIOA0/ TRDCLK	(TRGIOA)	TKBO21		(TxD0)	_	—
16	P16	CCD00	_	ANI26	_	IVREF0	_	INTP5		TI01/ TO01	_	TRDIOC0	(TRGIOB)	TKBO20		(RxD0)	_	—
17	P15		PCLBUZ1	ANI25	_	VCOUT1	_			_	_	TRDIOB0	—	ткво11		SCK20/ SCL20	_	(SDAA0)
18	P14	_	_	ANI24		VCOUT0		_		_		TRDIOD0	_	ТКВО10	_	SI20/ RxD2/ SDA20	_	(SCLA0)
19	P13	_		ANI23	_	_			_	—	_	TRDIOA1/ (TRDIOC0)	_	TKBO01		SO20/ TxD2	—	—
20	P12	_		ANI22		IVREF1	_	_			_	TRDIOB1	_	ТКВО00	_	SO11/ (TxD0_ 1)	_	_
21	P11	CCD07	_	ANI21		VCOUT3	PGAO		_	(TO03)	_	TRDIOC1		_		SI11/ SDA11/ (RxD0_ 1)/ (RxD2)		—
22	P10	CCD06	_	ANI20	_	VCOUT2	_					TRDIOD1	_			SCK11/ SCL11/ (TxD2)	_	_
23	P146	_		ANI28									_				_	_
24	P147	_	_	ANI18	ANO2	IVCMP3	PGAI3	_	_	_	_	_		_	_	—	_	_

 Table 1 - 9
 Multiplexed Pin Functions of the 48-pin Products (1/2)



Pin Number	I	1/0	bugging		Anal	og Circuits		ΗM	1Is			Tin	ners			Comm	unication	s Interfaces
48LFQFP, 48HWQFN	Digital port	Controlled current drive port	Power supply, system clock, and debugging	A/D converter (ADC)	D/A converter (DAC)	Comparator (CMP)	Programmable gain amplifier (PGA)	Interrupt	Key interrupt	Timer array unit (TAU)	Timer RJ	Timer RD2	Timer RG2	16-bit timers KB30, KB31, and KB32	Realtime clock (RTC)	Serial array unit (SAU)	Serial interface IICA (IICA)	Digital addressable lighting interface (DALI)
25	P27		_	ANI7	_	—	_	_		_				_	_	_	_	_
26	P26		_	ANI6	_	_	_	_			_	_	_	_	_	_	_	—
27	P25	_	_	ANI5		_	_	_	_	_			_	_	_	_	_	_
28	P24		_	ANI4			_		_				_		_	_	_	_
29	P23	_	_	ANI3	ANO1	_	PGAGND	_			_		_	_	_	_	_	_
30	P22			ANI2	ANO0	_	PGAI4	_								_	_	
31	P21		—	ANI1/ AVrefm	—	_		(INTP7)	_		_	_	_	_			_	—
32	P20	_	_	ANI0/ AVrefp	_	_	_	(INTP6)	_	—	_	_	_	_	_	_	_	—
33	P130	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	—
34	P01	_	—	ANI30	_	IVCMP2	PGAI2	_	_	TO00/ (TI00)	TRJIO0	_	TRGCLKB	_	_	RxD1	_	(DALIRxD0)
35	P00	_	_	ANI29	_	IVCMP1	PGAI1	_	_	T100	(TRJO0)	_	TRGCLKA	_	_	TxD1	_	(DALITxD0)
36	P140		PCLBUZ0			_	_	INTP6	_	_			_	_	_	_	_	_
37	P120	_	—	ANI19	_	IVCMP0	PGAI0	_	_		_	_	TRGIDZ/ TRGTRG	_	_		_	—
38	P41	_	_			_			_		(TRJIO0)		_	_		_	_	_
39	P40		TOOL0	_		_	_	_								_	_	
40	—	_	RESET	_	—	_	_	_	_	_	_	_	_	_	_	_	_	_
41	P124		XT2/ EXCLKS	_	—	_	_	_			_	_	_				_	_
42	P123	_	XT1		_		_	_	_	_	_	_		_	_	_		_
43	P137		_		_			INTP0					_			_		
44	P122	_	X2/EXCLK	_	_	_	_	INTP20	_	(TO00)	_	_	_	_	_	_	_	_
45	P121	_	X1/VBAT			_		INTP21	_	(TI02)/ (TO02)			—	_	_	_	_	—
46	_	_	REGC		_	_	_	_	_		_	_	_	_	_	_	_	
47	—	_	Vss	_	_	<u> </u>	_	_	_	_		_			_	_	<u> </u>	
48	—	_	Vdd	_		_	_	_	_	_	_		_	_	_	_	_	—

Table 1 - 9 Multiplexed Pin Functions of the 48-pin Products (2/2)

1.3.9 52-pin products

• 52-pin plastic LQFP (10 × 10 mm, 0.65-mm pitch)

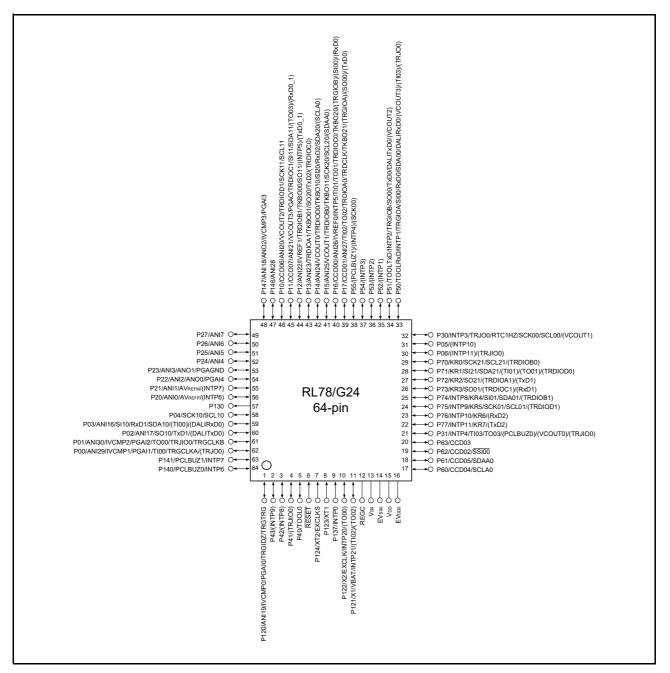
Caution Connect the REGC pin to Vss via a capacitor (0.47 to 1 µF).

Remark 1. For pin identification, see 1.4 Pin Identification.

Remark 2. Functions in parentheses in the above figure can be assigned via settings in the corresponding peripheral I/O redirection register (PIORx). Refer to Figure 7 - 8 Format of Peripheral I/O Redirection Register (PIOR0) to Figure 7 - 11 Format of Peripheral I/O Redirection Register (PIOR3) in the RL78/G24 User's Manual.

Pin Number	1	1/0	-		Anal	og Circuits		НМ	ls		()	Tin	ners			Commu	inications	Interfaces
52LQFP	Digital port	Controlled current drive port	Power supply, system clock, and debugging	A/D converter (ADC)	D/A converter (DAC)	Comparator (CMP)	Programmable gain amplifier (PGA)	Interrupt	Key interrupt	Timer array unit (TAU)	Timer RJ	Timer RD2	Timer RG2	16-bit timers KB30, KB31, and KB32	Realtime clock (RTC)	Serial array unit (SAU)	Serial interface IICA (IICA)	Digital addressable lighting interface (DALI)
1	P140	_	PCLBUZ0	_		_	_	INTP6		_	_	_	_	_	_	_	_	_
2	P120		_	ANI19	_	IVCMP0	PGAI0	_		_	_	_	TRGIDZ/ TRGTRG	_	_	_	_	_
3	P41	_	_					_			(TRJIO0)		_	_			_	_
4	P40	_	TOOL0	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
5	_	_	RESET	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
6	P124	_	XT2/ EXCLKS		_	_	_	<u> </u>		_	_	_		<u> </u>	_	_		_
7	P123		XT1	_		_	_			_	_	_	_	_	_	_	_	_
8	P137	_	_					INTP0					_	_			_	_
9	P122	_	X2/EXCLK	_		_	_	INTP20		(TO00)	_		_	_	_	_	_	_
10	P121		X1/VBAT		_	_	_	INTP21		(TI02)/ (TO02)			—	—			_	_
11	_		REGC					_	_				-	_			_	_
12	—	_	Vss	_		_	_	_	_	_	_	_	_	_	_	_	_	_
13	_	_	Vdd	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
14	P60	CCD04	_	_	_	_	_	—	_	_	_		_	—	_	_	SCLA0	—
15	P61	CCD05	_	_	—	_	_	_	—	_	_	_	_	_	_	_	SDAA0	—
16	P62	CCD02	_	_	—	_	_	_	—	_	_	_	_	_	_	SSI00	_	—
17	P63	CCD03	_	_	_	_	_	_	—	_	_	_	_	_	_	_	_	—
18	P31		(PCLBUZ0)	_	_	(VCOUT0)	_	INTP4	_	TI03/ TO03	(TRJIO0)	_		—	_	_	—	—
19	P77	_	_	_	_	_	_	INTP11	KR7	_	_		_	—	_	(TxD2)	—	—
20	P76		_	_		_	_	INTP10	KR6	_	_	_	_	—	_	(RxD2)	—	—
21	P75	_	_	_	_	—	_	INTP9	KR5	_	_	(TRDIOD1)	_	_	_	SCK01/ SCL01	_	—
22	P74	_	_	_	_	_	_	INTP8	KR4		_	(TRDIOB1)	_	_	_	SI01/ SDA01	_	_
23	P73	_	_	_	_	_	_	_	KR3	_	_	(TRDIOC1)	_	—	_	SO01/ (RxD1)	—	—
24	P72	_	_	_	-	_	_	-	KR2	_	_	(TRDIOA1)	_	_	_	SO21/ (TxD1)	_	_
25	P71	_	_	_	_	_	_	<u> </u>	KR1	(TI01)/ (TO01)	_	(TRDIOD0)	_	<u> </u>		SI21/ SDA21	<u> </u>	—
26	P70	_	_	_	_	_	_	_	KR0	_	_	(TRDIOB0)	_	_	_	SCK21/ SCL21	_	_
27	P30	_	_	_	_	(VCOUT1)	_	INTP3			TRJO0	_	_	—	RTC1HZ	SCK00/ SCL00	_	_
28	P50	_	TOOLRxD	_		(VCOUT3)		INTP1	_	(TI03)	(TRJO0)	_	TRGIOA	_		SI00/ RxD0/ SDA00	_	DALIRxD0
29	P51		TOOLTxD		—	(VCOUT2)		INTP2		_	_	_	TRGIOB	_		SO00/ TxD0		DALITxD0

 Table 1 - 10
 Multiplexed Pin Functions of the 52-pin Products (1/2)



Pin Number		1/0	bugging		Anal	og Circuits		НМ	s			Tin	ners			Commu	inications	Interfaces
52LQFP	Digital port	Controlled current drive port	Power supply, system clock, and debugging	A/D converter (ADC)	D/A converter (DAC)	Comparator (CMP)	Programmable gain amplifier (PGA)	Interrupt	Key interrupt	Timer array unit (TAU)	Timer RJ	Timer RD2	Timer RG2	16-bit timers KB30, KB31, and KB32	Realtime clock (RTC)	Serial array unit (SAU)	Serial interface IICA (IICA)	Digital addressable lighting interface (DALI)
30	P17	CCD01	_	ANI27	—	_	_	_	_	TI02/ TO02	_	TRDIOA0/ TRDCLK	(TRGIOA)	TKBO21	_	(TxD0)	_	_
31	P16	CCD00	_	ANI26	_	IVREF0	_	INTP5		TI01/ TO01	_	TRDIOC0	(TRGIOB)	TKBO20	_	(RxD0)	_	_
32	P15	_	PCLBUZ1	ANI25	_	VCOUT1	_	_		_	_	TRDIOB0	_	TKBO11		SCK20/ SCL20	(SDAA0)	_
33	P14	_		ANI24	_	VCOUT0	_	_			_	TRDIOD0	_	TKBO10	_	SI20/ RxD2/ SDA20	(SCLA0)	
34	P13	_	_	ANI23	_	_	_	_	_	_	_	TRDIOA1/ (TRDIOC0)	—	TKBO01	_	SO20/ TxD2	_	—
35	P12	_	_	ANI22	_	IVREF1	_	_	_		_	TRDIOB1	_	TKBO00		SO11/ (TxD0_1)	_	_
36	P11	CCD07	_	ANI21		VCOUT3	PGAO	_		(TO03)	_	TRDIOC1	_	_	_	SI11/ SDA11/ (RxD0_1)	_	_
37	P10	CCD06	_	ANI20	_	VCOUT2	_	_		_		TRDIOD1	—		_	SCK11/ SCL11	_	_
38	P146		_	ANI28		_	_	_		_		_	_	_	_	_	_	_
39	P147	_	_	ANI18	ANO2	IVCMP3	PGAI3		_	_	_	_	_	_	_	_	_	_
40	P27		_	ANI7	_	_	_	_	_	_		_	_	_				_
41	P26	_	_	ANI6	_	_	_		_	_	_	_	_	_	_	_	_	_
42	P25		_	ANI5		_	_	_		_	_	_	_	_	_	_	_	_
43	P24	_	_	ANI4	_	_	_	_	_	_	_	_	_	_	_	_	_	_
44	P23	_	_	ANI3	ANO1		PGAGND		_	_	_	_	_	_	_	_	_	_
45	P22		_	ANI2	ANO0		PGAI4	_		_	_	_	_	_	_	_	_	_
46	P21	_		ANI1/ AVrefm	—	_	_	(INTP7)	_	-			_			_		—
47	P20		_	ANI0/ AVrefp	_	_	_	(INTP6)	_	_	_		_	_	_	_	_	_
48	P130		_		_	_	_	_		_		_	_	_	_	_	_	
49	P03			ANI16	—	_	_		_	(TI00)	—	_	_	_	_	RxD1	_	(DALIRxD0)
50	P02	_	_	ANI17	_	_	_	_	_	_	_	_				TxD1	_	(DALITxD0)
51	P01		_	ANI30	_	IVCMP2	PGAI2	_	_	то00	TRJIO0	_	TRGCLKB	_	_	_	_	—
52	P00			ANI29		IVCMP1	PGAI1			TI00	(TRJO0)	_	TRGCLKA					_

 Table 1 - 10
 Multiplexed Pin Functions of the 52-pin Products (2/2)

1.3.10 64-pin products

- 64-pin plastic LQFP (12 × 12 mm, 0.65-mm pitch)
- 64-pin plastic LFQFP (10 × 10 mm, 0.50-mm pitch)

- Caution 1. Connect the EVsso pin to the same ground as the Vss pin.
- Caution 2. Make sure that the voltage on the VDD pin is no less than that on the EVDD0 pin.
- Caution 3. Connect the REGC pin to Vss via a capacitor (0.47 to 1 $\mu F).$
- Remark 1. For pin identification, see 1.4 Pin Identification.
- **Remark 2.** When using the microcontroller for an application where the noise generated inside the microcontroller must be reduced, it is recommended to supply separate powers to the VDD and EVDD0 pins and connect the VSS and EVSS0 pins to separate ground lines.
- Remark 3. Functions in parentheses in the above figure can be assigned via settings in the corresponding peripheral I/O redirection register (PIORx). Refer to Figure 7 8 Format of Peripheral I/O Redirection Register (PIOR0) to Figure 7 11 Format of Peripheral I/O Redirection Register (PIOR3) in the RL78/G24 User's Manual.

RENESAS

Pin Number	I	/0	bugging		Anal	og Circuits		н	/Is			Tin	ners			Comm	unication	s Interfaces
64LQFP, 64LFQFP	Digital port	Controlled current drive port	Power supply, system clock, and debugging	A/D converter (ADC)	D/A converter (DAC)	Comparator (CMP)	Programmable gain amplifier (PGA)	Interrupt	Key interrupt	Timer array unit (TAU)	Timer RJ	Timer RD2	Timer RG2	16-bit timers KB30, KB31, and KB32	Reattime clock (RTC)	Serial array unit (SAU)	Serial interface IICA (IICA)	Digital addressable lighting interface (DALI)
1	P120	_	—	ANI19	_	IVCMP0	PGAI0						TRGIDZ/ TRGTRG			_		—
2	P43		-	_	_	_	_	(INTP9)	_	_	_	_	_	_	_	_	_	_
3	P42	_	_	_		_	_	(INTP8)	_	_	_	_	_	_	_	_	_	—
4	P41	_	_	_	_	_	_	_	_	_	(TRJIO0)		_	_	_	_	_	_
5	P40	_	TOOL0	_		_	_	_	_	_	_	_	_	_	_	_	_	_
6	_	_	RESET	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
7	P124	_	XT2/ EXCLKS	_	_	_	—	_	_	_	—	_	_	_	_	_	_	—
8	P123		XT1	-	_	_	_	_	_	—	_	_	_	_	_	_	_	_
9	P137	_	_	_		_	_	INTP0	_	_	_	_	_	_	_	_	_	_
10	P122	_	X2/EXCLK	_	_	_	_	INTP20	_	(TO00)	_	_	_	_	_	_	_	_
11	P121	_	X1/VBAT		_	_	_	INTP21	_	(TI02)/ (TO02)	_	_	_	_	_	_	_	—
12	_	_	REGC	_		_	_	_	_	_	_	_	_		_	_	_	_
13	_	_	Vss	_	_	_		_	_	_		_	_	_	_	_	_	_
14	_	_	EVsso	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
15	_	_	Vdd	_	_	_	_	_	_	_	_		_		_	_	_	_
16	_	_	EVDD0	_		_	_	_	_	_	_		_		_	_	_	_
17	P60	CCD04	_	_	_		_	_	_	_	_	_		_	_	<u> </u>	SCLA0	_
18	P61	CCD05	_	_	_		_	_	_	_	_		_	_	_	_	SDAA0	_
19		CCD02	_	_	_	_	_	_	_	_	_		_	_	_	SSI00	_	_
		CCD03		_	_		_	_	_	_	_			_	_	<u> </u>	_	
	P31	_	(PCLBUZ0)		_	(VCOUT0)	_	INTP4	_	TI03/ TO03	(TRJIO0)	_	_			_		—
22	P77	_	_	_		_	_	INTP11	KR7	_	_	_	_	_	_	(TxD2)	_	_
23	P76	_	_		_	_	_	INTP10	KR6	_	_	_	_	_	_	(RxD2)	_	_
24	P75	_	_	_	_	_	_	INTP9	KR5	_	_	(TRDIOD1)	_	_	_	SCK01/ SCL01	_	_
25	P74	_	_	_	_	_		INTP8	KR4	_	_	(TRDIOB1)	_		_	SI01/ SDA01	_	—
26	P73	_	_	_	_	_	_	_	KR3	_	_	(TRDIOC1)	_	_	_	SO01/ (RxD1)	_	—
27	P72	_	_	_	_	_	_	_	KR2		_	(TRDIOA1)	_	_	_	SO21/ (TxD1)	_	—
28	P71		—		—		_		KR1	(TI01)/ (TO01)	—	(TRDIOD0)	_			SI21/ SDA21		—
29	P70	_	—	_	_	_	_	_	KR0	_	_	(TRDIOB0)	_	_	_	SCK21/ SCL21	_	—
30	P06		_	_	_	_	_	(INTP11)		_	(TRJIO0)	_	_			_		_
31	P05		_		_	_	_	(INTP10)		_			_		_	_		

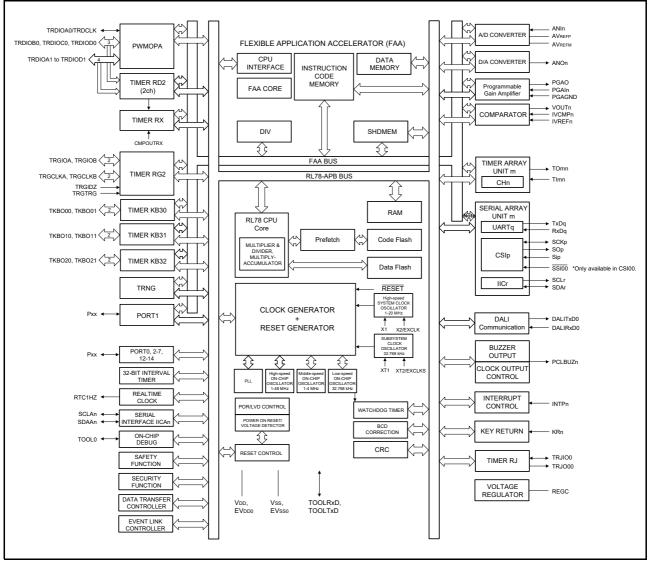
 Table 1 - 11
 Multiplexed Pin Functions of the 64-pin Products (1/3)

Pin Number	I	1/0	bugging		Anal	og Circuits		ΗM	/Is			Tin	ners			Comm	unications	s Interfaces
64LQFP, 64LFQFP	Digital port	Controlled current drive port	Power supply, system clock, and debugging	A/D converter (ADC)	D/A converter (DAC)	Comparator (CMP)	Programmable gain amplifier (PGA)	Interrupt	Key interrupt	Timer array unit (TAU)	Timer RJ	Timer RD2	Timer RG2	16-bit timers KB30, KB31, and KB32	Realtime clock (RTC)	Serial array unit (SAU)	Serial interface IICA (IICA)	Digital addressable lighting interface (DALI)
32	P30	_	_	_	—	(VCOUT1)	_	INTP3	_	_	TRJO0		_	_	RTC1HZ	SCK00/ SCL00	_	_
33	P50	_	TOOLRxD	_	_	(VCOUT3)	_	INTP1	_	(TI03)	(TRJO0)		TRGIOA	_	_	SI00/ RxD0/ SDA00	_	DALIRxD0
34	P51		TOOLTxD	_		(VCOUT2)		INTP2		_		_	TRGIOB			SO00/ TxD0		DALITxD0
35	P52		_	_	_	_	_	(INTP1)		_	_	_	_	_	_	_	_	_
36	P53	_			_	_	_	(INTP2)	_		_			_				_
37	P54	_	_		_	_	_	(INTP3)	_	_	_			_		_		
38	P55	_	(PCLBUZ1)	_	_	_	_	(INTP4)	_	_	_	_			_	(SCK00)	_	_
39	P17	CCD01	_	ANI27	_			_		TI02/ TO02		TRDIOA0/ TRDCLK	(TRGIOA)	TKBO21		(SO00)/ (TxD0)	_	—
40	P16	CCD00	_	ANI26	—	IVREF0	_	INTP5	_	TI01/ TO01		TRDIOC0	(TRGIOB)	TKBO20	—	(SI00)/ (RxD0)	_	_
41	P15	_	_	ANI25	_	VCOUT1	_	_	_	_	_	TRDIOB0	_	TKBO11	_	SCK20/ SCL20	(SDAA0)	—
42	P14	_	_	ANI24		VCOUT0	_	_	_	_		TRDIOD0	_	TKBO10	_	SI20/ RxD2/ SDA20	(SCLA0)	_
43	P13	_		ANI23	_			_	_	_		TRDIOA1/ (TRDIOC0)	_	TKBO01		SO20/ TxD2		_
44	P12	_	_	ANI22		IVREF1	_	(INTP5)	_			TRDIOB1	_	TKBO00	_	SO11/ (TxD0_ 1)	_	_
45	P11	CCD07	_	ANI21	_	VCOUT3	PGAO	_	_	(TO03)		TRDIOC1	_			SI11/ SDA11/ (RxD0_ 1)		—
46	P10	CCD06		ANI20	_	VCOUT2		_		_	_	TRDIOD1	_		_	SCK11/ SCL11	_	—
47	P146	_	_	ANI28	_	_	_	_	_	_	_	_		_		_		_
48	P147	_		ANI18	ANO2	IVCMP3	PGAI3	_	_		_	_		_		_		_
49	P27			ANI7	_	_					_							
50	P26			ANI6	_											_		
51	P25	_		ANI5	_		_		_	_		_	_	_	_	_		
52	P24	_	_	ANI4	_		_	_	_	_		_		_	_	_	_	
53	P23			ANI3	ANO1		PGAGND											_
54	P22			ANI2	ANO0		PGAI4						_					_
55	P21		_	ANI1/ AVREFM	_	_	_	(INTP7)		_	_	_	_	_	_	_	_	_
56	P20			ANI0/ AVrefp		_	_	(INTP6)		_	—	_	—		_	_		_
57	P130	_	_	—			_	_			_	_	_	_	_		_	_
58	P04		_	—	_		_				_		—			SCK10/ SCL10	_	—

Table 1 - 11 Multiplexed Pin Functions of the 64-pin Products (2/3)

Pin Number	1	I/O	bugging		Anal	og Circuits		HN	1Is			Tin	ners			Comm	unications	s Interfaces
64LQFP, 64LFQFP	Digital port	Controlled current drive port	Power supply, system clock, and debugging	A/D converter (ADC)	D/A converter (DAC)	Comparator (CMP)	Programmable gain amplifier (PGA)	Interrupt	Key interrupt	Timer array unit (TAU)	Timer RJ	Timer RD2	Timer RG2	16-bit timers KB30, KB31, and KB32	Realtime clock (RTC)	Serial array unit (SAU)	Serial interface IICA (IICA)	Digital addressable lighting interface (DALI)
59	P03	_	_	ANI16	_	_	_	_	_	(TI00)	_	_	_	_	_	SI10/ RxD1/ SDA10	_	(DALIRxD0)
60	P02	_	—	ANI17	_	_	_	_	_	_	_	_	_	_	_	SO10/ TxD1	_	(DALITxD0)
61	P01		_	ANI30		IVCMP2	PGAI2	_	_	т000	TRJIO0	_	TRGCLKB	_	_	_	_	_
62	P00		_	ANI29		IVCMP1	PGAI1			T100	(TRJO0)		TRGCLKA					_
63	P141		PCLBUZ1			_		INTP7		_	_		_				_	_
64	P140	_	PCLBUZ0	_		_	_	INTP6	_	_	_	_	_	_	_		_	—

Table 1 - 11 Multiplexed Pin Functions of the 64-pin Products (3/3)



1.4 Pin Identification

ANI0 to ANI7,		SCL00, SCL01, SCL10,	
ANI16 to ANI30	: Analog input	SCL11, SCL20, SCL21	: Serial clock output
ANO0 to ANO2	: Analog output	SDAA0,	
AVREFM	: Analog reference voltage minus	SDA00, SDA01, SDA10,	
AVREFP	: Analog reference voltage plus	SDA11, SDA20, SDA21	: Serial data input/output
CCD00 to CCD07	: Controlled current drive output	SI00, SI01, SI10, SI11,	
DALIRxD0	: DALI receive data	SI20, SI21, SI30, SI31	: Serial data input
DALITxD0	: DALI transmit data	SO00, SO01, SO10,	
EVDD0	: Power supply for port	SO11, SO20, SO21	: Serial data output
EVss0	: Ground for port	SS100	: Serial interface chip select input
EXCLK	: External clock input	TI00 to TI03	: Timer input
	(main system clock)	TKBO00, TKBO01, TKBO10,	
EXCLKS	: External clock input	TKBO11, TKBO20, TKBO21	: Timer KB30, KB31, KB32 output
	(subsystem clock)	TO00 to TO03	: Timer output
INTP0 to INTP11,		TOOL0	: Data input/output for tool
INTP20, INTP21	: Interrupt request from peripheral	TOOLRxD, TOOLTxD	: Data input/output for external device
IVCMP0 to IVCMP3	: Comparator input	TRDCLK	: Timer RD2 external input clock
IVREF0, IVREF1	: Comparator reference input	TRDIOA0, TRDIOB0,	
KR0 to KR7	: Key return input	TRDIOC0, TRDIOD0,	
P00 to P06	: Port 0	TRDIOA1, TRDIOB1,	
P10 to P17	: Port 1	TRDIOC1, TRDIOD1	: Timer RD2 input/output
P20 to P27	: Port 2	TRGIOA, TRGIOB	: Timer RG2 input/output
P30, P31	: Port 3	TRGCLKA, TRGCLKB	: Timer RG2 external input clock
P40 to P43	: Port 4	TRGIDZ, TRGTRG	: Timer RG2 external trigger input
P50 to P55	: Port 5	TRJIO0	: Timer RJ input/output
P60 to P63	: Port 6	TRJO0	: Timer RJ output
P70 to P77	: Port 7	TxD0 to TxD2	: Transmit data
P120 to P124	: Port 12	VBAT	: Battery backup power supply
P130, P137	: Port 13	VCOUT0 to VCOUT3	: Comparator output
P140, P141, P146, P147	: Port 14	Vdd	: Power supply
PCLBUZ0, PCLBUZ1	: Programmable clock output/buzzer	Vss	: Ground
	output	X1, X2	: Crystal oscillator (main system clock)
PGAGND	: PGA ground	XT1, XT2	: Crystal oscillator (subsystem clock)
PGAI0 to PGAI4	: PGA input		
PGAO	: PGA output		
REGC	: Regulator capacitance		
RESET	: Reset		
RTC1HZ	: Realtime clock correction clock (1 Hz)		
	output		
RxD0 to RxD2	: Receive data		
SCLA0,			
SCK00, SCK01, SCK10,			
SCK11, SCK20, SCK21	: Serial clock input/output		

1.5 Block Diagram

Note Serial array unit 0 is only connected to the FAA bus.

Caution The key return function is only incorporated in the 40- to 128-pin products.

Remark m: Unit number, n: Channel number, p: CSI number, q: UART number, r: Simplified I²C number, xx: Port number

1.6 Outline of Functions

[20- to 32-pin products]

Caution This outline describes the functions at the time when the corresponding peripheral I/O redirection register (PIORx) is set to 00H.

						(1/3		
	Item	20-pin	24-pin	25-pin	30-pin	32-pin		
	item	R7F101G6x	R7F101G7x	R7F101G8x	R7F101GAx	R7F101GBx		
Code flash m	emory	64 or 128 Kbytes						
Data flash me	emory	4 Kbytes						
RAM		12 Kbytes						
Address space	e	1 Mbyte						
CPU/ peripheral hardware clockMain system clockHS (high-speed main) mode: 1 to 48 MHz (VDD = 2.4 to 5.5 V) HS (high-speed main) mode: 1 to 32 MHz (VDD = 1.8 to 5.5 V) HS (high-speed main) mode: 1 to 4 MHzNote 1 (VDD = 1.6 to 5.5 V) LS (low-speed main) mode: 1 to 24 MHz (VDD = 1.6 to 5.5 V) LS (low-speed main) mode: 1 to 4 MHzNote 1 (VDD = 1.6 to 5.5 V) LS (low-speed main) mode: 1 to 4 MHzNote 1 (VDD = 1.6 to 5.5 V) LS (low-speed main) mode: 1 to 2 MHz (VDD = 1.6 to 5.5 V) LP (low-power main) mode: 1 to 2 MHzNote 2 (VDD = 1.6 to 5.5 V)								
	Subsystem clock	SUB mode: 32.768	8 kHz (VDD = 1.6 to	5.5 V)				
Main system clock	High-speed system clock (fMX)	1 to 20 MHz	1 to 20 MHz					
	High-speed on-chip oscillator clock (fiH)	1 MHz, 2 MHz, 3 MHz, 4 MHz, 6 MHz, 8 MHz, 12 MHz, 16 MHz, 24 MHz, 32 MHz, 48 MHz, 64 MHz						
	Middle-speed on-chip oscillator clock (fim)	1 MHz, 2 MHz, 4 M	ИНz					
	PLL clock	16 MHz, 32 MHz ^{Note 3} (V _{DD} = 1.8 to 5.5 V) 24 MHz, 48 MHz ^{Note 4} (V _{DD} = 2.4 to 5.5 V)						
Subsystem clock	Subsystem clock oscillator clock (fsx, fsxR)	32.768 kHz (VDD =	= 2.4 to 5.5 V)					
	Low-speed on-chip oscillator clock (fiL)	32.768 kHz (typ.)						
General-purp	ose registers	8 bits × 32 register	rs (8 bits × 8 registe	ers × 4 banks)				
Minimum instruction execution time		0.03125 μ s (at the 32-MHz operation with the high-speed on-chip oscillator clock (fiH)) 0.02083 μ s (at the 48-MHz operation with the high-speed on-chip oscillator clock (fiH)) ^{Note 5} 0.03125 μ s (PLL clock: fPLL = 64 MHz, fiH = 16 or 32 MHz ^{Note 3}) 0.02083 μ s (PLL clock: fPLL = 96 MHz, fiH = 24 or 48 MHz ^{Note 4}) ^{Note 5}						
Instruction set		 Multiplication (8 Multiplication and 	actor/logical operati bits × 8 bits, 16 bits d accumulation (16	× 16 bits), division bits × 16 bits + 32 b	(16 bits ÷ 16 bits, 3 bits) t, and Boolean ope	,		

		20-pin	24-pin	25-pin	30-pin	32-pin		
	Item	R7F101G6x	R7F101G7x	R7F101G8x	R7F101GAx	R7F101GBx		
FAA core		 Results of 64-bit Addition: 32-bit s precision) Subtraction: 32-bit precision) Limit operation: 0 can be set. Operation parameters Address pointer On-chip code RA Multiple interrupt 	multiplication can b signed + 32-bit sign bit signed - 32-bit si Operation paramete neter registers (32 b registers (12 bits × AM: 4 Kbytes M: 2 Kbytes available	ed \rightarrow 32-bit signed gned \rightarrow 32-bit sign er registers (33 bits bits × 6) 6)	gned desired number of (internally calculate ed (internally calcul × 4) in which upper	ed with 33-bit ated with 33-bit and lower limits		
I/O port	Total number of pins	16	20	21	26	28		
	CMOS I/O	15 (N-ch open drain I/O [withstand voltage of VDD]: 7)	voltage of VDD]: 8)		23 (N-ch open drain I/O [withstand voltage of VDD]: 11)	25 (N-ch open drain I/O [withstand voltage of VDD]: 11)		
	CMOS input	1						
	CMOS output	—	- 1			_		
· · · · ·	N-ch open drain I/O (withstand voltage: 6 V)	_			2			
	Controlled current drive port	2	4		6	7		
Timers	16-bit timers TAU, timer RJ, timer RD2, timer RX, timer RG2	9 channels in total: 4-channel timer array unit (TAU) 1-channel timer RJ 2-channel timer RD2 with PWMOPA 1-channel timer RG2 1-channel timer RX						
	16-bit timers KB30, KB31, and KB32	2 channels (PWM outputs: 4) 3 channels (PWM outputs: 6)						
	Watchdog timer	1 channel						
	Realtime clock (RTC)	1 channel						
	32-bit interval timer (TML32)	1 channel in 32-bit 2 channels in 16-b 4 channels in 8-bit	it counter mode,					
	Timer outputs	11 (PWM outputs: 10 ^{Note 6}), 19 (PWM outputs: 11 ^{Note 6}) ^{Note 7}	17 (PWM outputs: 1 22 (PWM outputs: 1					
	RTC output	—			1			
Clock output	t/buzzer output	1			2			
		(Main system clo • 256 Hz, 512 Hz,	ock: fmain = 32 MHz	Hz, 4.096 kHz, 8.19	16 MHz 92 kHz, 16.384 kHz	, 32.768 kHz		
8-/10-/12-bit	resolution A/D converter	12 channels	13 channels	16 channels				
	3-channel simultaneous sampling	2 channels						

	lán me	20-pin	24-pin	25-pin	30-pin	32-pin	
	Item	R7F101G6x	R7F101G7x	R7F101G8x	R7F101GAx	R7F101GBx	
8-/10-bit D/A	A converter	2 to 3 channels					
	DAC outputs (ANOx)	2	3				
Programmal	ble gain amplifier (PGA)	1 channel					
Comparator	module	3 channels	4 channels				
Serial interfaces		 Simplified SPI (C [24- and 25-pin products] UART (supporting) Simplified SPI (C Simplified SPI (C [30- and 32-pin products] Simplified SPI (C 1 channel Simplified SPI (C 	CSI): 1 channel, sim oducts] g LIN-bus): 1 chanr CSI): 1 channel, sim CSI): 1 channel, sim oducts] CSI): 1 channel, sim	plified I ² C: 1 chann plified I ² C: 1 chann	el, UART: 1 channe el, UART: 1 channe el, UART: 1 channe el, UART: 1 channe el, UART (UART su el, UART: 1 channe el, UART: 1 channe	l I Ipporting LIN-bus) I	
	I ² C bus		, ,	-	1		
	I ² C (SM/PM) bus	—			1		
	DALI	—			1		
Data transfe	er controller (DTC)	42 sources	47 sources		52 sources		
Event link	Event inputs	26	28		32		
controller (ELC)	Event trigger outputs	19					
Vectored	Internal	46	55				
interrupt sources	External	6	8		12		
Key interrup	t	_					
Reset		Internal reset byInternal reset by	watchdog timer power-on-reset voltage detectors (I illegal instruction ex	ecution ^{Note 8}			
Power-on-re	eset circuit	Detection voltage • 1.50 V (typ.)					
Voltage detector	LVD0	Detection voltage • Rising edge: 1.69 to 3.96 V (6 stages) Falling edge: 1.65 to 3.88 V (6 stages)					
	LVD1	0 0	7 to 4.16 V (18 stag 3 to 4.08 V (18 stag	,			
On-chip deb	bugging	Available (tracing	supported)				
Power supp	ly voltage		/ (2D: Consumer ap / (4C: Industrial app		strial applications)		
Operating a	mbient temperature	TA = -40 to $+85^{\circ}$ C (2D: Consumer applications), TA = -40 to $+105^{\circ}$ C (3C: Industrial applications), TA = -40 to $+125^{\circ}$ C (4C: Industrial applications)					

Note 2. When the flash memory is to be overwritten, switch to HS (high-speed main) mode or LS (low-speed main) mode.

Note 3. Applicable when the PLL clock frequency is 64 MHz. Select fPLL/2 (32 MHz) or fPLL/4 (16 MHz) as the system clock.

Note 4. Applicable when the PLL clock frequency is 96 MHz. Select fPLL/2 (32 MHz) or fPLL/4 (16 MHz) as the system clock.

RL78/G24

Note 5. This applies when the prefetch buffer is enabled. For details on the operation of the prefetch buffer, refer to Section 8 Operation State Control in the RL78/G24 User's Manual.

Note 6. The number of PWM outputs varies depending on the setting of channels in use (the number of masters and slaves). For details, see 10.9.3 Operation for the multiple PWM output function in the RL78/G24 User's Manual.

Note 7. This applies when the corresponding peripheral I/O redirection register (PIORx) bit is set to 1.

Note 8. In normal operation, executing the instruction code FFH triggers an internal reset, but this is not the case during emulation by the on-chip debugging emulator.

[40- to 64-pin products]

Caution This outline describes the functions at the time when the corresponding peripheral I/O redirection register (PIORx) is set to 00H.

						(1/3			
	Item	40-pin	44-pin	48-pin	52-pin	64-pin			
	hom	R7F101GEx	R7F101GFx	R7F101GGx	R7F101GJx	R7F101GLx			
Code flash m	emory	64 or 128 Kbytes							
Data flash me	emory	4 Kbytes							
RAM		12 Kbytes							
Address space	ce	1 Mbyte							
CPU/ peripheral hardware clockMain system clockHS (high-speed main) mode: 1 to 48 MHz (VDD = 2.4 to 5.5 V) HS (high-speed main) mode: 1 to 32 MHz (VDD = 1.8 to 5.5 V) HS (high-speed main) mode: 1 to 4 MHzNote 1 (VDD = 1.6 to 5.5 V) LS (low-speed main) mode: 1 to 24 MHz (VDD = 1.6 to 5.5 V) LS (low-speed main) mode: 1 to 4 MHzNote 1 (VDD = 1.6 to 5.5 V) LS (low-speed main) mode: 1 to 4 MHzNote 1 (VDD = 1.6 to 5.5 V) LP (low-power main) mode: 1 to 2 MHzNote 2 (VDD = 1.6 to 5.5 V)									
	Subsystem clock	SUB mode: 32.768	3 kHz (VDD = 1.6 to	5.5 V)					
Main system clock	High-speed system clock (fмx)	1 to 20 MHz							
	High-speed on-chip oscillator clock (fін)	1 MHz, 2 MHz, 3 M 48 MHz, 64 MHz	/Hz, 4 MHz, 6 MHz	z, 8 MHz, 12 MHz, 1	16 MHz, 24 MHz, 32	2 MHz,			
	Middle-speed on-chip oscillator clock (fim)	1 MHz, 2 MHz, 4 M	1 MHz, 2 MHz, 4 MHz						
	PLL clock		16 MHz, 32 MHz ^{Note 3} (VDD = 1.8 to 5.5 V) 24 MHz, 48 MHz ^{Note 4} (VDD = 2.4 to 5.5 V)						
Subsystem clock	Subsystem clock oscillator clock (fsx, fsxR)	32.768 kHz (VDD = 1.6 to 5.5 V)							
	Low-speed on-chip oscillator clock (fi∟)	32.768 kHz (typ.)							
General-purp	ose registers	8 bits × 32 register	rs (8 bits × 8 registe	ers × 4 banks)					
Minimum inst	ruction execution time	0.03125 μ s (at the 32-MHz operation with the high-speed on-chip oscillator clock (fiH)) 0.02083 μ s (at the 48-MHz operation with the high-speed on-chip oscillator clock (fiH)) ^{Note 5} 0.03125 μ s (PLL clock: fPLL = 64 MHz, fiH = 16 or 32 MHz ^{Note 3}) 0.02083 μ s (PLL clock: fPLL = 96 MHz, fiH = 24 or 48 MHz ^{Note 4}) ^{Note 5}							
Instruction se	ıt	 Data transfer (8/16 bits) Adder and subtractor/logical operation (8/16 bits) Multiplication (8 bits × 8 bits, 16 bits × 16 bits), division (16 bits ÷ 16 bits, 32 bits ÷ 32 bits) Multiplication and accumulation (16 bits × 16 bits + 32 bits) Rotate, barrel shift, and bit manipulation (set, reset, test, and Boolean operation), etc. 							
FAA core		 Results of 64-bit Addition: 32-bit s precision) Subtraction: 32-b precision) Limit operation: 0 can be set. Operation param Address pointer On-chip code RA On-chip data RA Multiple interrupt 	multiplication can b igned + 32-bit sign bit signed - 32-bit si Operation paramete registers (32 b registers (12 bits × M: 4 Kbytes M: 2 Kbytes s available	,	desired number of (internally calculate ed (internally calcul × 4) in which upper	ed with 33-bit ated with 33-bit and lower limits			

		40-pin	44-pin	48-pin	52-pin	64-pin		
	Item	R7F101GEx	R7F101GFx	R7F101GGx	R7F101GJx	R7F101GLx		
I/O port	Total number of pins	36	40	44	48	58		
	CMOS I/O	31 (N-ch open drain I/O [withstand voltage of VDD]: 14)	35 (N-ch open drain I/O [withstand voltage of VDD]: 14)	38 (N-ch open drain I/O [withstand voltage of VDD]: 15)	42 (N-ch open drain I/O [withstand voltage of VDD]: 17)	52 (N-ch open drain I/O [withstand voltage of VDD]: 19)		
	CMOS input	3						
	CMOS output	_		1				
	N-ch open drain I/O (withstand voltage: 6 V)	2						
	Controlled current drive port	7	8					
Timers	16-bit timers TAU, timer RJ, timer RD2, timer RX, timer RG2	9 channels in tota 4-channel timer au 1-channel timer R 2-channel timer R 1-channel timer R 1-channel timer R	ray unit (TAU) J D2 with PWMOPA G2					
	16-bit timers KB30, KB31, and KB32	3 channels (PWM	outputs: 6)					
	Watchdog timer	1 channel						
	Realtime clock (RTC)	1 channel						
	32-bit interval timer (TML32)	1 channel in 32-bit counter mode, 2 channels in 16-bit counter mode, 4 channels in 8-bit counter mode						
	Timer outputs	17 (PWM outputs: 14Note 6), 22 (PWM outputs: 14Note 6)Note 7						
	RTC output	1						
Clock outpu	ut/buzzer output	2						
		(Main system clo • 256 Hz, 512 Hz,	Hz, 15.63 kHz, 2 M ock: fMAIN = 32 MHz 1.024 kHz, 2.048 k pheral clock: fSXP =	<u>z)</u> KHz, 4.096 kHz, 8.19	16 MHz 92 kHz, 16.384 kHz	, 32.768 kHz		
8-/10-/12-b	it resolution A/D converter	19 channels	21 channels		23 channels			
	3-channel simultaneous sampling	2 channels	·		·			
8-/10-bit D/	A converter	2 to 3 channels						
	DAC outputs (ANOx)	3						
Programma	able gain amplifier (PGA)	1 channel						
Comparato	r module	4 channels				-		

(3/3)

						(3/3	
	ltem	40-pin	44-pin	48-pin	52-pin	64-pin	
	lion	R7F101GEx	R7F101GFx	R7F101GGx	R7F101GJx	R7F101GLx	
Serial interfac	ces	1 channel • Simplified SPI (C • Simplified SPI (C [48- and 52-pin pro- • Simplified SPI (C UART (UART su • Simplified SPI (C [64-pin products] • Simplified SPI (C UART (UART su • Simplified SPI (C UART (UART su • Simplified SPI (C)	CSI): 1 channel, sim CSI): 1 channel, sim CSI): 2 channels, sir oducts] CSI): 2 channels, sir pporting LIN-bus): CSI): 1 channel, sim CSI): 2 channels, sir pporting LIN-bus): CSI): 2 channels, sir	plified I ² C: 1 chann nplified I ² C: 2 chan 1 channel plified I ² C: 1 chann nplified I ² C: 1 chann nplified I ² C: 2 chan 1 channel nplified I ² C: 2 chan	el, UART: 1 channe nels, UART: 1 chan	il nel nel	
	I ² C bus	1					
	I ² C (SM/PM) bus	1					
	DALI	1					
Data transfer	controller (DTC)	53 sources					
Event link	Event inputs	34					
controller (ELC)	Event trigger outputs	19					
Vectored	Internal	55					
interrupt sources	External	13		15			
Key interrupt	·	4		6	8		
Reset		 Reset by RESET pin Internal reset by watchdog timer Internal reset by power-on-reset Internal reset by voltage detectors (LVD0 and LVD1) Internal reset by illegal instruction execution^{Note 8} Internal reset by RAM parity error Internal reset by illegal-memory access 					
Power-on-res	set circuit	Detection voltage • 1.50 V (typ.)					
Voltage detector	LVD0	Detection voltage • Rising edge: 1.69 to 3.96 V (6 stages) • Falling edge: 1.65 to 3.88 V (6 stages)					
	LVD1		7 to 4.16 V (18 stag 3 to 4.08 V (18 stag				
On-chip debu	ugging	Available (tracing	supported)				
Power supply	/ voltage	V _{DD} = 1.6 to 5.5 V (2D: Consumer applications, 3C: Industrial applications) V _{DD} = 2.7 to 5.5 V (4C: Industrial applications)					
Operating an	nbient temperature	TA = -40 to $+85^{\circ}$ C (2D: Consumer applications), TA = -40 to $+105^{\circ}$ C (3C: Industrial applications), TA = -40 to $+125^{\circ}$ C (4C: Industrial applications)					

Note 2. When the flash memory is to be overwritten, switch to HS (high-speed main) mode or LS (low-speed main) mode.

Note 3. Applicable when the PLL clock frequency is 64 MHz. Select fPLL/2 (32 MHz) or fPLL/4 (16 MHz) as the system clock.

Note 4. Applicable when the PLL clock frequency is 96 MHz. Select fPLL/2 (32 MHz) or fPLL/4 (16 MHz) as the system clock.

Note 5. This applies when the prefetch buffer is enabled. For details on the operation of the prefetch buffer, refer to Section 8 Operation State Control in the RL78/G24 User's Manual.

Note 6. The number of PWM outputs varies depending on the setting of channels in use (the number of masters and slaves). For details, see 10.9.3 Operation for the multiple PWM output function in the RL78/G24 User's Manual.

Note 7. This applies when the corresponding peripheral I/O redirection register (PIORx) bit is set to 1.

Note 8. In normal operation, executing the instruction code FFH triggers an internal reset, but this is not the case during emulation by the on-chip debugging emulator.

2. Electrical Characteristics (TA = -40 to +105°C)

This section describes the electrical characteristics of the following types of products.

- 2D: Consumer applications, TA = -40 to +85°C R7F101Gxx2Dxx
- 3C: Industrial applications, TA = -40 to +105°C R7F101Gxx3Cxx
- 4C: Industrial applications, products of TA = -40 to +125°C, but under the condition TA = -40 to +105°C R7F101Gxx4Cxx
- Caution 1. RL78 microcontrollers have on-chip debugging functionality for use in the development and evaluation of user systems. Do not use on-chip debugging with products designated as part of mass production, because using this function may cause the guaranteed number of times the flash memory is rewritten to be exceeded, and product reliability therefore cannot be guaranteed. Renesas Electronics is not liable for problems occurring when on-chip debugging is used with products designated as part of mass production.
- Caution 2. For the consumer application products (2D), the ambient operating temperature of $T_A = -40^{\circ}C$ to +85°C applies.
- Caution 3. For products that do not have an EVDD0 or EVss0 pin, read EVDD0 as VDD, and EVss0 as Vss.
- Caution 4. The present pins differ depending on the products. For details, see 2.1 Functions of Port Pins through 2.2.1 Functions for each product in the RL78/G24 User's Manual.

(4.0)

2.1 Absolute Maximum Ratings

Item	Symbols	Conditions	Ratings	Unit
Supply voltage	VDD -0.5 to +6.5 EVD0 -0.5 to +6.5 EVsso -0.5 to +6.5 EVsso -0.5 to +0.3 GC pin input voltage VIREGC REGC -0.3 to +2.1 and -0.3 to VDD + 0.3Note 1 it voltage VI1 P00 to P06, P10 to P17, P30, P31, P40 to P43, P50 to P55, P62, P63, P70 to P77, P120, P140, P141, P146, P147 -0.3 to EVDD0 + 0.3 and -0.3 to VDD + 0.3Note 2 Vi2 P60, P61 (N-ch open drain) -0.3 to +6.5 Vi3 P20 to P27, P121 to P124, P137, EXCLK, EXCLK, RESET -0.3 to EVDD0 + 0.3 and -0.3 to VDD + 0.3Note 2 out voltage V01 P00 to P06, P10 to P17, P30, P31, P40 to P43, P50 to P55, P62, P63, P70 to P77, P120, P130, P140, P141, P146, P147 -0.3 to EVDD0 + 0.3 Note 2	V		
	EVDD0		-0.5 to +6.5	V
	EVss0		-0.5 to +0.3	V
REGC pin input voltage	VIREGC	REGC		V
nput voltage	VI1	P40 to P43, P50 to P55, P62, P63,		V
	VI2	P60, P61 (N-ch open drain)	-0.3 to +6.5	V
	VI3		-0.3 to VDD + 0.3Note 2	V
Output voltage	V01	P40 to P43, P50 to P55, P62, P63,		V
	V02	P20 to P27, P121, P122	-0.3 to VDD + 0.3Note 2	V
Analog input voltage	VAI1	ANI16 to ANI30	-0.3 to EVDD0 + 0.3 and -0.3 to AVREFP + 0.3 Notes 2, 3	V
	VAI2	ANI0 to ANI7	–0.3 to VDD + 0.3 and –0.3 to AVREFP + 0.3 Notes 2, 3	V

Note 1. Connect the REGC pin to Vss via a capacitor (0.47 to 1 μF). The listed value is the absolute maximum rating of the REGC pin. Do not apply a specific voltage to this pin.

Note 2. This voltage must be no higher than 6.5 V.

Note 3. The voltage on a pin in use for A/D conversion must not exceed AVREFP + 0.3.

- Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.
- **Remark 1.** The characteristics of functions multiplexed on a given pin are the same as those for the port pin unless otherwise specified.

Remark 2. AVREFP refers to the positive reference voltage of the A/D converter.

Remark 3. The reference voltage is Vss.

(212	n
(2/2	.,

14	Cumple a la		One ditta	_	Detinare	(2/2
Item	Symbols		Condition	IS	Ratings	Unit
High-level output current	Іон1	Per pin	,	P17, P30, P31, P40 to P43, 63, P70 to P77, P120, P130, P147	-40	mA
		Total of all pins –170 mA	P00 to P04, P40 to P141	P43, P120, P130, P140,	-70	mA
			P05, P06, P10 to P17, P30, P31, P50 to P55, P62, P63, P70 to P77, P146, P147		-100	mA
	Іон2	Per pin	P20 to P27, P121, F	P122	-5	mA
		Total of all pins		-20	mA	
Low-level output current	IOL1	Per pin	P00 to P06, P10 to P17, P30, P31, P40 to P43, P50 to P55, P62, P63, P70 to P77, P120, P130, P140, P141, P146, P147		40	mA
		Total of all pins 170 mA	P00 to P04, P40 to P43, P120, P130, P140, P141		70	mA
			P05, P06, P10 to P P60 to P63, P70 to	100	mA	
	IOL2	Per pin	P20 to P27, P121, F	P122	10	mA
		Total of all pins	1		20	mA
Ambient operating	ТА	In normal operat	tion mode	3C: Industrial applications	-40 to +105	°C
temperature				2D: Consumer applications	-40 to +85	°C
		In flash memory	programming mode	3C: Industrial applications	-40 to +105	°C
				2D: Consumer applications	-40 to +85	°C
Storage temperature	Tstg			•	-65 to +150	°C

- Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.
- **Remark** The characteristics of functions multiplexed on a given pin are the same as those for the port pin unless otherwise specified.

2.2 Characteristics of the Oscillators

<R> 2.2.1 Characteristics of the X1 oscillator

 $(TA = -40 \text{ to } +105^{\circ}\text{C}, 1.6 \text{ V} \le \text{VDD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Item	Resonator	Conditions	Min.	Тур.	Max.	Unit
X1 clock oscillation allowable input cycle time ^{Note}	Ceramic resonator/ crystal resonator		0.05		1	μs

Note The listed time and frequency indicate permissible ranges of the oscillators. For actual applications, request the resonator manufacturer for evaluation of the resonators on the oscillator circuit mounted on a board so you can use appropriate values. Refer to **2.4 AC Characteristics** for instruction execution time.

<R> 2.2.2 Characteristics of the XT1 oscillator

 $(TA = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{VDD} \le 5.5 \text{ V} (20 \text{ to } 32 \text{ -pin products}), 1.6 \text{ V} \le \text{VDD} \le 5.5 \text{ V} (40 \text{ to } 64 \text{ -pin products}), \text{Vss} = 0 \text{ V})$

Item	Resonator	Conditions	Min.	Тур.	Max.	Unit
XT1 clock oscillation frequency (fxT) ^{Note}	Crystal resonator			32.768		kHz

Note The listed time and frequency indicate permissible ranges of the oscillators. For actual applications, request the resonator manufacturer for evaluation of the resonators on the oscillator circuit mounted on a board so you can use appropriate values. Refer to **2.4 AC Characteristics** for instruction execution time.

Caution Since the CPU is started by the high-speed on-chip oscillator clock after release from the reset state, the user should use the oscillation stabilization time counter status register (OSTC) to check the X1 clock oscillation stabilization time. Sufficiently evaluate the oscillation stabilization time with the resonator to be used, and then specify the values for the oscillation stabilization time in the OSTC register and the oscillation stabilization time select register (OSTS).

2.2.3 Characteristics of the on-chip oscillators

Item	Symbol		Condition	S	Min.	Тур.	Max.	Unit
High-speed on-chip oscillator clock frequency	fін				1		48	MHz
High-speed on-chip		HIPREC = 1	+85 to +105°C	1.8 V ≤ VDD ≤ 5.5 V	-1.5		+1.5	%
oscillator clock frequency accuracyNote 1				1.6 V ≤ VDD ≤ 5.5 V	-6.0		+6.0	%
			–20 to +85°C	1.8 V ≤ VDD ≤ 5.5 V	-1.0		+6.0 +1.0 +5.0 +1.5 +5.5 0 4 +12 +12 ±0.17 Note 3	%
				1.6 V ≤ VDD ≤ 5.5 V	-5.0		+5.0	%
			-40 to -20°C	1.8 V ≤ VDD ≤ 5.5 V	-1.5		+1.5	%
				$1.6 \text{ V} \leq \text{VDD} \leq 5.5 \text{ V}$	-5.5		+5.5	%
		HIPREC = 0N	ote 4		-15		0	%
High-speed on-chip oscillator clock correction resolution						0.05		%
Middle-speed on-chip oscillator clock frequency ^{Note 2}	fім				1		4	MHz
Middle-speed on-chip oscillator clock frequency accuracy ^{Note 1}					-12		+12	%
Middle-speed on-chip oscillator clock correction resolution						0.15		%
Middle-speed on-chip oscillator frequency temperature coefficient							-	%/°C
Low-speed on-chip oscillator clock frequency ^{Note 2}	fı∟					32.768		kHz
Low-speed on-chip oscillator clock frequency accuracy ^{Note 1}					-15		+15	%
Low-speed on-chip oscillator clock correction resolution						0.3		%
Low-speed on-chip oscillator frequency temperature coefficient							±0.21 Note 3	%/°C

$(TA = -40 \text{ to } +105^{\circ}\text{C}, 1.6 \text{ V} \le \text{VDD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Note 1. The accuracy values were obtained in testing of this product.

Note 2. The listed values only indicate the characteristics of the oscillators. Refer to 2.4 AC Characteristics for instruction execution time.

Note 3. These values were obtained in the evaluation.

Note 4. This condition applies when the setting of the FRQSEL3 bit of the user option byte is 1.

2.2.4 Characteristics of the PLL oscillator

Item	Symbol	Conditions	Min.	Тур.	Max.	Unit
PLL input frequency	fpllin	High-speed system clock (fMX) or high-speed on-chip oscillator clock (fIH)		8		MHz
PLL output frequency	fPLL	fpllin × 12		96		MHz
		fpllin × 8		64		MHz
Lock-up wait time		Wait time after PLL output is enabled until the output frequency is stabilized	50			μs
Interval wait time		Wait time after PLL stop until PLL operation is set again	4			μs
Setting wait time		Required wait time after the PLL input clock is stabilized and the PLL setting is determined until startup settings are made	1			μs

 $(TA = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{VDD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

(1/7)

2.3 DC Characteristics

2.3.1 Pin characteristics

$(T_{A} = -40 \text{ to } +105^{\circ}\text{C})$, 1.6 V \leq EVDD0 \leq VDD \leq 5.5 V, Vss = EVss0 = 0 V)
(17. 10.00.000	$(10^{\circ})^{\circ} = 2^{\circ} = 2^{\circ}$

Item	Symbol	Conditions	3	Min.	Тур.	Max.	Unit
Allowable high-level output current ^{Note 1}	Іон1	Per pin for P00 to P06, P10 to P17, P30, P31, P40 to P43, P50 to P55, P62, P63, P70-P77, P120, P130, P140, P141, P146, P147	1.6 V ≤ EVDD0 ≤ 5.5 V			-10.0 Note 2	mA
		Total of P00 to P04, P40 to P43, P120, P130, P140, P141	$4.0 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$			55.0 Note 4	mA
		(when duty ≤ 70% ^{Note 3})	2.7 V ≤ EVDD0 < 4.0 V			-10.0	mA
			1.8 V ≤ EVDD0 < 2.7 V			-5.0	mA
			1.6 V ≤ EVDD0 < 1.8 V			-2.5	mA
		Total of P05, P06, P10 to P17, P30, P31, P50 to P55, P62, P63,	$4.0 \text{ V} \leq \text{EVDD0} \leq 5.5 \text{ V}$			80.0 Note 5	mA
		P70 to P77, P146, P147 (when duty ≤ 70% ^{Note 3})	2.7 V ≤ EVDD0 < 4.0 V			-19.0 Note 7	mA
			1.8 V ≤ EVDD0 < 2.7 V			-10.0	mA
			1.6 V ≤ EVDD0 < 1.8 V			-5.0	mA
		Total of all pins (when duty ≤ 70% ^{Note 3})	1.6 V ≤ EVDD0 ≤ 5.5 V			-135.0 Note 6	mA
	Іон2	Per pin for P20 to P27, P121, P122	4.0 V ≤ VDD ≤ 5.5 V			-3.0 Note 2	mA
			2.7 V ≤ VDD < 4.0 V			-1.0 Note 2	mA
			1.8 V ≤ VDD < 2.7 V			-1.0 Note 2	mA
			1.6 V ≤ VDD < 1.8 V			0.5 Note 2	mA
		(when duty ≤ 70% ^{Note 3})	4.0 V ≤ VDD ≤ 5.5 V			-20.0 Note 8	mA
			$2.7 V \le VDD < 4.0 V$			-10.0 Note 9	mA
			1.8 V ≤ VDD < 2.7 V			-5.0	mA
			1.6 V ≤ VDD < 1.8 V			-5.0	mA

(Notes, Caution, and Remark are listed on the next page.)

- Note 1. Device operation is guaranteed at the listed currents even if current is flowing from the EVDD0 or VDD pin to an output pin.
- Note 2. The combination of these and other pins must not exceed the total current value.
- **Note 3.** The listed output current values apply when the duty cycle is no greater than 70%.

Use the following formula to calculate the output current when the duty cycle is greater than 70%, where n is the duty cycle (%).

- Total output current from all pins = $(IOH \times 0.7)/(n \times 0.01)$
 - Example when IOH = -10.0 mA, n = 80%

Total output current from all pins = $(-10.0 \times 0.7)/(80 \times 0.01) \approx -8.7$ mA

Note that the duty cycle has no effect on the current that is allowed to flow into a single pin.

Note 4. The maximum value is -30 mA in products for industrial applications (R7F101Gxx3Cxx) with an ambient operating temperature range of +85°C to +105°C.

The maximum value is –24 mA in products for industrial applications (R7F101Gxx4Cxx) with an ambient operating temperature range of –40°C to +105°C.

Note 5. The maximum value is -50 mA in products for industrial applications (R7F101Gxx3Cxx) with an ambient operating temperature range of +85°C to +105°C.

The maximum value is -42 mA in products for industrial applications (R7F101Gxx4Cxx) with an ambient operating temperature range of -40 °C to +105 °C.

- Note 6. The maximum value is -60 mA with an ambient operating temperature range of +85°C to +105°C and -100 mA with an ambient operating temperature range of -40°C to +85°C in products for industrial applications (R7F101Gxx3Cxx). The maximum value is -54 mA in products for industrial applications (R7F101Gxx4Cxx) with an ambient operating temperature range of -40°C to +105°C.
- **Note 7.** The maximum value is -17 mA in products for industrial applications (R7F101Gxx4Cxx) with an ambient operating temperature range of -40°C to +105°C.
- **Note 8.** The maximum value is -14 mA in products for industrial applications (R7F101Gxx4Cxx) with an ambient operating temperature range of -40°C to +105°C.
- **Note 9.** The maximum value is –8 mA in products for industrial applications (R7F101Gxx4Cxx) with an ambient operating temperature range of –40°C to +105°C.
- Caution The following pins do not output high-level signals in the N-ch open-drain mode. P00, P02 to P04, P10 to P15, P17, P30, P50, P51, P55, and P71 to P74
- **Remark** The characteristics of functions multiplexed on a given pin are the same as those for the port pin unless otherwise specified.

Item	Symbol	Conditions	3	Min.	Тур.	Max.	Unit
Allowable low-level output current ^{Note 1}	IOL1	Per pin for P00 to P06, P10 to P17, P30, P31, P40 to P43, P50 to P55, P62, P63,P70 to P77, P120, P130, P140, P141, P146, P147				20.0 Notes 2, 8	mA
		Per pin for P60, P61				15.0 Note 2	mA
		Total of P00 to P04, P40 to P43, P120, P130, P140, P141	4.0 V ≤ EVDD0 ≤ 5.5 V			70.0 Note 4	mA
		(when duty ≤ 70% Note 3)	2.7 V ≤ EVDD0 < 4.0 V			15.0	mA
			1.8 V ≤ EVDD0 < 2.7 V			9.0	mA
			1.6 V ≤ EVDD0 < 1.8 V			4.5	mA
		Total of P05, P06, P10 to P17, P30, P31, P50 to P55, P62, P63,	4.0 V ≤ EVDD0 ≤ 5.5 V			80.0 Note 4	mA
		P70 to P77, P146, P147 (when duty ≤ 70% ^{Note 3})	2.7 V ≤ EVDD0 < 4.0 V			35.0 Note 6	mA
			1.8 V ≤ EVDD0 < 2.7 V			20.0	mA
			1.6 V ≤ EVDD0 < 1.8 V			10.0	mA
		Total of all pins (when duty ≤ 70% ^{Note 3})				150.0 Note 5	mA
	IOL2	Per pin for P20 to P27, P121,	4.0 V ≤ VDD ≤ 5.5 V			8.5Note 2	mA
		P122	2.7 V ≤ VDD < 4.0 V			1.5Note 2	mA
			1.8 V ≤ VDD < 2.7 V			0.6Note 2	mA
			1.6 V ≤ VDD < 1.8 V			0.4Note 2	mA
		Total of all pins (when duty ≤ 70% ^{Note 3})	4.0 V ≤ VDD ≤ 5.5 V			20 Note 7	mA
			2.7 V ≤ VDD < 4.0 V			20 Note 7	mA
			1.8 V ≤ VDD < 2.7 V			15.0	mA
			1.6 V ≤ VDD < 1.8 V			10.0	mA

(TA = -40 to $+105^{\circ}$ C, 1.6 V \leq EVDD0 \leq VDD \leq 5.5 V, VSS = EVSS0 = 0 V)

(2/7)

(Notes and Remark are listed on the next page.)

- Note 1. Device operation is guaranteed at the listed currents even if current is flowing from an output pin to the EVsso or Vss pin.
- Note 2. The combination of these and other pins must not exceed the total current value.
- Note 3. The listed output current values apply when the duty cycle is no greater than 70%.

Use the following formula to calculate the output current when the duty cycle is greater than 70%, where n is the duty cycle (%).

• Total output current from all pins = (IOH × 0.7)/(n × 0.01)

Example when IOH = -10.0 mA, n = 80%

Total output current from all pins = $(-10.0 \times 0.7)/(80 \times 0.01) \approx -8.7$ mA

Note that the duty cycle has no effect on the current that is allowed to flow into a single pin. No current higher than the absolute maximum rating must not flow into a single pin.

Note 4. The maximum value is 40 mA in products for industrial applications (R7F101Gxx3Cxx) with an ambient operating temperature range of +85°C to +105°C.

The maximum value is 34 mA in products for industrial applications (R7F101Gxx4Cxx) with an ambient operating temperature range of -40° C to $+105^{\circ}$ C.

- Note 5. The maximum value is 80 mA in products for industrial applications (R7F101Gxx3Cxx) with an ambient operating temperature range of +85°C to +105°C.
 The maximum value is 68 mA in products for industrial applications (R7F101Gxx4Cxx) with an ambient operating temperature range of -40°C to +105°C.
- **Note 6.** The maximum value is 15 mA in products for industrial applications (R7F101Gxx4Cxx) with an ambient operating temperature range of -40°C to +105°C.
- **Note 7.** The maximum value is 14 mA in products for industrial applications (R7F101Gxx4Cxx) with an ambient operating temperature range of -40°C to +105°C.
- **Note 8.** The maximum value is 17 mA in products for industrial applications (R7F101Gxx4Cxx) with an ambient operating temperature range of -40°C to +105°C.
- **Remark** The characteristics of functions multiplexed on a given pin are the same as those for the port pin unless otherwise specified.

RL78/G24

Item	Symbol	Condition	S	Min.	Тур.	Max.	Unit
Input voltage, high	VIH1	P00 to P06, P10 to P17, P30, P31, P40 to P43, P50 to P55, P62, P63, P70 to P77, P120, P140, P141, P146, P147	Normal input buffer	0.8 EVDD0	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	EVDD0	V
	VIH2	P01, P03, P04, P10, P11, P14 to P17, P30, P50, P55, P73	TTL input buffer 4.0 V ≤ EVDD0 ≤ 5.5 V	2.2		EVDD0	V
			TTL input buffer 3.3 V ≤ EVDD0 < 4.0 V	2.0		EVDD0	V
			TTL input buffer 1.6 V ≤ EVDD0 < 3.3 V	1.5		EVDD0	V
	VIH3	P20 to P27		0.7 Vdd		Vdd	V
	VIH4	P60, P61	I/O port mode	0.7 EVDD0		6.0	V
	VIH5	P121 to P124, P137, EXCLK, EX	CLKS, RESET	0.8 Vdd		Vdd	V
	VIH6	P60, P61	SMBus input mode 2.7 V ≤ EVDD0 ≤ 5.5 V	1.35		EVDD0	V
Input voltage, low	VIL1	P00 to P06, P10 to P17, P30, P31, P40 to P43, P50 to P55, P62, P63, P70 to P77, P120, P140, P141, P146, P147	Normal input buffer	0		0.2 EVDD0	V
	VIL2	P01, P03, P04, P10, P11, P14 to P17, P30, P50, P55, P73	TTL input buffer 4.0 V ≤ EVDD0 ≤ 5.5 V	0		0.8	V
			TTL input buffer 3.3 V ≤ EVDD0 < 4.0 V	0		0.5	V
			TTL input buffer 1.6 V ≤ EVDD0 < 3.3 V	0		0.32	V
	VIL3	P20 to P27		0		0.3 Vdd	V
	VIL4	P60, P61	I/O port mode	0		0.3 EVDD0	V
	VIL5	P121 to P124, P137, EXCLK, EX	CLKS, RESET	0		0.2 Vdd	V
	VIL6	P60, P61	SMBus input mode 2.7 V ≤ EVDD0 ≤ 5.5 V			0.8	V

(TA = -40 to +105°C, 1.6 V ≤ EVDD0 ≤ VDD ≤ 5.5 V, VSS = EVSS0 = 0 V)

(3/7)

Caution The maximum value of VIH of pins P00, P02 to P04, P10 to P15, P17, P30, P50, P51, P55, and P71 to P74 is EVDD0, even in the N-ch open-drain mode.

Remark The characteristics of functions multiplexed on a given pin are the same as those for the port pin unless otherwise specified.

(TA = -40 to +105°C, 7	1.6 V ≤ E	$VDD0 \le VDD \le 5.5 V$, $Vss = EVss$	60 = 0 V)				(4/7)
Item	Symbol	Conditions	3	Min.	Тур.	Max.	Unit
Output voltage, high	Voh1	P00 to P06, P10 to P17, P30, P31, P40 to P43, P50 to P55, P62, P63,		EVDD0 - 1.5			V
		P70 to P77, P120, P130, P140, P141, P146, P147	$4.0 \text{ V} \le \text{EVDD0} \le 5.5 \text{ V},$ IOH1 = -3.0 mA	EVDD0 - 0.7			V
			2.7 V ≤ EVDD0 ≤ 5.5 V, IOH1 = -2.0 mA	EVDD0 - 0.6			V
			1.8 V ≤ EVDD0 ≤ 5.5 V, IOH1 = −1.5 mA	EVDD0 - 0.5			V
		1.6 V ≤ EVDD0 < 5.5 V, IOH1 = −1.0 mA	EVDD0 - 0.5			V	
	Voh2	P20 to P27, P121, P122	$4.0 V \le V_{DD} \le 5.5 V$, IOH2 = -3.0 mA	Vdd - 0.7			V
			$2.7 V \le V_{DD} < 4.0 V$, IOH2 = -1.0 mA	Vdd - 0.5			V
			1.8 V ≤ VDD < 2.7 V, ІОн2 = −1.0 mA	Vdd - 0.5			V
			1.6 V ≤ VDD < 1.8 V, IOH2 = -0.5 mA	Vdd - 0.5			V

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 1.6 \text{ V} \le \text{EV}_{DD0} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = \text{EV}_{SS0} = 0 \text{ V})$

Pins P00, P02 to P04, P10 to P15, P17, P30, P50, P51, P55, P71 to P74 do not output high-level signals in the N-ch Caution open-drain mode.

The characteristics of functions multiplexed on a given pin are the same as those for the port pin unless otherwise Remark specified.

(TA = -40 to +105°C, 1.6 V ≤ EVDD0 ≤ VDD ≤ 5.5 V, VSS = EVSS0 = 0 V)

Item Symbol Conditions Min. Тур. Max. Unit Output voltage, low VOL1 P00 to P06, P10 to P17, $4.0 \text{ V} \leq \text{Evdd} \leq 5.5 \text{ V}$ IOL1 = 20.0 mA 1.3 V P30, P31, P40 to P43, P50 $4.0 \text{ V} \leq \text{EVDD0} \leq 5.5 \text{ V}$ IOL1 = 8.5 mA 0.7 V to P55, P62, P63, P70 to P77, P120, P130, P140, 2.7 V ≤ EVDD0 ≤ 5.5 V V IOL1 = 3.0 mA 0.6 P141, P146, P147 $2.7 \text{ V} \leq \text{EVDD0} \leq 5.5 \text{ V}$ IOL1 = 1.5 mA 0.4 V $1.8 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$ IOL1 = 0.6 mA0.4 V $1.6 \text{ V} \leq \text{EVDD0} \leq 5.5 \text{ V}$ IOL1 = 0.3 mA 0.4 V VOL2 P20 to P27, P121, P122 4.0 V ≤ VDD ≤ 5.5 V, IOL2 = 8.5 mA 0.7 V 2.7 V ≤ VDD < 4.0 V, IOL2 = 1.5 mA 0.5 V $1.8 \text{ V} \le \text{VDD} < 2.7 \text{ V}, \text{ IOL2} = 0.6 \text{ mA}$ V 0.4 V $1.6 \text{ V} \le \text{V}_{\text{DD}} < 1.8 \text{ V}, \text{ IOL2} = 0.4 \text{ mA}$ 0.4 V VOL3 P60, P61 4.0 V ≤ EVDD0 ≤ 5.5 V, IOL3 = 15.0 mA 20 4.0 V ≤ EVDD0 ≤ 5.5 V, IOL3 = 5.0 mA 0.4 V $2.7 \text{ V} \le \text{EVDD0} \le 5.5 \text{ V}$. IOL3 = 3.0 mA 0.4 V 1.8 V ≤ EVDD0 ≤ 5.5 V, IOL3 = 2.0 mA 0.4 V 1.6 V ≤ EVDD0 ≤ 5.5 V, IOL3 = 1.0 mA V 0.4

The characteristics of functions multiplexed on a given pin are the same as those for the port pin unless otherwise Remark specified.

(5/7)

(6/7)

(7/7)

$(TA = -40 \text{ to } +105^{\circ}\text{C}, 1.6 \text{ V} \le \text{EVDD0} \le \text{VDD} \le 5.5 \text{ V}, \text{Vss} = \text{EVss0} = 0 \text{ V})$

Item	Symbol		Conditions					Unit
Output currentNote	CCDIOL	P10, P11, P16, P17,	CCSm = 01H	4.0 V ≤ EVDD0 ≤ 5.5 V	1.0	1.8	2.6	mA
		P60 to P63		2.7 V ≤ EVDD0 < 4.0 V	0.8	1.5	2.3	mA
				4.0 V ≤ EVDD0 ≤ 5.5 V	3.0	4.9	6.5	mA
				3.0 V ≤ EVDD0 < 4.0 V	2.7	4.3	5.9	mA
			CCSm = 03H	4.0 V ≤ EVDD0 ≤ 5.5 V	6.6	10.0	13.2	mA
				3.3 V ≤ EVDD0 < 4.0 V	6.0	9.1	12.1	mA
		P60, P61	CCSm = 04H	4.0 V ≤ EVDD0 ≤ 5.5 V	10.2	15.0	19.8	mA
				3.3 V ≤ EVDD0 < 4.0 V	9.4	13.8	18.2	mA

Note The listed currents apply when the output current control function is enabled.

$(TA = -40 \text{ to } +105^{\circ}\text{C}, 1.6 \text{ V} \le \text{EVDD0} \le \text{VDD} \le 5.5 \text{ V}, \text{Vss} = \text{EVss0} = 0 \text{ V})$

Conditions Min. Max. Unit Item Symbol Typ. P00 to P06, P10 to P17, P30, P31, P40 Input leakage current, VI = EVDD0 1 ILIH1 μΑ to P43, P50 to P55, P60 to P63, P70 to high P77, P120, P140, P141, P146, P147 P20 to P27, P137, RESET VI = VDD LIH2 1 μΑ Ігнз P121 to P124 VI = VDD 1 μA (X1, X2, XT1, XT2, EXCLK, EXCLKS) P00 to P06, P10 to P17, P30, P31, P40 VI = EVsso Input leakage current, ILIL1 1 μΑ to P43, P50 to P55, P62, P63, P70 to low P77, P120, P130, P140, P141, P146, P147 LIL2 P20 to P27, P137, RESET VI = Vss 1 μA ILIL3 P121 to P124 VI = Vss 1 μA (X1, X2, XT1, XT2, EXCLK, EXCLKS) On-chip pull-up Rυ P00 to P06, P10 to P17, P30, P31, P40 VI = EVsso, input port 10 20 100 kΩ to P43, P50 to P55, P62, P63, P70 to resistance P77, P120 to P122, P140, P141, P146, P147

Remark The characteristics of functions multiplexed on a given pin are the same as those for the port pin unless otherwise specified.

2.3.2 Supply current characteristics

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 1.6 \text{ V} \le \text{EVDD0} \le \text{VDD} \le 5.5 \text{ V}, \text{Vss} = \text{EVss0} = 0 \text{ V})$	(TA = -40 to +105°C	$1.6 \text{ V} \le \text{EVDD0} \le \text{VDD} \le 5.5 \text{ V}, \text{Vss} = \text{EVss0} = 0 \text{ V}$
--	---------------------	--

(1/5)

Item	Symbol			Conditions			Min.	Тур.	Max.	Unit
Supply	IDD1	Operating	HS	fpll = 96 MHz	Normal	VDD = 5.0 V		5.5	17.6	mA
current Note 1		mode	(high-speed main) mode	fclk = 48 MHz (MCM0 = 0) ^{Note 2}	operation	VDD = 2.4 V		5.5	17.6	-
				fPLL = 96 MHz	Normal	VDD = 5.0 V		5.3	17.4	mA
				fcLK = 48 MHz (MCM = 1) ^{Note 4}	operation	VDD = 2.4 V		5.3	17.4	
				fiH = 48 MHzNote 2	Normal	VDD = 5.0 V		4.6	11.9	mA
					operation	VDD = 2.4 V		4.6	11.9	
				fPLL = 64 MHz	Normal	VDD = 5.0 V		3.9	12.1	mA
				fclk = 32 MHz (MCM0 = 0) ^{Note 2}	operation	Vdd = 1.8 V		3.9	12.1	
				fPLL = 64 MHz	Normal	VDD = 5.0 V		3.7	11.9	mA
				fcLK = 32 MHz (MCM = 1) ^{Note 4}	operation	VDD = 1.8 V		3.7	11.9	
				fiн = 32 MHz ^{Note 2}	Basic	VDD = 5.0 V		1.6	_	mA
					operation	VDD = 1.8 V		1.6	_	-
				Normal	VDD = 5.0 V		3.3	8.3	mA	
					operation	VDD = 1.8 V		3.3	8.3	
			LS	fiH = 24 MHz ^{Note 2}	Normal	Vdd = 5.0 V		2.5	6.3	mA
		(low-speed main) mode		operation	Vdd = 1.8 V		2.5	6.3		
			fiн = 16 MHz ^{Note 2}	Normal	Vdd = 5.0 V		1.8	4.4	mA	
					operation	VDD = 1.8 V		1.8	4.4	
				fim = 4 MHzNote 3	Normal	VDD = 5.0 V		0.5	1.3	mA
					operation	VDD = 1.6 V		0.5	1.3	
			LP (low power main)	fim = 2 MHzNote 3	Normal	VDD = 5.0 V		215	707	μA
			(low-power main) mode		operation	VDD = 1.6 V		214	706	
				fIM = 1 MH _Z Note 3	Normal operation	Vdd = 5.0 V		120	466	μA
					operation	VDD = 1.6 V		119	464	
			HS (high-speed main)	fMX = 20 MHz ^{Note 4}, Square wave input	Normal operation	VDD = 5.0 V		2.0	5.2	mA
			mode		opolation	Vdd = 1.8 V		2.0	5.2	
			LS	fMX = 20 MHzNote 4,	Normal	Vdd = 5.0 V		1.9	5.1	mA
			(low-speed main) mode	Square wave input	operation	VDD = 1.8 V		1.9	5.0	
				fMX = 20 MHzNote 4,	Normal	Vdd = 5.0 V		2.1	5.3	mA
				Resonator connection	operation	VDD = 1.8 V		2.1	5.3	
				fMX = 10 MHzNote 4,	Normal operation	VDD = 5.0 V		1.0	2.7	mA
				Square wave input	operation	VDD = 1.8 V		1.0	2.7	
			, ,	Normal operation	VDD = 5.0 V		1.1	2.9	mA	
				Resonator connection	operation	VDD = 1.8 V		1.1	2.9	
				fMX = 8 MHzNote 4,	Normal operation	VDD = 5.0 V		0.8	2.2	mA
				Square wave input	operation	VDD = 1.8 V		0.8	2.2	

(Notes and Remarks are listed on the next page.)

(2/5)

<R>

(TA = -40 to $+105^{\circ}$ C, 1.6 V \leq EVDD0 \leq VDD \leq 5.5 V, Vss = EVss0 = 0 V)

Conditions Unit Item Symbol Min. Typ. Max. Supply **I**DD1 Operating LS fMX = 8 MHzNote 4 Normal VDD = 5.0 V 0.9 2.4 mΑ current mode (low-speed main) Resonator connection operation VDD = 1.8 V 0.9 2.4 Note 1 mode

Note 1. The listed currents are the total currents flowing into VDD and EVDD0, including the input leakage currents flowing when the level of the input pin is fixed to VDD, EVDD0 or VSS, EVSS0. The currents in the Typ. column do not include the peripheral operating current in the HS (high-speed main), LS (low-speed main), or LP (low-power main) mode. The currents in the Max. column include the operating currents of the PCLBUZ, TAU, SAU, IICA, timer RD2, timer RX, and 16-bit timers KB30, KB31, and KB32.

Note 2. The listed currents apply when the high-speed system clock, middle-speed on-chip oscillator, low-speed on-chip oscillator, and subsystem clock are stopped.

Note 3. The listed currents apply when the high-speed on-chip oscillator, high-speed system clock, low-speed on-chip oscillator, and subsystem clock are stopped.

Note 4. The listed currents apply when the high-speed on-chip oscillator, middle-speed on-chip oscillator, low-speed on-chip oscillator, and subsystem clock are stopped.

Remark 1. fil: High-speed on-chip oscillator clock frequency

Remark 2. fim: Middle-speed on-chip oscillator clock frequency

Remark 3. fMX: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)

Remark 4. fPLL: PLL clock frequency (up to 96 MHz)

Remark 5. fCLK: CPU/peripheral hardware clock frequency

Remark 6. The typical value for the ambient operating temperature (TA) is +25°C unless otherwise specified.

	r	-,		.5 V, Vss = EVsso = 0 V	,			-		(3/5				
Item	Symbol		1	Conditions	1	1	Min.	Тур.	Max.	Unit				
Supply	IDD1	Operating	Subsystem	fsub = 32.768 kHz ^{Note 2} ,	Normal	TA = -40°C		3.9	16.8	μA				
current Note 1		mode	clock operation mode	Low-speed on-chip oscillator operation	operation	TA = +25°C		4.7	17.4					
						TA = +50°C		6.3	30.9					
						TA = +70°C		9.7	52.3					
						TA = +85°C		15.3	83.2					
						TA = +105°C		30.6	177.3					
				fsub = 32.768 kHz ^{Note 3} ,	Normal	TA = -40°C		3.5	16.3	μA				
				Square wave input	operation	TA = +25°C		4.9	22.0					
							TA = +50°C		5.9	31.7				
								TA = +70°C		9.2	53.9			
						TA = +85°C		14.7	81.8					
						TA = +105°C		30.3	180.4					
				fsub = 32.768 kHz ^{Note 3} ,	Normal	TA = -40°C		3.6	13.4	μA				
				Resonator connection	operation	TA = +25°C		4.3	14.1					
							TA = +50°C		5.8	27.2				
							TA = +70°C		9.2	50.0				
											TA =	TA = +85°C		14.9
						TA = +105°C		30.0	174.3					

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 1.6 \text{ V} \le \text{EVDD0} \le \text{VDD} \le 5.5 \text{ V}, \text{Vss} = \text{EVss0} = 0 \text{ V})$

Note 1. The listed currents are the total currents flowing into VDD and EVDD0, including the input leakage currents flowing when the level of the input pin is fixed to VDD, EVDD0 or VSS, EVSS0. The currents in the Typ. and Max. columns do not include the peripheral operating current when the CPU is operating with the sub-system clock.

Note 2. The listed currents apply when the high-speed on-chip oscillator, middle-speed on-chip oscillator, high-speed system clock, and subsystem clock are stopped. They do not include the currents flowing into the RTC, 32-bit interval timer, and watchdog timer.

Note 3. The listed currents apply when the high-speed on-chip oscillator, high-speed system clock, middle-speed on-chip oscillator, and low-speed on-chip oscillator are stopped, and the low power consumption oscillation 3 is specified (AMPHS1, AMPHS0 = 11B). They do not include the currents flowing into the RTC, 32-bit interval timer, and watchdog timer.

Remark 1. fil: Low-speed on-chip oscillator clock frequency

Remark 2. fSUB: Subsystem clock frequency (XT1 clock oscillation frequency)

(4/5)

Item	Symbol		Con	ditions		Min.	Тур.	Max.	Unit				
Supply	IDD2	HALT mode	HS	fpll = 96 MHz	VDD = 5.0 V		1.57	12.84	mA				
current ^{Note} 1	Note 2		(high-speed main) mode	fclk = 48 MHz (MCM0 = 0) ^{Note 2}	VDD = 2.4 V		1.57	12.84					
				fPLL = 96 MHz	VDD = 5.0 V		1.39	12.62	mA				
				fclk = 48 MHz (MCM = 1) ^{Note 4}	VDD = 2.4 V		1.39	12.62					
				fiH = 48 MHzNote 2	VDD = 5.0 V		0.73	7.13	mA				
					VDD = 2.4 V		0.73	7.12					
				fPLL = 64 MHz	VDD = 5.0 V		1.19	8.79	mA				
				fcLK = 32 MHz (MCM0 = 0) ^{Note 2}	Vdd = 1.8 V		1.18	8.78					
				fPLL = 64 MHz	VDD = 5.0 V		1.01	8.58	mA				
				fcLK = 32 MHz (MCM = 1) ^{Note 4}	VDD = 1.8 V		0.99	8.56					
				fiн = 32 MHz ^{Note 3}	VDD = 5.0 V		0.62	4.98	mA				
					VDD = 1.8 V		0.61	4.96					
			LS	fiH = 24 MHz ^{Note 3}	VDD = 5.0 V		0.51	3.83	mA				
			(low-speed main) mode		VDD = 1.8 V		0.50	3.82					
			fiн = 16 MHz ^{Note 3}	VDD = 5.0 V		0.48	2.79	mA					
				VDD = 1.8 V		0.47	2.78						
				fim = 4 MHz ^{Note 4}	VDD = 5.0 V		0.10	0.82	mA				
					VDD = 1.6 V		0.09	0.81					
			LP (low-power main) mode	fim = 2 MHzNote 4	VDD = 5.0 V		39	493	μA				
					fim = 1 MHzNote 4	VDD = 1.6 V		40	494				
						VDD = 5.0 V		32	358	μA			
					VDD = 1.6 V		31	357					
			HS	f _{MX} = 20 MHz ^{Note 5} ,	VDD = 5.0 V		0.25	3.02	mA				
			(high-speed main) mode	Square wave input	VDD = 1.8 V		0.23	2.99					
			LS	f _{MX} = 20 MHz ^{Note 5} ,	VDD = 5.0 V		0.26	3.03	mA				
			(low-speed main) mode	Square wave input	VDD = 1.8 V		0.23	2.99					
				fmx = 20 MHz ^{Note 5} ,	VDD = 5.0 V		0.44	3.25	mA				
				Resonator connection	VDD = 1.8 V		0.43	3.23					
				f _{MX} = 10 MHz ^{Note 5} ,	VDD = 5.0 V		0.16	1.65	mA				
				Square wave input	VDD = 1.8 V		0.13	1.62					
	f _{MX} = 10 MHz ^{Note 5} ,	f _{MX} = 10 MHz ^{Note 5} ,	VDD = 5.0 V		0.30	1.82	mA						
				Resonator connection	VDD = 1.8 V		0.29	1.81					
					VDD = 5.0 V		0.14	1.37	mA				
			Square wave input	VDD = 1.8 V		0.12	1.35						
									VDD = 5.0 V		0.23	1.49	mA
				Resonator connection	VDD = 1.8 V		0.22	1.47					

(Notes and Remarks are listed on the next page.)

<R>

Note 1.	The listed currents are the total currents flowing into VDD and EVDD0, including the input leakage currents flowing when the
	level of the input pin is fixed to VDD, EVDD0 or VSS, EVSS0. The currents in the Typ. column do not include the peripheral
	operating current when the CPU is placed in the HS (high-speed main), LS (low-speed main), or LP (low-power main) mode.
	The currents in the Max. column include the operating currents of the PCLBUZ, TAU, SAU, IICA, timer RD2, timer RX, and
	16-bit timers KB30, KB31, and KB32.
	16-bit timers KB30, KB31, and KB32.

- Note 2. The listed currents apply when the HALT instruction has been fetched from the flash memory for execution.
- **Note 3.** The listed currents apply when the high-speed system clock, middle-speed on-chip oscillator, low-speed on-chip oscillator, and subsystem clock are stopped.
- Note 4. The listed currents apply when the high-speed on-chip oscillator, high-speed system clock, low-speed on-chip oscillator, and subsystem clock are stopped.
- **Note 5.** The listed currents apply when the high-speed on-chip oscillator, middle-speed on-chip oscillator, low-speed on-chip oscillator, and subsystem clock are stopped.
- Remark 1. fil: High-speed on-chip oscillator clock frequency
- Remark 2. fim: Middle-speed on-chip oscillator clock frequency
- Remark 3. fMX: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
- Remark 4. fPLL: PLL clock frequency (up to 96 MHz)
- Remark 5. fcLK: CPU/peripheral hardware clock frequency
- **Remark 6.** The typical value for the ambient operating temperature (TA) is +25°C unless otherwise specified.

Item	Symbol	Conditions				Min.	Тур.	Max.	Unit
Supply current Note 1	IDD2 Note 2	HALT mode	Subsystem clock	fsuB = 32.768 kHz Note 3 , Low-speed on-chip oscillator operation	TA = -40°C		0.97	12.31	μA
			operation mode		TA = +25°C		1.55	12.61	-
					TA = +50°C		2.80	25.50	
					TA = +70°C		5.54	45.88	
					TA = +85°C		10.41	75.70	
					TA = +105°C		23.12	165.88	
				fsuв = 32.768 kHz,	TA = -40°C		0.27	11.34	μA
				Square wave input ^{Note 4}	TA = +25°C		1.48	16.73	
					TA = +50°C		2.19	26.04	
			TA = +70°C		4.93	47.32	-		
					TA = +85°C		9.37	73.70	1
					TA = +105°C		22.71	168.71	
	Resonator connection ^{Note 5}	TA = -40°C		0.40	8.83	μı			
				Resonator connectionNote 5	TA = +25°C		0.94	9.53	-
					TA = +50°C		2.16	22.41	
		TA = +70°C		4.91	43.76				
					TA = +85°C		9.71	72.66	
					TA = +105°C		22.43	163.33	
	IDD3	STOP mode	Realtime clock stop	opedNote 6	TA = -40°C		0.16	10.00	μA
			TA : TA : TA :		TA = +25°C		0.63	10.00	-
					TA = +50°C		1.80	20.00	
					TA = +70°C		4.30	40.00	
					TA = +85°C		9.30	70.00	
					TA = +105°C		22.00	160.00	
			т, т,		TA = -40°C		0.24	11.00	μ
					TA = +25°C		0.71	11.00	-
					TA = +50°C		1.95	22.00	
					TA = +70°C		4.60	45.00	
							9.50	80.00	
					TA = +105°C		23.00	170.00	

(Notes and Remarks are listed on the next page.)

R01DS0432EJ0120 Rev.1.20 Jan 17, 2025

- **Note 1.** The listed currents are the total currents flowing into VDD and EVDD0, including the input leakage currents flowing when the level of the input pin is fixed to VDD, EVDD0 or Vss, EVSs0. The currents in the Typ. and Max. columns do not include the peripheral operating current when the CPU is operating with the sub-system clock, or when the CPU is placed in the STOP mode, but include that of the RTC when in the HALT mode.
- Note 2. The listed currents apply when the HALT instruction has been fetched from the flash memory for execution.
- **Note 3.** The listed currents apply when the high-speed on-chip oscillator, middle-speed on-chip oscillator, high-speed system clock, and subsystem clock are stopped, including the current flowing into the RTC. They do not include the currents flowing into the 32-bit interval timer and watchdog timer.
- **Note 4.** The listed currents apply when the high-speed on-chip oscillator, middle-speed on-chip oscillator, high-speed system clock, and low-speed on-chip oscillator are stopped, including the current flowing into the RTC. They do not include the currents flowing into the 32-bit interval timer and watchdog timer.
- **Note 5.** The listed currents apply when the high-speed on-chip oscillator, middle-speed on-chip oscillator, high-speed system clock, and low-speed on-chip oscillator are stopped, and when RTCLPC is set to 1 and the low power consumption oscillation 3 is specified (AMPHS1, AMPHS0 = 11B), including the current flowing into the RTC. They do not include the currents flowing into the 32-bit interval timer and watchdog timer.
- **Note 6.** The listed currents apply when the low-speed on-chip oscillator and subsystem clock oscillation are stopped. They do not include the currents flowing into the RTC, 32-bit interval timer and watchdog timer. For the current for operation of the subsystem clock in the STOP mode, refer to that in the HALT mode.
- **Note 7.** The listed currents apply when the low-speed on-chip oscillator is stopped, and when RTCLPC is set to 1 and the low power consumption oscillation 3 is specified (AMPHS1, AMPHS0 = 11B), including the current flowing into the RTC. They do not include the currents flowing into the 32-bit interval timer and watchdog timer.

Remark 1. fiL: Low-speed on-chip oscillator clock frequency

Remark 2. fSUB: Subsystem clock frequency (XT1 clock oscillation frequency)

Peripheral Functions (Common to all products)

(1/2)

Item	Symbol	Conditions			Тур.	Max.	Unit
High-speed on-chip	I _{FIH} Note 1	HIPREC = 0			380	_	μA
oscillator operating current		HIPREC = 1			240	_	μA
Middle-speed on-chip oscillator operating current	_{FIM} Note 1				20	—	μA
Low-speed on-chip oscillator operating current	_{FIL} Note 1				0.3	_	μA
RTC operating current		frtcclk = 32.7	68 kHz		0.005	_	μA
	Notes 1, 2, 3	frtcclk = 128	Hz		0.002	_	μA
32-bit interval timer operating current	li⊤ Notes 1, 2, 4				0.04	—	μA
Watchdog timer operating current	IWDT Notes 1, 2, 5	fi∟ = 32.768 kHz (typ.)			0.32	—	μA
A/D converter operating		Conversion at	Normal mode, AVREFP = VDD = 5.0 V		0.95	1.6	mA
current	Notes 1, 6	maximum speed	Low-voltage mode, AVREFP = VDD = 3.0 V		0.54	0.81	mA
AVREFP current	IADREFNote 7	AVREFP = 5.0 V			60	_	μA
A/D converter internal reference voltage current	IADREF Note 1				114		μA
Temperature sensor operating current	ITMPSNote 1				110	_	μA
D/A converter operating	IDACNotes 1, 8	Per channel	10-bit DAC, VDD = 5.0 V		223	_	μA
current		8-bit DAC, VDD = 5.0 V			120	_	μA
Comparator operating current	ICMPNotes 1, 9	Per channel			100	—	μA
PGA operating current	IPGA Notes 1, 10				460	_	μA
Sample & hold circuit operating current	ISH Notes 1, 11	Per channel			800	_	μA
LVD operating current	ILVD0 Notes 1, 12				0.03	_	μA
	ILVD1 Notes 1, 12				0.03	_	μA
FAA operating current	IFAA Notes 1, 13	fclk = 48 MHz			11.0	_	mA
		fclk = 32 MHz			7.3	_	mA
True random number generator operating current	Itrng				1.6		mA
SMBus operating current	ISMBUS				250	_	μA
Self-programming operating current	IFSP Notes 1, 14				2.5	12.2	mA
Data flash rewrite operating current	IBGO Notes 1, 15				2.5	12.2	mA

(Notes and Remarks are listed on the next page.)

(TA = -40 to +105°C, 1.6 V ≤ EVDD0 ≤ VDD ≤ 5.5 V, VSS = EVSS0 = 0 V)

(2/2)Symbol Unit Item Conditions Min Typ. Max SNOOZE operating ISNOZNOte 1 ADC to be in The ADC is shifting to the SNOOZE 0.7 12 mΑ mode.Note 16 current use The ADC is operating in the low-voltage 1.2 2.0 mode, AVREFP = VDD = 3.0 V Simplified SPI (CSI)/UART to be in use 07 1.07 RTCLPC = 0Low-speed peripheral ISXP 0.27 μA Notes 1, 17 clock supply current Output current control The setting of the CCDE register is not 00H. 100 **ICCDA** μΑ ____ operating current Notes 1, 18 Low-level output current setting: Hi-Z ICCDP Per sinale 30 μA Notes 19, 20 controlled 210 Low-level output current setting: 2 to 15 mA μA current drive port

Note 1. This current flows into VDD.

Note 2. The listed currents apply when the high-speed on-chip oscillator, middle-speed on-chip oscillator, and high-speed system clock are stopped.

Note 3. This current only flows to the realtime clock (RTC). It does not include the operating current of the low-speed on-chip oscillator or the XT1 oscillator. The supply current of the RL78 microcontrollers is the sum of IDD1 or IDD2, and IRTC when the realtime clock is operating in the operation mode or HALT mode. When the low-speed on-chip oscillator is selected, IFIL should be included in the supply current. IDD2 in the subsystem clock operation mode includes the operating current of the realtime clock

Note 4. This current only flows to the 32-bit interval timer. It does not include the operating current of the low-speed on-chip oscillator or the XT1 oscillator. The supply current of the RL78 microcontrollers is the sum of IDD1 or IDD2, and IIT when the 32-bit interval timer is operating or in the HALT mode.

Note 5. This current only flows to the watchdog timer. It includes the operating current of the low-speed on-chip oscillator. The supply current of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3, and IWDT when the watchdog timer is operating.

Note 6. This current only flows to the A/D converter. The supply current of the RL78 microcontrollers is the sum of IDD1 or IDD2, and IADC when the A/D converter is operating or in the HALT mode.

Note 7. This current flows into AVREFP.

Note 8. This current only flows to the D/A converter. The supply current of the RL78 microcontrollers is the sum of IDD1 or IDD2, and IDAC when the D/A converter is operating.

Note 9. This current only flows to the comparator circuit. The supply current of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3, and ICMP when the comparator circuit is operating.

Note 10. This current only flows to the PGA circuit. The supply current of the RL78 microcontrollers is the sum of IDD1 or IDD2, and IPGA when the PGA circuit is operating.

Note 11. This current only flows to the sample & hold circuit. The supply current of the RL78 microcontrollers is the sum of IDD1 or IDD2, and ISH when the sample & hold circuit is operating.

Note 12. This current only flows to the LVD circuit. The supply current of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3, and ILVD when the LVD circuit is operating.

Note 13. This current only flows to the FAA circuit. The supply current of the RL78 microcontrollers is the sum of IDD1 or IDD2, and IFAA when the FAA circuit is operating.

- Note 14. This current only flows during self-programming.
- Note 15. This current only flows while the data flash memory is being rewritten.

Note 16. For shift time to the SNOOZE mode, see 20.9 SNOOZE Mode Function in the RL78/G24 User's Manual.

Note 17. This current is added to the supply current in the STOP mode when the setting of RTCLPC is 0 with the subsystem clock X (fsx) oscillating, or in the HALT mode when the setting of RTCLPC is 0 with the subsystem clock X (fsx) selected as the CPU clock

Note 18. This current is added to the supply current when the controlled current drive port is set.

Note 19. This current does not include the current flowing into the I/O ports.

Note 20. This current flows into EVDD0 and EVDD1.

Remark 1. fil: Low-speed on-chip oscillator clock frequency

Remark 2. fsx: Subsystem clock X frequency

Remark 3. fcLK: CPU/peripheral hardware clock frequency

Remark 4. The typical value for the ambient operating temperature is +25°C.

2.4 AC Characteristics

Item	Symbol		Min.	Тур.	Max.	Unit		
Instruction cycle	Тсү	Main system clock (fMAIN) operation	HS (high-speed main) mode (Prefetch ON)	2.4 V ≤ VDD ≤ 5.5 V	0.02083		1	μs
			HS (high-speed main) mode (Prefetch OFF)	1.8 V ≤ VDD ≤ 5.5 V	0.03125		1	μs
				1.6 V ≤ VDD ≤ 1.8 V	0.25		1	μs
			LS (low-speed main) mode	1.8 V ≤ VDD ≤ 5.5 V	0.04167		1	μs
				1.6 V ≤ VDD ≤ 1.8 V	0.25		1	μs
			LP (low-power main) mode	1.6 V ≤ VDD ≤ 5.5 V	0.5		1	μs
		Subsystem clock (fsub) operation $1.8 \text{ V} \leq \text{VDD} \leq 5.5 \text{ V}$		26.041	30.5	31.3	μs	
		Self-programming mode	HS (high-speed main) mode	1.8 V ≤ VDD ≤ 5.5 V	0.03125		1	μs
				$2.4 \text{ V} \leq \text{VDD} \leq 5.5 \text{ V}$	0.02083		1	μs
			LS (low-speed main) mode	1.8 V ≤ VDD ≤ 5.5 V	0.04167		1	μs
External system clock	fEX	1.8 V ≤ VDD ≤ 5.5 V			1.0		20.0	MHz
frequency		1.6 V ≤ VDD < 1.8 V			1.0		4.0	MHz
	fEXS				32		38.4	kHz
External system clock	texh, texl	$1.8 V \leq VDD \leq 5.5 V$	/		24			ns
input high-level width, low-level width		$1.6 \text{ V} \le \text{V}_{DD} < 1.8 \text{ V}$			120			ns
	texнs, texls				13.7			μs
TI00 to TI03 input high-level width, low-level width	ttiH, tti∟				1/fмск + 10			ns Note
Timer RJ input cycle	t cycle tc	TRJIO		2.7 V ≤ EVDD0 ≤ 4.0 V	100			ns
				1.8 V ≤ EVDD0 ≤ 2.7 V	300			ns
				1.6 V ≤ EVDD0 ≤ 1.8 V	500			ns
Timer RJ	idth, t⊤յı∟			$2.7 \text{ V} \leq \text{EVDD0} \leq 4.0 \text{ V}$	40			ns
input high-level width, low-level width				1.8 V ≤ EVDD0 ≤ 2.7 V	120			ns
				$1.6 \text{ V} \leq \text{EVDD0} \leq 1.8 \text{ V}$	200			ns
Timer RD2 input high-level width, low-level width	ttdih, ttdil	TRDIOA0, TRDIOA1, TRDIOB0, TRDIOB1, TRDIOC0, TRDIOC1, TRDIOD0, TRDIOD1			3/fclk			ns
Timer RD2 forcible shut-off signal input low-level width	t⊤dsil	P137/INTP0		2 MHz ≤ fcLκ ≤ 48 MHz	1			μs
				fclk ≤ 2 MHz	1/fcLк + 1			μs

 $(TA = -40 \text{ to } +105^{\circ}\text{C}, 1.6 \text{ V} \le \text{EVDD0} \le \text{VDD} \le 5.5 \text{ V}, \text{Vss} = \text{EVss0} = 0 \text{ V})$

(1/2)

(Note and Remark are listed on the next page.)

Item	Symbol	Conditions	Min.	Typ.	Max.	Unit	
Timer RG2 input high-level width, low-level width	ttgih, ttgi∟	TRGIOA, TRGIOB, TRGIDZ, TRGTRG			51		ns
TO00 to TO03 TKBO00, TKBO01, TKBO10, TKBO11, TKBO20,	fто	HS (high-speed main) mode LS (low-speed main) mode	4.0 V ≤ EVDD0 ≤ 5.5 V			16	MHz
			2.7 V ≤ EVDD0 < 4.0 V			8	MHz
TKBO21, TRJIO0,			1.8 V ≤ EVDD0 < 2.7 V			4	MHz
TRJO0, TRGIOA, TRGIOB, TRDIOA0,			1.6 V ≤ EVDD0 < 1.8 V			2	MHz
TRDIOA1, TRDIOB0, TRDIOB1, TRDIOC0, TRDIOC1, TRDIOD0, TRDIOD1 output frequency		LP (low-power main) mode	1.6 V ≤ EVDD0 ≤ 5.5 V			2	MHz
PCLBUZ0, PCLBUZ1	fPCL	HS (high-speed main) mode LS (low-speed main) mode	4.0 V ≤ EVDD0 ≤ 5.5 V			16	MHz
output frequency			2.7 V ≤ EVDD0 < 4.0 V			8	MHz
			1.8 V ≤ EVDD0 < 2.7 V			4	MHz
			1.6 V ≤ EVDD0 < 1.8 V			2	MHz
		LP (low-power main) mode	1.6 V ≤ EVDD0 < 1.8 V			2	MHz
Interrupt input high-level width, low-level width	tinth, tintl	INTP0, INTP20, INTP21	1.6 V ≤ VDD ≤ 5.5 V	1			μs
		INTP1 to INTP11	1.6 V ≤ EVDD0 ≤ 5.5 V	1			μs
Key interrupt input high- level width, low-level width	tKRH, tKRL	KR0 to KR7	1.8 V ≤ EVDD0 ≤ 5.5 V	250			ns
			1.6 V ≤ EVDD0 < 1.8 V	1			μs
RESET low-level width	tRSL			10			μs

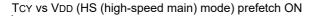
 $(TA = -40 \text{ to } +105^{\circ}\text{C}, 1.6 \text{ V} \le \text{EVDD0} \le \text{VDD} \le 5.5 \text{ V}, \text{Vss} = \text{EVss0} = 0 \text{ V})$

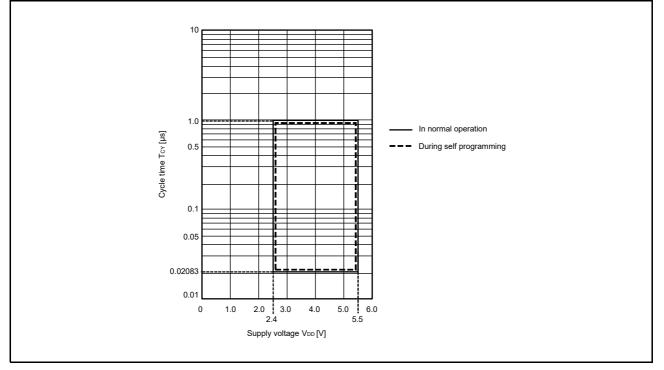
(2/2)

Note The following conditions are required for low-voltage interface when EVDD0 < VDD.

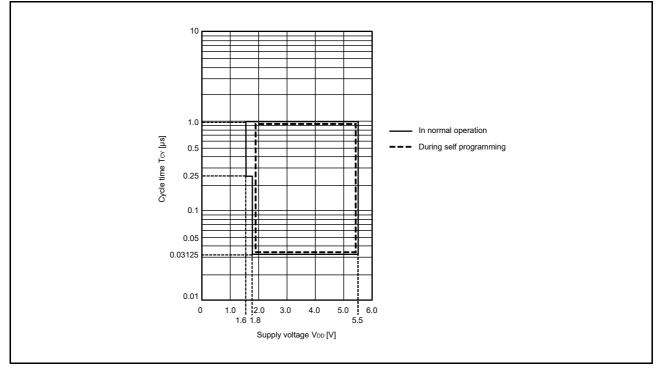
1.8 V ≤ EVDD0 < 2.7 V: 125 ns (min.)

1.6 V ≤ EVDD0 < 1.8 V: 250 ns (min.)

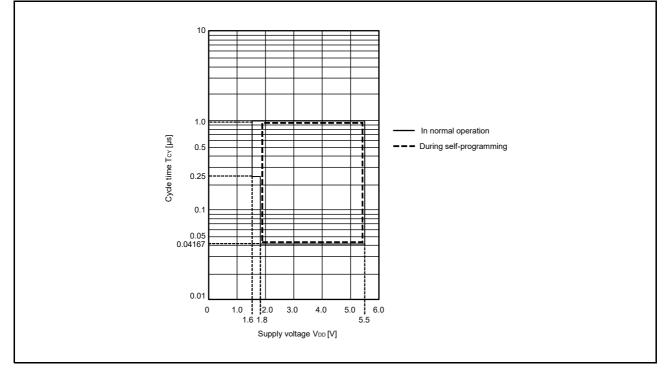

 Remark
 fMCK: Timer array unit operating clock frequency

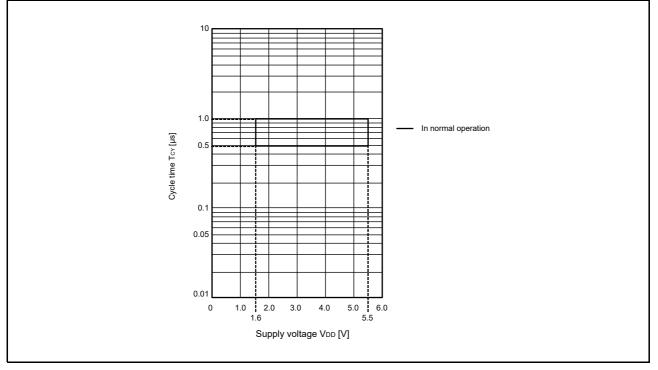

 To set this operating clock, use the CKSmn0 and CKSmn1 bits of the timer mode register mn (TMRmn).

 m: Unit number (m = 0), n: Channel number (n = 0 to 3)

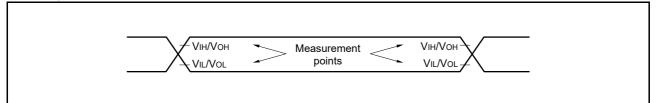


Minimum Instruction Execution Time during Main System Clock Operation

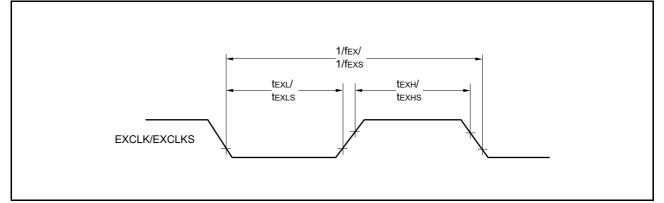


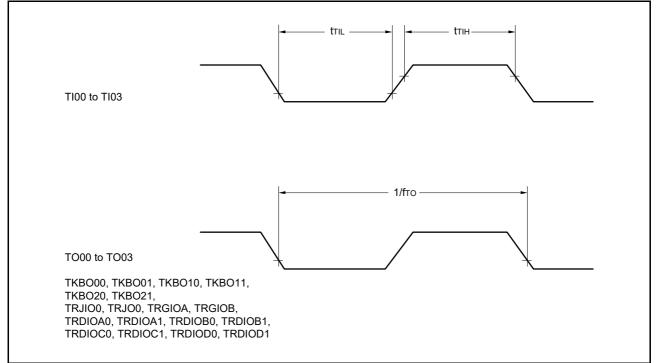

TCY vs VDD (HS (high-speed main) mode) prefetch OFF

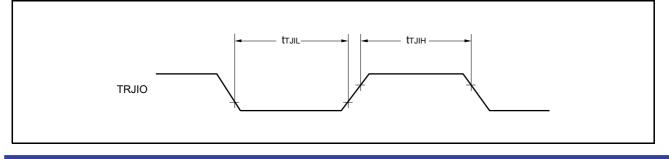
TCY vs VDD (LS (low-speed main) mode)



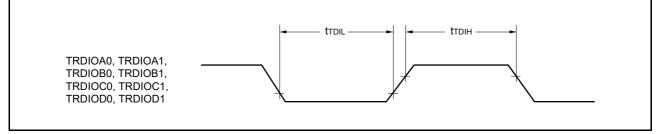
TCY vs VDD (LP (low-power main) mode)



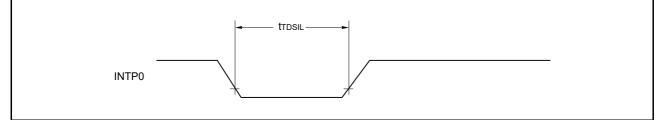

AC Timing Measurement Points

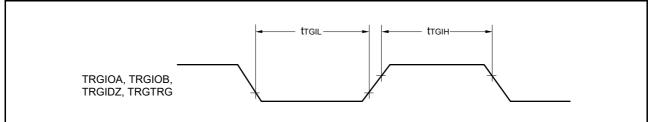

External System Clock Timing

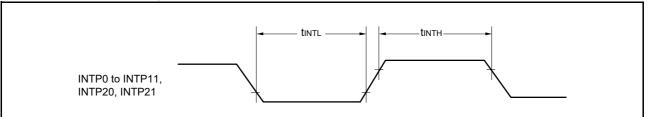
TI/TO Timing

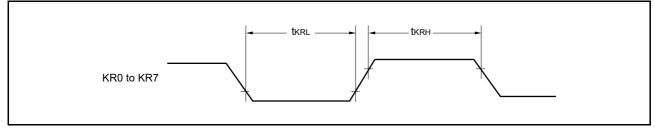


Timer RJ Input Timing



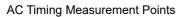

Timer RD2 Input Timing

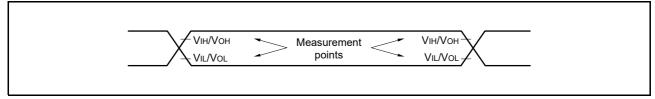

Timer RD2 Forcible Shut-off Signal Input Timing


Timer RG2 Input Timing

Interrupt Request Input Timing

Key Interrupt Input Timing





2.5 Characteristics of the Peripheral Functions

2.5.1 Serial array unit

1. In UART communications with devices operating at same voltage levels

(TA = -40 to +105°C, 1.6 V ≤ EVDD0 ≤ VDD ≤ 5.5 V, VSS = EVSS0 = 0 V, fMCK ≤ 32 MHz)

Item	Symbol	Conditions	HS (High-speed Main) Mode		LS (Low-speed Main) Mode		LP (Low-power Main) Mode		Unit
			Min.	Max.	Min.	Max.	Min.	Max.	
Transfer rate Note 1		1.6 V ≤ EVDD0 ≤ 5.5 V		fMCK/6 Note 2		fMCK/6 Note 2		fмск/6	bps
		Theoretical value of the maximum transfer rate fMCK = fCLK ^{Note 3}		5.3		4		0.33	Mbps

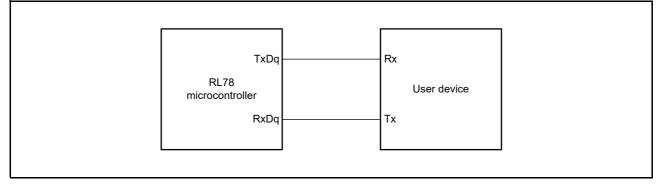
Note 1. The transfer rate in the SNOOZE mode is within the range from 4800 to 9600 bps.

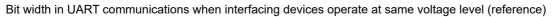
Note 2. The following conditions are required for low-voltage interface when EVDD0 < VDD.

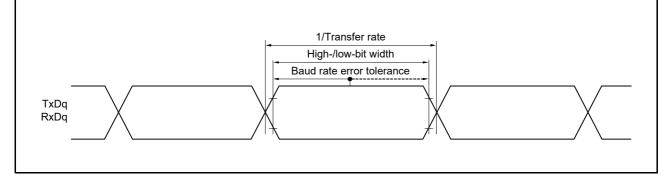
2.4 V ≤ EVDD0 < 2.7 V: 2.6 Mbps (max.)

1.8 V ≤ EVDD0 < 2.4 V: 1.3 Mbps (max.)

 $1.6 \text{ V} \le \text{EV}_{\text{DD0}} \le 1.8 \text{ V}: 0.6 \text{ Mbps (max.)}$


Note 3. The maximum operating frequencies of the CPU/peripheral hardware clock (fCLK) are as follows.


HS (high-speed main) mode: 48 MHz ($2.4 V \le VDD \le 5.5 V$) $32 MHz (1.8 V \le VDD \le 5.5 V)$ $4 MHz (1.6 V \le VDD \le 5.5 V)$ LS (low-speed main) mode: 24 MHz ($1.8 V \le VDD \le 5.5 V$) $4 MHz (1.6 V \le VDD \le 5.5 V)$ LP (low-power main) mode: 2 MHz ($1.6 V \le VDD \le 5.5 V$)


Caution Select the normal input buffer for the RxDq pin and the normal output mode for the TxDq pin by using a port input mode register (PIMg) and port output mode register (POMg).

Connection in UART communications with devices operating at same voltage levels

- **Remark 1.** q: UART number (q = 0 to 2), g: PIM and POM number (g = 0, 1, 3, 5, 7)
- Remark 2.fMCK: Serial array unit operation clock frequencyTo set this operating clock, use the CKSmn bit in the serial mode register mn (SMRmn).m: Unit number, n: Channel number (mn = 00 to 03, 10, 11)

2. In simplified SPI (CSI) communications in the master mode with devices operating at same voltage levels with the internal SCKp clock (the ratings below are only applicable to CSI00)

ltem	Symbol	c	HS (High-speed Main) Mode		LS (Low-speed Main) Mode		LP (Low-power Main) Mode		Unit	
				Min.	Max.	Min.	Max.	Min.	Max.	
SCKp cycle time	tKCY1	tĸcy1 ≥ 2/fclĸ	$4.0 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$	62.5		83.3		1000		ns
			2.7 V ≤ EVDD0 ≤ 5.5 V	83.3		125		1000		ns
SCKp high-/ low-level width	tĸнı, tĸ∟ı	4.0 V ≤ EVDD0	tксү1/2 - 7		tксү1/2 – 10		tксү1/2 – 50		ns	
		2.7 V ≤ EVDD0 ≤ 5.5 V		tксү1/2 – 10		tксү1/2 – 15		tксү1/2 – 50		ns
SIp setup time	tsik1	4.0 V ≤ EVDD0	≤ 5.5 V	23		33		110		ns
(to SCKp↑) ^{Note 1}		2.7 V ≤ EVDD0 ≤ 5.5 V		33		50		110		ns
SIp hold time (from SCKp↑) Note 1	tKSI1	2.7 V ≤ EVDD0	10		10		10		ns	
Delay time from SCKp↓ to SOp output ^{Note 2}	tKSO1	C = 20 pFNote 3	3		10		10		10	ns

Note 1. The setting applies when DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The setting for the SIp setup time becomes "to SCKp↓" and that for the SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 2. This setting applies when DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The setting for the delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 3. C is the load capacitance of the SCKp and SOp output lines.

Caution Select the normal input buffer for the SIp pin and normal output mode for the SOp and SCKp pins by using a port input mode register (PIMg) and port output mode register (POMg).

Remark 1. The listed values are only valid when the peripheral I/O redirect function of CSI00 is not in use.

Remark 2. p: CSI number (p = 00), m: Unit number (m = 0), n: Channel number (n = 0), g: PIM and POM number (g = 1)

Remark 3. fMCK: Serial array unit operating clock frequency To set this operating clock, use the CKSmn bit in the serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00)

3. In simplified SPI (CSI) communications in the master mode with devices operating at same voltage levels with the internal SCKp clock

ltem	Symbol	с	Conditions			LS (Low-speed Main) Mode		Mode		Unit
				Min.	Max.	Min.	Max.	Min.	Max.	
SCKp cycle time	tKCY1	tĸcy1 ≥ 4/fclĸ	$2.7 \text{ V} \leq \text{EVDD0} \leq 5.5 \text{ V}$	125		166		2000		ns
			2.4 V ≤ EVDD0 ≤ 5.5 V	250		250		2000		ns
			1.8 V ≤ EVDD0 ≤ 5.5 V	500		500		2000		ns
			1.6 V ≤ EVDD0 ≤ 5.5 V	1000		1000		2000		ns
SCKp high-/ low-level width	tĸнı, tĸ∟ı	4.0 V ≤ EVDD0 ≤ 5.5 V		tксү1/2 – 12		tксү1/2 – 21		tксү1/2 – 50		ns
		2.7 V ≤ EVDD0	≤ 5.5 V	tксү1/2 – 18		tксү1/2 – 25		tксү1/2 – 50		ns
		2.4 V ≤ EVDD0	tксү1/2 – 38		tксү1/2 – 38		tксү1/2 – 50		ns	
		1.8 V ≤ EVDD0	tксү1/2 – 50		tксү1/2 – 50		tксү1/2 – 50		ns	
$1.6 V \le EVDD0 \le 5.$		≤ 5.5 V	tксү1/2 – 100		tксү1/2 – 100		tксү1/2 – 100		ns	
SIp setup time	tsik1	4.0 V ≤ EVDD0	≤ 5.5 V	44		54		110		ns
(to SCKp↑) ^{Note 1}		2.7 V ≤ EVDD0	≤ 5.5 V	44		54		110		ns
		2.4 V ≤ EVDD0	≤ 5.5 V	75		75		110		ns
		1.8 V ≤ EVDD0	≤ 5.5 V	110		110		110		ns
		1.6 V ≤ EVDD0	≤ 5.5 V	220		220		220		ns
Slp hold time (from SCKp↑) Note 1	tKSI1	1.6 V ≤ EVDD0	1.6 V ≤ EVDD0 ≤ 5.5 V			19		19		ns
Delay time from SCKp↓ to SOp output ^{Note 2}	tKSO1	1.6 V ≤ EVDD0 C = 30 pF Note 3			25		25		25	ns

(TA = -40 to +105°C, 1.6 V ≤ EVDD0 ≤ VDD ≤ 5.5 V, VSS = EVSS0 = 0 V, fMCK ≤ 32 MHz)

Note 1. The setting applies when DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The setting for the SIp setup time becomes "to SCKp↓" and that for the SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 2. This setting applies when DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The setting for the delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 3. C is the load capacitance of the SCKp and SOp output lines.

- Caution Select the normal input buffer for the SIp pin and normal output mode for the SOp and SCKp pins by using a port input mode register (PIMg) and port output mode register (POMg).
- Remark 1. p: CSI number (p = 00, 01, 10, 11, 20, 21), m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3), g: PIM and POM number (g = 0, 1, 3, 5, 7)

Remark 2.fMCK: Serial array unit operating clock frequencyTo set this operating clock, use the CKSmn bit in the serial mode register mn (SMRmn).m: Unit number, n: Channel number (mn = 00 to 03, 10, 11)

(1/2)

4. In simplified SPI (CSI) communications in the slave mode with devices operating at same voltage levels with the external SCKp clock

Item Symbo		Conditio	HS (High-speed Main) Mode		LS (Low-speed Mode	,	LP (Low-power Main) Mode		Unit	
			Min.	Max.	Min.	Max.	Min.	Max.		
SCKp cycle time	tKCY2	$4.0 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$	20 MHz < fмск	8/fмск		8/fмск		—		ns
Note 4			fмск ≤ 20 MHz	6/fмск		6/fмск		6/fмск		ns
		$2.7 \text{ V} \leq \text{EVDD0} \leq 5.5 \text{ V}$	16 MHz < fмск	8/fмск		8/fмск		—		ns
			fмск ≤ 16 MHz	6/fмск		6/fмск		6/fмск		ns
		2.4 V ≤ EVDD0 ≤ 5.5 V		6/fмск and 500		6/fмск and 500		6/fмск and 500		ns
		1.8 V ≤ EVDD0 ≤ 5.5 V		6/fмск and 750		6/fмск and 750		6/fмск and 750		ns
		1.6 V ≤ EVDD0 ≤ 5.5 V	6/fмск and 1500		6/fмск and 1500		6/fмск and 1500		ns	
SCKp high-/	tKH2,	$4.0 \text{ V} \le \text{EVDD0} \le 5.5 \text{ V}$		tксү₂/2 – 7		tксү₂/2 – 7		tксү₂/2 – 7		ns
low-level width	tKL2	$2.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$		tkcy2/2 - 8		tkcy2/2 - 8		tkcy2/2 - 8		ns
		1.8 V ≤ EVDD0 ≤ 5.5 V		tксү2/2 – 18		tксү2/2 – 18		tксү2/2 – 18		ns
		1.6 V ≤ EVDD0 ≤ 5.5 V		tксү2/2 – 66		tксү2/2 – 66		tксү2/2 – 66		ns
SIp setup time (to SCKp↑) ^{Note 1}	tsık2	2.7 V ≤ EVDD0 ≤ 5.5 V		1/fмск + 20		1/fмск + 30		1/fмск + 30		ns
		1.8 V ≤ EVDD0 ≤ 5.5 V		1/fмск + 30		1/fмск + 30		1/fмск + 30		ns
		1.6 V ≤ EVDD0 ≤ 5.5 V		1/fмск + 40		1/fмск + 40		1/fмск + 40		ns
SIp hold time (to SCKp↑) ^{Note 1}	tSIK2	1.8 V ≤ EVDD0 ≤ 5.5 V		1/fмск + 31		1/fмск + 31		1/fмск + 31		ns
		1.6 V ≤ EVDD0 ≤ 5.5 V		1/fмск + 250		1/fмск + 250		1/fмск + 250		ns

(Notes, Caution, and Remarks are listed on the next page.)

(2/2)

4. In simplified SPI (CSI) communications in the slave mode with devices operating at same voltage levels with the external SCKp clock

Item	Symbol		Conditions		HS (High-speed Main) Mode		LS (Low-speed Main) Mode		LP (Low-power Main) Mode	
				Min.	Max.	Min.	Max.	Min.	Max.	
Delay time from SCKp↓ to SOp output	tKSO2	C = 30 pF Note 3	2.7 V ≤ EVDD0 ≤ 5.5 V		2/fмск + 44		2/fмск + 110		2/fмск + 110	ns
Note 2			2.4 V ≤ EVDD0 ≤ 5.5 V		2/fмск + 75		2/fмск + 110		2/fмск + 110	ns
			1.8 V ≤ EVDD0 ≤ 5.5 V		2/fмск + 110		2/fмск + 110		2/fмск + 110	ns
			1.6 V ≤ EVDD0 ≤ 5.5 V		2/fмск + 220		2/fмск + 220		2/fмск + 220	ns

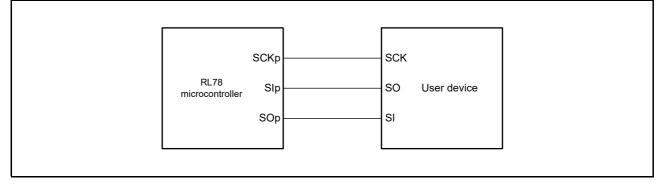
(TA = -40 to +105°C, 1.6 V ≤ EVDD0 ≤ VDD ≤ 5.5 V, Vss = EVss0 = 0 V, fMCK ≤ 32 MHz)

Note 1. The setting applies when DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The setting for the SIp setup time becomes "to SCKp ↓" and that for the SIp hold time becomes "from SCKp ↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

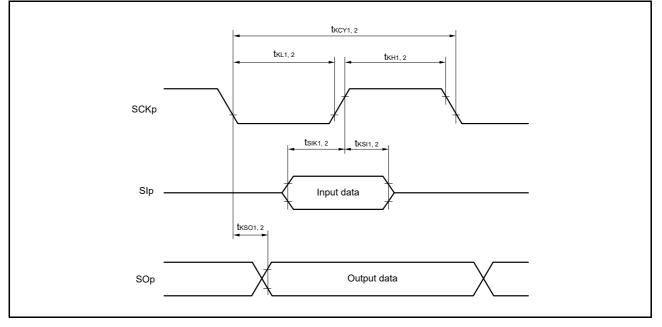
Note 2. This setting applies when DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The setting for the delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 3. C is the load capacitance of the SOp output line.

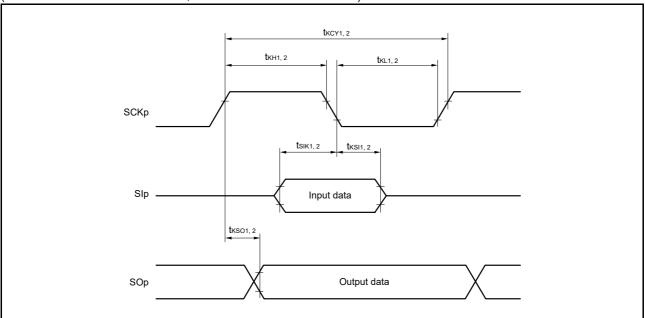
Note 4. The transfer rate in the SNOOZE mode is 1 Mbps maximum.


Caution Select the normal input buffer for the SIp and SCKp pins and normal output mode for the SOp pin by using a port input mode register (PIMg) and port output mode register (POMg).

Remark 1. p: CSI number (p = 00, 01, 10, 11, 20, 21), m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3), g: PIM and POM number (g = 0, 1, 3, 5, 7)


Remark 2. fMCK: Serial array unit operating clock frequency To set this operating clock, use the CKSmn bit in the serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00 to 03, 10, 11)

Connection in simplified SPI (CSI) communications with devices operating at same voltage levels



Timing of serial transfer in simplified SPI (CSI) communications with devices operating at same voltage levels (when DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1)

Timing of serial transfer in simplified SPI (CSI) communications with devices operating at same voltage levels (when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0)

Remark 1. p: CSI number (p = 00, 01, 10, 11, 20, 21) **Remark 2.** m: Unit number, n: Channel number (mn = 00 to 03, 10, 11)

5. In simplified I²C communications with devices operating at same voltage levels

Item Symbol		Conditions	(High-sp	IS eed Main) ode	(Low-sp	₋S eed Main) ode	(Low-po	₋P wer Main) ode	Unit
			Min.	Max.	Min.	Max.	Min.	Max.	
SCLr clock frequency	fSCL	2.7 V ≤ EVDD0 ≤ 5.5 V, Cb = 50 pF, Rb = 2.7 kΩ		1000 Note 1		1000 Note 1		400Note 1	kHz
		1.8 V ≤ EVDD0 ≤ 5.5 V, Cb = 100 pF, Rb = 3 kΩ		400Note 1		400Note 1		400Note 1	kHz
		1.8 V ≤ EVDD0 < 2.7 V, Cb = 100 pF, Rb = 5 kΩ		300Note 1		300Note 1		300Note 1	kHz
		1.6 V ≤ EVDD0 < 1.8 V, Cb = 100 pF, Rb = 5 kΩ		250Note 1		250Note 1		250Note 1	kHz
Hold time when SCLr is low	t∟ow	2.7 V ≤ EVDD0 ≤ 5.5 V, Cb = 50 pF, Rb = 2.7 kΩ	475		475		1150		ns
		1.8 V ≤ EVDD0 ≤ 5.5 V, Cb = 100 pF, Rb = 3 kΩ	1150		1150		1150		ns
		1.8 V ≤ EVDD0 < 2.7 V, Cb = 100 pF, Rb = 5 kΩ	1550		1550		1550		ns
		1.6 V ≤ EVDD0 < 1.8 V, Cb = 100 pF, Rb = 5 kΩ	1850		1850		1850		ns
Hold time when SCLr is high	thigh	2.7 V ≤ EVDD0 ≤ 5.5 V, Cb = 50 pF, Rb = 2.7 kΩ	475		475		1150		ns
		1.8 V ≤ EVDD0 ≤ 5.5 V, Cb = 100 pF, Rb = 3 kΩ	1150		1150		1150		ns
		1.8 V ≤ EVDD0 < 2.7 V, Cb = 100 pF, Rb = 5 kΩ	1550		1550		1550		ns
		1.6 V ≤ EVDD0 < 1.8 V, Cb = 100 pF, Rb = 5 kΩ	1850		1850		1850		ns
Data setup time (reception)	tsu:dat	$2.7 \text{ V} \le \text{EVDD0} \le 5.5 \text{ V},$ Cb = 50 pF, Rb = 2.7 kΩ	1/fмск + 85 Note 2		1/fмск + 85 Note 2		1/fмск + 145 Note 2		ns
		1.8 V ≤ EVDD0 ≤ 5.5 V, Cb = 100 pF, Rb = 3 kΩ	1/fMCK + 145 Note 2		1/fмск + 145 Note 2		1/fмск + 145 Note 2		ns
		1.8 V ≤ EVDD0 < 2.7 V, Cb = 100 pF, Rb = 5 kΩ	1/fMCK + 230 Note 2		1/fмск + 230 Note 2		1/fмск + 230 Note 2		ns
		1.6 V ≤ EVDD0 < 1.8 V, Cb = 100 pF, Rb = 5 kΩ	1/fмск + 290 Note 2		1/fмск + 290 Note 2		1/fMCK + 290 Note 2		ns

($T_A = -40 \text{ to } +105^{\circ}\text{C}$	I.6 V ≤ EVDD0 ≤ VDD ≤ 5.5 V, VSS = EVSS0 = 0 V, fMCK ≤ 32	2 MHz)
	10.00 0		

(1/2)

(Notes and Caution are listed on the next page, and Remarks are listed on page 84.)

R01DS0432EJ0120 Rev.1.20 Jan 17, 2025

5. In simplified I²C communications with devices operating at same voltage levels

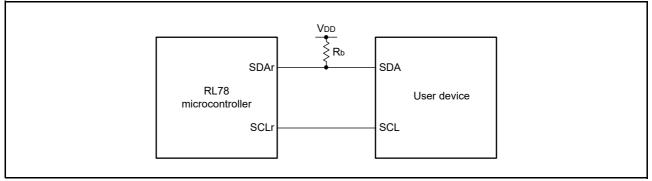
		,		,		,			```
ltem	Symbol	Conditions	Ht (High-spe Mo	ed Main)	LS (Low-spe Mo	ed Main)	LF (Low-pow Moe	er Main)	Unit
			Min.	Max.	Min.	Max.	Min.	Max.	
Data hold time (transmission)	thd:dat	2.7 V ≤ EVDD0 ≤ 5.5 V, Cb = 50 pF, Rb = 2.7 kΩ	0	305	0	305	0	305	ns
		1.8 V ≤ EVDD0 ≤ 5.5 V, Cb = 100 pF, Rb = 3 kΩ	0	355	0	355	0	355	ns
		1.8 V ≤ EVDD0 < 2.7 V, Cb = 100 pF, Rb = 5 kΩ	0	405	0	405	0	405	ns
		1.6 V ≤ EVDD0 < 1.8 V, Cb = 100 pF, Rb = 5 kΩ	0	405	0	405	0	405	ns

(TA = -40 to $+105^{\circ}$ C, 1.6 V \leq EVDD0 \leq VDD \leq 5.5 V, Vss = EVss0 = 0 V, fMCK \leq 32 MHz)

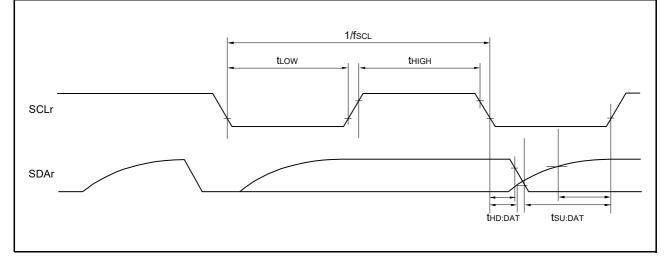
(2/2)

Note 1. The listed frequencies must be no greater than fMCK/4.

Note 2. Set the fMCK value that does not exceed the hold time when SCLr is low or high.


Caution Select the normal input buffer and the N-ch open drain output (VDD withstand voltage for 20- to 52-pin products/ EVDD withstand voltage for 64-pin products) for the SDAr pin and the normal output mode for the SCLr pin by using a port input mode register (PIMg) and port output mode register (POMh).

(Remarks are listed on the next page.)



RL78/G24

Connection in simplified I²C communications with devices operating at same voltage levels

Timing of serial transfer in the simplified I²C communications with devices operating at same voltage levels

- $\label{eq:Remark 1. Rb[\Omega]: Communication line (SDAr) pull-up resistance, Cb[F]: Communication line (SDAr, SCLr) load capacitance and capacit$
- **Remark 2.** r: IIC number (r = 00, 01, 10, 11, 20, 21), g: PIM number (g = 0, 1, 3, 5, 7), h: POM number (h = 0, 1, 3, 5, 7)
- **Remark 3.** fMCK: Serial array unit operating clock frequency

To set this operating clock, use the CKSmn bit in the serial mode register mn (SMRmn). m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3), mn = 00 to 03, 10, 11

6. In UART communications with devices operating at different voltage levels (1.8 V, 2.5 V, 3 V)

$(Ta = -40 \text{ to } +105^{\circ}\text{C}, 1.8 \text{ V} \le \text{EVDD0} \le \text{VDD} \le 5.5 \text{ V}, \text{ Vss} = \text{EVss0} = 0 \text{ V}, \text{ fmck} \le 32 \text{ MHz})$

(1/2)

Item	Symbol		C	Conditions	HS (High-speed Main) Mode		LS (Low-speed Main) Mode		LP (Low-power Main) Mode		Unit
					Min.	Max.	Min.	Max.	Min.	Max.	
Transfer rate		Reception		$V \le EVDD0 \le 5.5 V$, $V \le V_b \le 4.0 V$		fмск/6 Note 1		fмск/6 Note 1		fMCK/6 Note 1	bps
	Theoretical value of the maximum transfer rate fMCK = fCLK ^{Note 4}		5.3		4		0.33	Mbps			
				7 V ≤ EVDD0 < 4.0 V, 3 V ≤ Vb ≤ 2.7 V		fмск/6 Note 1		fмск/6 Note 1		fMCK/6 Note 1	bps
				Theoretical value of the maximum transfer rate fMCK = fCLK ^{Note 4}		5.3		4		0.33	Mbps
				$3 V \le EVDD0 < 3.3 V,$ $3 V \le V_b \le 2.0 V$		fMCK/6 Notes 1, 2, 3		fмск/6 Notes 1, 2		fмск/6 Notes 1, 2	bps
				Theoretical value of the maximum transfer rate fMCK = fCLKNote 4		5.3		4		0.33	Mbps

Note 1. Transfer rate in the SNOOZE mode is within the range from 4800 to 9600 bps.

Note 2. Use this rate with $EVDD0 \ge Vb$.

Note 3. The following conditions are required for low-voltage interface when EVDD0 < VDD. $2.4 \text{ V} \le \text{EVDD0} < 2.7 \text{ V}: 2.6 \text{ Mbps (max.)}$

1.8 V ≤ EVDD0 < 2.4 V: 1.3 Mbps (max.)

Note 4. The maximum operating frequencies of the CPU/peripheral hardware clock (fcLK) are:

HS (high-speed main) mode: 48 MHz (2.4 V \leq VDD \leq 5.5 V) 32 MHz (1.8 V \leq VDD \leq 5.5 V)

LS (low-speed main) mode: 24 MHz ($1.8 V \le VDD \le 5.5 V$)

LP (low-power main) mode: 2 MHz (1.6 V \leq VDD \leq 5.5 V)

- Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (VDD withstand voltage for 20- to 52pin products/EVDD withstand voltage for 64-pin products) for the TxDq pin by using a port input mode register (PIMg) and port output mode register (POMg). For VIH and VIL, see the DC characteristics with the TTL input buffer selected.
- Remark 1. Vb[V]: Communication line voltage
- **Remark 2.** q: UART number (q = 0 to 3), g: PIM and POM number (g = 0, 1, 3, 5, 7)

Remark 3. fMCK: Serial array unit operation clock frequency

To set this operating clock, use the CKSmn bit in the serial mode register mn (SMRmn).

- m: Unit number, n: Channel number (mn = 00 to 03, 10, 11)
- **Remark 4.** Communications by using UART2 with devices operating at different voltage levels are not possible when the PIOR01 bit of one peripheral I/O redirection register (PIOR0) is set to 1.

6. In UART communications with devices operating at different voltage levels (1.8 V, 2.5 V, 3 V)

Item Symbo	Symbol		Conditions	HS (High-speed Main) Mode		LS (Low-speed Main) Mode		LP (Low-power Main) Mode		Unit
				Min.	Max.	Min.	Max.	Min.	Max.	
Transfer rate		Transmission	$4.0 V \le EV_{DD0} \le 5.5 V$, $2.7 V \le V_b \le 4.0 V$		Note 1		Note 1		Note 1	bps
			Theoretical value of the maximum transfer rate $C_b = 50 \text{ pF},$ $R_b = 1.4 \text{ k}\Omega,$ $V_b = 2.7 \text{ V}$		2.8Note 2		2.8Note 2		2.8Note 2	Mbps
			$2.7 V \le EVDD0 < 4.0 V,$ $2.3 V \le Vb \le 2.7 V$		Note 3		Note 3		Note 3	bps
			Theoretical value of the maximum transfer rate Cb = 50 pF, $Rb = 2.7 \text{ k}\Omega,$ Vb = 2.3 V		1.2Note 4		1.2Note 4		1.2Note 4	Mbps
			$1.8 \text{ V} \le \text{EV}_{\text{DD0}} < 3.3 \text{ V},$ $1.6 \text{ V} \le \text{V}_{\text{b}} \le 2.0 \text{ V}$		Notes 5, 6		Notes 5, 6		Notes 5, 6	bps
			Theoretical value of the maximum transfer rate $C_b = 50 \text{ pF},$ $R_b = 5.5 \text{ k}\Omega,$ $V_b = 1.6 \text{ V}$		0.43 Note 7		0.43 Note 7		0.43 Note 7	Mbps

(TA = -40 to +105°C, 1.8 V ≤ EVDD0 ≤ VDD ≤ 5.5 V, VSS = EVSS0 = 0 V, fMCK ≤ 32 MHz)

(2/2)

(Notes and Caution are listed on the next page.)

Note 1. The smaller maximum transfer rate derived by using fMCK/6 or the following expression is the valid maximum transfer rate. Expression for calculating the transfer rate when 4.0 V ≤ EVDD0 ≤ 5.5 V, 2.7 V ≤ Vb ≤ 4.0 V

Maximum transfer rate =
$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{2.2}{V_b})\} \times 3}$$
Baud rate error (theoretical value) =
$$\frac{-\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln (1 - \frac{2.2}{V_b})\}}{(\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}}$$

* This value is the theoretical value of the relative difference between the transmission and reception sides.

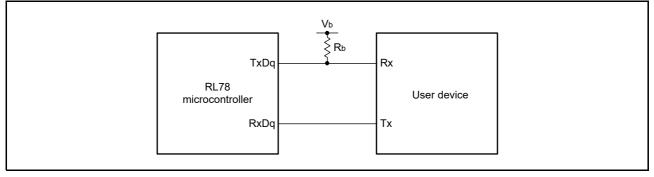
- Note 2. This rate is calculated as an example when the conditions described in the "Conditions" column are met. See Note 1 above to calculate the maximum transfer rate under conditions of the customer.
- Note 3. The smaller maximum transfer rate derived by using fMCK/6 or the following expression is the valid maximum transfer rate. Expression for calculating the transfer rate when 2.7 V \leq EVDD0 < 4.0 V, 2.3 V \leq Vb \leq 2.7 V

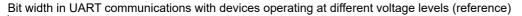
ximum transfer rate =
$$\frac{1}{\left\{-C_b \times R_b \times \ln\left(1 - \frac{2.0}{V_b}\right)\right\} \times 3}$$
 [bps]
Baud rate error (theoretical value) =
$$\frac{\frac{1}{\text{Transfer rate} \times 2} - \left\{-C_b \times R_b \times \ln\left(1 - \frac{2.0}{V_b}\right)\right\}}{\times 100 [\%]}$$

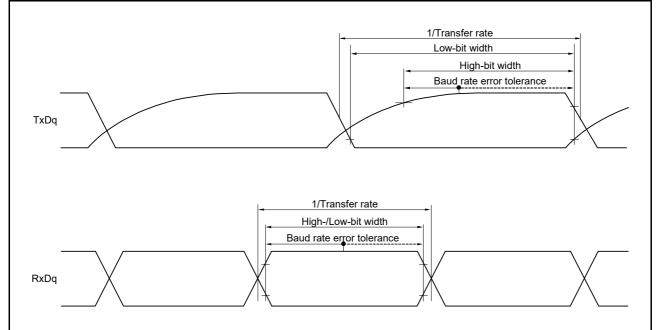
 (¹
 ¹

- **Note 4.** This rate is calculated as an example when the conditions described in the "Conditions" column are met. See **Note 3** above to calculate the maximum transfer rate under conditions of the customer.
- **Note 5.** Use this rate with $EVDD0 \ge Vb$.

Ма


Note 6. The smaller maximum transfer rate derived by using fMCK/6 or the following expression is the valid maximum transfer rate. Expression for calculating the transfer rate when $1.8 \text{ V} \le \text{EVDD0} < 3.3 \text{ V}$, $1.6 \text{ V} \le \text{Vb} \le 2.0 \text{ V}$


Maximum transfer rate =
$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{1.5}{V_b})\} \times 3}$$
 [bps]
Baud rate error (theoretical value) =
$$\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln (1 - \frac{1.5}{V_b})\}}{(\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}} \times 100 [\%]$$
* This value is the theoretical value of the relative difference between the transmission and reception sides.


- **Note 7.** This rate is calculated as an example when the conditions described in the "Conditions" column are met. See **Note 6** above to calculate the maximum transfer rate under conditions of the customer.
- Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (VDD withstand voltage for 20- to 52pin products/EVDD withstand voltage for 64-pin products) for the TxDq pin by using a port input mode register (PIMg) and port output mode register (POMg). For VIH and VIL, see the DC characteristics with the TTL input buffer selected.

Connection in UART communications with devices operating at different voltage levels

Remark 1. Rb[Ω]: Communication line (TxDq) pull-up resistance, Cb[F]: Communication line (TxDq) load capacitance, Vb[V]: Communication line voltage

Remark 2. q: UART number (q = 0 to 3), g: PIM and POM number (g = 0, 1, 3, 5, 7)

Remark 3. fMCK: Serial array unit operating clock frequency To set this operating clock, use the CKSmn bit in the serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00 to 03, 10, 11)

Remark 4. Communications by using UART2 with devices operating at different voltage levels are not possible when the PIOR01 of one peripheral I/O redirection register (PIOR0) is set to 1.

7. In simplified SPI (CSI) communications in the master mode with devices operating at different voltage levels (2.5 V or 3 V) with the internal SCKp clock (the ratings below are only applicable to CSI00)

Item	Symbol	Conditions		HS (High-spee Moo	ed Main)	LS (Low-spee Mod	ed Main)	LP (Low-power Main) Mode		Unit
				Min.	Max.	Min.	Max.	Min.	Max.	
SCKp cycle time	tксү1	tĸcγ1 ≥ 2/fc∟ĸ		200		200		2300		ns
			$\begin{array}{l} 2.7 \ V \leq EV \text{DD0} < 4.0 \\ V, 2.3 \ V \leq V \text{b} \leq 2.7 \ V, \\ C \text{b} = 20 \ p \text{F}, \\ R \text{b} = 2.7 \ \text{k} \Omega \end{array}$	300		300		2300		ns
SCKp high-level width	tкн1	4.0 V ≤ EVDD 2.7 V ≤ Vb ≤ 4 Cb = 20 pF, F	4.0 V,	tксү1/2 – 50		tксү1/2 – 50		tксү1/2 – 50		ns
		$\begin{array}{l} 2.7 \ V \leq EVDD0 < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 20 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$		tксү1/2 – 120		tксү1/2 – 120		tĸcy1/2 – 120		ns
SCKp low-level width	tĸ∟1	4.0 V ≤ EVDD 2.7 V ≤ Vb ≤ 4 Cb = 20 pF, F	4.0 V,	tксү1/2 - 7		tксү1/2 - 7		tксү1/2 – 50		ns
		2.7 V ≤ EVDD 2.3 V ≤ Vb ≤ 2 Сь = 20 pF, F	2.7 V,	tксү1/2 – 10		tксү1/2 – 10		tkcy1/2 – 50		ns
Slp setup time (to SCKp↑) ^{Note} 1	tsik1	4.0 V ≤ EVDD 2.7 V ≤ Vb ≤ 4 Cb = 20 pF, F	4.0 V,	58		58		479		ns
		2.7 V ≤ EVDD 2.3 V ≤ Vb ≤ 2 Сь = 20 pF, F	2.7 V,	121		121		479		ns
SIp hold time (from SCKp↑) ^{Note 1}	tKSI1	4.0 V ≤ EVDD 2.7 V ≤ Vb ≤ 4 Cb = 20 pF, F	4.0 V,	10		10		10		ns
		2.7 V ≤ EVDD 2.3 V ≤ Vb ≤ 2 Cb = 20 pF, F	2.7 V,	10		10		10		ns
Delay time from SCKp↓ to SOp output ^{Note 1}	tKSO1	4.0 V ≤ EVDD 2.7 V ≤ Vb ≤ 4 Cb = 20 pF, F	4.0 V,		60		60		60	ns
		2.7 V ≤ EVDD 2.3 V ≤ Vb ≤ 2 Cb = 20 pF, F	2.7 V,		130		130		130	ns

(TA = -40 to +105°C, 2.7 V \leq EVDD0 \leq VDD \leq 5.5 V, Vss = EVss0 = 0 V, fmck \leq 32 MHz)

(1/2)

(Notes, Caution, and Remarks are listed on the next page.)

 In simplified SPI (CSI) communications in the master mode with devices operating at different voltage levels (2.5 V or 3 V) with the internal SCKp clock (the ratings below are only applicable to CSI00)

ltem	Symbol	Conditions	HS (High-speed Main) Mode		LS (Low-speed Main) Mode		LP (Low-power Main) Mode		Unit
			Min.	Max.	Min.	Max.	Min.	Max.	
Slp setup time (to SCKp↓) ^{Note 2}	tsıĸ1	$\begin{array}{l} 4.0 \ V \leq EV DD0 \leq 5.5 \ V, \\ 2.7 \ V \leq V_b \leq 4.0 \ V, \\ C_b = 20 \ pF, \ R_b = 1.4 \ k\Omega \end{array}$	23		23		110		ns
		$\begin{array}{l} 2.7 \ V \leq EV DD0 < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 20 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	33		33		110		ns
SIp hold time (from SCKp↓) ^{Note 2}	tKSI1	$\begin{array}{l} 4.0 \; V \leq EV D D 0 \leq 5.5 \; V, \\ 2.7 \; V \leq V_b \leq 4.0 \; V, \\ C_b = 20 \; p F, \; R_b = 1.4 \; k \Omega \end{array}$	10		10		10		ns
		$\begin{array}{l} 2.7 \ V \leq EV DD0 < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 20 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	10		10		10		ns
Delay time from SCKp↑ to SOp output ^{Note 2}	tKSO1	$\begin{array}{l} 4.0 \ V \leq EV DD0 \leq 5.5 \ V, \\ 2.7 \ V \leq V_b \leq 4.0 \ V, \\ C_b = 20 \ pF, \ R_b = 1.4 \ k\Omega \end{array}$		10		10		10	ns
		$\begin{array}{l} 2.7 \ V \leq EV \mbox{dd} V < 4.0 \ V, \\ 2.3 \ V \leq V \mbox{b} \leq 2.7 \ V, \\ C \mbox{b} = 20 \ p \mbox{F}, \ R \mbox{b} = 2.7 \ k \mbox{\Omega} \end{array}$		10		10		10	ns

(TA = -40 to +105°C, 2.7 V ≤ EVDD0 ≤ VDD ≤ 5.5 V, VSS = EVSS0 = 0 V, fMCK ≤ 32 MHz)

(2/2)

Note 1. This setting applies when DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1

Note 2. This setting applies when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0

- Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD withstand voltage for 20- to 52-pin products/EVDD withstand voltage for 64-pin products) for the SOp and SCKp pins by using a port input mode register (PIMg) and port output mode register (POMg). For VIH and VIL, see the DC characteristics with the TTL input buffer selected.
- **Remark 1.** Rb[Ω]: Communication line (SCKp, SOp) pull-up resistance, Cb[F]: Communication line (SCKp, SOp) load capacitance, Vb[V]: Communication line voltage

Remark 2. p: CSI number (p = 00), m: Unit number (m = 0), n: Channel number (n = 0), g: PIM and POM number (g = 1)

Remark 3. fMCK: Serial array unit operating clock frequency To set this operating clock, use the CKSmn bit in the serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00)

Remark 4. The listed values are only valid when the peripheral I/O redirect function of CSI00 is not in use.

(1/3)

8. In simplified SPI (CSI) communications in the master mode with devices operating at different voltage levels (1.8 V, 2.5 V, or 3 V) with the internal SCKp clock

ltem	Symbol	Conditions		HS (High-speed Main) Mode		LS (Low-speed Main) Mode		LP (Low-power Main) Mode		Unit
				Min.	Max.	Min.	Max.	Min.	Max.	
SCKp cycle time	tксү1	tĸcy1 ≥ 4/fcLĸ	$\begin{array}{l} 4.0 \; V \leq E V \text{DD0} \leq 5.5 \; V, \\ 2.7 \; V \leq V \text{b} \leq 4.0 \; V, \\ C \text{b} = 30 \; \text{pF}, \\ R \text{b} = 1.4 \; \text{k} \Omega \end{array}$	300		300		2300		ns
			$\begin{array}{l} 2.7 \ V \leq E V \text{DD0} < 4.0 \ V, \\ 2.3 \ V \leq V \text{b} \leq 2.7 \ V, \\ C \text{b} = 30 \ \text{pF}, \\ R \text{b} = 2.7 \ \text{k} \Omega \end{array}$	500		500		2300		ns
			$\begin{array}{l} 1.8 \ V \leq EV \text{DD0} < 3.3 \ V, \\ 1.6 \ V \leq V_b \leq 2.0 \ V^{\text{Note}}, \\ C_b = 30 \ p\text{F}, \\ R_b = 5.5 \ k\Omega \end{array}$	1150		1150		2300		ns
SCKp high-level width	tкн1	2.7 V ≤ Vt	/DD0 ≤ 5.5 V, o ≤ 4.0 V, F, Rb = 1.4 kΩ	tксү1/2 – 75		tксү1/2 – 75		tксү1/2 – 75		ns
		2.3 V ≤ Vb	/DD0 < 4.0 V, o ≤ 2.7 V, F, Rb = 2.7 kΩ	tксү1/2 – 170		tксү1/2 – 170		tксү1/2 – 170		ns
		1.6 V ≤ Vt	/DD0 < 3.3 V, ₉ ≤ 2.0 V Note , F, Rb = 5.5 kΩ	tксү1/2 – 458		tксү1/2 - 458		tксү1/2 – 458		ns
SCKp low-level width	tKL1	2.7 V ≤ Vt	/DD0 ≤ 5.5 V, o ≤ 4.0 V, F, Rb = 1.4 kΩ	tксү1/2 – 12		tксү1/2 – 12		tксү1/2 – 50		ns
		2.3 V ≤ Vb	/DD0 < 4.0 V, o ≤ 2.7 V, F, Rb = 2.7 kΩ	tксү1/2 – 18		tксү1/2 – 18		tксү1/2 – 50		ns
		1.6 V ≤ Vt	/DD0 < 3.3 V, s ≤ 2.0 V ^{Note} , F, Rb = 5.5 kΩ	tксү1/2 – 50		tксү1/2 – 50		tксү1/2 – 50		ns

(TA = -40 to +105°C, 1.8 V ≤ EVDD0 ≤ VDD ≤ 5.5 V, VSS = EVSS0 = 0 V, fMCK ≤ 32 MHz)

Caution

Note

Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD withstand voltage for 20- to 52-pin products/EVDD withstand voltage for 64-pin products) for the SOp and SCKp pins by using a port input mode register (PIMg) and port output mode register (POMg). For ViH and ViL, see the DC characteristics with the TTL input buffer selected.

(Remarks are listed on page 94.)

Use this setting with $EVDD0 \ge Vb$.

(2/3)

In simplified SPI (CSI) communications in the master mode with devices operating at different voltage levels (1.8 V, 2.5 V, or 3 V) with the internal SCKp clock

ltem	Symbol	Conditions	HS (High-speed Main) Mode		LS (Low-speed Main) Mode		LP (Low-power Main) Mode		Unit	
			Min.	Max.	Min.	Max.	Min.	Max.		
Slp setup time (to SCKp↑) ^{Note 1}	tsiĸ1	$\begin{array}{l} 4.0 \ V \leq EV \text{DD0} \leq 5.5 \ V, \\ 2.7 \ V \leq V \text{b} \leq 4.0 \ V, \\ \text{Cb} = 30 \ \text{pF}, \ \text{Rb} = 1.4 \ \text{k}\Omega \end{array}$	81		81		479		ns	
		$\begin{array}{l} 2.7 \ V \leq EV \mbox{DD0} < 4.0 \ V, \\ 2.3 \ V \leq V \mbox{b} \leq 2.7 \ V, \\ C \mbox{b} = 30 \ p \mbox{F}, \ R \mbox{b} = 2.7 \ k \mbox{\Omega} \end{array}$	177		177		479		ns	
		$\begin{array}{l} 1.8 \ V \leq EV \text{DD0} < 3.3 \ V, \\ 1.6 \ V \leq V \text{b} \leq 2.0 \ V \text{Note 2}, \\ C \text{b} = 30 \ \text{pF}, \ R \text{b} = 5.5 \ \text{k}\Omega \end{array}$	479		479		479		ns	
SIp hold time (from SCKp↑) ^{Note 1}	tKSI1	$\begin{array}{l} 4.0 \ V \leq EV \text{DD0} \leq 5.5 \ V, \\ 2.7 \ V \leq V \text{b} \leq 4.0 \ V, \\ \text{Cb} = 30 \ \text{pF}, \ \text{Rb} = 1.4 \ \text{k}\Omega \end{array}$	19		19		19		ns	
		$\begin{array}{l} 2.7 \ V \leq EVDD0 < 4.0 \ V, \\ 2.3 \ V \leq Vb \leq 2.7 \ V, \\ Cb = 30 \ pF, \ Rb = 2.7 \ k\Omega \end{array}$	19		19		19		ns	
		$\begin{array}{l} 1.8 \ V \leq EV \text{DD0} < 3.3 \ V, \\ 1.6 \ V \leq V \text{b} \leq 2.0 \ V \text{Note 2}, \\ C \text{b} = 30 \ \text{pF}, \ R \text{b} = 5.5 \ \text{k}\Omega \end{array}$	19		19		19		ns	
Delay time from SCKp↓ to SOp output ^{Note 1}	tkso1	$\begin{array}{l} 4.0 \ V \leq EV \text{DD0} \leq 5.5 \ V, \\ 2.7 \ V \leq V \text{b} \leq 4.0 \ V, \\ C \text{b} = 30 \ \text{pF}, \ R \text{b} = 1.4 \ \text{k} \Omega \end{array}$		100		100		100	ns	
		$\begin{array}{l} 2.7 \ V \leq EVDD0 < 4.0 \ V, \\ 2.3 \ V \leq Vb \leq 2.7 \ V, \\ Cb = 30 \ pF, \ Rb = 2.7 \ k\Omega \end{array}$		195		195		195	ns	
		$\begin{array}{l} 1.8 \ V \leq EV \text{DD0} < 3.3 \ V, \\ 1.6 \ V \leq V \text{b} \leq 2.0 \ V \text{Note 2}, \\ C \text{b} = 30 \ \text{pF}, \ R \text{b} = 5.5 \ \text{k}\Omega \end{array}$		483		483		483	ns	

Note 1. This setting applies when DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.

Note 2. Use this setting with $EVDD0 \ge Vb$.

Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD withstand voltage for 20- to 52-pin products/EVDD withstand voltage for 64-pin products) for the SOp and SCKp pins by using a port input mode register (PIMg) and port output mode register (POMg). For VIH and VIL, see the DC characteristics with the TTL input buffer selected.

(Remarks are listed on page 94.)

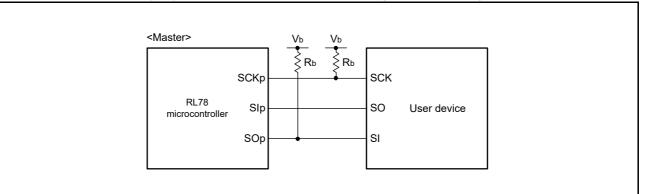
In simplified SPI (CSI) communications in the master mode with devices operating at different voltage levels (1.8 V, 2.5 V, or 3 V) with the internal SCKp clock

ltem	Symbol	Conditions	HS (High-speed Main) Mode		LS (Low-speed Main) Mode		LP (Low-power Main) Mode		Unit	
			Min.	Max.	Min.	Max.	Min.	Max.		
Slp setup time (to SCKp↓) ^{Note 1}	tsiĸ1	$\begin{array}{l} 4.0 \ V \leq EV \text{DD0} \leq 5.5 \ V, \\ 2.7 \ V \leq V \text{b} \leq 4.0 \ V, \\ \text{Cb} = 30 \ \text{pF}, \ \text{Rb} = 1.4 \ \text{k}\Omega \end{array}$	44		44		110		ns	
		$2.7 V \le EVDD0 < 4.0 V,$ $2.3 V \le Vb \le 2.7 V,$ $Cb = 30 pF, Rb = 2.7 k\Omega$	44		44		110		ns	
		$\begin{array}{l} 1.8 \ V \leq EV \mbox{DD0} < 3.3 \ V, \\ 1.6 \ V \leq V \mbox{b} \leq 2.0 \ V \mbox{Note 2}, \\ C \mbox{b} = 30 \ p \mbox{F}, \ R \mbox{b} = 5.5 \ k \mbox{\Omega} \end{array}$	110		110		110		ns	
SIp hold time (from SCKp↓) ^{Note 1}	tKSI1	$\begin{array}{l} 4.0 \; V \leq EV \text{DD0} \leq 5.5 \; V, \\ 2.7 \; V \leq V \text{b} \leq 4.0 \; V, \\ C \text{b} = 30 \; \text{pF}, \; \text{Rb} = 1.4 \; \text{k}\Omega \end{array}$	19		19		19		ns	
		$\begin{array}{l} 2.7 \ V \leq EVDD0 < 4.0 \ V, \\ 2.3 \ V \leq Vb \leq 2.7 \ V, \\ Cb = 30 \ pF, \ Rb = 2.7 \ k\Omega \end{array}$	19		19		19		ns	
		$\begin{array}{l} 1.8 \ V \leq EV \text{DD0} < 3.3 \ V, \\ 1.6 \ V \leq V_b \leq 2.0 \ V \text{Note 2}, \\ C_b = 30 \ p\text{F}, \ R_b = 5.5 \ k\Omega \end{array}$	19		19		19		ns	
Delay time from SCKp↑ to SOp output ^{Note 1}	tkso1	$\begin{array}{l} 4.0 \ V \leq EVDD0 \leq 5.5 \ V, \\ 2.7 \ V \leq Vb \leq 4.0 \ V, \\ Cb = 30 \ pF, \ Rb = 1.4 \ k\Omega \end{array}$		25		25		25	ns	
		$\begin{array}{l} 2.7 \ V \leq EVDD0 < 4.0 \ V, \\ 2.3 \ V \leq Vb \leq 2.7 \ V, \\ Cb = 30 \ pF, \ Rb = 2.7 \ k\Omega \end{array}$		25		25		25	ns	
		$\begin{array}{l} 1.8 \ V \leq EV \text{DD0} < 3.3 \ V, \\ 1.6 \ V \leq V \text{b} \leq 2.0 \ V \text{Note 2}, \\ C \text{b} = 30 \ \text{pF}, \ R \text{b} = 5.5 \ \text{k}\Omega \end{array}$		25		25		25	ns	

(TA = -40 to +105°C, 1	$.8 \text{ V} \le \text{EVDD0} \le \text{VDD} \le 5.5 \text{ V}$, $\text{Vss} = \text{EVss0} = 0 \text{ V}$, $\text{fmck} \le 32 \text{ MHz}$)
------------------------	---

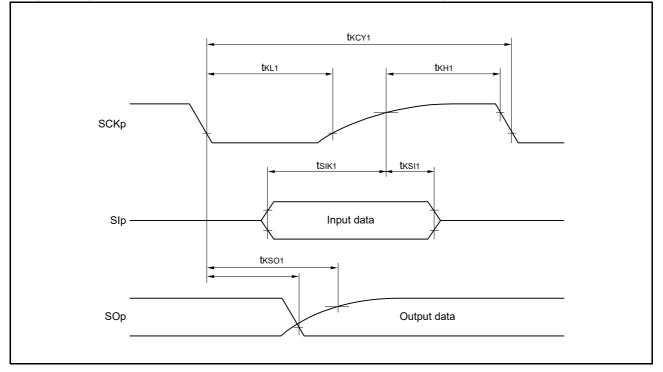
(3/3)

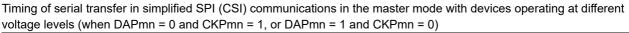
Note 1. This setting applies when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

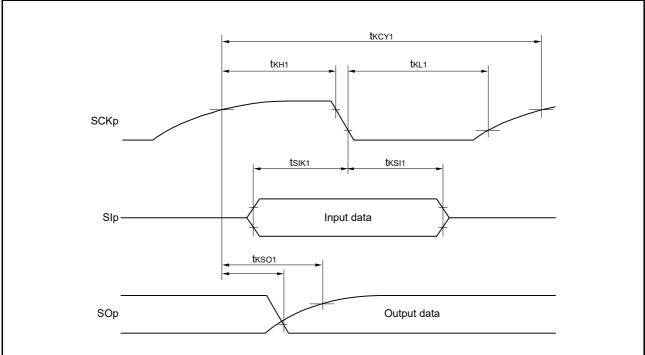

Note 2. Use this setting with $EVDD0 \ge V_b$.

Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD withstand voltage for 20- to 52-pin products/EVDD withstand voltage for 64-pin products) for the SOp and SCKp pins by using a port input mode register (PIMg) and port output mode register (POMg). For VIH and VIL, see the DC characteristics with the TTL input buffer selected.

(Remarks are listed on the next page.)




Connection in simplified SPI (CSI) communications with devices operating at different voltage levels



- **Remark 1.** Rb[Ω]: Communication line (SCKp, SOp) pull-up resistance, Cb[F]: Communication line (SCKp, SOp) load capacitance, Vb[V]: Communication line voltage
- **Remark 2.** p: CSI number (p = 00, 01, 10, 20), m: Unit number, n: Channel number (mn = 00, 01, 02, 10), g: PIM and POM number (g = 0, 1, 3, 5, 7)
- Remark 3. fMCK: Serial array unit operating clock frequency To set this operating clock, use the CKSmn bit in the serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00)
- **Remark 4.** Communications by using CSI01 of 48- to 64-pin products, and CSI11 and CSI21 with devices operating at different voltage levels are not possible. Use other CSI channels to handle such communications.

Timing of serial transfer in simplified SPI (CSI) communications in the master mode with devices operating at different voltage levels (when DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1)

- **Remark 1.** p: CSI number (p = 00, 01, 10, 20), m: Unit number, n: Channel number (mn = 00, 01, 02, 10), g: PIM and POM number (g = 0, 1, 3, 5, 7)
- **Remark 2.** Communications by using CSI01 of 48- to 64-pin products, and CSI11 and CSI21 with devices operating at different voltage levels are not possible. Use other CSI channels to handle such communications.

(1/2)

9. In simplified SPI (CSI) communications in the slave mode with devices operating at different voltage levels (1.8 V, 2.5 V, or 3 V) with the external SCKp clock

Item	Symbol	Cor	HS (High-speed Main) Mode		Mode		LP (Low-power Main) Mode		Unit	
				Min.	Max.	Min.	Max.	Min.	Max.	
SCKp	tKCY2	$4.0 \text{ V} \leq \text{EVDD0} \leq 5.5 \text{ V},$	24 MHz < fмск	14/fмск		—		—		ns
cycle time		2.7 V ≤ Vb ≤ 4.0 V	20 MHz < fмск ≤ 24 MHz	12/fмск		12/fмск		—		ns
Note 1			8 MHz < fмск ≤ 20 MHz	10/fмск		10/fмск		—		ns
			4 MHz < fмск ≤ 8 MHz	8/fмск		8/fмск		—		ns
			fмск ≤ 4 MHz	6/fмск		6/fмск		10/fмск		ns
		$2.7 V \le EVDD0 < 4.0 V,$ $2.3 V \le Vb \le 2.7 V$	24 MHz < fмск	20/fмск		_		_		ns
			20 MHz < fмск ≤ 24 MHz	16/fмск		16/fмск		_		ns
			16 MHz < fмск ≤ 20 MHz	14/fмск		14/fмск		—		ns
			8 MHz < fмск ≤ 16 MHz	12/fмск		12/fмск		_		ns
			4 MHz < fмск ≤ 8 MHz	8/fмск		8/fмск		_		ns
			fмск ≤ 4 MHz	6/fмск		6/fмск		10/fмск		ns
		1.8 V ≤ EVDD0 < 3.3 V,	24 MHz < fмск	48/fмск		_		_		ns
		1.6 V ≤ Vb ≤ 2.0 V Note 2	20 MHz < fмск ≤ 24 MHz	36/fмск		36/fмск		_		ns
			16 MHz < fмск ≤ 20 MHz	32/fмск		32/fмск		_		ns
			8 MHz < fмск ≤ 16 MHz	26/fмск		26/fмск		—		ns
			4 MHz < fмск ≤ 8 MHz	16/fмск		16/fмск		—		ns
			fмск ≤ 4 MHz	10/fмск		10/fмск		10/fмск		ns

(Notes and Caution are listed on the next page, and Remarks are listed on page 98.)

9. In simplified SPI (CSI) communications in the slave mode with devices operating at different voltage levels (1.8 V, 2.5 V, or 3 V) with the external SCKp clock

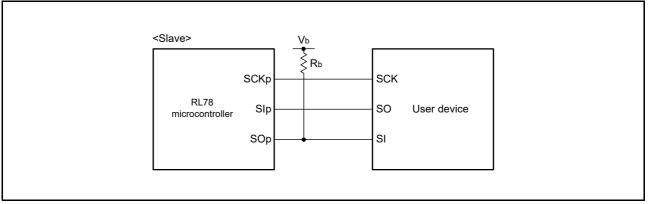
ltem	Symbol	Conditions	(High-spe	HS (High-speed Main) Mode		LS (Low-speed Main) Mode		P ver Main) ode	Unit
			Min.	Max.	Min.	Max.	Min.	Max.	
SCKp high-/low-level width	tĸн2, tĸ∟2	$4.0 V \le EVDD0 \le 5.5 V$, 2.7 V $\le V_b \le 4.0 V$	tксү2/2 – 12		tксү2/2 – 12		tксү2/2 – 50		ns
		$2.7 V \le EV_{DD0} < 4.0 V,$ $2.3 V \le V_b \le 2.7 V$	tксү2/2 – 18		tксү2/2 – 18		tксү2/2 – 50		ns
		1.8 V ≤ EVDD0 < 3.3 V, 1.6 V ≤ Vb ≤ 2.0 V Note 2	tксү2/2 – 50		tксү2/2 – 50		tксү2/2 – 50		ns
SIp setup time (to SCKp↑) ^{Note 3}	tsık2	$4.0 V \le EVDD0 \le 5.5 V$, 2.7 V $\le V_b \le 4.0 V$	1/fмск + 20		1/fмск + 20		1/fмск + 30		ns
		$2.7 V \le EV_{DD0} < 4.0 V,$ $2.3 V \le V_b \le 2.7 V$	1/fмск + 20		1/fмск + 20		1/fмск + 30		ns
		1.8 V ≤ EVDD0 < 3.3 V, 1.6 V ≤ Vb ≤ 2.0 V Note 2	1/fмск + 30		1/fмск + 30		1/fмск + 30		ns
SIp hold time (from SCKp↑) ^{Note 3}	tKSI2		1/fмск + 31		1/fмск + 31		1/fмск + 31		ns
Delay time from SCKp↓ to SOp output ^{Note 4}	tKSO2	$\begin{array}{l} 4.0 \ V \leq EV \mbox{DD0} \leq 5.5 \ V, \\ 2.7 \ V \leq V \mbox{b} \leq 4.0 \ V, \\ C \mbox{b} = 30 \ \mbox{pF}, \ R \mbox{b} = 1.4 \ \mbox{k} \mbox{\Omega} \end{array}$		2/fмск + 120		2/fмск + 120		2/fмск + 573	ns
		$2.7 V \le EVDD0 < 4.0 V,$ $2.3 V \le Vb \le 2.7 V,$ $Cb = 30 pF, Rb = 2.7 k\Omega$		2/fмск + 214		2/fмск + 214		2/fмск + 573	ns
		$\begin{array}{l} 1.8 \ V \leq EV \text{DD0} < 3.3 \ V, \\ 1.6 \ V \leq V \text{b} \leq 2.0 \ V \text{Note 2}, \\ C \text{b} = 30 \ \text{pF}, \ R \text{b} = 5.5 \ \text{k}\Omega \end{array}$		2/fмск + 573		2/fмск + 573		2/fмск + 573	ns

(ΓA = -40 to +105°C.	$1.8 \text{ V} \leq \text{EVDD0} \leq \text{VDD} \leq 5.5 \text{ V}$. Vs	s = EVsso = 0 V, fмск ≤ 32 MHz)	

(2/2)

Note 1. Transfer rate in the SNOOZE mode: 1 Mbps (max.)

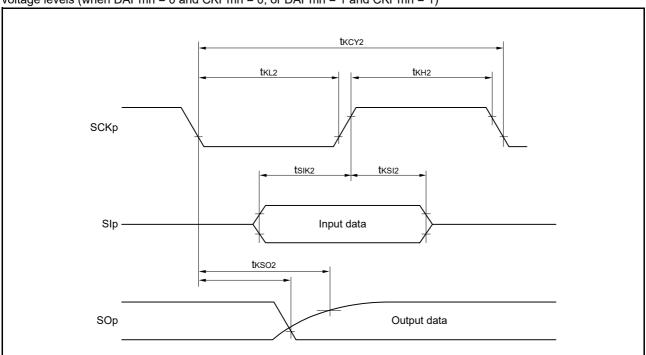
Note 2. Use this setting with $EVDD0 \ge Vb$.


Note 3. This setting applies when DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" and SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

- **Note 4.** This setting applies when DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp1" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Caution Select the TTL input buffer for the SIp and SCKp pins and the N-ch open drain output (VDD withstand voltage for 20- to 52-pin products/EVDD withstand voltage for 64-pin products) for the SOp pin by using a port input mode register (PIMg) and port output mode register (POMg). For VIH and VIL, see the DC characteristics with the TTL input buffer selected.

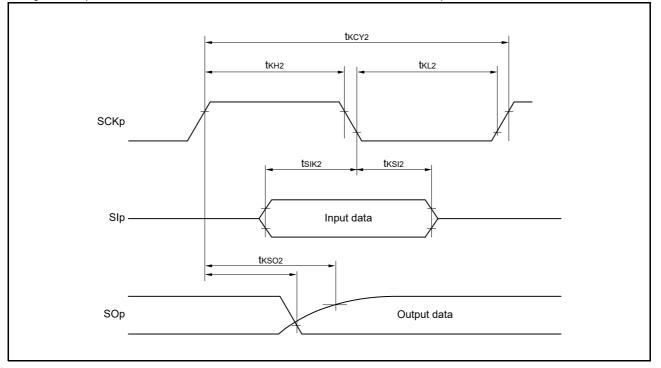
(Remarks are listed on the next page.)

Connection in simplified SPI (CSI) communications with devices operating at different voltage levels


Remark 1. Rb[Ω]: Communication line (SOp) pull-up resistance, Cb[F]: Communication line (SOp) load capacitance, Vb[V]: Communication line voltage

Remark 2. p: CSI number (p = 00, 01, 10, 20), m: Unit number, n: Channel number (mn = 00, 01, 02, 10), g: PIM and POM number (g = 0, 1, 3, 5, 7)

Remark 3. fMCK: Serial array unit operating clock frequency To set this operating clock, use the CKSmn bit in the serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 01, 02, 10)


Remark 4. Communications by using CSI01 of 48- to 64-pin products, and CSI11 and CSI21 with devices operating at different voltage levels are not possible. Use other CSI channels to handle such communications.

Timing of serial transfer in simplified SPI (CSI) communications in the slave mode with devices operating at different voltage levels (when DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1)

Timing of serial transfer in simplified SPI (CSI) communications in the slave mode with devices operating at different voltage levels (when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0)

Remark 1. p: CSI number (p = 00, 01, 10, 20), m: Unit number, n: Channel number (mn = 00, 01, 02, 10), g: PIM and POM number (g = 0, 1, 3, 5, 7)

Remark 2. Communications by using CSI01 of 48- to 64-pin products, and CSI11 and CSI21 with devices operating at different voltage levels are not possible. Use other CSI channels to handle such communications.

RENESAS

10. Simplified I²C communications with devices operating at different voltage levels (1.8 V, 2.5 V, or 3 V)

(TA = -40 to +105°C,	$1.8 \text{ V} \leq \text{EVDD0} \leq \text{VDD} \leq 5.5 \text{ V}$, $\text{Vss} = \text{EVss0} = 0 \text{ V}$, $\text{fmck} \leq 32 \text{ MHz}$)
----------------------	--

(1/2)

ltem	Symbol	Conditions	HS (High-speed Main) Mode		LS (Low-speed Main) Mode		LP (Low-power Main) Mode		Unit
			Min.	Max.	Min.	Max.	Min.	Max. 300 Note 1 300 Note 1 300 Note 1 300 Note 1 300 Note 1 300 Note 1	
SCLr clock frequency	fscl	$\begin{array}{l} 4.0 \ V \leq EV \text{DD0} \leq 5.5 \ V, \\ 2.7 \ V \leq V \text{b} \leq 4.0 \ V, \\ C \text{b} = 50 \ \text{pF}, \ R \text{b} = 2.7 \ \text{k} \Omega \end{array}$		1000 Note 1		1000 Note 1			kHz
		$2.7 V \le EV_{DD0} < 4.0 V,$ $2.3 V \le V_b \le 2.7 V,$ $C_b = 50 pF, R_b = 2.7 k\Omega$		1000 Note 1		1000 Note 1			kHz
		$\begin{array}{l} 4.0 \ V \leq E V \text{DD0} \leq 5.5 \ V, \\ 2.7 \ V \leq V \text{b} \leq 4.0 \ V, \\ C \text{b} = 100 \ \text{pF}, \ R \text{b} = 2.8 \ \text{k} \Omega \end{array}$		400 Note 1		400 Note 1			kHz
		$2.7 V \le EV_{DD0} < 4.0 V,$ $2.3 V \le V_b \le 2.7 V,$ $C_b = 100 pF, R_b = 2.7 k\Omega$		400 Note 1		400 Note 1			kHz
		$\begin{array}{l} 1.8 \ V \leq E V \text{DD0} < 3.3 \ V, \\ 1.6 \ V \leq V_b \leq 2.0 \ V \text{Note 2}, \\ C_b = 100 \ \text{pF}, \ R_b = 5.5 \ \text{k}\Omega \end{array}$		300 Note 1		300 Note 1			kHz
Hold time when SCLr is low	tlow	$\begin{array}{l} 4.0 \ V \leq E V \text{DD0} \leq 5.5 \ V, \\ 2.7 \ V \leq V \text{b} \leq 4.0 \ V, \\ C \text{b} = 50 \ \text{pF}, \ R \text{b} = 2.7 \ \text{k} \Omega \end{array}$	475		475		1550		ns
		$2.7 V \le EVDD0 < 4.0 V,$ $2.3 V \le Vb \le 2.7 V,$ $Cb = 50 pF, Rb = 2.7 k\Omega$	475		475		1550		ns
		$4.0 V \le EV_{DD0} \le 5.5 V,$ 2.7 V $\le V_b \le 4.0 V,$ Cb = 100 pF, Rb = 2.8 kΩ	1150		1550		1550		ns
		$2.7 V \le EV_{DD0} < 4.0 V,$ $2.3 V \le V_b \le 2.7 V,$ $C_b = 100 pF, R_b = 2.7 k\Omega$	1150		1550		1550		ns
		$\begin{array}{l} 1.8 \ V \leq E V \text{DD0} < 3.3 \ V, \\ 1.6 \ V \leq V_b \leq 2.0 \ V^{\text{Note 2}}, \\ C_b = 100 \ \text{pF}, \ R_b = 5.5 \ \text{k}\Omega \end{array}$	1550		1550		1550		ns
Hold time when SCLr is high	thigh	$\begin{array}{l} 4.0 \ V \leq E V \text{DD0} \leq 5.5 \ V, \\ 2.7 \ V \leq V \text{b} \leq 4.0 \ V, \\ \text{Cb} = 50 \ \text{pF}, \ \text{Rb} = 2.7 \ \text{k}\Omega \end{array}$	245		245		610		ns
		$2.7 V \le EV_{DD0} < 4.0 V,$ $2.3 V \le V_b \le 2.7 V,$ $C_b = 50 pF, R_b = 2.7 k\Omega$	200		200		610		ns
		$\begin{array}{l} 4.0 \ V \leq EV_{DD0} \leq 5.5 \ V, \\ 2.7 \ V \leq V_b \leq 4.0 \ V, \\ C_b = 100 \ pF, \ R_b = 2.8 \ k\Omega \end{array}$	675		675		610		ns
		$\begin{array}{l} 2.7 \ V \leq EV_{DD0} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 100 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	600		600		610		ns
		$\begin{array}{l} 1.8 \ V \leq E V_{DD0} < 3.3 \ V, \\ 1.6 \ V \leq V_b \leq 2.0 \ V^{\textbf{Note 2}}, \\ C_b = 100 \ pF, \ R_b = 5.5 \ k\Omega \end{array}$	610		610		610		ns

(Notes and Caution are listed on the next page, and Remarks are listed on page 102.)

10. Simplified I²C communications with devices operating at different voltage levels (1.8 V, 2.5 V, or 3 V)

(TA = -40 to +105°C, 1.8 V ≤ EVDD0 ≤ VDD ≤ 5.5 V, Vss = EVss0 = 0) V. fмск ≤ 32 MHz)
---	---------------------

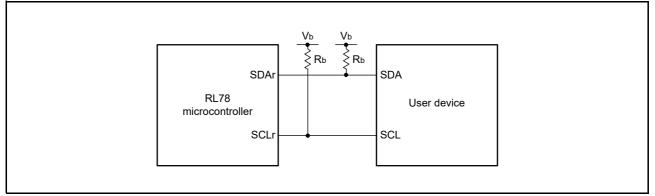
(2/2)

Item Symbol		Conditions	HS (High-speed Main) Mode		LS (Low-speed Main) Mode		LP (Low-power Main) Mode		Unit
			Min.	Max.	Min.	Max.	Min.	Max.	
Data setup time (reception)	tsu:dat	$\begin{array}{l} 4.0 \; V \leq EV DD0 \leq 5.5 \; V, \\ 2.7 \; V \leq V_b \leq 4.0 \; V, \\ C_b = 50 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$	1/fмск + 135 Note 3		1/fмск + 135 Note 3		1/fмск + 190 Note 3		ns
		$2.7 V \le EVDD0 < 4.0 V,$ $2.3 V \le V_b \le 2.7 V,$ $C_b = 50 pF, R_b = 2.7 k\Omega$	1/fмск + 135 Note 3		1/fмск + 135 Note 3		1/fмск + 190 Note 3		ns
		$\begin{array}{l} 4.0 \; V \leq EV DD0 \leq 5.5 \; V, \\ 2.7 \; V \leq V_b \leq 4.0 \; V, \\ C_b = 100 \; pF, \; R_b = 2.8 \; k\Omega \end{array}$	1/fмск + 190 Note 3		1/fмск + 190 Note 3		1/fмск + 190 Note 3		ns
		$2.7 V \le EV_{DD0} < 4.0 V,$ $2.3 V \le V_b \le 2.7 V,$ $C_b = 100 pF, R_b = 2.7 k\Omega$	1/fмск + 190 Note 3		1/fмск + 190 Note 3		1/fмск + 190 Note 3		ns
		$\begin{array}{l} 1.8 \ V \leq EV \text{DD0} < 3.3 \ V, \\ 1.6 \ V \leq V_b \leq 2.0 \ V \text{Note 2}, \\ C_b = 100 \ \text{pF}, \ R_b = 5.5 \ \text{k}\Omega \end{array}$	1/fмск + 190 Note 3		1/fмск + 190 Note 3		1/fмск + 190 Note 3		ns
Data hold time (transmission)	thd:dat	$\begin{array}{l} 4.0 \ V \leq EV \text{DD0} \leq 5.5 \ \text{V}, \\ 2.7 \ \text{V} \leq \text{Vb} \leq 4.0 \ \text{V}, \\ \text{Cb} = 50 \ \text{pF}, \ \text{Rb} = 2.7 \ \text{k}\Omega \end{array}$	0	305	0	305	0	305	ns
		$2.7 V \le EVDD0 < 4.0 V,$ $2.3 V \le V_b \le 2.7 V,$ $C_b = 50 pF, R_b = 2.7 k\Omega$	0	305	0	305	0	305	ns
		$\begin{array}{l} 4.0 \; V \leq EVDD0 \leq 5.5 \; V, \\ 2.7 \; V \leq V_b \leq 4.0 \; V, \\ C_b = 100 \; pF, \; R_b = 2.8 \; k\Omega \end{array}$	0	355	0	355	0	355	ns
		$\begin{array}{l} 2.7 \ V \leq EV_{DD0} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 100 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	0	355	0	355	0	355	ns
		$\begin{array}{l} 1.8 \ V \leq EV_{DD0} < 3.3 \ V, \\ 1.6 \ V \leq V_b \leq 2.0 \ V^{\textbf{Note 2}}, \\ C_b = 100 \ pF, \ R_b = 5.5 \ k\Omega \end{array}$	0	405	0	405	0	405	ns

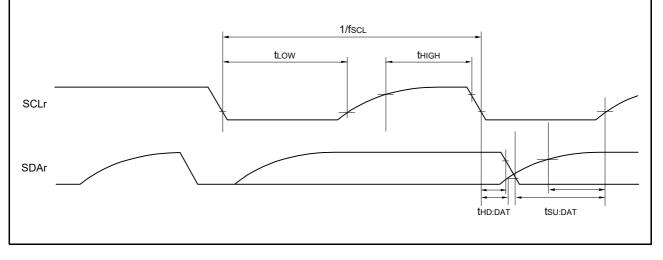
Note 1. The listed frequencies must be no greater than fMCK/4.

Note 2. Use this setting with $EVDD0 \ge Vb$.

Note 3. Set the fMCK value that does not exceed the hold time when SCLr is low or high.


Caution Select the TTL input buffer and the N-ch open drain output (VDD withstand voltage for 20- to 52-pin products/EVDD withstand voltage for 64-pin products) for the SDAr pin and the N-ch open drain output (VDD withstand voltage for 20- to 52-pin products/EVDD withstand voltage for 64-pin products) for the SCLr pin by using a port input mode register (PIMg) and port output mode register (POMg). For VIH and VIL, see the DC characteristics with the TTL input buffer selected.

(Remarks are listed on the next page.)



RL78/G24

Connection in simplified I²C communications with devices operating at different voltage levels

Timing of serial transfer in simplified I²C communications with devices operating at different voltage levels

- **Remark 1.** Rb[Ω]: Communication line (SDAr, SCLr) pull-up resistance, Cb[F]: Communication line (SDAr, SCLr) load capacitance, Vb[V]: Communication line voltage
- **Remark 2.** r: IIC number (r = 00, 01, 10, 20), g: PIM and POM number (g = 0, 1, 3, 5, 7)

Remark 3. fMCK: Serial array unit operating clock frequency

To set this operating clock, use the CKSmn bit in the serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 01, 02, 10)

2.5.2 Serial interface IICA

1. I²C standard mode

(TA = -40 to +105°C, 1.6 V ≤ EVDD0 ≤ VDD ≤ 5.5 V, VSS = EVSS0 = 0 V)

Item	Symbol	Conditions	Min.	Тур.	Max.	Unit
SCLA0 clock frequency	fscl	Standard mode: fcLĸ ≥ 1 MHz	0		100	kHz
Setup time of restart condition	tsu:sta		4.7			μs
Hold time ^{Note 1}	thd:sta		4.0			μs
Hold time when SCLA0 is low	tLOW		4.7			μs
Hold time when SCLA0 is high	tнigн		4.0			μs
Data setup time (reception)	tsu:dat		250			ns
Data setup time (transmission) ^{Note 2}	thd:dat		0		3.45	μs
Setup time of stop condition	tsu:sto		4.0			μs
Path free time	t BUF		4.7			μs

Note 1. The first clock pulse is generated after this period when the start or restart condition is detected.

Note 2. The maximum value of thD:DAT applies to normal transfer. The clock stretching is inserted on reception of an acknowledgment (ACK) signal.

Caution The listed values are applicable even when the PIOR02 bit in one peripheral I/O redirection register (PIOR0) is 1. In such cases, the pin characteristics (IOH1, IOL1, VOH1, VOL1) must satisfy the values in the redirect destination.

RemarkThe maximum value of communication line capacitance (Cb) and communication line pull-up resistor (Rb) are as follows.Cb = 400 pF, $Rb = 2.7 \text{ k}\Omega$

2. I²C fast mode

Item	Symbol	Conditions	Min.	Тур.	Max.	Unit
SCLA0 clock frequency	fSCL	Fast mode: fcLk ≥ 3.5 MHz 1.8 V ≤ EVDD0 ≤ 5.5 V	0		400	kHz
Setup time of restart condition	tsu:sta	1.8 V ≤ EVDD0 ≤ 5.5 V	0.6			μs
Hold timeNote 1	thd:sta	1.8 V ≤ EVDD0 ≤ 5.5 V	0.6			μs
Hold time when SCLA0 is low	tLOW	1.8 V ≤ EVDD0 ≤ 5.5 V	1.3			μs
Hold time when SCLA0 is high	tніgн	1.8 V ≤ EVDD0 ≤ 5.5 V	0.6			μs
Data setup time (reception)	tsu:dat	1.8 V ≤ EVDD0 ≤ 5.5 V	100			ns
Data hold time (transmission) ^{Note 2}	thd:dat	1.8 V ≤ EVDD0 ≤ 5.5 V	0		0.9	μs
Setup time of stop condition	tsu:sto	1.8 V ≤ EVDD0 ≤ 5.5 V	0.6			μs
Bus-free time	t BUF	1.8 V ≤ EVDD0 ≤ 5.5 V	1.3			μs

(TA = -40 to +105°C, 1.6 V \leq EVDD0 \leq VDD \leq 5.5 V, Vss = EVss0 = 0 V)

Note 1. The first clock pulse is generated after this period when the start or restart condition is detected.

Note 2. The maximum value of thD:DAT applies to normal transfer. The clock stretching is inserted on reception of an acknowledgment (ACK) signal.

Caution The listed values are applicable even when the PIOR02 bit in one peripheral I/O redirection register (PIOR0) is 1. In such cases, the pin characteristics (IOH1, IOL1, VOH1, VOL1) must satisfy the values in the redirect destination.

RemarkThe maximum value of communication line capacitance (Cb) and communication line pull-up resistor (Rb) are as follows. $Cb = 320 \text{ pF}, Rb = 1.1 \text{ k}\Omega$

3. I²C fast mode plus

Item	Symbol	Conditions	Min.	Тур.	Max.	Unit
SCLA0 clock frequency	fSCL	Fast mode plus: fcLK ≥ 10 MHz 2.7 V ≤ EVDD0 ≤ 5.5 V	0		1000	kHz
Setup time of restart condition	tsu:sta	2.7 V ≤ EVDD0 ≤ 5.5 V	0.26			μs
Hold timeNote 1	thd:sta	2.7 V ≤ EVDD0 ≤ 5.5 V	0.26			μs
Hold time when SCLA0 is low	tLOW	2.7 V ≤ EVDD0 ≤ 5.5 V	0.5			μs
Hold time when SCLA0 is high	tніgн	2.7 V ≤ EVDD0 ≤ 5.5 V	0.26			μs
Data setup time (reception)	tsu:dat	2.7 V ≤ EVDD0 ≤ 5.5 V	50			ns
Data hold time (transmission) ^{Note 2}	thd:dat	2.7 V ≤ EVDD0 ≤ 5.5 V	0		0.45	μs
Setup time of stop condition	tsu:sto	2.7 V ≤ EVDD0 ≤ 5.5 V	0.26			μs
Bus-free time	tBUF	2.7 V ≤ EVDD0 ≤ 5.5 V	0.5			μs

(TA = -40 to +105°C, 1.6 V \leq EVDD0 \leq VDD \leq 5.5 V, Vss = EVss0 = 0 V)

Note 1. The first clock pulse is generated after this period when the start or restart condition is detected.

Note 2. The maximum value of thD:DAT applies to normal transfer. The clock stretching is inserted on reception of an acknowledgment (ACK) signal.

Caution The listed values are applicable even when the PIOR02 bit in one peripheral I/O redirection register (PIOR0) is 1. In such cases, the pin characteristics (IOH1, IOL1, VOH1, VOL1) must satisfy the values in the redirect destination.

RemarkThe maximum value of communication line capacitance (Cb) and communication line pull-up resistor (Rb) are as follows.Cb = 120 pF, $Rb = 1.1 \text{ k}\Omega$

4. SMBus/PMBusTM mode (100 kHz Class)

(TA = -40 to $+105^{\circ}$ C, 2.7 V \leq EVDD0 \leq VDD \leq 5.5 V, Vss = EVss0 = 0 V)

Item	Symbol	Conditions	Min.	Тур.	Max.	Unit
SCLA0 clock frequency	fSCL	fclk ≥ 1 MHz	10		100	kHz
Setup time of restart condition	tsu:sta		4.7			μs
Hold time ^{Note 1}	thd:sta		4			μs
Hold time when SCLA0 is low	tLOW		4.7			μs
Hold time when SCLA0 is high	tнigн		4			μs
Data setup time (reception)	tsu:dat		250			ns
Data hold time (transmission) ^{Note 2}	thd:dat		0		3.45	μs
Setup time of stop condition	tsu:sto		4			μs
Clock/data falling time	tF				0.3	μs
Clock/data rising time	tR				1	μs
Bus-free time	t BUF		4.7			μs

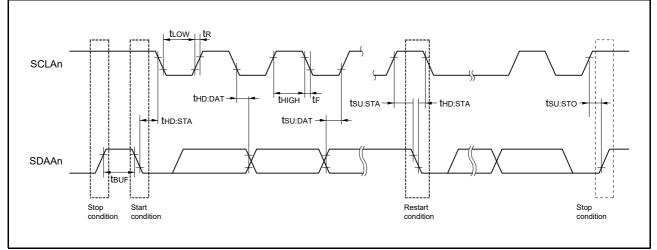
Note 1. The first clock pulse is generated after this period when the start or restart condition is detected.

Note 2. The maximum value of thD:DAT applies to normal transfer. The clock stretching is inserted on reception of an acknowledgment (ACK) signal.

Caution SMBus/PMBusTM communications are disabled when the PIOR02 bit in one peripheral I/O redirection register (PIOR0) is 1.

 $\label{eq:Remark} \begin{array}{l} \mbox{The maximum value of communication line pull-up resistor (Rb) is as follows.} \\ \mbox{Rb} = 1.1 \ \mbox{k}\Omega \end{array}$

5. SMBus/PMBusTM mode (400 kHz Class)


Item	Symbol	Conditions	Min.	Тур.	Max.	Unit
SCLA0 clock frequency	fscl	fc∟k ≥ 3.5 MHz	10		400	kHz
Setup time of restart condition	tsu:sta		0.6			μs
Hold time ^{Note 1}	thd:sta		0.6			μs
Hold time when SCLA0 is low	tLOW		1.3			μs
Hold time when SCLA0 is high	thigh		0.6			μs
Data setup time (reception)	tsu:dat		100			ns
Data hold time (transmission)Note 2	thd:dat		0		0.9	μs
Setup time of stop condition	tsu:sto		0.6			μs
Clock/data falling time	tF				0.3	μs
Clock/data rising time	tR				0.3	μs
Bus-free time	t BUF		1.3			μs

Note 1. The first clock pulse is generated after this period when the start or restart condition is detected.

Note 2. The maximum value of thD:DAT applies to normal transfer. The clock stretching is inserted on reception of an acknowledgment (ACK) signal.

Caution SMBus/PMBusTM communications are disabled when the PIOR02 bit in one peripheral I/O redirection register (PIOR0) is 1.

RemarkThe maximum value of communication line capacitance (Cb) and communication line pull-up resistor (Rb) are as follows. $Cb = 400 \text{ pF}, Rb = 1.1 \text{ k}\Omega$

IICA serial transfer timing

Remark n = 0

2.6 Analog Characteristics

2.6.1 A/D converter characteristics

1. Normal modes 1 and 2

```
(TA = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{AVREFP} \le \text{VDD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V}, \text{fcLK} \le 32 \text{ MHz},
reference voltage (+) = AVREFP (ADREFP[1:0] = 01B), reference voltage (-) = AVREFM (ADREFM = 1),
target pins: ANI2 to ANI7, ANI16 to ANI30, internal reference voltage, and temperature sensor output voltage)
```

0 1				•	• ,	
Item	Symbol	Conditions	Min.	Тур.	Max.	Unit
Resolution	RES		8		12	Bit
Conversion clock	fad		1		32	MHz
Overall errorNotes 1, 3, 4, 5	AINL	$4.5 \text{ V} \leq \text{AVREFP} = \text{VDD} \leq 5.5 \text{ V}$			±7.5	LSB
		$2.7 \text{ V} \leq \text{AVREFP} = \text{VDD} \leq 5.5 \text{ V}$			±9.0	LSB
		$2.4 \text{ V} \leq \text{AVREFP} = \text{VDD} \leq 5.5 \text{ V}$			±9.0	LSB
Conversion timeNote 6	tCONV	$4.5 \text{ V} \leq \text{AVREFP} = \text{VDD} \leq 5.5 \text{ V}$	2			μs
		$2.7 \text{ V} \leq \text{AVREFP} = \text{VDD} \leq 5.5 \text{ V}$	2			μs
		$2.4 \text{ V} \leq \text{AVREFP} = \text{VDD} \leq 5.5 \text{ V}$	2			μs
Zero-scale errorNotes 1, 2, 3, 4, 5	Ezs	$4.5 \text{ V} \leq \text{AVREFP} = \text{VDD} \leq 5.5 \text{ V}$			±0.17	%FSR
		$2.7 \text{ V} \leq \text{AVREFP} = \text{VDD} \leq 5.5 \text{ V}$			±0.21	%FSR
		$2.4 \text{ V} \leq \text{AVREFP} = \text{VDD} \leq 5.5 \text{ V}$			±0.21	%FSR
Full-scale errorNotes 1, 2, 3, 4, 5	Efs	$4.5 \text{ V} \leq \text{AVREFP} = \text{VDD} \leq 5.5 \text{ V}$			±0.17	%FSR
		$2.7 \text{ V} \leq \text{AVREFP} = \text{VDD} \leq 5.5 \text{ V}$			±0.21	%FSR
		$2.4 \text{ V} \leq \text{AVREFP} = \text{VDD} \leq 5.5 \text{ V}$			±0.21	%FSR
Integral linearity error Notes 1, 4, 5	ILE	$4.5 \text{ V} \leq \text{AVREFP} = \text{VDD} \leq 5.5 \text{ V}$			±3.0	LSB
		$2.7 \text{ V} \leq \text{AVREFP} = \text{VDD} \leq 5.5 \text{ V}$			±3.0	LSB
		$2.4 \text{ V} \leq \text{AVREFP} = \text{VDD} \leq 5.5 \text{ V}$			±3.0	LSB
Differential linearity error Note 1	DLE	$4.5 \text{ V} \leq \text{AVREFP} = \text{VDD} \leq 5.5 \text{ V}$		±1.0		LSB
		$2.7 \text{ V} \leq \text{AVREFP} = \text{VDD} \leq 5.5 \text{ V}$		±1.0		LSB
		$2.4 \text{ V} \leq \text{AVREFP} = \text{VDD} \leq 5.5 \text{ V}$		±1.0		LSB
Analog input voltage	VAIN		0		AVREFP	V

Note 1. This value does not include the quantization error $(\pm 1/2 \text{ LSB})$.

Note 2. This value is indicated as a ratio (%FSR) to the full-scale value.

Note 3. When pins ANI16 to ANI30 are selected as the conversion target, the maximum values are as follows. Overall error: Add ±3 LSB to the maximum value.

Zero-scale/full-scale error: Add ±0.04%FSR to the maximum value.

Note 4. The maximum values are as follows when VDD is selected for reference voltage (+) and VSS is selected for reference voltage (-).

Overall error: Add ±10 LSB to the maximum value. Zero-scale/full-scale error: Add ±0.25%FSR to the maximum value.

Integral linearity error: Add ± 4 LSB to the maximum value.

Note 5. When AVREFP < VDD, the maximum values are as follows.

Overall error: Add ±0.75 LSB × (VDD voltage (V) – AVREFP voltage (V)) to the maximum value.

Zero-scale/full-scale error: Add ±0.018%FSR × (VDD voltage (V) – AVREFP voltage (V)) to the maximum value.

Integral linearity error: Add ±0.2 LSB × (VDD voltage (V) – AVREFP voltage (V)) to the maximum value.

Note 6. When the internal reference voltage or the temperature sensor output voltage is selected as the conversion target, the sampling time must be at least 5 µs. Accordingly, use normal mode 2 with the longer sampling time.

2. Normal modes 1 and 2 (advanced mode)

(TA = -40 to +105°C, 2.4 V ≤ AVREFP ≤ VDD ≤ 5.5 V, VSS = 0 V, fCLK ≤ 48 MHz, reference voltage (+) = AVREFP (ADREFP[1:0] = 01B), reference voltage (–) = AVREFM (ADREFM = 1), target pins: ANI2 to ANI7, ANI16 to ANI30, PGA^{Note 1}, S&H^{Note 1}, internal reference voltage, and temperature sensor output voltage)

Item	Symbol	Conditions	Min.	Тур.	Max.	Unit
Resolution	RES		8		12	Bit
Conversion clock	fad		1		48	MHz
Overall errorNotes 2, 4, 5, 6, 7, 9	AINL	$4.5 \text{ V} \leq \text{AV}_{\text{REFP}} = \text{V}_{\text{DD}} \leq 5.5 \text{ V}$			±7.5	LSB
		$4.5 \text{ V} \le \text{AVREFP} = \text{VDD} \le 5.5 \text{ V}$, and when the sample & hold circuit is in use (0.25 V \le VAIN \le VDD - 0.25 V)			±8.5	LSB
		$2.7 \text{ V} \leq \text{AV}_{\text{REFP}} = \text{VDD} \leq 5.5 \text{ V}$			±9.0	LSB
		$2.7 \text{ V} \le \text{AVREFP} = \text{VDD} \le 5.5 \text{ V}$, and when the sample & hold circuit is in use (0.25 V \le VAIN \le VDD - 0.25 V)			±10.0	LSB
		$2.4 \text{ V} \leq \text{AV}_{\text{REFP}} = \text{V}_{\text{DD}} \leq 5.5 \text{ V}$			±9.0	LSB
Conversion timeNotes 7, 8	tCONV	$4.5 \text{ V} \le \text{AV}_{\text{REFP}} = \text{VDD} \le 5.5 \text{ V}$	1			μs
		$2.7 \text{ V} \leq \text{AV}_{\text{REFP}} = \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	1			μs
		$2.4 \text{ V} \leq \text{AV}_{\text{REFP}} = \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	1.5			μs
Zero-scale error	Ezs	$4.5 \text{ V} \leq \text{AV}_{\text{REFP}} = \text{VDD} \leq 5.5 \text{ V}$			±0.17	%FSR
Notes 2, 3, 4, 5, 6, 7, 9		$2.7 \text{ V} \leq \text{AV}_{\text{REFP}} = \text{VDD} \leq 5.5 \text{ V}$			±0.21	%FSR
		$2.4 \text{ V} \leq \text{AV}_{\text{REFP}} = \text{V}_{\text{DD}} \leq 5.5 \text{ V}$			±0.21	%FSR
Full-scale error	Efs	$4.5 \text{ V} \leq \text{AV}_{\text{REFP}} = \text{VDD} \leq 5.5 \text{ V}$			±0.17	%FSR
Notes 2, 3, 4, 5, 6, 7, 9		$2.7 \text{ V} \leq \text{AV}_{\text{REFP}} = \text{V}_{\text{DD}} \leq 5.5 \text{ V}$			±0.21	%FSR
		$2.4 \text{ V} \leq \text{AV}_{\text{REFP}} = \text{V}_{\text{DD}} \leq 5.5 \text{ V}$			±0.21	%FSR
Integral linearity errorNotes 2, 5, 6	ILE	$4.5 \text{ V} \leq \text{AV}_{\text{REFP}} = \text{VDD} \leq 5.5 \text{ V}$			±3.0	LSB
		$2.7 \text{ V} \leq \text{AV}_{\text{REFP}} = \text{V}_{\text{DD}} \leq 5.5 \text{ V}$			±3.0	LSB
		$2.4 \text{ V} \leq \text{AV}_{\text{REFP}} = \text{VDD} \leq 5.5 \text{ V}$			±3.0	μs μs %FSR %FSR %FSR %FSR %FSR %FSR LSB
Differential linearity errorNote 2	DLE	$4.5 \text{ V} \leq \text{AV}_{\text{REFP}} = \text{VDD} \leq 5.5 \text{ V}$		±1.0		LSB
		$2.7 \text{ V} \leq \text{AVREFP} = \text{VDD} \leq 5.5 \text{ V}$		±1.0		LSB
		$2.4 \text{ V} \leq \text{AV}_{\text{REFP}} = \text{V}_{\text{DD}} \leq 5.5 \text{ V}$		±1.0		LSB
Analog input voltage	VAIN		0		AVREFP	V

(Notes are listed on the next page.)

Note 1. If the sample & hold circuit or PGA is to be A/D converted, VDD must be at least 2.7 V.

- Note 2. This value does not include the quantization error (±1/2 LSB).
- Note 3. This value is indicated as a ratio (%FSR) to the full-scale value.
- **Note 4.** When pins ANI16 to ANI30 are selected as the conversion target, the maximum values are as follows. Overall error: Add ±3 LSB to the maximum value.
 - Zero-scale/full-scale error: Add ±0.04%FSR to the maximum value.
- Note 5. The maximum values are as follows when VDD is selected for reference voltage (+) and VSS is selected for reference voltage (-).
 - Overall error: Add ± 10 LSB to the maximum value.
 - Zero-scale/full-scale error: Add ±0.25%FSR to the maximum value.
- Integral linearity error: Add ±4 LSB to the maximum value.
- Note 6. When AVREFP < VDD, the maximum values are as follows.</td>

 Overall error: Add ±0.75 LSB × (VDD voltage (V) AVREFP voltage (V)) to the maximum value.

 Zero-scale/full-scale error: Add ±0.018%FSR × (VDD voltage (V) AVREFP voltage (V)) to the maximum value.

 Integral linearity error: Add ±0.2 LSB × (VDD voltage (V) AVREFP voltage (V)) to the maximum value.
- Note 7. Add the following values to the listed values in the cases below.
 - 7 fAD when the conversion target includes low-speed conversion ANI (ANI16 to ANI30)
 - 12 fAD when the conversion target includes the PGA with the gain of ×4 to ×16.
 - 43 fAD when the conversion target includes the PGA with the gain of \times 32.
- **Note 8.** When the internal reference voltage or the temperature sensor output voltage is selected as the conversion target, the sampling time must be at least 5 µs. Accordingly, use normal mode 2 with the longer sampling time.
- Note 9. When the PGA is selected as the conversion target, the maximum values are as follows. For details, see 2.6.5 PGA characteristics.

Overall error: Add input offset voltage and amplification rate error of the PGA to the maximum value. Zero-scale error: Add input offset voltage of the PGA to the maximum value. Full-scale error: Add amplification rate error of the PGA to the maximum value.

3. Low-voltage modes 1 and 2

 $(TA = -40 \text{ to } +105^{\circ}\text{C}, 1.6 \text{ V} \le \text{AVREFP} \le \text{VDD} \le 5.5 \text{ V}, \text{VSS} = 0 \text{ V}, \text{fcLk} \le 32 \text{ MHz},$ reference voltage (+) = AVREFP (ADREFP[1:0] = 01B), reference voltage (-) = AVREFM (ADREFM = 1), target pins: ANI2 to ANI7, ANI16 to ANI30, internal reference voltage^{Note 1}, and temperature sensor output voltage^{Note 1})

Item	Symbol	Conditions	Min.	Тур.	Max.	Unit
Resolution	RES		8		12	Bit
Conversion clock	fad		1		24	MHz
Overall errorNotes 2, 4, 5, 6	AINL	$2.7 \text{ V} \leq \text{AVREFP} = \text{VDD} \leq 5.5 \text{ V}$			±9.0	LSB
		$2.4 \text{ V} \leq \text{AV}_{\text{REFP}} = \text{V}_{\text{DD}} \leq 5.5 \text{ V}$			±9.0	LSB
		$1.8 \text{ V} \leq \text{AV}_{\text{REFP}} = \text{V}_{\text{DD}} \leq 5.5 \text{ V}$			±11.5	LSB
		$1.6 \text{ V} \leq \text{AV}_{\text{REFP}} = \text{V}_{\text{DD}} \leq 5.5 \text{ V}$			±12.0	LSB
Conversion time ^{Note 7}	tCONV	$2.7 \text{ V} \leq \text{AV}_{\text{REFP}} = \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	3.33			μs
		$2.4 \text{ V} \leq \text{AV}_{\text{REFP}} = \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	5.00			μs
		$1.8 \text{ V} \leq \text{AV}_{\text{REFP}} = \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	10.00			μs
		$1.6 \text{ V} \leq \text{AV}_{\text{REFP}} = \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	20.00			μs
Zero-scale errorNotes 2, 3, 4, 5, 6	Ezs	$2.7 \text{ V} \leq \text{AV}_{\text{REFP}} = \text{V}_{\text{DD}} \leq 5.5 \text{ V}$			±0.21	%FSR
		$2.4 \text{ V} \leq \text{AV}_{\text{REFP}} = \text{V}_{\text{DD}} \leq 5.5 \text{ V}$			±0.21	%FSR
		$1.8 \text{ V} \leq \text{AV}_{\text{REFP}} = \text{VDD} \leq 5.5 \text{ V}$			±0.27	%FSR
		$1.6 \text{ V} \leq \text{AV}_{\text{REFP}} = \text{V}_{\text{DD}} \leq 5.5 \text{ V}$			±0.28	%FSR
Full-scale errorNotes 2, 3, 4, 5, 6	Efs	$2.7 \text{ V} \leq \text{AV}_{\text{REFP}} = \text{V}_{\text{DD}} \leq 5.5 \text{ V}$			±0.21	%FSR
		$2.4 \text{ V} \leq \text{AV}_{\text{REFP}} = \text{VDD} \leq 5.5 \text{ V}$			±0.21	%FSR
		$1.8 \text{ V} \leq \text{AV}_{\text{REFP}} = \text{VDD} \leq 5.5 \text{ V}$			±0.27	%FSR
		$1.6 \text{ V} \leq \text{AV}_{\text{REFP}} = \text{VDD} \leq 5.5 \text{ V}$			±0.28	%FSR
Integral linearity errorNotes 2, 5, 6	ILE	$2.7 \text{ V} \leq \text{AV}_{\text{REFP}} = \text{VDD} \leq 5.5 \text{ V}$			±4.0	LSB
		$2.4 \text{ V} \leq \text{AV}_{\text{REFP}} = \text{VDD} \leq 5.5 \text{ V}$			±4.0	LSB
		1.8 V ≤ AVREFP = VDD ≤ 5.5 V			±4.5	LSB
		$1.6 \text{ V} \leq \text{AV}_{\text{REFP}} = \text{VDD} \leq 5.5 \text{ V}$			±4.5	LSB
Differential linearity error Note 2	DLE	2.7 V ≤ AVREFP = VDD ≤ 5.5 V		±1.5		LSB
-		$2.4 \text{ V} \leq \text{AV}_{\text{REFP}} = \text{VDD} \leq 5.5 \text{ V}$		±1.5		LSB
		$1.8 \text{ V} \leq \text{AV}_{\text{REFP}} = \text{VDD} \leq 5.5 \text{ V}$		±2.0		LSB
		$1.6 \text{ V} \leq \text{AV}_{\text{REFP}} = \text{VDD} \leq 5.5 \text{ V}$		±2.0		LSB
Analog input voltage	VAIN		0		AVREFP	V

(Notes are listed on the next page.)

- Note 1. If the internal reference voltage or temperature sensor output voltage is to be A/D converted, VDD must be at least 1.8 V.
- Note 2. This value does not include the quantization error $(\pm 1/2 \text{ LSB})$.
- Note 3. This value is indicated as a ratio (%FSR) to the full-scale value.
- Note 4.When pins ANI16 to ANI30 are selected as the conversion target, the maximum values are as follows.Overall error: Add ±3 LSB to the maximum value.Zero-scale/full-scale error: Add ±0.04%FSR to the maximum value.
- Note 5. The maximum values are as follows when VDD is selected for reference voltage (+) and Vss is selected for reference voltage (-).
 - Overall error: Add ± 10 LSB to the maximum value.
 - Zero-scale/full-scale error: Add ±0.25%FSR to the maximum value.
- Integral linearity error: Add ±4 LSB to the maximum value.
- Note 6. When AVREFP < VDD, the maximum values are as follows.</td>

 Overall error: Add ±0.75 LSB × (VDD voltage (V) AVREFP voltage (V)) to the maximum value.

 Zero-scale/full-scale error: Add ±0.018%FSR × (VDD voltage (V) AVREFP voltage (V)) to the maximum value.

 Integral linearity error: Add ±0.2 LSB × (VDD voltage (V) AVREFP voltage (V)) to the maximum value.
- Note 7. When the internal reference voltage or the temperature sensor output voltage is selected as the conversion target, the sampling time must be at least 5 μs. Accordingly, use low-voltage mode 2 with the longer sampling time and the conversion clock (fAD) with a frequency of no more than 16 MHz.

4. Low-voltage modes 1 and 2 (advanced mode)

 $(TA = -40 \text{ to } +105^{\circ}\text{C}, 1.6 \text{ V} \le \text{AVREFP} \le \text{VDD} \le 5.5 \text{ V}, \text{VSS} = 0 \text{ V}, \text{fcLk} \le 48 \text{ MHz},$ reference voltage (+) = AVREFP (ADREFP[1:0] = 01B), reference voltage (-) = AVREFM (ADREFM = 1), target pins: ANI2 to ANI7, ANI16 to ANI30, PGANote 1, S&HNote 1, internal reference voltageNote 2, and temperature sensor output voltageNote 2)

Item	Symbol	Conditions	Min.	Тур.	Max.	Unit
Resolution	RES		8		12	Bit
Conversion clock	fad		1		24	MHz
Overall errorNotes 3, 5, 6, 7, 8, 9	AINL	$4.5 \text{ V} \le \text{AVREFP} = \text{VDD} \le 5.5 \text{ V}$, and when the sample & hold circuit is in use (0.25 V \le VAIN \le VDD - 0.25 V)			±10.0	LSB
		$2.7 \text{ V} \leq \text{AV}_{\text{REFP}} = \text{V}_{\text{DD}} \leq 5.5 \text{ V}$			±9.0	LSB
		$2.7 \text{ V} \le \text{AVREFP} = \text{VDD} \le 5.5 \text{ V}$, and when the sample & hold circuit is in use (0.25 V \le VAIN \le VDD - 0.25 V)			±10.0	Bit MHz LSB
		$2.4 \text{ V} \leq \text{AV}_{\text{REFP}} = \text{V}_{\text{DD}} \leq 5.5 \text{ V}$			±9.0	LSB
		$1.8 \text{ V} \leq \text{AV}_{\text{REFP}} = \text{V}_{\text{DD}} \leq 5.5 \text{ V}$			±11.5	LSB
		$1.6 \text{ V} \leq \text{AVREFP} = \text{VDD} \leq 5.5 \text{ V}$			±12.0	LSB
Conversion time ^{Note 8}	tCONV	$2.7 \text{ V} \leq \text{AV}_{\text{REFP}} = \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	3.33			μs
		$2.4 \text{ V} \leq \text{AV}_{\text{REFP}} = \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	5.00			μs
		$1.8 \text{ V} \leq \text{AV}_{\text{REFP}} = \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	10.00			μs
		$1.6 \text{ V} \leq \text{AV}_{\text{REFP}} = \text{VDD} \leq 5.5 \text{ V}$	20.00			μs
Zero-scale error	Ezs	$2.7 \text{ V} \leq \text{AV}_{\text{REFP}} = \text{V}_{\text{DD}} \leq 5.5 \text{ V}$			±0.21	%FSR
Notes 3, 4, 5, 6, 7, 8, 9		$2.4 \text{ V} \leq \text{AV}_{\text{REFP}} = \text{V}_{\text{DD}} \leq 5.5 \text{ V}$			±0.21	%FSR
		$1.8 \text{ V} \leq \text{AV}_{\text{REFP}} = \text{V}_{\text{DD}} \leq 5.5 \text{ V}$			±0.27	%FSR
		$1.6 \text{ V} \leq \text{AV}_{\text{REFP}} = \text{V}_{\text{DD}} \leq 5.5 \text{ V}$			±0.28	%FSR
Full-scale error	Efs	$2.7 \text{ V} \leq \text{AV}_{\text{REFP}} = \text{V}_{\text{DD}} \leq 5.5 \text{ V}$			±0.21	%FSR
Notes 3, 4, 5, 6, 7, 8, 9		$2.4 \text{ V} \leq \text{AV}_{\text{REFP}} = \text{V}_{\text{DD}} \leq 5.5 \text{ V}$			±0.21	%FSR
		$1.8 \text{ V} \leq \text{AV}_{\text{REFP}} = \text{V}_{\text{DD}} \leq 5.5 \text{ V}$			±0.27	%FSR
		$1.6 \text{ V} \leq \text{AV}_{\text{REFP}} = \text{VDD} \leq 5.5 \text{ V}$			±0.28	%FSR
Integral linearity errorNotes 3, 6, 7	ILE	$2.7 \text{ V} \leq \text{AV}_{\text{REFP}} = \text{V}_{\text{DD}} \leq 5.5 \text{ V}$			±4.0	LSB
		$2.4 \text{ V} \leq \text{AV}_{\text{REFP}} = \text{V}_{\text{DD}} \leq 5.5 \text{ V}$			±4.0	LSB
		$1.8 \text{ V} \leq \text{AV}_{\text{REFP}} = \text{VDD} \leq 5.5 \text{ V}$			±4.5	LSB
		$1.6 \text{ V} \leq \text{AV}_{\text{REFP}} = \text{V}_{\text{DD}} \leq 5.5 \text{ V}$			±4.5	LSB
Differential linearity errorNote 3	DLE	$2.7 \text{ V} \leq \text{AV}_{\text{REFP}} = \text{V}_{\text{DD}} \leq 5.5 \text{ V}$		±1.5		LSB
		$2.4 \text{ V} \leq \text{AV}_{\text{REFP}} = \text{V}_{\text{DD}} \leq 5.5 \text{ V}$		±1.5		LSB
		$1.8 \text{ V} \leq \text{AV}_{\text{REFP}} = \text{V}_{\text{DD}} \leq 5.5 \text{ V}$		±2.0		LSB
		$1.6 \text{ V} \leq \text{AV}_{\text{REFP}} = \text{VDD} \leq 5.5 \text{ V}$		±2.0		LSB
Analog input voltage	VAIN		0		AVREFP	V

(Notes are listed on the next page.)

- Note 1. If the sample & hold circuit or PGA is to be A/D converted, VDD must be at least 2.7 V.
- Note 2. If the internal reference voltage or temperature sensor output voltage is to be A/D converted, VDD must be at least 1.8 V.
- Note 3. This value does not include the quantization error $(\pm 1/2 \text{ LSB})$.
- **Note 4.** This value is indicated as a ratio (%FSR) to the full-scale value.
- Note 5.
 When pins ANI16 to ANI30 are selected as the conversion target, the maximum values are as follows.

 Overall error: Add ±3 LSB to the maximum value.
 Zero-scale/full-scale error: Add ±0.04%FSR to the maximum value.
- Note 6. The maximum values are as follows when VDD is selected for reference voltage (+) and VSS is selected for reference voltage (-).
 - Overall error: Add±10 LSB to the maximum value.
 - Zero-scale/full-scale error: Add ±0.25%FSR to the maximum value.
 - Integral linearity error: Add ±4 LSB to the maximum value.
- Note 7. When AVREFP < VDD, the maximum values are as follows.
 Overall error: Add ±0.75 LSB × (VDD voltage (V) AVREFP voltage (V)) to the maximum value.
 Zero-scale/full-scale error: Add ±0.018%FSR × (VDD voltage (V) AVREFP voltage (V)) to the maximum value.
 Integral linearity error: Add ±0.2 LSB × (VDD voltage (V) AVREFP voltage (V)) to the maximum value.
- **Note 8.** When the internal reference voltage or the temperature sensor output voltage is selected as the conversion target, the sampling time must be at least 5 µs. Accordingly, use low-voltage mode 2 with the longer sampling time and the conversion clock (fAD) with a frequency of no more than 16 MHz.
- Note 9. When the PGA is selected as the conversion target, the maximum values are as follows. For details, see 2.6.5 PGA characteristics.
 - Overall error: Add input offset voltage and amplification rate error of the PGA to the maximum value.
 - Zero-scale error: Add input offset voltage of the PGA to the maximum value.
 - Full-scale error: Add amplification rate error of the PGA to the maximum value.

5. When the internal reference voltage is selected as reference voltage (+)

 $(TA = -40 \text{ to } +105^{\circ}\text{C}, 1.8 \text{ V} \le \text{VDD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V}, \text{low-voltage modes 1 and 2, fcLK} \le 32 \text{ MHz}^{Note 1}, \text{fcLK} \le 48 \text{ MHz}^{Note 2}, \text{ reference voltage (+) = internal reference voltage (ADREFP[1:0] = 10B), reference voltage (-) = AVREFM (ADREFM = 1))}$

Item	Symbol	Conditions	Min.	Тур.	Max.	Unit
Resolution	RES		8			Bit
Conversion clock	fad	$1.6 \text{ V} \le \text{VDD} \le 5.5 \text{ V}$	1		2	MHz
Zero-scale errorNotes 3, 4, 6	Ezs	$1.6 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}$			±0.6	%FSR
Integral linearity errorNotes 3, 6	ILE	$1.6 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}$			±2.0	LSB
Differential linearity errorNote 3	DLE	$1.6 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}$		±1.0		LSB
Analog input voltage	Vain		0		VBGR Note 5	V

Note 1. This applies when the advanced mode is disabled.

Note 2. This applies when the advanced mode is enabled.

Note 3. This value does not include the quantization error ($\pm 1/2$ LSB).

Note 4. This value is indicated as a ratio (%FSR) to the full-scale value.

- Note 5. Refer to 2.6.2 Temperature sensor/internal reference voltage characteristics.
- Note 6. When reference voltage (–) is selected as VSS, the maximum values are as follows.

Zero-scale error: Add $\pm 0.35\%$ FSR to the maximum value. Integral linearity error: Add ± 0.5 LSB to the maximum value.

2.6.2 Temperature sensor/internal reference voltage characteristics

Item	Symbol	Conditions	Min.	Тур.	Max.	Unit
Temperature sensor output voltage	VTMPS25	ADS register is set to 80H, TA = +25°C		1.05		V
Internal reference voltage	VBGR	ADS register is set to 81H	1.40	1.48	1.56	V
Temperature coefficient	FVTMPS	Temperature dependency of the temperature sensor voltage		-3.3		mV/°C
Operation stabilization wait time	tamp		5			μs

 $(TA = -40 \text{ to } +105^{\circ}\text{C}, 1.8 \text{ V} \le \text{VDD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

2.6.3 D/A converter characteristics

Item	Symbol	Conditions Min. Typ.		Max.	Unit	
Resolution	RES	DAC0, DAC1 (DACONF = 0)			10	Bit
		DAC1 (DACONF = 1), DAC2			8	Bit
Overall error	AINL	Rload = 8 MΩ			±2.5	LSB
Differential non-linearity error	ADNL				±1.0	LSB
Settling time	t SET	Cload = 20 pF when DACO is output			6	μs
		During full code conversion using CMP reference			3	μs
		During 1LSB code conversion using CMP reference			1	μs

Caution The voltage on the ANO0 to ANO2 pins must not exceed EVDD0.

2.6.4 Comparator characteristics

(TA = -40 to +105°C, 2.7 V \leq EVDD0 \leq VDD \leq 5.5 V, Vss = EVss0 = 0 V)

Item	Symbol	Conditions	Min.	Тур.	Max.	Unit
Input voltage range	IVREF	IVREF0 pin, IVREF1 pin input	0		EVDD0	V
	IVCMP	IVCMP0, IVCMP1, IVCMP2, ICMP3 pin input	0		EVDD0	V
Output delay	td	Input amplitude ±100 mV		50	100	ns
Offset voltage	—			±5	±40	mV
Operation stabilization time ^{Note}	tCMP		1			μs
Input channel switching stabilization wait time	—		0.3			μs

Note The listed values indicate the time until the DC/AC characteristics of the comparator are satisfied following enabling of the comparator operation (CnENB = 1).

2.6.5 PGA characteristics

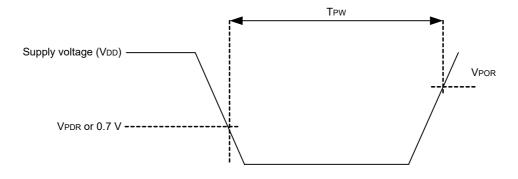
RL78/G24

Item	Symbol		Conditions			Тур.	Max.	Unit
Input offset voltage	VIOPGA						±10	mV
Input voltage range ^{Note} 1	Vipga				0		0.9 × V _{DD} / amplification rate	V
Amplification rate error		×4, ×8					±1	%
		×16					±1.5	%
		×32					±2	%
Slew rate ^{Note 1}	Srrpga	Rising Vin = VDD × 0.1/	4.0 V ≤ VDD ≤ 5.5 V	Other than ×32	3.5			V/µs
		amplification rate to VDD × 0.9/	4.0 V ≤ VDD ≤ 5.5 V	×32	3			
		amplification rate 10 to 90% of output amplitude	$2.7 \text{ V} \le \text{VDD} \le 4.0 \text{ V}$		0.5			
	Sfpga	Falling Vin = VDD × 0.1/	4.0 V ≤ VDD ≤ 5.5 V	Other than ×32	3.5			
		amplification rate to VDD × 0.9/	$4.0 \text{ V} \leq \text{VDD} \leq 5.5 \text{ V}$	×32	3			
		amplification rate 90 to 10% of output amplitude	$2.7 \text{ V} \leq \text{VDD} \leq 4.0 \text{ V}$		0.5			
Operation stabilization wait	tPGA	×4, ×8					5	μs
time ^{Note 2}		×16, ×32					10	μs

(TA = -40 to +105°C, 2.7 V \leq EVDD0 \leq VDD \leq 5.5 V, Vss = EVss0 = 0 V)

Note 1. A voltage of EVDD0 is supplied to the PGAI0 to PGAI3 pins.

Note 2. The listed values indicate the time until the DC/AC characteristics of PGA operation are satisfied following enabling of the PGA operation (PGAEN = 1).



2.6.6 POR circuit characteristics

(TA = -40 to +105°C, Vss = 0 V)

Item	Symbol	Conditions	Min.	Тур.	Max.	Unit
Detection voltage	VPOR, VPDR		1.43	1.50	1.57	V
Minimum pulse widthNote	TPW		300			μs

Note This width is the minimum time required for a POR reset when VDD falls below VPDR. This width is also the minimum time required for a POR reset from when VDD falls below 0.7 V to when VDD exceeds VPOR in the STOP mode or while the main system clock is stopped through setting bit 0 (HIOSTOP) and bit 7 (MSTOP) in the clock operation status control register (CSC).

2.6.7 LVD circuit characteristics

1. LVD detection voltage in the LVD0 reset mode and interrupt mode

 $(TA = -40 \text{ to } +105^{\circ}\text{C}, \text{VPDR} \le \text{VDD} \le 5.5 \text{ V}, \text{VSS} = 0 \text{ V})$

	Item	Symbol	Conditions	Min.	Тур.	Max.	Unit
Detection	Supply voltage level	VLVD00	The power supply voltage is rising.	3.84	3.96	4.08	V
voltage			The power supply voltage is falling.	3.76	3.88	4.00	V
	VLVD01	The power supply voltage is rising.	2.88	2.97	3.06	V	
		The power supply voltage is falling.	2.82	2.91	3.00	V	
	VLVD02	The power supply voltage is rising.	2.59	2.67	2.75	V	
			The power supply voltage is falling.	2.54	2.62	2.70	V
		VLVD03	The power supply voltage is rising.	2.31	2.38	2.45	V
			The power supply voltage is falling.	2.26	2.33	2.40	V
		VLVD04	The power supply voltage is rising.	1.84	1.90	1.95	V
			The power supply voltage is falling.	1.80	1.86	1.91	V
		VLVD05	The power supply voltage is rising.	1.64	1.69	1.74	V
			The power supply voltage is falling.	1.60	1.65	1.70	V
Minimum pul	lse width	tLW		500			μs
Detection de	Detection delay time					500	μs

2. LVD detection voltage in the LVD1 reset mode and interrupt mode

(TA = -40 to $+105^{\circ}$ C, VPDR \leq VDD \leq 5.5 V, VSS = 0 V)

	Item	Symbol	Conditions	Min.	Тур.	Max.	Unit
Detection	Supply voltage level	VLVD10	The power supply voltage is rising.	4.08	4.16	4.24	V
voltage			The power supply voltage is falling.	4.00	4.08	4.16	V
		VLVD11	The power supply voltage is rising.	3.88	3.96	4.04	V
			The power supply voltage is falling.	3.80	3.88	3.96	V
		VLVD12	The power supply voltage is rising.	3.68	3.75	3.82	V
			The power supply voltage is falling.	3.60	3.67	3.74	V
		VLVD13	The power supply voltage is rising.	3.48	3.55	3.62	V
			The power supply voltage is falling.	3.40	3.47	3.54	V
		VLVD14	The power supply voltage is rising.	3.28	3.35	3.42	V
			The power supply voltage is falling.	3.20	3.27	3.34	V
		VLVD15	The power supply voltage is rising.	3.07	3.13	3.19	V
			The power supply voltage is falling.	3.00	3.06	3.12	V
		VLVD16	The power supply voltage is rising.	2.91	2.97	3.03	V
			The power supply voltage is falling.	2.85	2.91	2.97	V
		VLVD17	The power supply voltage is rising.	2.76	2.82	2.87	V
			The power supply voltage is falling.	2.70	2.76	2.81	V
		VLVD18	The power supply voltage is rising.	2.61	2.66	2.71	V
			The power supply voltage is falling.	2.55	2.60	2.65	V
		VLVD19	The power supply voltage is rising.	2.45	2.50	2.55	V
			The power supply voltage is falling.	2.40	2.45	2.50	V
		VLVD110	The power supply voltage is rising.	2.35	2.40	2.45	V
			The power supply voltage is falling.	2.30	2.35	2.40	V
		VLVD111	The power supply voltage is rising.	2.25	2.30	2.34	V
			The power supply voltage is falling.	2.20	2.25	2.29	V
		VLVD112	The power supply voltage is rising.	2.15	2.20	2.24	V
			The power supply voltage is falling.	2.10	2.15	2.19	3.62 V 3.54 V 3.54 V 3.42 V 3.34 V 3.19 V 3.19 V 3.12 V 3.03 V 2.97 V 2.87 V 2.81 V 2.55 V 2.55 V 2.50 V 2.45 V 2.45 V 2.29 V 2.13 V 2.13 V 2.02 V 1.98 V 1.87 V 1.81 V 1.77 V 1.70 V
		VLVD113	The power supply voltage is rising.	2.05	2.09	2.13	V
			The power supply voltage is falling.	2.00	2.04	2.08	V
		VLVD114	The power supply voltage is rising.	1.94	1.98	2.02	V
			The power supply voltage is falling.	1.90	1.94	1.98	V
		VLVD115	The power supply voltage is rising.	1.84	1.88	1.91	V
		Note	The power supply voltage is falling.	1.80	1.84	1.87	V
		VLVD116	The power supply voltage is rising.	1.74	1.78	1.81	V
		Note	The power supply voltage is falling.	1.70	1.74	1.77	V
		VLVD117	The power supply voltage is rising.	1.64	1.67	1.70	V
		Note	The power supply voltage is falling.	1.60	1.63	1.66	V
Minimum pul	lse width	tLW		500			μs
Detection de	lav					500	us

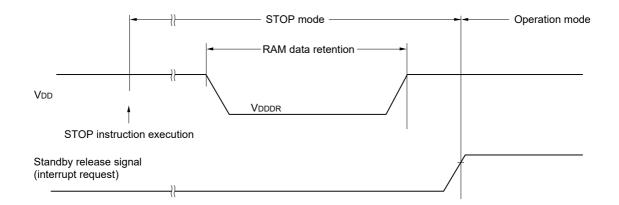
Note This setting can only be used when LVD0 is disabled.

2.6.8 Power supply voltage rising slope characteristics

(TA = -40 to +105°C, Vss = 0 V)

Item	Symbol	Conditions	Min.	Тур.	Max.	Unit
Power voltage rising slope	SVDD				54	V/ms

Caution Make sure to keep the internal reset state by the LVD0 circuit or an external reset until VDD reaches the operating voltage range shown in AC characteristics.



2.7 RAM Data Retention Characteristics

 $(TA = -40 \text{ to } +105^{\circ}\text{C}, \text{ Vss} = 0 \text{ V})$

Item	Symbol	Conditions	Min.	Тур.	Max.	Unit
Data retention power voltage	VDDDR		1.43Note		5.5	V

Note This voltage depends on the POR detection voltage. When the voltage drops, the data in RAM are retained until a POR is applied, but are not retained following a POR.

2.8 Flash Memory Programming Characteristics

 $(TA = -40 \text{ to } +105^{\circ}\text{C}, 1.8 \text{ V} \le \text{VDD} \le 5.5 \text{ V}, \text{ Vss} = 0 \text{ V})$

Item	Symbol	Conditions	Min.	Тур.	Max.	Unit
CPU/peripheral hardware clock frequency	fclk		1		48	MHz
Number of code flash memory rewritesNotes 1, 2, 3	Cerwr	Retained for 10 years TA = +85°C	10,000			Times
		Retained for 20 years TA = +85°C	1,000			
Number of data flash memory rewritesNotes 1, 2, 3		Retained for 1 year TA = +25°C		1,000,000		
		Retained for 5 years TA = +85°C	100,000			
		Retained for 20 years TA = +85°C	10,000			

Note 1. 1 erase + 1 write after the erase is regarded as 1 rewrite. The retaining years are until next rewrite after the rewrite.

Note 2. The listed numbers of times apply when using the flash memory programmer and the Renesas Electronics self-programming library.

Note 3. These are the characteristics of the flash memory and the results obtained from reliability testing by Renesas Electronics Corporation.

1. Code flash memory

Item		Symbol	fCL	к = 1	MHz	fcL	к = 2 М 3 МН	,		Hz ≤ fc 8 MHz			Hz ≤ fc 32 MHz		fCLM	c = 32 l	MHz	fCL	к = 48	MHz	Unit
			Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	
Programming time	4 bytes	tP4	_	75.8	666.6	_	51.5	469.7	_	41.9	387.3	_	37.2	347.4	_	34.2	322.3	_	33.9	319.7	μs
Erasure time	2 Kbytes	tЕ2К	_	10.4	312.2		7.7	258.5	_	6.4	231.8	_	5.8	218.4	_	5.6	214.4	-	5.6	213.9	ms
Blank checking time	4 bytes	tBC4	_	-	38.4		-	19.2	_	_	13.1	_	-	10.2	_	_	8.3	-	-	8.1	μs
	2 Kbytes	tвс2к	_	-	2618.9		-	1309.5	_	_	658.3	_	-	332.8	_	_	234.1	-	-	223.19	μs
Time taken to fo erasure	rcibly stop	tSED	-	_	19.0	_	_	14.5	—	—	12.3	_	—	11.1	_	-	10.4	_	_	10.3	μs
Security setting	time	tawssas	_	18.2	526.4	—	14.4	469.3	_	12.6	441.1	_	11.6	427.1	_	11.3	422.6	_	11.3	422.1	ms
Time until progra starts following cancellation of th instruction	•		20	_	_	20	_	_	20	_		20	_		20	_	_	20	_	_	μs

$(TA = -40 \text{ to } +105^{\circ}C, 1.8 \text{ V} \le \text{VDD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Caution The listed values do not include the time until the operations of the flash memory start following execution of an instruction by software.

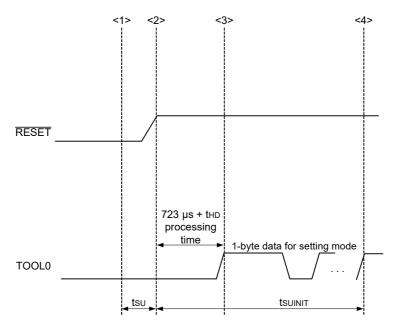
2. Data flash memory

 $(TA = -40 \text{ to } +105^{\circ}\text{C}, 1.8 \text{ V} \le \text{VDD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Item		Symbol	fCL	.к = 1 I	MHz	fCl	к = 2 N 3 MHz	,	4 N	IHz ≤ f 8 MH		8 N	/Hz ≤ fo 32 MH		fCLł	< = 32	MHz	fcL	к = 48	MHz	Unit
			Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	
Programming time	1 byte	tP4	—	75.8	666.6	_	51.51	469.7	—	41.9	387.34	—	37.24	347.4	—	34.2	322.3	—	33.92	319.7	μs
Erasure time	256 bytes	tE2K	_	7.8	259.2	_	6.4	232.0	_	5.8	218.5	_	5.5	211.8	_	5.4	209.7	_	5.3	209.5	ms
Blank checking	1 byte	tBC4	_	_	38.4	_	_	19.2	_	_	13.1	_	_	10.2	_	_	8.3	_	_	8.1	μs
time	256 bytes	tBC2K	_	_	1326.1	_	_	663.1	_	_	335.1	_	_	171.2	_	_	121.0	_	_	115.5	μs
Time taken to fo erasure	rcibly stop	tsed	—	—	19.0	_	_	14.5	_	_	12.3	_	_	11.1	_	_	10.4	_	_	10.3	μs
Time until progra starts following cancellation of th instruction	•	_	20	_	_	20	_	_	20	_	_	20	_	_	20	—	_	20	_	_	μs
Time until readir following setting DFLCTL.DFLEN			0.25	_	_	0.25	_	_	0.25	_	—	0.25	_	_	0.25	—	_	0.25	_	_	ns

Caution The listed values do not include the time until the operations of the flash memory start following execution of an instruction by software.

2.9 Dedicated Flash Memory Programmer Communication (UART)


		, , , , ,				_
Item	Symbol	Conditions	Min.	Тур.	Max.	Unit
Transfer rate		During serial programming	115,200		1,000,000	bps

(TA = -40 to $+105^{\circ}$ C, 1.8 V \leq EVDD0 \leq VDD \leq 5.5 V, VSS = EVSS0 = 0 V)

2.10 Timing of Entry to Flash Memory Programming Modes

((TA = –40 to +105°C, 1.8 V ≤ EVDD0 ≤ VDD ≤ 5.5 V, Vss = EVss0 = 0 V)	۱
	(17.1010 + 100 + 0.011 + 0.010 + 100 + 0.010 + 0.0010 +	,

Item	Symbol	Conditions	Min.	Тур.	Max.	Unit
Time to complete the communication for the initial setting after the external reset is released	tsuinit	POR and LVD reset must be released before the external reset is released			100	ms
Time to release the external reset after the TOOL0 pin is set to the low level	tsu	POR and LVD reset must be released before the external reset is released	10			μs
Time to hold the TOOL0 pin at the low level after the external reset is released (the processing time of the firmware to control the flash memory is not included)	thd	POR and LVD reset must be released before the external reset is released	1			ms

<1> The low level is input to the TOOL0 pin.

<2> The external reset is released. Note that the POR and LVD reset must be released before the external reset is released.

<3> The TOOL0 pin is set to the high level.

<4> The baud rate setting is complete upon UART reception.

Remark tsuinit: The time during which the communications for the initial setting must be completed within 100 ms after the external reset is released.

- $\ensuremath{\text{tsu:}}$ Time to release the external reset after the TOOL0 pin is set to the low level
- tHD: Time to hold the TOOL0 pin at the low level after the external reset is released. It does not include the processing time of the firmware to control the flash memory.

3. Electrical Characteristics (TA = -40 to $+125^{\circ}C$)

This section describes the electrical characteristics of the following type of products.

- 4C: Industrial applications, TA = -40 to +125°C R7F101Gxx4Cxx
- Caution 1. RL78 microcontrollers have on-chip debugging functionality for use in the development and evaluation of user systems. Do not use on-chip debugging with products designated as part of mass production, because using this function may cause the guaranteed number of times the flash memory is rewritten to be exceeded, and product reliability therefore cannot be guaranteed. Renesas Electronics is not liable for problems occurring when on-chip debugging is used with products designated as part of mass production.
- Caution 2. For products that do not have an EVDD0 or EVSS0 pin, read EVDD0 as VDD, and EVSS0 as VSS.
- Caution 3. The present pins differ depending on the products. For details, see 2.1 Functions of Port Pins through 2.2.1 Functions for each product in the RL78/G24 User's Manual.
- **Remark** If you use a product under the condition TA = -40 to +105°C, see **2. Electrical Characteristics (TA = -40 to +105°C)**.

(4.0)

3.1 Absolute Maximum Ratings

Item	Symbols	Conditions	Ratings	Unit
Supply voltage	VDD		-0.5 to +6.5	V
	EVDD0		-0.5 to +6.5	V
	EVss0		–0.5 to +0.3	V
REGC pin input voltage	VIREGC	REGC	-0.3 to +2.1 and -0.3 to VDD + 0.3Note 1	V
Input voltage	VI1	P00 to P06, P10 to P17, P30, P31, P40 to P43, P50 to P55, P62, P63, P70 to P77, P120, P140, P141, P146, P147	-0.3 to EVDD0 + 0.3 and -0.3 to VDD + 0.3Note 2	V
	VI2	P60, P61 (N-ch open drain)	-0.3 to +6.5	V
	VI3	P20 to P27, P121 to P124, P137, EXCLK, EXCLKS, RESET	-0.3 to VDD + 0.3Note 2	V
Output voltage	Vo1	P00 to P06, P10 to P17, P30, P31, P40 to P43, P50 to P55, P62, P63, P70 to P77, P120, P130, P140, P141, P146, P147	-0.3 to EVDD0 + 0.3 and -0.3 to VDD + 0.3 Note 2	V
	VO2	P20 to P27, P121, P122	-0.3 to VDD + 0.3Note 2	V
Analog input voltage	VAI1	ANI16 to ANI30	-0.3 to EVDD0 + 0.3 and -0.3 to AVREFP + 0.3 Notes 2, 3	V
	VAI2	ANI0 to ANI7	–0.3 to VDD + 0.3 and –0.3 to AVREFP + 0.3 Notes 2, 3	V

Note 1. Connect the REGC pin to Vss via a capacitor (0.47 to 1 μF). The listed value is the absolute maximum rating of the REGC pin. Do not apply a specific voltage to this pin.

Note 2. This voltage must be no higher than 6.5 V.

Note 3. The voltage on a pin in use for A/D conversion must not exceed AVREFP + 0.3.

- Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.
- **Remark 1.** The characteristics of functions multiplexed on a given pin are the same as those for the port pin unless otherwise specified.

Remark 2. AVREFP refers to the positive reference voltage of the A/D converter.

Remark 3. The reference voltage is Vss.

(0/0)	
()))	
(4/4/	

Item	Symbols		Conditions	Ratings	Unit
High-level output current	Іон1	Per pin	P00 to P06, P10 to P17, P30, P31, P40 to P43, P50 to P55, P62, P63, P70 to P77, P120, P130, P140, P141, P146, P147	-40	mA
		Total of all pins –170 mA	P00 to P04, P40 to P43, P120, P130, P140, P141	-70	mA
			P05, P06, P10 to P17, P30, P31, P50 to P55, P62, P63, P70 to P77, P146, P147	-100	mA
	Іон2	Per pin	P20 to P27, P121, P122	-5	mA
		Total of all pins		-20	mA
Low-level output current	IOL1	Per pin	P00 to P06, P10 to P17, P30, P31, P40 to P43, P50 to P55, P62, P63, P70 to P77, P120, P130, P140, P141, P146, P147	40	mA
		Total of all pins 170 mA	P00 to P04, P40 to P43, P120, P130, P140, P141	70	mA
			P05, P06, P10 to P17, P30, P31, P50 to P55, P60 to P63, P70 to P77, P146, P147	100	mA
	IOL2	Per pin	P20 to P27, P121, P122	10	mA
		Total of all pins		20	mA
Ambient operating	ТА	In normal operat	ion mode	-40 to +125	°C
temperature		In flash memory	programming mode	-40 to +125	°C
Storage temperature	Tstg			-65 to +150	°C

- Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.
- **Remark** The characteristics of functions multiplexed on a given pin are the same as those for the port pin unless otherwise specified.

3.2 Characteristics of the Oscillators

<R> 3.2.1 Characteristics of the X1 oscillator

 $(TA = -40 \text{ to } +125^{\circ}\text{C}, 2.7 \text{ V} \le \text{V}\text{DD} \le 5.5 \text{ V}, \text{V}\text{ss} = 0 \text{ V})$

Item	Resonator	Conditions	Min.	Тур.	Max.	Unit
X1 clock oscillation allowable input cycle time ^{Note}	Ceramic resonator/ crystal resonator		0.05		1	μs

Note The listed time and frequency indicate permissible ranges of the oscillators. For actual applications, request the resonator manufacturer for evaluation of the resonators on the oscillator circuit mounted on a board so you can use appropriate values. Refer to **3.4 AC Characteristics** for instruction execution time.

<R> 3.2.2 Characteristics of the XT1 oscillator

$(TA = -40 \text{ to } +105^{\circ}\text{C}, 2.7 \text{ V} \le \text{VDD} \le 5.5 \text{ V} (40 \text{- to } 64 \text{-pin products}), \text{Vss} = 0 \text{ V})$

Item	Resonator	Conditions	Min.	Тур.	Max.	Unit
XT1 clock oscillation frequency (fxT) ^{Note}	Crystal resonator			32.768		kHz

Note The listed time and frequency indicate permissible ranges of the oscillators. For actual applications, request the resonator manufacturer for evaluation of the resonators on the oscillator circuit mounted on a board so you can use appropriate values. Refer to **3.4 AC Characteristics** for instruction execution time.

Caution Since the CPU is started by the high-speed on-chip oscillator clock after release from the reset state, the user should use the oscillation stabilization time counter status register (OSTC) to check the X1 clock oscillation stabilization time. Sufficiently evaluate the oscillation stabilization time with the resonator to be used, and then specify the values for the oscillation stabilization time in the OSTC register and the oscillation stabilization time select register (OSTS).

3.2.3 Characteristics of the on-chip oscillators

Item	Symbol		Conditions	Min.	Тур.	Max.	Unit
High-speed on-chip oscillator clock frequency	fін			1		48	MHz
High-speed on-chip		HIPREC = 1	+105 to +125°C	-1.5		+1.5	%
oscillator clock frequency accuracyNote 1			+85 to +105°C	-1.5		+1.5	%
			–20 to +85°C	-1.0		+1.0	%
			–40 to –20°C	-1.5		+1.5	%
		HIPREC = 0N	ote 4	–15		0	%
High-speed on-chip oscillator clock correction resolution					0.05		%
Middle-speed on-chip oscillator clock frequency ^{Note 2}	fiм			1		4	MHz
Middle-speed on-chip oscillator clock frequency accuracy ^{Note 1}				-12		+12	%
Middle-speed on-chip oscillator clock correction resolution					0.15		%
Middle-speed on-chip oscillator frequency temperature coefficient						±0.17 Note 3	%/°C
Low-speed on-chip oscillator clock frequency ^{Note 2}	fiL				32.768		kHz
Low-speed on-chip oscillator clock frequency accuracy ^{Note 1}				-15		+15	%
Low-speed on-chip oscillator clock correction resolution					0.3		%
Low-speed on-chip oscillator frequency temperature coefficient						±0.21 Note 3	%/°C

 $(TA = -40 \text{ to } +125^{\circ}\text{C}, 2.7 \text{ V} \le \text{VDD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Note 1. The accuracy values were obtained in testing of this product.

Note 2. The listed values only indicate the characteristics of the oscillators. Refer to 3.4 AC Characteristics for instruction execution time.

Note 3. These values were obtained in the evaluation.

Note 4. This condition applies when the setting of the FRQSEL3 bit of the user option byte is 1.

3.2.4 Characteristics of the PLL oscillator

Item	Symbol	Conditions	Min.	Тур.	Max.	Unit
PLL input frequency	fPLLIN	High-speed system clock (fMX) or high-speed on-chip oscillator clock (fIH)		8		MHz
PLL output frequency	fPLL	fpllin × 12		96		MHz
		fpllin × 8		64		MHz
Lock-up wait time	e Wait time after PLL output is enabled until the output frequency is stabilized		50			μs
Interval wait time		Wait time after PLL stop until PLL operation is set again	4			μs
Setting wait time		Required wait time after the PLL input clock is stabilized and the PLL setting is determined until startup settings are made	1			μs

 $(TA = -40 \text{ to } +125^{\circ}\text{C}, 2.7 \text{ V} \le \text{VDD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

(1/7)

3.3 DC Characteristics

3.3.1 Pin characteristics

($(TA = -40 \text{ to } +125^{\circ}C, 2.7 \text{ V} \le EVDD0 \le VDD \le 5.5 \text{ V}, \text{ Vss} = EVss0 = 0 \text{ V})$	
	(17, 10.00, 120.0, 2.1, 1 = 2.000 = 100 = 0.0, 1000 = 2.000 = 0.00, 1000 = 2.000 = 0.000, 1000 = 2.000 = 0.000, 1000 = 2.000 = 0.000, 1000 = 2.000 = 0.000, 1000 = 2.000 = 0.000, 1000 = 2.000 = 0.000, 1000 = 2.000 = 0.000, 1000 = 2.000 = 0.000, 1000 = 2.000 = 0.000, 1000 = 2.000 = 0.000, 1000 = 2.000 = 0.000, 1000 = 2.000 = 0.000, 1000 = 2.000 = 0.000, 1000 = 2.000 = 0.000, 1000 = 2.000 = 0.000, 1000, 1000 = 0.000, 1000,	

Item	Symbol	Conditions	3	Min.	Тур.	Max.	Unit
Allowable high-level output current ^{Note} 1	ІОН1	Per pin for P00 to P06, P10 to P17, P30, P31, P40 to P43, P50 to P55, P62, P63, P70-P77, P120, P130, P140, P141, P146, P147	2.7 V ≤ EVDD0 ≤ 5.5 V			-10.0 Note 2	mA
		Total of P00 to P04, P40 to P43,	$4.0 \text{ V} \leq \text{EVDD0} \leq 5.5 \text{ V}$			-24.0	mA
		P120, P130, P140, P141 (when duty ≤ 70% ^{Note 3})	2.7 V ≤ EVDD0 < 4.0 V			-10.0	mA
		Total of P05, P06, P10 to P17,	4.0 V ≤ EVDD0 ≤ 5.5 V			-42.0	mA
		P30, P31, P50 to P55, P62, P63, P70 to P77, P146, P147 (when duty ≤ 70% ^{Note 3})	2.7 V ≤ EVDD0 < 4.0 V			-17.0	mA
		Total of all pins (when duty ≤ 70% ^{Note 3})	2.7 V ≤ EVDD0 ≤ 5.5 V			-54.0	mA
	Іон2	Per pin for P20 to P27, P121, P122	4.0 V ≤ VDD ≤ 5.5 V			-3.0 Note 2	mA
			2.7 V ≤ VDD < 4.0 V			-1.0 Note 2	mA
		Total of all pins	$4.0 \text{ V} \leq \text{VDD} \leq 5.5 \text{ V}$			-14	mA
		(when duty ≤ 70% ^{Note 3})	$2.7 \text{ V} \le \text{V}_{DD} < 4.0 \text{ V}$			-8	mA

Note 1. Device operation is guaranteed at the listed currents even if current is flowing from the EVDD0 or VDD pin to an output pin.

Note 2. The combination of these and other pins must not exceed the total current value.

Note 3. The listed output current values apply when the duty cycle is no greater than 70%.

Use the following formula to calculate the output current when the duty cycle is greater than 70%, where n is the duty cycle (%).

• Total output current from all pins = (IOH × 0.7)/(n × 0.01)

Example when IOH = -10.0 mA, n = 80%

Total output current from all pins = $(-10.0 \times 0.7)/(80 \times 0.01) \approx -8.7$ mA

Note that the duty cycle has no effect on the current that is allowed to flow into a single pin. No current higher than the absolute maximum rating must not flow into a single pin.

Caution The following pins do not output high-level signals in the N-ch open-drain mode. P00, P02 to P04, P10 to P15, P17, P30, P50, P51, P55, and P71 to P74

$(TA = -40 \text{ to } +125^{\circ}C,$	2.7 V ≤ E	$VDD0 \le VDD \le 5.5 V$, $Vss = EVss$	60 = 0 V)				(2/7)
ltem	Symbol	Conditions	3	Min.	Тур.	Max.	Unit
Allowable low-level output current ^{Note 1}	IOL1	Per pin for P00 to P06, P10 to P17, P30, P31, P40 to P43, P50 to P55, P62, P63,P70 to P77, P120, P130, P140, P141, P146, P147				17.0 Note 2	mA
		Per pin for P60, P61	2.7 V ≤ EVDD0 < 5.5 V			15.0 Note 2	mA
		Total of P00 to P04, P40 to P43,	$4.0 \text{ V} \leq \text{EVDD0} \leq 5.5 \text{ V}$			34.0	mA
		P120, P130, P140, P141 (when duty ≤ 70% ^{Note 3})	2.7 V ≤ EVDD0 < 4.0 V			15.0	mA
		P30. P31. P50 to P55. P60 to P63.	4.0 V ≤ EVDD0 ≤ 5.5 V			34.0	mA
			2.7 V ≤ EVDD0 < 4.0 V			15.0	mA
		Total of all pins (when duty ≤ 70% ^{Note 3})				68.0	mA
	IOL2	Per pin for P20 to P27, P121,	$4.0 \text{ V} \leq \text{VDD} \leq 5.5 \text{ V}$			8.5Note 2	mA
		P122	2.7 V ≤ VDD < 4.0 V			1.5Note 2	mA
		(when duty $< 70\%$ Note 3)	$4.0 \text{ V} \leq \text{VDD} \leq 5.5 \text{ V}$			14.0	mA
			2.7 V ≤ VDD < 4.0 V			14.0	mA

Note 1. Device operation is guaranteed at the listed currents even if current is flowing from an output pin to the EVsso or Vss pin.

Note 2. The combination of these and other pins must not exceed the total current value.

Note 3. The listed output current values apply when the duty cycle is no greater than 70%.

Use the following formula to calculate the output current when the duty cycle is greater than 70%, where n is the duty cycle (%).

• Total output current from all pins = (IOH × 0.7)/(n × 0.01)

Example when IOH = -10.0 mA, n = 80%

Total output current from all pins = $(-10.0 \times 0.7)/(80 \times 0.01) \approx -8.7$ mA

Note that the duty cycle has no effect on the current that is allowed to flow into a single pin. No current higher than the absolute maximum rating must not flow into a single pin.

Remark The characteristics of functions multiplexed on a given pin are the same as those for the port pin unless otherwise specified.

Item	Symbol	Condition	S	Min.	Тур.	Max.	Unit
Input voltage, high	VIH1	P00 to P06, P10 to P17, P30, P31, P40 to P43, P50 to P55, P62, P63, P70 to P77, P120, P140, P141, P146, P147	Normal input buffer	0.8 EVDD0		EVDD0	V
	VIH2	P01, P03, P04, P10, P11, P14 to P17, P30, P50, P55, P73	TTL input buffer 4.0 V ≤ EVDD0 ≤ 5.5 V	2.2		EVDD0	V
			TTL input buffer 3.3 V ≤ EVDD0 < 4.0 V	2.0		EVDD0	V
			TTL input buffer 2.7 V ≤ EVDD0 < 3.3 V	1.5		EVDD0	V
	Vінз	P20 to P27		0.7 Vdd		Vdd	V
	VIH4	P60, P61	I/O port mode	0.7 EVDD0		6.0	V
	VIH5	P121 to P124, P137, EXCLK, EX	CLKS, RESET	0.8 VDD		Vdd	V
	VIH6	P60, P61	SMBus input mode	1.35		EVDD0	V
Input voltage, low	VIL1	P00 to P06, P10 to P17, P30, P31, P40 to P43, P50 to P55, P62, P63, P70 to P77, P120, P140, P141, P146, P147	Normal input buffer	0		0.2 EVDD0	V
	VIL2	P01, P03, P04, P10, P11, P14 to P17, P30, P50, P55, P73	TTL input buffer 4.0 V ≤ EVDD0 ≤ 5.5 V	0		0.8	V
			TTL input buffer 3.3 V ≤ EVDD0 < 4.0 V	0		0.5	V
			TTL input buffer 2.7 V ≤ EVDD0 < 3.3 V	0		0.32	V
	VIL3	P20 to P27		0		0.3 Vdd	V
	VIL4	P60, P61	I/O port mode	0		0.3 EVDD0	V
	VIL5	P121 to P124, P137, EXCLK, EX	CLKS, RESET	0		0.2 Vdd	V
	VIL6	P60, P61	SMBus input mode			0.8	V

(TA = -40 to $+125^{\circ}$ C, 2.7 V \leq EVDD0 \leq VDD \leq 5.5 V, Vss = EVss0 = 0 V)

(3/7)

Caution The maximum value of VIH of pins P00, P02 to P04, P10 to P15, P17, P30, P50, P51, P55, and P71 to P74 is EVDD0, even in the N-ch open-drain mode.

Item	Symbol	Conditions		ymbol Conditions Min	Min.	Тур.	Max.	Unit
Output voltage, high	VOH1	P00 to P06, P10 to P17, P30, P31, P40 to P43, P50 to P55, P62, P63,	4.0 V ≤ EVDD0 ≤ 5.5 V, Іон1 = −10.0 mA	EVDD0 - 1.5			V	
		P70 to P77, P120, P130, P140, P141, P146, P147	4.0 V ≤ EVDD0 ≤ 5.5 V, IOH1 = −3.0 mA	EVDD0 - 0.7			V	
			2.7 V ≤ EVDD0 ≤ 5.5 V, Іон1 = –2.0 mA	EVDD0 - 0.6			V	
	Voh2	P20 to P27, P121, P122	4.0 V ≤ VDD ≤ 5.5 V, IOH2 = −3.0 mA	VDD - 0.7			V	
			$2.7 \text{ V} \le \text{V}_{\text{DD}} < 4.0 \text{ V},$ IOH2 = -1.0 mA	VDD - 0.5			V	

 $(T_A = -40 \text{ to } + 125^{\circ}\text{C}, 2.7 \text{ V} \le \text{EVDD0} \le \text{VDD} \le 5.5 \text{ V}, \text{Vss} = \text{EVss0} = 0 \text{ V})$

Caution Pins P00, P02 to P04, P10 to P15, P17, P30, P50, P51, P55, P71 to P74 do not output high-level signals in the N-ch open-drain mode.

Remark The characteristics of functions multiplexed on a given pin are the same as those for the port pin unless otherwise specified.

(TA = -40 to $+125^{\circ}$ C, 2.7 V \leq EVDD0 \leq VDD \leq 5.5 V, Vss = EVss0 = 0 V)

(5/7)

(4/7)

Item	Symbol		Conditions		Min.	Тур.	Max.	Unit
Output voltage, low	v VOL1 P00 to P06, P10 to P17		4.0 V ≤ EVDD0 ≤ 5.5 V	IOL1 = 17.0 mA			1.3	V
		P77, P120, P130, P140,	4.0 V ≤ EVDD0 ≤ 5.5 V	IOL1 = 8.5 mA			0.7	V
	P77, P120, P P141, P146,		2.7 V ≤ EVDD0 ≤ 5.5 V	IOL1 = 3.0 mA			0.6	V
			2.7 V ≤ EVDD0 ≤ 5.5 V	IOL1 = 1.5 mA			0.4	V
	VOL2	P20 to P27, P121, P122	4.0 V ≤ VDD ≤ 5.5 V, IOL	2 = 6.0 mA			0.7	V
			$2.7 \text{ V} \le \text{V}_{\text{DD}} \le 4.0 \text{ V}$, IOL2 = 1.5 mA				0.5	V
VOL3	VOL3	P60, P61	4.0 V ≤ EVDD0 ≤ 5.5 V, I	OL3 = 7.0 mA			2.0	V
			4.0 V ≤ EVDD0 ≤ 5.5 V, I	0L3 = 5.0 mA			0.4	V
			2.7 V ≤ EVDD0 ≤ 5.5 V, I	0L3 = 3.0 mA			0.4	V

(TA = -40 to +125°C, 2.7 V ≤ EVDD0 ≤ VDD ≤ 5.5 V, VSS = EVSS0 = 0 V)

		1		-				
Item	Symbol		Conditions		Min.	Тур.	Max.	Unit
Output currentNote	CCDIOL	P10, P11, P16, P17,	CCSm = 01H	$4.0 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$	1.0	1.8	2.6	mA
		P60 to P63		2.7 V ≤ EVDD0 < 4.0 V	0.8	1.5	2.3	mA
			CCSm = 02H	$4.0 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$	3.0	4.9	6.5	mA
				3.0 V ≤ EVDD0 < 4.0 V	2.7	4.3	5.9	mA
			CCSm = 03H	$4.0 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$	6.6	10.0	13.2	mA
				3.3 V ≤ EVDD0 < 4.0 V	6.0	9.1	12.1	mA
		P60, P61	CCSm = 04H	4.0 V ≤ EVDD0 ≤ 5.5 V	10.2	15.0	19.8	mA
				3.3 V ≤ EVDD0 < 4.0 V	9.4	13.8	18.2	mA

Note The listed currents apply when the output current control function is enabled.

$(TA = -40 \text{ to } +125^{\circ}\text{C}, 2.7 \text{ V} \le \text{EVDD0} \le \text{VDD} \le 5.5 \text{ V}, \text{Vss} = \text{EVss0} = 0 \text{ V})$

(7/7)

(6/7)

Item	Symbol	Conditions	3	Min.	Тур.	Max.	Unit
Input leakage current, high	ILIH1	P00 to P06, P10 to P17, P30, P31, P40 to P43, P50 to P55, P60 to P63, P70 to P77, P120, P140, P141, P146, P147	VI = EVDD0			1	μA
	ILIH2	P20 to P27, P137, RESET	VI = VDD			1	μA
	Іцнз	P121 to P124 (X1, X2, XT1, XT2, EXCLK, EXCLKS)	VI = VDD			1	μA
Input leakage current, low	ILIL1	P00 to P06, P10 to P17, P30, P31, P40 to P43, P50 to P55, P62, P63, P70 to P77, P120, P130, P140, P141, P146, P147	VI = EVSS0			1	μA
	ILIL2	P20 to P27, P137, RESET	VI = VSS			1	μA
	Ilil3	P121 to P124 (X1, X2, XT1, XT2, EXCLK, EXCLKS)	VI = VSS			1	μA
On-chip pull-up resistance	Ru	P00 to P06, P10 to P17, P30, P31, P40 to P43, P50 to P55, P62, P63, P70 to P77, P120 to P122, P140, P141, P146, P147	VI = EVSS0, input port	10	20	100	kΩ

3.3.2 Supply current characteristics

(TA = -40 to +125°C, 2.7 V ≤ EVDD0 ≤ VDD ≤ 5.5 V, VSS = EVSS0 = 0 V)
--

(1/5)

Item	Symbol			Conditions			Min.	Тур.	Max.	Uni
Supply	IDD1	Operating	HS			VDD = 5.0 V		5.5	19.7	mA
current Note 1		mode	(high-speed main) mode	fclk = 48 MHz (MCM0 = 0) ^{Note 2}	operation	VDD = 2.7 V		5.5	19.7	
				fPLL = 96 MHz	Normal	VDD = 5.0 V		5.3	19.4	mA
				fclk = 48 MHz (MCM = 1) ^{Note 4}	operation	VDD = 2.7 V		5.3	19.4	
				fiH = 48 MHzNote 2	Normal	VDD = 5.0 V		4.6	13.3	m/
					operation	VDD = 2.7 V		4.6	13.3	
				fPLL = 64 MHz	Normal	VDD = 5.0 V		3.9	13.6	m
				fclk = 32 MHz (MCM0 = 0) ^{Note 2}	operation	VDD = 2.7 V		3.9	13.5	
				fPLL = 64 MHz	Normal	VDD = 5.0 V		3.7	13.3	m
				fclk = 32 MHz (MCM = 1) ^{Note 4}	operation	VDD = 2.7 V		3.7	13.3	
				fiH = 32 MHz ^{Note 2}	Basic	VDD = 5.0 V		1.6	_	m
					operation Normal	VDD = 2.7 V		1.6	_	
		l				VDD = 5.0 V		3.3	9.3	mA
					operation	VDD = 2.7 V		3.3	9.3	
	LS fiH = 24 MHz ^{Note 2} Normal	VDD = 5.0 V		2.5	7.1	m				
			(low-speed main) mode		operation	VDD = 2.7 V	2.5	7.1		
				fiH = 16 MHzNote 2	Normal	Vdd = 5.0 V		1.8	5.1	n
					operation	VDD = 2.7 V		1.8	5.1	
				fIM = 4 MHzNote 3 Normal operation		VDD = 5.0 V		0.5	1.6	m
					VDD = 2.7 V		0.5	1.6		
			LP	fim = 2 MHzNote 3	Normal	VDD = 5.0 V		0.2	968	μ
			(low-power main) mode		operation	VDD = 2.7 V		0.2	968	
				fim = 1 MHzNote 3	Normal	VDD = 5.0 V		0.1	701	μ
					operation	VDD = 2.7 V		0.1	701	
			HS (high speed main)	fMX = 20 MHzNote 4,	Normal operation	VDD = 5.0 V		2.0	5.9	m
			(high-speed main) mode LS	Square wave input	operation	VDD = 2.7 V		2.0	5.9	
				· · · · ·	Normal	VDD = 5.0 V		1.9	5.8	m
			(low-speed main) mode	Square wave input	operation	VDD = 2.7 V		1.9	5.8	
				fMX = 20 MHzNote 4,	Normal operation	VDD = 5.0 V		2.1	6.0	m
				Resonator connection	operation	VDD = 2.7 V		2.1	6.0	
				fMx = 10 MHzNote 4,	Normal operation	VDD = 5.0 V		1.0	3.2	m
				Square wave input	operation	VDD = 2.7 V		1.0	3.2	
				fMX = 10 MHzNote 4,	Normal operation	VDD = 5.0 V		1.1	3.4	m
				Resonator connection	operation	VDD = 2.7 V		1.1	3.4	
				fMX = 8 MHzNote 4,	Normal	VDD = 5.0 V		0.8	2.7	m
				Square wave input	operation	Vdd = 2.7 V		0.8	2.6	

(Notes and Remarks are listed on the next page.)

(2/5)

<R>

Conditions Unit Item Symbol Min. Typ. Max. Operating LS fMX = 8 MHzNote 4 Normal VDD = 5.0 V 0.9 2.8 Supply וחח mΑ (low-speed main) current mode Resonator connection operation VDD = 2.7 V 0.9 2.8 Note 1 mode

Note 1. The listed currents are the total currents flowing into VDD and EVDD0, including the input leakage currents flowing when the level of the input pin is fixed to VDD, EVDD0 or VSs, EVSs0. The currents in the Typ. column do not include the peripheral operating current when the CPU is placed in the HS (high-speed main), LS (low-speed main), or LP (low-power main) mode. The currents in the Max. column include the operating currents of the PCLBUZ, TAU, SAU, IICA, timer RD2, timer RX, and 16-bit timers KB30, KB31, and KB32.

Note 3. The listed currents apply when the high-speed on-chip oscillator, high-speed system clock, low-speed on-chip oscillator, and subsystem clock are stopped.

Note 4. The listed currents apply when the high-speed on-chip oscillator, middle-speed on-chip oscillator, low-speed on-chip oscillator, and subsystem clock are stopped.

 $\textbf{Remark 1.} \quad fi H: High-speed on-chip oscillator clock frequency$

Remark 2. fIM: Middle-speed on-chip oscillator clock frequency

Remark 3. fMX: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)

Remark 4. fPLL: PLL clock frequency (up to 96 MHz)

Remark 5. fCLK: CPU/peripheral hardware clock frequency

Remark 6. The typical value for the ambient operating temperature (TA) is +25°C unless otherwise specified.

Note 2. The listed currents apply when the high-speed system clock, middle-speed on-chip oscillator, low-speed on-chip oscillator, and subsystem clock are stopped.

Item	Symbol			Conditions			Min.	Тур.	Max.	Unit
Supply	IDD1	Operating	Subsystem		Normal	TA = -40°C		3.9	16.8	μΑ
current Note 1		mode	clock operation mode		operation	TA = +25°C		4.7	17.4	
						TA = +50°C		6.3	30.9	
						TA = +70°C		9.7	52.3	.8 μA .9 .3 .2 7.3 4.1 .3 μA .0 .7 .9 .8 0.4 3.7 .4 .1 .2 .0 .7
						TA = +85°C		15.3	83.2	
						TA = +105°C		30.6	177.3	
						TA = +125°C		61.3	324.1	
				fsub = 32.768 kHzNote 3,	Normal	Ta = -40°C		3.5	16.3	μA
				Square wave input	operation	TA = +25°C		4.9	22.0	
						TA = +50°C		5.9	31.7	
						TA = +70°C		9.2	53.9	
						TA = +85°C		14.7	81.8	
						TA = +105°C		30.3	180.4	3 μA 4 0 3 2 3 1 3 1 3 μA 0 7 0 7 0 7 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 3 1
						TA = +125°C		71.6	398.7	
				fsub = 32.768 kHz ^{Note 3} ,	Normal	TA = -40°C		3.6	13.4	μΑ
				Resonator connection	operation	TA = +25°C		4.3	14.1	
						TA = +50°C		5.8	27.2	
						TA = +70°C		9.2	50.0	
						TA = +85°C		14.9	79.7	μΑ
						TA = +105°C		30.0	174.3	
1						TA = +125°C		59.5	319.4	

$(TA = -40 \text{ to } +125^{\circ}\text{C}, 2.7 \text{ V} \le \text{EVDD0} \le \text{VDD} \le 5.5 \text{ V}, \text{Vss} = \text{EVss0} = 0 \text{ V})$

(3/5)

Note 1. The listed currents are the total currents flowing into VDD and EVDD0, including the input leakage currents flowing when the level of the input pin is fixed to VDD, EVDD0 or Vss, EVss0. The currents in the Typ. and Max. columns do not include the peripheral operating current when the CPU is operating with the sub-system clock.

Note 2. The listed currents apply when the high-speed on-chip oscillator, middle-speed on-chip oscillator, high-speed system clock, and subsystem clock are stopped. They do not include the currents flowing into the RTC, 32-bit interval timer, and watchdog timer.

Note 3. The listed currents apply when the high-speed on-chip oscillator, high-speed system clock, middle-speed on-chip oscillator, and low-speed on-chip oscillator are stopped, and the low power consumption oscillation 3 is specified (AMPHS1, AMPHS0 = 11B). They do not include the currents flowing into the RTC, 32-bit interval timer, and watchdog timer.

Remark 2. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)

 $[\]label{eq:result} \textbf{Remark 1.} \quad fi{\tt L: Low-speed on-chip oscillator clock frequency}$

(TA = −40 to +125°C, 2.7 V ≤ EVDD0 ≤ VDD ≤ 5.5 V, VSS = EVSS0 = 0 V)
--

(4/5)

Item	Symbol		Conditions				Тур.	Max.	Unit
Supply	IDD2	HALT mode	HS	fpll = 96 MHz	VDD = 5.0 V		1.57	14.37	mA
currentNote 1	Note 2		(high-speed main) mode	fcLK = 48 MHz (MCM0 = 0) ^{Note 2}	VDD = 2.7 V		1.57	14.37	
				fPLL = 96 MHz	VDD = 5.0 V		1.39	14.13	mA
				fcLK = 48 MHz (MCM = 1) ^{Note 4}	VDD = 2.7 V		1.39	14.13	
				fiH = 48 MHzNote 2	VDD = 5.0 V		0.73	8.06	mA
					VDD = 2.7 V		0.73	8.06	
				fPLL = 64 MHz	VDD = 5.0 V		1.19	9.90	mA
				fcLK = 32 MHz (MCM0 = 0) ^{Note 2}	VDD = 2.7 V		1.18	9.90	
				fpll = 64 MHz	VDD = 5.0 V		1.01	9.66	mA
				fcLK = 32 MHz (MCM = 1) ^{Note 4}	VDD = 2.7 V		1.00	9.66	
				fiн = 32 MHz ^{Note 3}	VDD = 5.0 V		0.62	5.68	mA
					VDD = 2.7 V		0.61	5.68	
			LS	fiH = 24 MHz ^{Note 3}	VDD = 5.0 V		0.51	4.42	mA
			(low-speed main) mode		VDD = 2.7 V		0.50	4.42	
				fiн = 16 MHz ^{Note 3}	VDD = 5.0 V		0.48	3.27	mA
					VDD = 2.7 V		0.48	3.27	
				fim = 4 MHz ^{Note 4}	VDD = 5.0 V		0.10	1.09	mA
					VDD = 2.7 V		0.10	1.09	
			LP (low-power main) mode	fim = 2 MHzNote 4	VDD = 5.0 V		0.04	731	μA
				VDD = 2.7 V		0.04	731		
				fim = 1 MHzNote 4	VDD = 5.0 V		0.03	583	μA
					VDD = 2.7 V		0.03	583	
			HS	fMx = 20 MHz ^{Note 5} ,	VDD = 5.0 V		0.25	3.52	mA
			(high-speed main) mode	Square wave input	VDD = 2.7 V		0.23	3.50	
			LS	f _{MX} = 20 MHz ^{Note 5} ,	VDD = 5.0 V		0.26	3.53	mA
			(low-speed main) mode	Square wave input	VDD = 2.7 V		0.23	3.50	
			mode	fmx = 20 MHz ^{Note 5} ,	VDD = 5.0 V		0.44	3.78	mA
				Resonator connection	VDD = 2.7 V		0.44	3.77	
				fmx = 10 MHzNote 5,	VDD = 5.0 V		0.16	2.00	mA
				Square wave input	VDD = 2.7 V		0.14	1.99	
				f _{MX} = 10 MHz ^{Note 5} ,	VDD = 5.0 V		0.30	2.20	mA
				Resonator connection	VDD = 2.7 V		0.30	2.19	
			fMX = 8 MHzNote 5, Square wave input fMX = 8 MHzNote 5,	,	VDD = 5.0 V		0.14	1.70	mA
				Square wave input	VDD = 2.7 V		0.12	1.68	
				VDD = 5.0 V		0.23	1.83	mA	
				Resonator connection	VDD = 2.7 V		0.23	1.82	

(Notes and Remarks are listed on the next page.)

<R>

- Note 1. The listed currents are the total currents flowing into VDD and EVDD0, including the input leakage currents flowing when the level of the input pin is fixed to VDD, EVDD0 or VSS, EVSS0. The currents in the Typ. column do not include the peripheral operating current when the CPU is placed in the HS (high-speed main), LS (low-speed main), or LP (low-power main) mode. The currents in the Max. column include the operating currents of the PCLBUZ, TAU, SAU, IICA, timer RD2, timer RX, and 16-bit timers KB30, KB31, and KB32.
- Note 2. The listed currents apply when the HALT instruction has been fetched from the flash memory for execution.
- **Note 3.** The listed currents apply when the high-speed system clock, middle-speed on-chip oscillator, low-speed on-chip oscillator, and subsystem clock are stopped.
- Note 4. The listed currents apply when the high-speed on-chip oscillator, high-speed system clock, low-speed on-chip oscillator, and subsystem clock are stopped.
- **Note 5.** The listed currents apply when the high-speed on-chip oscillator, middle-speed on-chip oscillator, low-speed on-chip oscillator, and subsystem clock are stopped.
- Remark 1. fil: High-speed on-chip oscillator clock frequency
- Remark 2. fim: Middle-speed on-chip oscillator clock frequency
- Remark 3. fMX: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
- Remark 4. fPLL: PLL clock frequency (up to 96 MHz)
- Remark 5. fCLK: CPU/peripheral hardware clock frequency
- Remark 6. The typical value for the ambient operating temperature (TA) is +25°C unless otherwise specified.

Item	Symbol			Conditions		Min.	Тур.	Max.	Unit
Supply	IDD2	HALT mode	Subsystem clock	fsub = 32.768 kHz ^{Note 3} ,	TA = -40°C		0.97	12.34	μA
current Note 1	Note 2		operation mode	Low-speed on-chip oscillator operation	TA = +25°C		1.55	12.63	
					TA = +50°C		2.80	25.52	
					TA = +70°C		5.54	45.91	
					TA = +85°C		10.41	75.72	
					TA = +105°C		23.12	165.90	
					TA = +125°C		49.38	305.79	
				fsuв = 32.768 kHz,	TA = -40°C		0.27	11.36	μA
				Square wave input ^{Note 4}	TA = +25°C		1.48	16.75	
					TA = +50°C		2.19	26.07	
					TA = +70°C		4.93	47.35	
					TA = +85°C		9.37	73.72	
					TA = +105°C		22.71	168.74	
					TA = +125°C		59.16	379.68	
				fsuв = 32.768 kHz,	TA = -40°C		0.40	8.83	μA
				Resonator connectionNote 5	TA = +25°C		0.94	9.53	
					TA = +50°C		2.16	22.41	
					TA = +70°C		4.91	43.76	
					TA = +85°C		9.71	72.66	
					TA = +105°C		22.43	163.33	
					TA = +125°C		48.89	304.34	
	IDD3	STOP mode	Realtime clock stop	oped Note 6	TA = -40°C		0.16	10.00	μA
					TA = +25°C		0.63	10.00	
					TA = +50°C		1.80	20.00	
					TA = +70°C		4.30	40.00	
					TA = +85°C		9.30	70.00	
					TA = +105°C		22.00	160.00	
					TA = +125°C		50.00	300.00	
			128Hz realtime clo	ck operation ^{Note 7}	TA = -40°C		0.24	11.00	μA
					TA = +25°C		0.71	11.00	
					TA = +50°C		1.95	22.00	
					TA = +70°C		4.60	45.00	1
					TA = +85°C		9.50	80.00	1
					TA = +105°C		23.00	170.00	1
					TA = +125°C		52.00	320.00	1

 $(TA = -40 \text{ to } +125^{\circ}\text{C}, 2.7 \text{ V} \le \text{EVDD0} \le \text{VDD} \le 5.5 \text{ V}, \text{Vss} = \text{EVss0} = 0 \text{ V})$

(5/5)

(Notes and Remarks are listed on the next page.)

- **Note 1.** The listed currents are the total currents flowing into VDD and EVDD0, including the input leakage currents flowing when the level of the input pin is fixed to VDD, EVDD0 or Vss, EVSs0. The currents in the Typ. and Max. columns do not include the peripheral operating current when the CPU is operating with the sub-system clock, or when the CPU is placed in the STOP mode, but include that of the RTC when in the HALT mode.
- Note 2. The listed currents apply when the HALT instruction has been fetched from the flash memory for execution.
- **Note 3.** The listed currents apply when the high-speed on-chip oscillator, middle-speed on-chip oscillator, high-speed system clock, and subsystem clock are stopped, including the current flowing into the RTC. They do not include the currents flowing into the 32-bit interval timer and watchdog timer.
- **Note 4.** The listed currents apply when the high-speed on-chip oscillator, middle-speed on-chip oscillator, high-speed system clock, and low-speed on-chip oscillator are stopped, including the current flowing into the RTC. They do not include the currents flowing into the 32-bit interval timer and watchdog timer.
- **Note 5.** The listed currents apply when the high-speed on-chip oscillator, middle-speed on-chip oscillator, high-speed system clock, and low-speed on-chip oscillator are stopped, and when RTCLPC is set to 1 and the low power consumption oscillation 3 is specified (AMPHS1, AMPHS0 = 11B), including the current flowing into the RTC. They do not include the currents flowing into the 32-bit interval timer and watchdog timer.
- **Note 6.** The listed currents apply when the low-speed on-chip oscillator and subsystem clock oscillation are stopped. They do not include the currents flowing into the RTC, 32-bit interval timer and watchdog timer. For the current for operation of the subsystem clock in the STOP mode, refer to that in the HALT mode.
- **Note 7.** The listed currents apply when the low-speed on-chip oscillator is stopped, and when RTCLPC is set to 1 and the low power consumption oscillation 3 is specified (AMPHS1, AMPHS0 = 11B), including the current flowing into the RTC. They do not include the currents flowing into the 32-bit interval timer and watchdog timer.

Remark 1. fiL: Low-speed on-chip oscillator clock frequency

Remark 2. fSUB: Subsystem clock frequency (XT1 clock oscillation frequency)

Peripheral Functions (Common to all products)

$5 - 40 + 225^{\circ}$	
$\Gamma A = -40$ to +125°C, 2.7 V ≤ EVDD0 ≤ VDD ≤ 5.5 V, Vss = EVss0 = 0 V)	

(1/2)

$(1A = -40 \ 10 + 125 \ 0, 2.1)$		VDD ⊒ 0.0 V, V		1	1		(1/2
Item	Symbol		Conditions	Min.	Тур.	Max.	Unit
High-speed on-chip oscillator operating	I _{FIH} Note 1	HIPREC = 0			380	—	μA
current		HIPREC = 1			240	—	μA
Middle-speed on-chip oscillator operating current	_{FIM} Note 1					—	μA
Low-speed on-chip oscillator operating current	∣ _{FIL} Note 1				0.3	—	μA
RTC operating current	IRTC	frtcclk = 32.7	68 kHz		0.005	_	μA
	Notes 1, 2, 3	frtcclk = 128	Hz		0.002	_	μA
32-bit interval timer operating current	lı⊤ Notes 1, 2, 4				0.04	_	μA
Watchdog timer operating current	IWDT Notes 1, 2, 5	fı∟ = 32.768 kH	z (typ.)		0.32	_	μA
A/D converter operating	IADC Notes 1, 6	Conversion at	Normal mode, AVREFP = VDD = 5.0 V		0.95	1.6	mA
current	Notes 1, 6	maximum speed	Low-voltage mode, AVREFP = VDD = 3.0 V		0.54	0.81	mA
AVREFP current	IADREFNote 7	AVREFP = 5.0 \	1		60	—	μA
A/D converter internal reference voltage current	IADREFNote 1				114	—	μA
Temperature sensor operating current	ITMPSNote 1				110	—	μA
D/A converter operating	IDACNotes 1, 8	Per channel	10-bit DAC, VDD = 5.0 V		223	_	μA
current		8-bit DAC, VDD = 5.0 V			120	—	μA
Comparator operating current	I _{CMP} Notes 1, 9	Per channel			100	_	μA
PGA operating current	IPGA Notes 1, 10				460		μA
Sample & hold operating current	ISH Notes 1, 11	Per channel			800	—	μA
LVD operating current	ILVD0 Notes 1, 12				0.03		μA
	ILVD1 Notes 1, 12				0.03	—	μA
FAA operating current	IFAA	fclk = 48 MHz			11.0	_	mA
	Notes 1, 13	fclк = 32 MHz			7.3	_	mA
True random number generator operating current	ITRNG				1.6	—	mA
SMBus operating current	ISMBUS				250	—	μA
Self-programming operating current	IFSP Notes 1, 14	–40 to +105°C			2.5	12.2	mA
Data flash rewrite operating current	IBGO Notes 1, 15				2.5	12.2	mA

(Notes and Remarks are listed on the next page.)

(TA = -40 to +125°C, 2.7 V ≤ EVDD0 ≤ VDD ≤ 5.5 V, VSS = EVSS0 = 0 V)

(2/2)Symbol Unit Item Conditions Min Typ. Max SNOOZE operating ISNOZNote 1 ADC to be in The ADC is shifting to the SNOOZE 0.7 12 mΑ mode.Note 16 current use The ADC is operating in the low-voltage 1.2 2.0 mode, AVREFP = VDD = 3.0 V Simplified SPI (CSI)/UART to be in use 07 1.07 RTCLPC = 0Low-speed peripheral ISXP 0.27 μA Notes 1, 17 clock supply current Output current control The setting of the CCDE register is not 00H. 100 **ICCDA** μΑ _ operating current Notes 1, 18 Low-level output current setting: Hi-Z ICCDP Per sinale 30 μA Notes 19, 20 controlled 210 Low-level output current setting: 2 to 15 mA μA current drive port

Note 1. This current flows into VDD.

Note 2. The listed currents apply when the high-speed on-chip oscillator, middle-speed on-chip oscillator, and high-speed system clock are stopped.

Note 3. This current only flows to the realtime clock (RTC). It does not include the operating current of the low-speed on-chip oscillator or the XT1 oscillator. The supply current of the RL78 microcontrollers is the sum of IDD1 or IDD2, and IRTC when the realtime clock is operating in the operation mode or HALT mode. When the low-speed on-chip oscillator is selected, IFIL should be included in the supply current. IDD2 in the subsystem clock operation mode includes the operating current of the realtime clock

Note 4. This current only flows to the 32-bit interval timer. It does not include the operating current of the low-speed on-chip oscillator or the XT1 oscillator. The supply current of the RL78 microcontrollers is the sum of IDD1 or IDD2, and IIT when the 32-bit interval timer is operating or in the HALT mode.

Note 5. This current only flows to the watchdog timer. It includes the operating current of the low-speed on-chip oscillator. The supply current of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3, and IWDT when the watchdog timer is operating.

Note 6. This current only flows to the A/D converter. The supply current of the RL78 microcontrollers is the sum of IDD1 or IDD2, and IADC when the A/D converter is operating or in the HALT mode.

Note 7. This current flows into AVREFP.

Note 8. This current only flows to the D/A converter. The supply current of the RL78 microcontrollers is the sum of IDD1 or IDD2, and IDAC when the D/A converter is operating.

Note 9. This current only flows to the comparator circuit. The supply current of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3, and ICMP when the comparator circuit is operating.

Note 10. This current only flows to the PGA circuit. The supply current of the RL78 microcontrollers is the sum of IDD1 or IDD2, and IPGA when the PGA circuit is operating.

Note 11. This current only flows to the sample & hold circuit. The supply current of the RL78 microcontrollers is the sum of IDD1 or IDD2, and ISH when the sample & hold circuit is operating.

Note 12. This current only flows to the LVD circuit. The supply current of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3, and ILVD when the LVD circuit is operating.

Note 13. This current only flows to the FAA circuit. The supply current of the RL78 microcontrollers is the sum of IDD1 or IDD2, and IFAA when the FAA circuit is operating.

- Note 14. This current only flows during self-programming.
- Note 15. This current only flows while the data flash memory is being rewritten.

Note 16. For shift time to the SNOOZE mode, see 20.9 SNOOZE Mode Function in the RL78/G24 User's Manual.

Note 17. This current is added to the supply current in the STOP mode when the setting of RTCLPC is 0 with the subsystem clock X (fsx) oscillating, or in the HALT mode when the setting of RTCLPC is 0 with the subsystem clock X (fsx) selected as the CPU clock

Note 18. This current is added to the supply current when the controlled current drive port is set.

Note 19. This current does not include the current flowing into the I/O ports.

Note 20. This current flows into EVDD0 and EVDD1.

Remark 1. fil: Low-speed on-chip oscillator clock frequency

Remark 2. fsx: Subsystem clock X frequency

Remark 3. fcLK: CPU/peripheral hardware clock frequency

Remark 4. The typical value for the ambient operating temperature is +25°C.

3.4 **AC Characteristics**

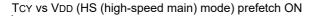
(TA = -40 to +125°C, 2.7 V ≤ EVDD0 ≤ VDD ≤ 5.5 V, Vss = EVss0 = 0 V)
--

Item	Symbol		Conditio	าร	Min.	Тур.	Max.	Un
Instruction cycle	Тсү	Main system clock	HS (high-speed	main) mode (Prefetch ON)	0.02083		1	με
		(fMAIN) operation	HS (high-speed	main) mode (Prefetch OFF)	0.03125		1	με
			LS (low-speed	0.04167		1	μ	
			LP (low-power	main) mode	0.5		1	μ
		Subsystem clock (f	SUB) operation		26.041	30.5	31.3	μ
		Self-programming	HS (high-speed	main) mode	0.03125		1	μ
		mode LS (low-speed main) mode					1	μ
External system clock	fEX			1.0		20.0	M	
frequency	fEXS				32		38.4	k⊦
External system clock input high-level width,	tEXH, tEXL				24			n
low-level width	texhs, texls				13.7			μ
TI00 to TI03 input high-level width, low-level width	ttih, tti∟		1/fмск + 10			n		
Timer RJ input cycle	tc	TRJIO			100			n
Timer RJ input high-level width, low-level width	ttjih, ttji∟	TRJIO	JIO					n
Timer RD2 input high-level width, low-level width	ttdih, ttdil	TRDIOA0, TRDIOA1, TRDIOB0, TRDIOB1, TRDIOC0, TRDIOC1, TRDIOD0, TRDIOD1						n
Timer RD2	t TDSIL	DSIL P137/INTP0 2 MHz ≤ fclk ≤ 48 MH			1			μ
forcible shut-off signal input low-level width				fclk ≤ 2 MHz	1/fclк + 1			μ
Timer RG2 input high-level width, low-level width	ttgih, ttgi∟	TRGIOA, TRGIOB,	, TRGIDZ, TRGT	RG	2.5/fclk			n
TO00 to TO03 TKBO00,	fто	HS (high-speed ma		4.0 V ≤ EVDD0 ≤ 5.5 V			12	М
TKBO01, TKBO10, TKBO11, TKBO20,		LS (low-speed mai	n) mode	2.7 V ≤ EVDD0 < 4.0 V			8	М
TKBO21, TRJIO0, TRJO0, TRGIOA, TRGIOB, TRDIOA0, TRDIOA1, TRDIOB0, TRDIOB1, TRDIOC0, TRDIOC1, TRDIOD0, TRDIOD1 output frequency		LP (low-power mai	n) mode	I			2	М
PCLBUZ0, PCLBUZ1	fPCL	HS (high-speed main) mode $4.0 \text{ V} \leq \text{EVDD0} \leq 5$ LS (low-speed main) mode		4.0 V ≤ EVDD0 ≤ 5.5 V			12	М
output frequency	t frequency		n) mode	2.7 V ≤ EVDD0 < 4.0 V			8	М
		LP (low-power mai			2	MI		
Interrupt input high-level	tinth,	INTP0, INTP20, IN	TP21	2.7 V ≤ VDD ≤ 5.5 V	1			μ
width, low-level width	tintl	INTP1 to INTP11		2.7 V ≤ EVDD0 ≤ 5.5 V	1	ſ	ſ	μ

(Remark is listed on the next page.)

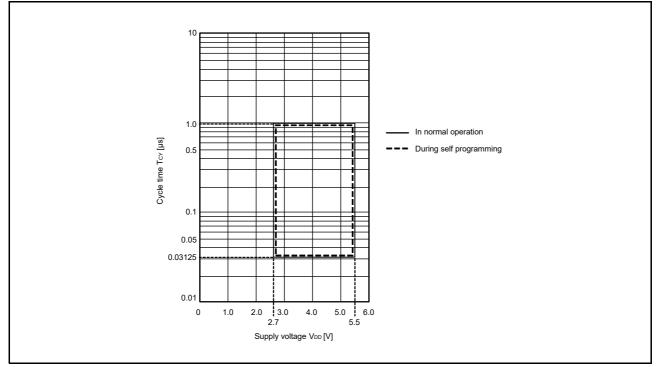
$[1A = -40 \text{ to } +125^{\circ}\text{C}, 2.7 \text{ V} \le \text{EVDD0} \le \text{VDD} \le 5.5 \text{ V}, \text{ VSS} = \text{EVSS0} = 0 \text{ V}) $											
Item	Symbol	Conditions	Min.	Тур.	Max.	Unit					
Key interrupt input high- level width, low-level width	tkrh, tkrl	KR0 to KR7	2.7 V ≤ EVDD0 ≤ 5.5 V	250			ns				
RESET low-level width	trsl			10			μs				

 $40 \text{ to } +125^{\circ} \cap 27 \text{ V} \leq \text{EV}_{000} \leq \text{V}_{00} \leq 5.5 \text{ V}_{000} \leq \text{EV}_{000} = 0 \text{ V}_{000}$ (ТΛ

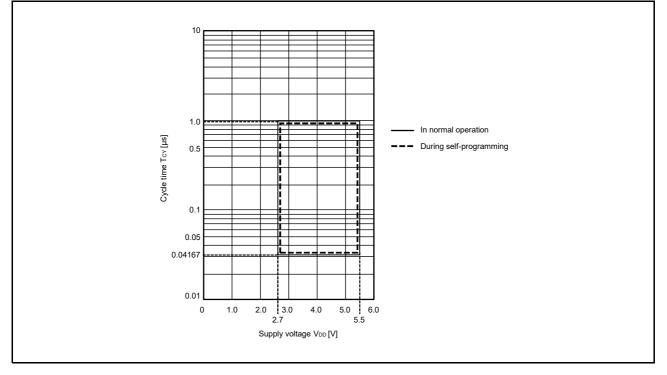

(2/2)

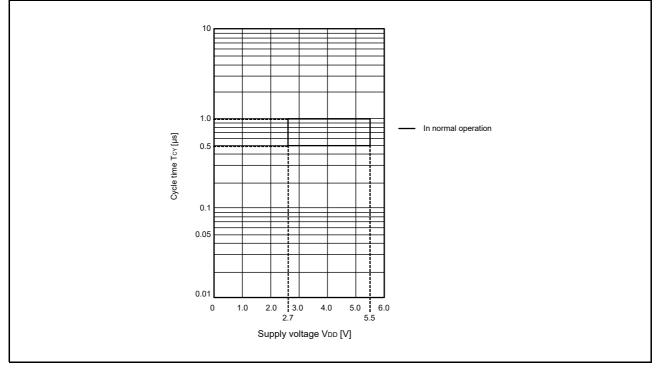
Remark fMCK: Timer array unit operating clock frequency

To set this operating clock, use the CKSmn0 and CKSmn1 bits of the timer mode register mn (TMRmn). m: Unit number (m = 0), n: Channel number (n = 0 to 3)

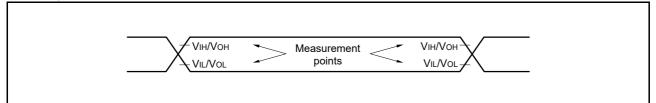


Minimum Instruction Execution Time during Main System Clock Operation

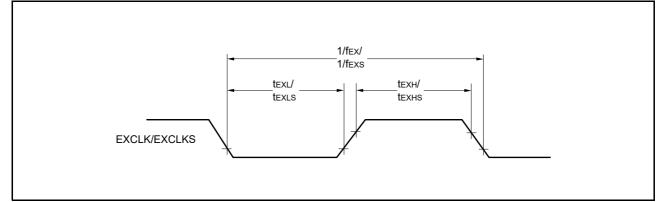


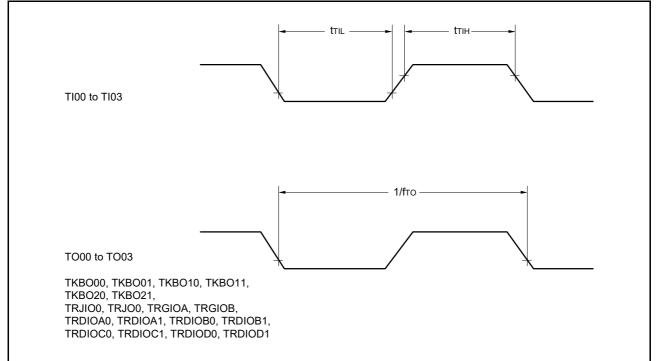

TCY vs VDD (HS (high-speed main) mode) prefetch OFF

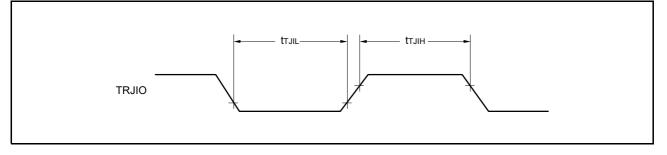
TCY vs VDD (LS (low-speed main) mode)



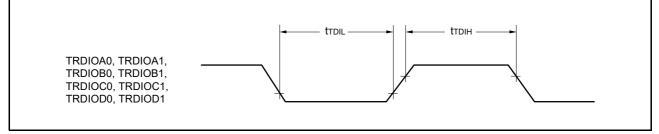
TCY vs VDD (LP (low-power main) mode)



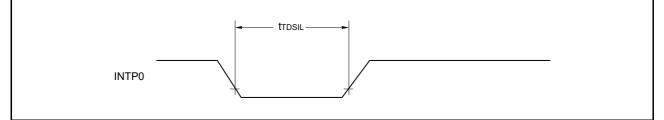

AC Timing Measurement Points

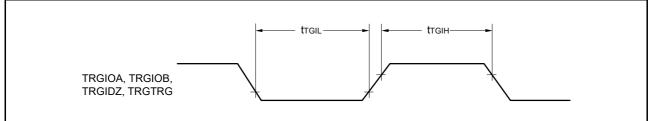

External System Clock Timing

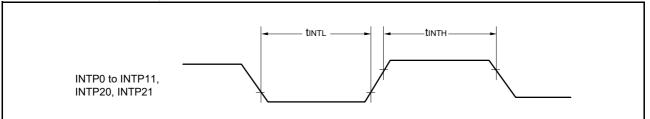
TI/TO Timing

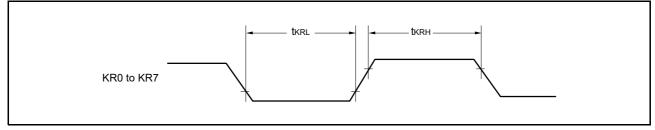


Timer RJ Input Timing

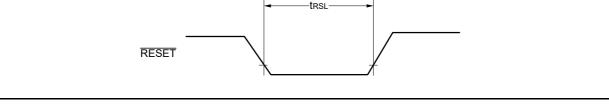



Timer RD2 Input Timing

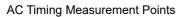

Timer RD2 Forcible Shut-off Signal Input Timing

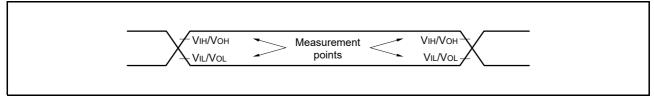

Timer RG2 Input Timing

Interrupt Request Input Timing



Key Interrupt Input Timing




RESET Input Timing

3.5 Characteristics of the Peripheral Functions

3.5.1 Serial array unit

1. In UART communications with devices operating at same voltage levels

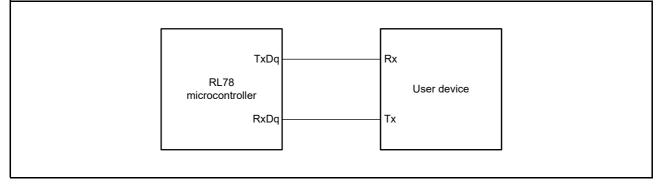
	ΓA = –40 to +125°C, 2.7 V ≤ EVDD0 ≤ VDD ≤ 5.5 V, Vss = EVss0 = 0 V, fMCK ≤ 32 MHz)	
- (IA40 10 ± 120 G. 2.7 V ≤ EVDDU ≤ VDD ≤ 0.0 V. VSS - EVSSU - U V. IMCK ≤ 02 MDZ1	

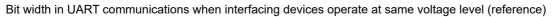
Item Syn	Symbol		Conditions	(High-sp	HS beed Main) ode	(Low-sp	LS eed Main) ode	(Low-po	LP wer Main) ode	Unit
				Min.	Max.	Min.	Max.	Min.	Max.	
Transfer rate		2.7	′ V ≤ EVDD0 ≤ 5.5 V		fмск/6		fмск/6		fмск/6	bps
Note 1			Theoretical value of the maximum transfer rate fMCK = fCLK ^{Note 2}		5.3		4		0.33	Mbps

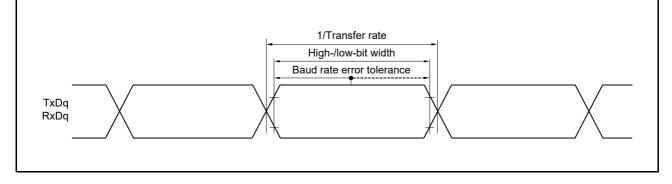
Note 1. The transfer rate in the SNOOZE mode is within the range from 4800 to 9600 bps.

Note 2. The maximum operating frequencies of the CPU/peripheral hardware clock (fCLK) are as follows.

HS (high-speed main) mode: 48 MHz (2.7 V \leq VDD \leq 5.5 V)


LS (low-speed main) mode: 24 MHz (2.7 V \leq VDD \leq 5.5 V)


LP (low-power main) mode: 2 MHz (2.7 V \leq VDD \leq 5.5 V)


Caution Select the normal input buffer for the RxDq pin and the normal output mode for the TxDq pin by using a port input mode register (PIMg) and port output mode register (POMg).

Connection in UART communications with devices operating at same voltage levels

- **Remark 1.** q: UART number (q = 0 to 2), g: PIM and POM number (g = 0, 1, 3, 5, 7)
- Remark 2.fMCK: Serial array unit operation clock frequencyTo set this operating clock, use the CKSmn bit in the serial mode register mn (SMRmn).m: Unit number, n: Channel number (mn = 00 to 03, 10, 11)

2. In simplified SPI (CSI) communications in the master mode with devices operating at same voltage levels with the internal SCKp clock

Item	Symbol	ol Conditions		HS (High-speed Main) Mode		LS (Low-speed Main) Mode		LP (Low-power Main) Mode		Unit
					Max.	Min.	Max.	Min.	Max.	
SCKp cycle time	tKCY1	tkcy1 ≥ 4/fclk	2.7 V ≤ EVDD0 ≤ 5.5 V	125		166		2000		ns
SCKp high-/ low-level width			tксү1/2 – 12		tксү1/2 – 21		tксү1/2 – 50		ns	
		2.7 V ≤ EVDD0	≤ 5.5 V	tксү1/2 – 18		tксү1/2 – 25		tксү1/2 – 50		ns
Slp setup time	tsik1	4.0 V ≤ EVDD0	≤ 5.5 V	44		54		110		ns
(to SCKp↑) ^{Note 1}		2.7 V ≤ EVDD0	≤ 5.5 V	44		54		110	e [´]	ns
SIp hold time (from SCKp↑) Note 1	tKSI1	2.7 V ≤ EVDD0	≤ 5.5 V	19		19		19		ns
Delay time from SCKp↓ to SOp output ^{Note 2}	tKSO1	2.7 V ≤ EVDD0 C = 30 pFNote 3			25		25		25	ns

(TA = -40 to +125°C, 2.7 V ≤ EVDD0 ≤ VDD ≤ 5.5 V, VSS = EVSS0 = 0 V, fMCK ≤ 32 MHz)

Note 1. The setting applies when DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The setting for the SIp setup time becomes "to SCKp↓" and that for the SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 2. This setting applies when DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The setting for the delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 3. C is the load capacitance of the SCKp and SOp output lines.

Caution Select the normal input buffer for the SIp pin and normal output mode for the SOp and SCKp pins by using a port input mode register (PIMg) and port output mode register (POMg).

Remark 1. p: CSI number (p = 00, 01, 10, 11, 20, 21), m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3), g: PIM and POM number (g = 0, 1, 3, 5, 7)

Remark 2.fMCK: Serial array unit operating clock frequencyTo set this operating clock, use the CKSmn bit in the serial mode register mn (SMRmn).m: Unit number, n: Channel number (mn = 00 to 03, 10, 11)

3. In simplified SPI (CSI) communications in the slave mode with devices operating at same voltage levels with the external SCKp clock

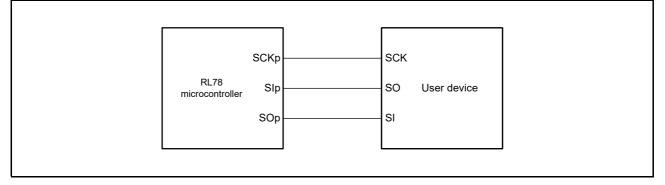
Item	Symbol	Conditions		HS (High-speed Main) Mode		LS (Low-speed Main) Mode		LP (Low-power Main) Mode		Unit
				Min.	Max.	Min.	Max.	Min.	Max.	
SCKp cycle time Note 4	tKCY2	$4.0 \text{ V} \leq \text{EVDD0} \leq 5.5 \text{ V}$	20 MHz < fмск	8/fмск		8/fмск		_		ns
			fмск ≤ 20 MHz	6/fмск		6/fмск		6/fмск		ns
		2.7 V ≤ EVDD0 ≤ 5.5 V	16 MHz < fмск	8/fмск		8/fмск		_		ns
			fмск ≤ 16 MHz	6/fмск		6/fмск		6/fмск		ns
SCKp high-/ low-level width	tKH2, tKL2	4.0 V ≤ EVDD0 ≤ 5.5 V		tксү2/2 – 7		tксү2/2 – 7		tксү2/2 – 7		ns
		$2.7 \text{ V} \leq \text{EVDD0} \leq 5.5 \text{ V}$		tксү2/2 – 8		tксү2/2 – 8		tксү2/2 – 8		ns
SIp setup time (to SCKp↑) ^{Note 1}	tsık2	2.7 V ≤ EVDD0 ≤ 5.5 V		1/fмск + 20		1/fмск + 30		1/fмск + 30		ns
SIp hold time (to SCKp↑) ^{Note 1}	tsık2	2.7 V ≤ EVDD0 ≤ 5.5 V		1/fмск + 31		1/fмск + 31		1/fмск + 31		ns
Delay time from SCKp↓ to SOp output Note 2	tKSO2	C = 30 pFNote 3	2.7 V ≤ EVDD0 ≤ 5.5 V		2/fмск + 44		2/fмск + 110		2/fмск + 110	ns

(TA = -40 to +125°C, 2.7 V ≤ EVDD0 ≤ VDD ≤ 5.5 V, VSS = EVSS0 = 0 V, fMCK ≤ 32 MHz)

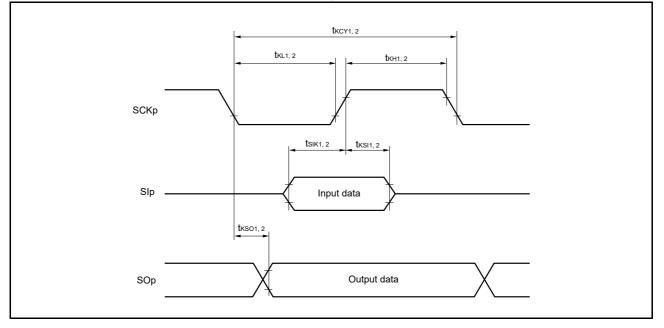
Note 1. The setting applies when DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The setting for the SIp setup time becomes "to SCKp ↓" and that for the SIp hold time becomes "from SCKp ↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 2. This setting applies when DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The setting for the delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

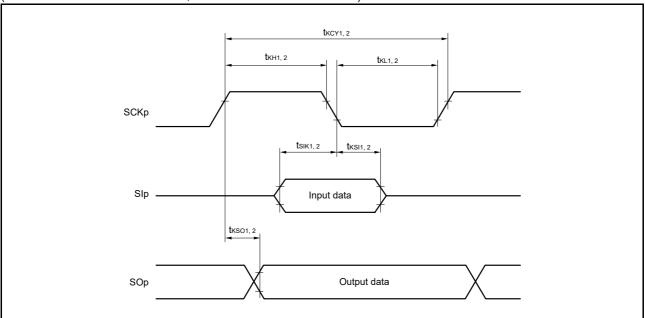
Note 3. C is the load capacitance of the SOp output line.


Note 4. The transfer rate in the SNOOZE mode is 1 Mbps maximum.

- Caution Select the normal input buffer for the SIp and SCKp pins and normal output mode for the SOp pin by using a port input mode register (PIMg) and port output mode register (POMg).
- **Remark 1.** p: CSI number (p = 00, 01, 10, 11, 20, 21), m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3), g: PIM and POM number (g = 0, 1, 3, 5, 7)


Remark 2. fMCK: Serial array unit operating clock frequency To set this operating clock, use the CKSmn bit in the serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00 to 03, 10, 11)

Connection in simplified SPI (CSI) communications with devices operating at same voltage levels



Timing of serial transfer in simplified SPI (CSI) communications with devices operating at same voltage levels (when DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1)

Timing of serial transfer in simplified SPI (CSI) communications with devices operating at same voltage levels (when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0)

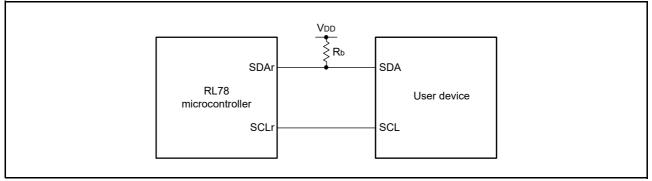
Remark 1. p: CSI number (p = 00, 01, 10, 11, 20, 21) **Remark 2.** m: Unit number, n: Channel number (mn = 00 to 03, 10, 11)

4. In simplified I²C communications with devices operating at same voltage levels

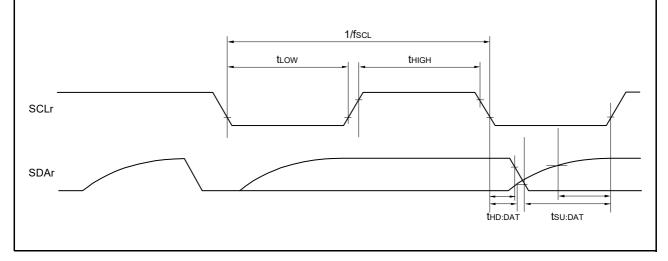
Item	Symbol	Conditions	HS (High-speed Main) Mode		LS (Low-speed Main) Mode		LP (Low-power Main) Mode		Unit	
			Min.	Max.	Min.	Max.	Min.	Max.		
SCLr clock frequency	fscl	2.7 V ≤ EVDD0 ≤ 5.5 V, Cb = 50 pF, Rb = 2.7 kΩ		1000 Note 1		1000 Note 1		400 Note 1	kHz	
Hold time when SCLr is low	t∟ow	2.7 V ≤ EVDD0 ≤ 5.5 V, Cb = 50 pF, Rb = 2.7 kΩ	475		475		1150		ns	
Hold time when SCLr is high	thigh	2.7 V ≤ EVDD0 ≤ 5.5 V, Cb = 50 pF, Rb = 2.7 kΩ	475		475		1150		ns	
Data setup time (reception)	tsu:dat	2.7 V ≤ EVDD0 ≤ 5.5 V, Cb = 50 pF, Rb = 2.7 kΩ	1/fMCK + 85 Note 2		1/fMCK + 85 Note 2		1/fMCK + 145 Note 2		ns	
Data hold time (transmission)	thd:dat	2.7 V ≤ EVDD0 ≤ 5.5 V, Cb = 50 pF, Rb = 2.7 kΩ	0	305	0	305	0	305	ns	

Note 1. The listed frequencies must be no greater than $f_{MCK}/4$.

Note 2. Set the fMCK value that does not exceed the hold time when SCLr is low or high.


Caution Select the normal input buffer and the N-ch open drain output (VDD withstand voltage for 20- to 52-pin products/ EVDD withstand voltage for 64-pin products) mode for the SDAr pin and the normal output mode for the SCLr pin by using a port input mode register (PIMg) and port output mode register (POMh).

(Remarks are listed on the next page.)



RL78/G24

Connection in simplified I²C communications with devices operating at same voltage levels

Timing of serial transfer in the simplified I²C communications with devices operating at same voltage levels

- $\label{eq:Remark 1. Rb[\Omega]: Communication line (SDAr) pull-up resistance, Cb[F]: Communication line (SDAr, SCLr) load capacitance and capacit$
- **Remark 2.** r: IIC number (r = 00, 01, 10, 11, 20, 21), g: PIM number (g = 0, 1, 3, 5, 7), h: POM number (h = 0, 1, 3, 5, 7)
- **Remark 3.** fMCK: Serial array unit operating clock frequency

To set this operating clock, use the CKSmn bit in the serial mode register mn (SMRmn). m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3), mn = 00 to 03, 10, 11

5. In UART communications with devices operating at different voltage levels (2.5 V, 3 V)

Item	Symbol		Conditions	HS (High-speed Main) Mode		LS (Low-speed Main) Mode		LP (Low-power Main) Mode		Unit
				Min.	Max.	Min.	Max.	Min.	Max.	
Transfer rate		Reception	$4.0 V \le EVDD0 \le 5.5 V$, 2.7 V $\le V_b \le 4.0 V$		fMCK/6 Note 1		fMCK/6 Note 1		fMCK/6 Note 1	bps
			Theoretical value of the maximum transfer rate fMCK = fCLKNote 2		5.3		4		0.33	Mbps
			$2.7 V \le EV_{DD0} < 4.0 V,$ $2.3 V \le V_b \le 2.7 V$		fмск/6 Note 1		fмск/6 Note 1		fMCK/6 Note 1	bps
			Theoretical value of the maximum transfer rate fMCK = fCLKNote 2		5.3		4		0.33	Mbps
		Trans- mission	$4.0 V \le EVDD0 \le 5.5 V$, $2.7 V \le V_b \le 4.0 V$		Note 3		Note 3		Note 3	bps
			Theoretical value of the maximum transfer rate $C_b = 50 \text{ pF},$ $R_b = 1.4 \text{ k}\Omega,$ $V_b = 2.7 \text{ V}$		2.8Note 4		2.8Note 4		2.8Note 4	Mbps
			$2.7 V \le EV_{DD0} < 4.0 V,$ $2.3 V \le V_b \le 2.7 V$		Note 5		Note 5		Note 5	bps
			Theoretical value of the maximum transfer rate $C_b = 50 \text{ pF},$ $R_b = 2.7 \text{ k}\Omega,$ $V_b = 2.3 \text{ V}$		1.2Note 6		1.2Note 6		1.2Note 6	Mbps

(Notes, Caution, and Remarks are listed on the next page.)

× 100 [%]

Note 1. Transfer rate in the SNOOZE mode is within the range from 4800 to 9600 bps.

- Note 2. The maximum operating frequencies of the CPU/peripheral hardware clock (fCLK) are:
 - HS (high-speed main) mode: 48 MHz (2.7 V ≤ VDD ≤ 5.5 V)
 - LS (low-speed main) mode: 24 MHz (2.7 V ≤ VDD ≤ 5.5 V)
 - LP (low-power main) mode: 2 MHz (2.7 V \leq VDD \leq 5.5 V)
- Note 3. The smaller maximum transfer rate derived by using fMCK/6 or the following expression is the valid maximum transfer rate. Expression for calculating the transfer rate when 4.0 V ≤ EVDD0 ≤ 5.5 V, 2.7 V ≤ Vb ≤ 4.0 V

Maximum transfer rate =
$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{2.2}{V_b})\} \times 3}$$
$$\frac{1}{\text{Transfer rate } \times 2} - \{-C_b \times R_b \times \ln (1 - \frac{2.2}{V_b})\}$$

Baud rate error (theoretical value) =

$$\frac{1}{\text{Transfer rate}}$$
)× Number of transferred bits

* This value is the theoretical value of the relative difference between the transmission and reception sides.

Note 4. This rate is calculated as an example when the conditions described in the "Conditions" column are met. See **Note 3** above to calculate the maximum transfer rate under conditions of the customer.

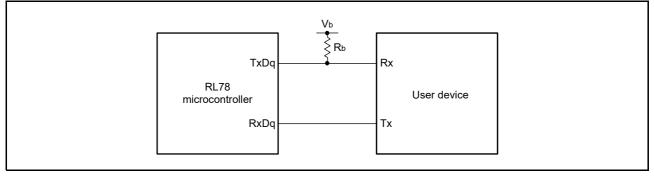
(

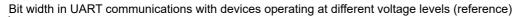
Note 5. The smaller maximum transfer rate derived by using fMCK/6 or the following expression is the valid maximum transfer rate. Expression for calculating the transfer rate when 2.7 V ≤ EVDD0 < 4.0 V, 2.3 V ≤ Vb ≤ 2.7 V

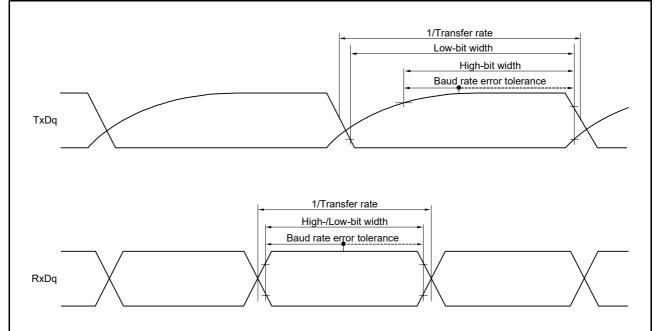
Maximum transfer rate =
$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{2.0}{V_b})\} \times 3}$$
Baud rate error (theoretical value) =
$$\frac{-\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln (1 - \frac{2.0}{V_b})\}}{(-\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}} \times 100 [\%]$$

* This value is the theoretical value of the relative difference between the transmission and reception sides.

- **Note 6.** This rate is calculated as an example when the conditions described in the "Conditions" column are met. See **Note 5** above to calculate the maximum transfer rate under conditions of the customer.
- Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (VDD withstand voltage for 20- to 52pin products/EVDD withstand voltage for 64-pin products) for the TxDq pin by using a port input mode register (PIMg) and port output mode register (POMg). For VIH and VIL, see the DC characteristics with the TTL input buffer selected.
- Remark 1. Vb[V]: Communication line voltage
- Remark 2. q: UART number (q = 0 to 3), g: PIM and POM number (g = 0, 1, 3, 5, 7)


Remark 3. fMCK: Serial array unit operation clock frequency


To set this operating clock, use the CKSmn bit in the serial mode register mn (SMRmn) (m: Unit number, n: Channel number = 00 to 03, 10, 11).


Remark 4. Communications by using UART2 with devices operating at different voltage levels are not possible when the PIOR01 bit of one peripheral I/O redirection register (PIOR0) is set to 1.

Connection in UART communications with devices operating at different voltage levels

Remark 1. Rb[Ω]: Communication line (TxDq) pull-up resistance, Cb[F]: Communication line (TxDq) load capacitance, Vb[V]: Communication line voltage

Remark 2. q: UART number (q = 0 to 3), g: PIM and POM number (g = 0, 1, 3, 5, 7)

Remark 3. fMCK: Serial array unit operating clock frequency To set this operating clock, use the CKSmn bit in the serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00 to 03, 10, 11)

Remark 4. Communications by using UART2 with devices operating at different voltage levels are not possible when the PIOR01 bit of one peripheral I/O redirection register (PIOR0) is set to 1.

6. In simplified SPI (CSI) communications in the master mode with devices operating at different voltage levels (2.5 V or 3 V) with the internal SCKp clock

ltem	Symbol	Conditions		(High-s Mai	HS (High-speed Main) Mode		LS (Low-speed Main) Mode		LP (Low-power Main) Mode	
				Min.	Max.	Min.	Max.	Min.	Max.	
SCKp cycle time	tKCY1	tĸcʏ1 ≥ 4/fc∟ĸ	$\begin{array}{l} 4.0 \; V \leq E V \text{DD0} \leq 5.5 \; V, \\ 2.7 \; V \leq V \text{b} \leq 4.0 \; V, \\ C \text{b} = 30 \; \text{pF}, \\ R \text{b} = 1.4 \; \text{k} \Omega \end{array}$	300		300		2300		ns
			$\begin{array}{l} 2.7 \ V \leq E V D D 0 < 4.0 \ V, \\ 2.3 \ V \leq V b \leq 2.7 \ V, \\ C b = 30 \ p F, \\ R b = 2.7 \ k \Omega \end{array}$	500		500		2300		ns
SCKp high-level width	tKH1	2.7 V ≤ Vb	/DD0 ≤ 5.5 V, ≤ 4.0 V, =, Rь = 1.4 kΩ	tĸcy1/2 – 75		tксү1/2 – 75		tксү1/2 – 75		ns
		2.3 V ≤ Vb	/DD0 < 4.0 V, o ≤ 2.7 V, =, Rb = 2.7 kΩ	tксү1/2 – 170		tксү1/2 – 170		tксү1/2 – 170		ns
SCKp low-level width	tKL1	2.7 V ≤ Vb	/DD0 ≤ 5.5 V, s ≤ 4.0 V, =, Rb = 1.4 kΩ	tксү1/2 – 12		tксү1/2 – 12		tксү1/2 – 50		ns
		2.3 V ≤ Vb	/DD0 < 4.0 V, o ≤ 2.7 V, =, Rb = 2.7 kΩ	tксү1/2 – 18		tксү1/2 – 18		tксү1/2 — 50	ns	
Slp setup time (to SCKp↑) ^{Note}	tsik1	2.7 V ≤ Vb	/DD0 ≤ 5.5 V, 5 ≤ 4.0 V, =, Rb = 1.4 kΩ	81		81		479		ns
		2.3 V ≤ Vb	/DD0 < 4.0 V, o ≤ 2.7 V, =, Rb = 2.7 kΩ	177		177		479		ns
SIp hold time (from SCKp↑) ^{Note}	tKSI1	2.7 V ≤ Vb	/DD0 ≤ 5.5 V, 5 ≤ 4.0 V, =, Rb = 1.4 kΩ	19		19		19		ns
		2.3 V ≤ Vb	/DD0 < 4.0 V, o ≤ 2.7 V, =, Rb = 2.7 kΩ	19		19		19		ns
Delay time from SCKp↓ to SOp output ^{Note}	tKSO1	2.7 V ≤ Vb	/DD0 ≤ 5.5 V, o ≤ 4.0 V, =, Rb = 1.4 kΩ		100		100		100	ns
		2.3 V ≤ Vb	/DD0 < 4.0 V, o ≤ 2.7 V, =, Rb = 2.7 kΩ		195		195		195	ns

(TA = -40 to +125°C, 1.8 V ≤ EVDD0 ≤ VDD ≤ 5.5 V, VSS = EVSS0 = 0 V, fMCK ≤ 32 MHz)

(1/2)

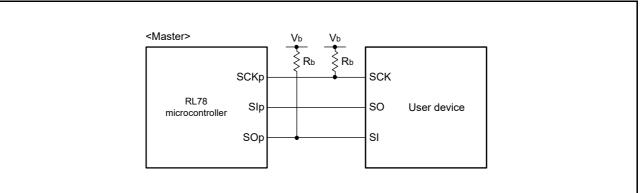
(Note and Caution are listed on the next page, and Remarks are listed on page 165.)

(2/2)

6. In simplified SPI (CSI) communications in the master mode with devices operating at different voltage levels (2.5 V or 3 V) with the internal SCKp clock

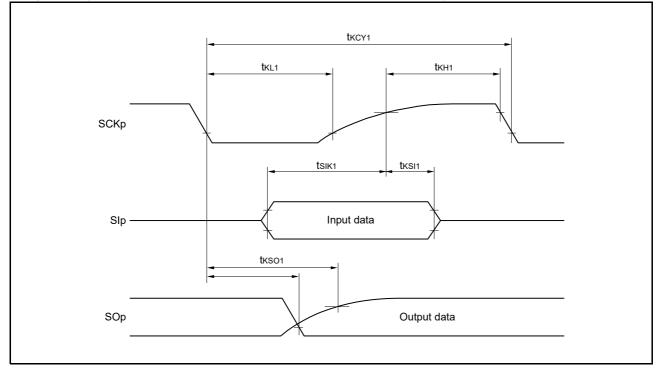
Item	Symbol Conditions		HS (High-speed Main) Mode		LS (Low-speed Main) Mode		LP (Low-power Main) Mode		Unit
			Min.	Max.	Min.	Max.	Min.	Max.	
Slp setup time (to SCKp↓) ^{Note}	tsiĸ1	$\begin{array}{l} 4.0 \ V \leq EVDD0 \leq 5.5 \ V, \\ 2.7 \ V \leq Vb \leq 4.0 \ V, \\ Cb = 30 \ pF, \ Rb = 1.4 \ k\Omega \end{array}$	44		44		110		ns
		$2.7 V \le EVDD0 < 4.0 V,$ $2.3 V \le Vb \le 2.7 V,$ $Cb = 30 pF, Rb = 2.7 k\Omega$	44		44		110		ns
SIp hold time (from SCKp↓) ^{Note}	tKSI1	$\begin{array}{l} 4.0 \ V \leq EVDD0 \leq 5.5 \ V, \\ 2.7 \ V \leq Vb \leq 4.0 \ V, \\ Cb = 30 \ pF, \ Rb = 1.4 \ k\Omega \end{array}$	19		19		19		ns
		$2.7 V \le EVDD0 < 4.0 V,$ $2.3 V \le Vb \le 2.7 V,$ $Cb = 30 pF, Rb = 2.7 k\Omega$	19		19		19		ns
Delay time from SCKp↑ to SOp output ^{Note}	tKSO1	$4.0 V \le EVDD0 \le 5.5 V,$ 2.7 V $\le Vb \le 4.0 V,$ Cb = 30 pF, Rb = 1.4 k Ω		25		25		25	ns
		$2.7 V \le EVDD0 < 4.0 V,$ $2.3 V \le Vb \le 2.7 V,$ $Cb = 30 pF, Rb = 2.7 k\Omega$		25		25		25	ns

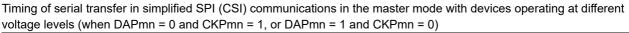
(TA = -40 to +125°C, 2.7 V ≤ EVDD0 ≤ VDD ≤ 5.5 V, VSS = EVSS0 = 0 V, fMCK ≤ 32 MHz)

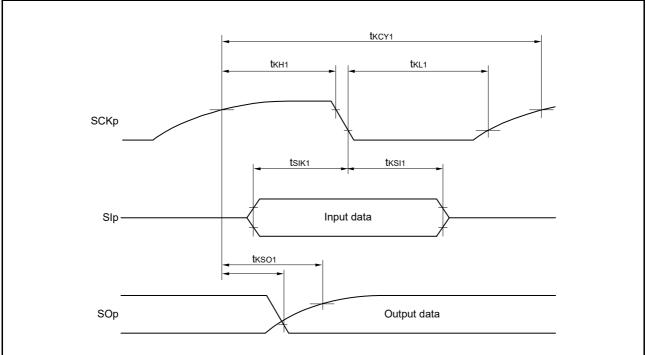

Note This setting applies when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD withstand voltage for 20- to 52-pin products/EVDD withstand voltage for 64-pin products) for the SOp and SCKp pins by using a port input mode register (PIMg) and port output mode register (POMg). For VIH and VIL, see the DC characteristics with the TTL input buffer selected.

(Remarks are listed on the next page.)




Connection in simplified SPI (CSI) communications with devices operating at different voltage levels



- **Remark 1.** Rb[Ω]: Communication line (SCKp, SOp) pull-up resistance, Cb[F]: Communication line (SCKp, SOp) load capacitance, Vb[V]: Communication line voltage
- **Remark 2.** p: CSI number (p = 00, 01, 10, 20), m: Unit number, n: Channel number (mn = 00, 01, 02, 10), g: PIM and POM number (g = 0, 1, 3, 5, 7)
- Remark 3. fMCK: Serial array unit operating clock frequency To set this operating clock, use the CKSmn bit in the serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00)
- **Remark 4.** Communications by using CSI01 of 48- to 64-pin products, and CSI11 and CSI21 with devices operating at different voltage levels are not possible. Use other CSI channels to handle such communications.

Timing of serial transfer in simplified SPI (CSI) communications in the master mode with devices operating at different voltage levels (when DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1)

- **Remark 1.** p: CSI number (p = 00, 01, 10, 20), m: Unit number, n: Channel number (mn = 00, 01, 02, 10), g: PIM and POM number (g = 0, 1, 3, 5, 7)
- **Remark 2.** Communications by using CSI01 of 48- to 64-pin products, and CSI11 and CSI21 with devices operating at different voltage levels are not possible. Use other CSI channels to handle such communications.

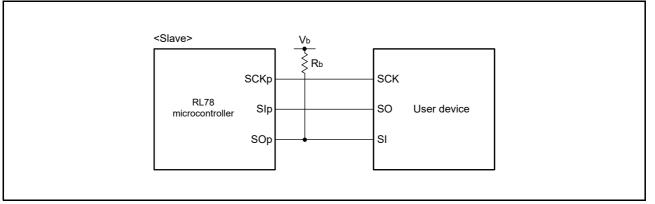
7. In simplified SPI (CSI) communications in the slave mode with devices operating at different voltage levels (2.5 V or 3 V) with the external SCKp clock

Item	Symbol	Con	Conditions		peed 1) e	LS (Low-speed Main) Mode		LP (Low-power Main) Mode		Unit
				Min.	Max.	Min.	Max.	Min.	Max.	
SCKp	tKCY2	$4.0 V \leq EVDD0 \leq 5.5 V$,	24 MHz < fмск	14/fмск		—		—		ns
cycle time Note 1		2.7 V ≤ Vb ≤ 4.0 V	20 MHz < fмск ≤ 24 MHz	12/fмск		12/fмск		-		ns
			8 MHz < fмск ≤ 20 MHz	10/fмск		10/fмск				ns
			4 MHz < fмск ≤ 8 MHz	8/fмск		8/fмск		_		ns
	$2.7 V \le EV_{DD0} < 4.0 V,$ $2.3 V \le V_b \le 2.7 V$	fмск ≤ 4 MHz	6/fмск		6/fмск		10/fмск		ns	
		24 MHz < fмск	20/fмск		—		_		ns	
		20 MHz < fмск ≤ 24 MHz	16/fмск		16/fмск		_		ns	
	16 MHz < fмск ≤ 20 MHz	14/fмск		14/fмск		_		ns		
	8 MHz < fмск ≤ 16 MHz	12/fмск		12/fмск		_		ns		
			4 MHz < fмск ≤ 8 MHz	8/fмск		8/fмск		_		ns
			fмск ≤ 4 MHz	6/fмск		6/fмск		10/fмск		ns
SCKp high-/low-	tKH2, tKL2	4.0 V ≤ EVDD0 ≤ 5.5 V,	2.7 V ≤ Vb ≤ 4.0 V	tксү2/2 – 12		tксү2/2 – 12		tксү2/2 – 50		ns
level width		2.7 V ≤ EVDD0 < 4.0 V,	2.3 V ≤ Vb ≤ 2.7 V	tксү2/2 – 18		tксү2/2 – 18		tксү2/2 – 50		ns
SIp setup time (to	tsik2	4.0 V ≤ EVDD0 ≤ 5.5 V,	$2.7 \text{ V} \leq \text{Vb} \leq 4.0 \text{ V}$	1/fмск + 20		1/fмск + 20		1/fмск + 30		ns
SCKp↑) Note 2		2.7 V ≤ EVDD0 < 4.0 V,	2.3 V ≤ Vb ≤ 2.7 V	1/fмск + 20		1/fмск + 20		1/fмск + 30		ns
SIp hold time (from SCKp↑) Note 2	tKSI2			1/fмск + 31		1/fмск + 31		1/fмск + 31		ns
Delay time from	tKSO2	4.0 V ≤ EVDD0 ≤ 5.5 V, Cb = 30 pF, Rb = 1.4 kΩ			2/fмск + 120		2/fмск + 120		2/fмск + 573	ns
SCKp↓ to SOp output Note 3		$2.7 \text{ V} \le \text{EVDD0} < 4.0 \text{ V},$ Cb = 30 pF, Rb = 2.7 kC	,		2/fмск + 214		2/fмск + 214		2/fмск + 573	ns

Note 1. Transfer rate in the SNOOZE mode: 1 Mbps (max.)

Note 2. This setting applies when DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" and SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

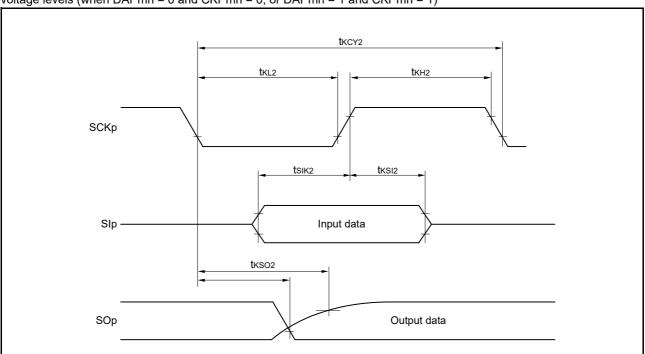
Note 3. This setting applies when DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.


Caution Select the TTL input buffer for the SIp and SCKp pins and the N-ch open drain output (VDD withstand voltage for 20- to 52-pin products/EVDD withstand voltage for 64-pin products) for the SOp pin by using a port input mode register (PIMg) and port output mode register (POMg). For VIH and VIL, see the DC characteristics with the TTL input buffer selected.

(Remarks are listed on the next page.)

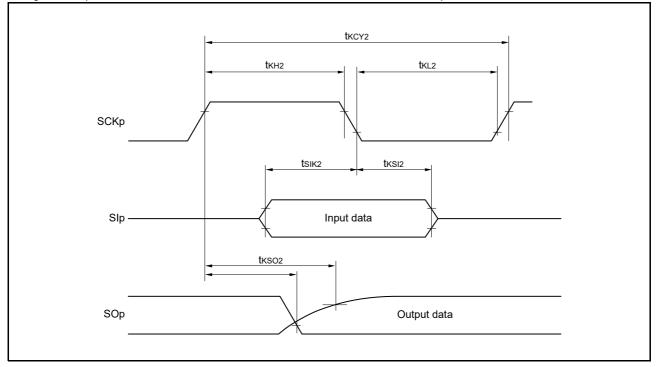
RL78/G24

Connection in simplified SPI (CSI) communications with devices operating at different voltage levels


Remark 1. Rb[Ω]: Communication line (SOp) pull-up resistance, Cb[F]: Communication line (SOp) load capacitance, Vb[V]: Communication line voltage

Remark 2. p: CSI number (p = 00, 01, 10, 20), m: Unit number, n: Channel number (mn = 00, 01, 02, 10), g: PIM and POM number (g = 0, 1, 3, 5, 7)

Remark 3. fMCK: Serial array unit operating clock frequency To set this operating clock, use the CKSmn bit in the serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 01, 02, 10)


Remark 4. Communications by using CSI01 of 48- to 64-pin products, and CSI11 and CSI21 with devices operating at different voltage levels are not possible. Use other CSI channels to handle such communications.

Timing of serial transfer in simplified SPI (CSI) communications in the slave mode with devices operating at different voltage levels (when DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1)

Timing of serial transfer in simplified SPI (CSI) communications in the slave mode with devices operating at different voltage levels (when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0)

Remark 1. p: CSI number (p = 00, 01, 10, 20), m: Unit number, n: Channel number (mn = 00, 01, 02, 10), g: PIM and POM number (g = 0, 1, 3, 5, 7)

Remark 2. Communications by using CSI01 of 48- to 64-pin products, and CSI11 and CSI21 with devices operating at different voltage levels are not possible. Use other CSI channels to handle such communications.

RENESAS

8. Simplified I²C communications with devices operating at different voltage levels (2.5 V or 3 V)

(TA = -40 to +125°C, 2.7 V ≤ EVDD0 ≤ VDD ≤ 5.5 V, VSS = EVSS0 = 0 V, fMCK ≤ 32 MHz)

(1/2)

Item	Symbol	Conditions	(High-sp	IS eed Main) ode	(Low-spe	_S eed Main) ode	(Low-po	₋P wer Main) ode	Unit
			Min.	Max.	Min.	Max.	Min.	Max.	
SCLr clock frequency	fscl	$4.0 V \le EVDD0 \le 5.5 V,$ 2.7 V $\le V_b \le 4.0 V,$ Cb = 50 pF, Rb = 2.7 k Ω		1000 Note 1		1000 Note 1		300 Note 1	kHz
		$\begin{array}{l} 2.7 \ V \leq EV_{DD0} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 50 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$		1000 Note 1		1000 Note 1		300 Note 1	kHz
		$\begin{array}{l} 4.0 \ V \leq EV \text{DD0} \leq 5.5 \ V, \\ 2.7 \ V \leq V \text{b} \leq 4.0 \ V, \\ \text{Cb} = 100 \ \text{pF}, \ \text{Rb} = 2.8 \ \text{k}\Omega \end{array}$		400 Note 1		400 Note 1		300 Note 1	kHz
		$\begin{array}{l} 2.7 \ V \leq EV_{DD0} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 100 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$		400 Note 1		400 Note 1		300 Note 1	kHz
Hold time when SCLr is low	t∟ow	$\begin{array}{l} 4.0 \ V \leq E V \text{DD0} \leq 5.5 \ V, \\ 2.7 \ V \leq V \text{b} \leq 4.0 \ V, \\ \text{Cb} = 50 \ \text{pF}, \ \text{Rb} = 2.7 \ \text{k}\Omega \end{array}$	475		475		1550		ns
		$\begin{array}{l} 2.7 \ V \leq EV_{DD0} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 50 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	475		475		1550		ns
		$\begin{array}{l} 4.0 \ V \leq EV \text{DD0} \leq 5.5 \ V, \\ 2.7 \ V \leq V \text{b} \leq 4.0 \ V, \\ \text{Cb} = 100 \ \text{pF}, \ \text{Rb} = 2.8 \ \text{k}\Omega \end{array}$	1150		1550		1550		ns
		$\begin{array}{l} 2.7 \ V \leq E V \text{DD0} < 4.0 \ V, \\ 2.3 \ V \leq V \text{b} \leq 2.7 \ V, \\ C \text{b} = 100 \ \text{pF}, \ R \text{b} = 2.7 \ \text{k} \Omega \end{array}$	1150		1550		1550		ns
Hold time when SCLr is high	thigh	$4.0 V \le EVDD0 \le 5.5 V,$ 2.7 V $\le V_b \le 4.0 V,$ Cb = 50 pF, Rb = 2.7 k Ω	245		245		610		ns
		$2.7 V \le EVDD0 < 4.0 V,$ $2.3 V \le V_b \le 2.7 V,$ $C_b = 50 pF, R_b = 2.7 k\Omega$	200		200		610		ns
		$\begin{array}{l} 4.0 \ V \leq EV_{DD0} \leq 5.5 \ V, \\ 2.7 \ V \leq V_b \leq 4.0 \ V, \\ C_b = 100 \ pF, \ R_b = 2.8 \ k\Omega \end{array}$	675		675		610		ns
		$\begin{array}{l} 2.7 \ V \leq EV_{DD0} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 100 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	600		600		610		ns

(Notes and Caution are listed on the next page, and Remarks are listed on page 172.)

8. Simplified I²C communications with devices operating at different voltage levels (2.5 V or 3 V)

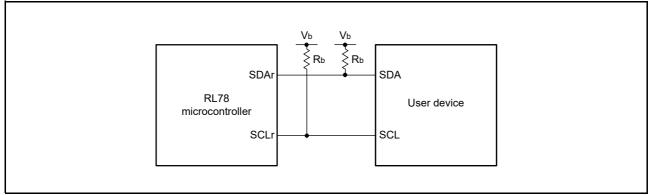
ltem	Symbol	bol Conditions HS (High-speed Main) Mode		LS (Low-speed Main) Mode		LF (Low-pow Mod	er Main)	Unit	
			Min.	Max.	Min.	Max.	Min.	Max.	
Data setup time (reception)	tsu:dat	$4.0 V \le EVDD0 \le 5.5 V,$ 2.7 V $\le V_b \le 4.0 V,$ Cb = 50 pF, Rb = 2.7 k Ω	1/fMCK + 135 Note 2		1/fMCK + 135 Note 2		1/fмск + 190 Note 2		ns
		$2.7 V \le EVDD0 < 4.0 V,$ $2.3 V \le V_b \le 2.7 V,$ $C_b = 50 pF, R_b = 2.7 k\Omega$	1/fMCK + 135 Note 2		1/fMCK + 135 Note 2		1/fMCK + 190 Note 2		ns
		$\begin{array}{l} 4.0 \ V \leq EVDD0 \leq 5.5 \ V, \\ 2.7 \ V \leq Vb \leq 4.0 \ V, \\ Cb = 100 \ pF, \ Rb = 2.8 \ k\Omega \end{array}$	1/fMCK + 190 Note 2		1/fмск + 190 Note 2		1/fмск + 190 Note 2		ns
		$2.7 V \le EVDD0 < 4.0 V,$ $2.3 V \le V_b \le 2.7 V,$ $C_b = 100 pF, R_b = 2.7 k\Omega$	1/fMCK + 190 Note 2		1/fмск + 190 Note 2		1/fмск + 190 Note 2		ns
Data hold time (transmission)	thd:dat	$\begin{array}{l} 4.0 \ V \leq EVDD0 \leq 5.5 \ V, \\ 2.7 \ V \leq Vb \leq 4.0 \ V, \\ Cb = 50 \ pF, \ Rb = 2.7 \ k\Omega \end{array}$	0	305	0	305	0	305	ns
		$2.7 V \le EVDD0 < 4.0 V,$ $2.3 V \le V_b \le 2.7 V,$ $C_b = 50 pF, R_b = 2.7 k\Omega$	0	305	0	305	0	305	ns
		$\begin{array}{l} 4.0 \ V \leq EVDD0 \leq 5.5 \ V, \\ 2.7 \ V \leq Vb \leq 4.0 \ V, \\ Cb = 100 \ pF, \ Rb = 2.8 \ k\Omega \end{array}$	0	355	0	355	0	355	ns
		$\begin{array}{l} 2.7 \ V \leq EV_{DD0} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 100 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	0	355	0	355	0	355	ns

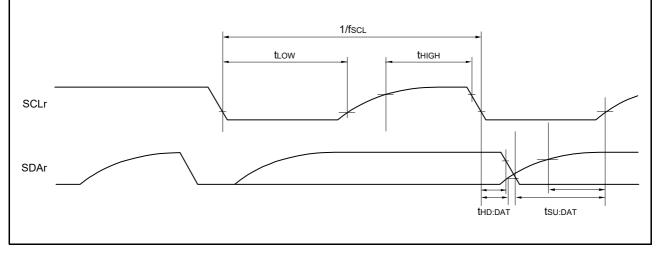
(TA = -40 to +125°C, 2.7 V ≤ EVDD0 ≤ VDD ≤ 5.5 V, VSS = EVSS0 = 0 V, fMCK ≤ 32 MHz)

(2/2)

Note 1. The listed frequencies must be no greater than fMCK/4.

Note 2. Set the fMCK value that does not exceed the hold time when SCLr is low or high.


(Remarks are listed on the next page.)


Caution Select the TTL input buffer and the N-ch open drain output (VDD withstand voltage for 20- to 52-pin products/EVDD withstand voltage for 64-pin products) for the SDAr pin and the N-ch open drain output (VDD withstand voltage for 20- to 52-pin products/EVDD withstand voltage for 64-pin products) for the SCLr pin by using one port input mode register (PIMg) and port output mode register (POMg). For VIH and VIL, see the DC characteristics with the TTL input buffer selected.

RL78/G24

Connection in simplified I²C communications with devices operating at different voltage levels

Timing of serial transfer in simplified I²C communications with devices operating at different voltage levels

- **Remark 1.** Rb[Ω]: Communication line (SDAr, SCLr) pull-up resistance, Cb[F]: Communication line (SDAr, SCLr) load capacitance, Vb[V]: Communication line voltage
- **Remark 2.** r: IIC number (r = 00, 01, 10, 20), g: PIM and POM number (g = 0, 1, 3, 5, 7)

Remark 3. fMCK: Serial array unit operating clock frequency

To set this operating clock, use the CKSmn bit in the serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 01, 02, 10)

3.5.2 Serial interface IICA

1. I²C standard mode

(TA = -40 to +125°C, 2.7 V ≤ EVDD0 ≤ VDD ≤ 5.5 V, VSS = EVSS0 = 0 V)

Item	Symbol	Conditions	Min.	Тур.	Max.	Unit
SCLA0 clock frequency	fscl	Standard mode: fcLĸ ≥ 1 MHz	0		100	kHz
Setup time of restart condition	tsu:sta		4.7			μs
Hold time ^{Note 1}	thd:sta		4.0			μs
Hold time when SCLA0 is low	tLOW		4.7			μs
Hold time when SCLA0 is high	tнigн		4.0			μs
Data setup time (reception)	tsu:dat		250			ns
Data setup time (transmission) ^{Note 2}	thd:dat		0		3.45	μs
Setup time of stop condition	tsu:sto		4.0			μs
Path free time	t BUF		4.7			μs

Note 1. The first clock pulse is generated after this period when the start or restart condition is detected.

Note 2. The maximum value of thD:DAT applies to normal transfer. The clock stretching is inserted on reception of an acknowledgment (ACK) signal.

Caution The listed values are applicable even when the PIOR02 bit in one peripheral I/O redirection register (PIOR0) is 1. In such cases, the pin characteristics (IOH1, IOL1, VOH1, VOL1) must satisfy the values in the redirect destination.

RemarkThe maximum value of communication line capacitance (Cb) and communication line pull-up resistor (Rb) are as follows.Cb = 400 pF, $Rb = 2.7 \text{ k}\Omega$

2. I²C fast mode

$(TA = -40 \text{ to } +125^{\circ}\text{C}, 2.7 \text{ V} \le \text{EVDD0} \le \text{VDD} \le 5.5 \text{ V}, \text{Vss} = \text{EVss0} = 0 \text{ V})$

Item	Symbol	Conditions	Min.	Тур.	Max.	Unit
SCLA0 clock frequency	fSCL	Fast mode: fcLĸ ≥ 3.5 MHz	0		400	kHz
Setup time of restart condition	tsu:sta		0.6			μs
Hold time ^{Note 1}	thd:sta		0.6			μs
Hold time when SCLA0 is low	tLOW		1.3			μs
Hold time when SCLA0 is high	thigh		0.6			μs
Data setup time (reception)	tsu:dat		100			ns
Data hold time (transmission)Note 2	thd:dat		0		0.9	μs
Setup time of stop condition	tsu:sto		0.6			μs
Bus-free time	tBUF		1.3			μs

Note 1. The first clock pulse is generated after this period when the start or restart condition is detected.

Note 2. The maximum value of tHD:DAT applies to normal transfer. The clock stretching is inserted on reception of an acknowledgment (ACK) signal.

Caution The listed values are applicable even when the PIOR02 bit in one peripheral I/O redirection register (PIOR0) is 1. In such cases, the pin characteristics (IOH1, IOL1, VOH1, VOL1) must satisfy the values in the redirect destination.

RemarkThe maximum value of communication line capacitance (Cb) and communication line pull-up resistor (Rb) are as follows.Cb = 320 pF, $Rb = 1.1 \text{ k}\Omega$

3. I²C fast mode plus

(TA = -40 to $+125^{\circ}$ C, 2.7 V \leq EVDD0 \leq VDD \leq 5.5 V, Vss = EVss0 = 0 V)

ltem	Symbol	Conditions	Min.	Тур.	Max.	Unit
SCLA0 clock frequency	fSCL	Fast mode plus: fcLk ≥ 10 MHz	0		1000	kHz
Setup time of restart condition	tsu:sta		0.26			μs
Hold time ^{Note 1}	thd:sta		0.26			μs
Hold time when SCLA0 is low	tLOW		0.5			μs
Hold time when SCLA0 is high	thigh		0.26			μs
Data setup time (reception)	tsu:dat		50			ns
Data hold time (transmission)Note 2	thd:dat		0		0.45	μs
Setup time of stop condition	tsu:sto		0.26			μs
Bus-free time	t BUF		0.5			μs

Note 1. The first clock pulse is generated after this period when the start or restart condition is detected.

Note 2. The maximum value of tHD:DAT applies to normal transfer. The clock stretching is inserted on reception of an acknowledgment (ACK) signal.

Caution The listed values are applicable even when the PIOR02 bit in one peripheral I/O redirection register (PIOR0) is 1. In such cases, the pin characteristics (IOH1, IOL1, VOH1, VOL1) must satisfy the values in the redirect destination.

RemarkThe maximum value of communication line capacitance (Cb) and communication line pull-up resistor (Rb) are as follows.Cb = 120 pF, $Rb = 1.1 \text{ k}\Omega$

4. SMBus/PMBusTM mode (100 kHz Class)

(TA = -40 to $+125^{\circ}$ C, 2.7 V \leq EVDD0 \leq VDD \leq 5.5 V, Vss = EVss0 = 0 V)

Item	Symbol	Conditions	Min.	Тур.	Max.	Unit
SCLA0 clock frequency	fSCL	fcLk ≥ 1 MHz	10		100	kHz
Setup time of restart condition	tsu:sta		4.7			μs
Hold time ^{Note 1}	thd:sta		4			μs
Hold time when SCLA0 is low	tLOW		4.7			μs
Hold time when SCLA0 is high	tніgн		4			μs
Data setup time (reception)	tsu:dat		250			ns
Data hold time (transmission)Note 2	thd:dat		0		3.45	μs
Setup time of stop condition	tsu:sto		4			μs
Clock/data falling time	tF				0.3	μs
Clock/data rising time	tR				1	μs
Bus-free time	t BUF		4.7			μs

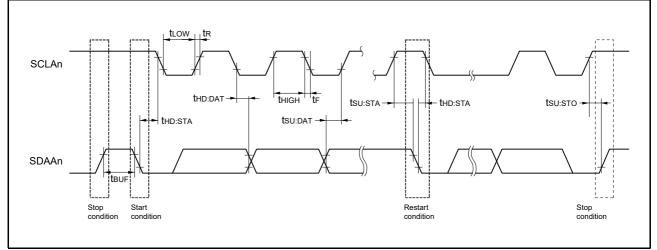
Note 1. The first clock pulse is generated after this period when the start or restart condition is detected.

Note 2. The maximum value of thD:DAT applies to normal transfer. The clock stretching is inserted on reception of an acknowledgment (ACK) signal.

Caution SMBus/PMBusTM communications are disabled when the PIOR02 bit in one peripheral I/O redirection register (PIOR0) is 1.

 $\label{eq:Remark} \begin{array}{l} \mbox{The maximum value of communication line pull-up resistor (Rb) is as follows.} \\ \mbox{Rb} = 1.1 \ \mbox{k}\Omega \end{array}$

5. SMBus/PMBusTM mode (400 kHz Class)


Item	Symbol	Conditions	Min.	Тур.	Max.	Unit
SCLA0 clock frequency	fscl	fc∟k ≥ 3.5 MHz	10		400	kHz
Setup time of restart condition	tsu:sta		0.6			μs
Hold time ^{Note 1}	thd:sta		0.6			μs
Hold time when SCLA0 is low	tLOW		1.3			μs
Hold time when SCLA0 is high	tніgн		0.6			μs
Data setup time (reception)	tsu:dat		100			ns
Data hold time (transmission)Note 2	thd:dat		0		0.9	μs
Setup time of stop condition	tsu:sto		0.6			μs
Clock/data falling time	tF				0.3	μs
Clock/data rising time	tR				0.3	μs
Bus-free time	t BUF		1.3			μs

Note 1. The first clock pulse is generated after this period when the start or restart condition is detected.

Note 2. The maximum value of thD:DAT applies to normal transfer. The clock stretching is inserted on reception of an acknowledgment (ACK) signal.

Caution SMBus/PMBusTM communications are disabled when the PIOR02 bit in one peripheral I/O redirection register (PIOR0) is 1.

RemarkThe maximum value of communication line capacitance (Cb) and communication line pull-up resistor (Rb) are as follows.Cb = 400 pF, $Rb = 1.1 \text{ k}\Omega$

IICA serial transfer timing

Remark n = 0

3.6 Analog Characteristics

3.6.1 A/D converter characteristics

1. Normal modes 1 and 2

 $(TA = -40 \text{ to } +125^{\circ}\text{C}, 2.7 \text{ V} \le \text{AVREFP} \le \text{VDD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V}, \text{fcLK} \le 32 \text{ MHz},$ reference voltage (+) = AVREFP (ADREFP[1:0] = 01B), reference voltage (-) = AVREFM (ADREFM = 1), target pins: ANI2 to ANI7, ANI16 to ANI30, internal reference voltage, and temperature sensor output voltage)

Item	Symbol	Conditions	Min.	Тур.	Max.	Unit
Resolution	RES		8		12	Blt
Conversion clock	fad		1		32	MHz
Overall errorNotes 1, 3, 4, 5	AINL	$4.5 \text{ V} \le \text{AVREFP} = \text{VDD} \le 5.5 \text{ V}$			±7.5	LSB
		$2.7 \text{ V} \leq \text{AVREFP} = \text{VDD} \leq 5.5 \text{ V}$			±9.0	LSB
Conversion time ^{Note 6}	tCONV	$4.5 \text{ V} \le \text{AVREFP} = \text{VDD} \le 5.5 \text{ V}$	2			μs
		$2.7 \text{ V} \leq \text{AVREFP} = \text{VDD} \leq 5.5 \text{ V}$	2			μs
Zero-scale errorNotes 1, 2, 3, 4, 5	Ezs	$4.5 \text{ V} \le \text{AV}_{\text{REFP}} = \text{V}_{\text{DD}} \le 5.5 \text{ V}$			±0.17	%FSR
		$2.7 \text{ V} \leq \text{AVREFP} = \text{VDD} \leq 5.5 \text{ V}$			±0.21	%FSR
Full-scale errorNotes 1, 2, 3, 4, 5	Efs	$4.5 \text{ V} \leq \text{AVREFP} = \text{VDD} \leq 5.5 \text{ V}$			±0.17	%FSR
		$2.7 \text{ V} \leq \text{AV}_{\text{REFP}} = \text{V}_{\text{DD}} \leq 5.5 \text{ V}$			±0.21	%FSR
Integral linearity errorNotes 1, 4, 5	ILE	$4.5 \text{ V} \le \text{AVREFP} = \text{VDD} \le 5.5 \text{ V}$			±3.0	LSB
		$2.7 \text{ V} \leq \text{AVREFP} = \text{VDD} \leq 5.5 \text{ V}$			±3.0	LSB
Differential linearity error Note 1	DLE	$4.5 \text{ V} \le \text{AV}_{\text{REFP}} = \text{V}_{\text{DD}} \le 5.5 \text{ V}$		±1.0		LSB
		$2.7 \text{ V} \leq \text{AVREFP} = \text{VDD} \leq 5.5 \text{ V}$		±1.0		LSB
Analog input voltage	VAIN		0		AVREFP	V

Note 1. This value does not include the quantization error ($\pm 1/2$ LSB).

Note 2. This value is indicated as a ratio (%FSR) to the full-scale value.

Note 3.When pins ANI16 to ANI30 are selected as the conversion target, the maximum values are as follows.Overall error: Add ±3 LSB to the maximum value.Zero-scale/full-scale error: Add ±0.04%FSR to the maximum value.

Note 4. The maximum values are as follows when VDD is selected for reference voltage (+) and VSS is selected for reference voltage (-).

Overall error: Add ±10 LSB to the maximum value.

Zero-scale/full-scale error: Add ±0.25%FSR to the maximum value.

Integral linearity error: Add ±4 LSB to the maximum value.

Note 5. When AVREFP < VDD, the maximum values are as follows. Overall error/zero-scale/full-scale error: Add ±0.75 LSB × (VDD voltage (V) – AVREFP voltage (V)) to the maximum value. Integral linearity error: Add ±0.2 LSB × (VDD voltage (V) – AVREFP voltage (V)) to the maximum value.

Note 6. When the internal reference voltage or the temperature sensor output voltage is selected as the conversion target, the sampling time must be at least 5 µs. Accordingly, use normal mode 2 with the longer sampling time.

2. Normal modes 1 and 2 (advanced mode)

 $(TA = -40 \text{ to } +125^{\circ}\text{C}, 2.7 \text{ V} \le \text{AVREFP} \le \text{VDD} \le 5.5 \text{ V}, \text{VSS} = 0 \text{ V}, \text{fcLk} \le 48 \text{ MHz},$ reference voltage (+) = AVREFP (ADREFP[1:0] = 01B), reference voltage (-) = AVREFM (ADREFM = 1), target pins: ANI2 to ANI7, ANI16 to ANI30, internal reference voltage, and temperature sensor output voltage)

Item	Symbol	Conditions	Min.	Тур.	Max.	Unit
Resolution	RES		8		12	Blt
Conversion clock	fad		1		48	MHz
Overall error Notes 1, 3, 4, 5, 6, 7	AINL	$4.5 \text{ V} \leq \text{AV}_{\text{REFP}} = \text{V}_{\text{DD}} \leq 5.5 \text{ V}$			±7.5	LSB
		$2.7 \text{ V} \leq \text{AV}_{\text{REFP}} = \text{V}_{\text{DD}} \leq 5.5 \text{ V}$			±9.0	LSB
Conversion timeNotes 7, 8	tCONV	$4.5 \text{ V} \leq \text{AV}_{\text{REFP}} = \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	1			μs
		$2.7 \text{ V} \leq \text{AV}_{\text{REFP}} = \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	1			μs
Zero-scale error Notes 1, 2, 3, 4, 5, 6, 7	Ezs	$4.5 \text{ V} \leq \text{AV}_{\text{REFP}} = \text{V}_{\text{DD}} \leq 5.5 \text{ V}$			±0.17	%FSR
		$2.7 \text{ V} \leq \text{AV}_{\text{REFP}} = \text{V}_{\text{DD}} \leq 5.5 \text{ V}$			±0.21	%FSR
Full-scale error Notes 1, 2, 3, 4, 5, 6, 7	Efs	$4.5 \text{ V} \leq \text{AV}_{\text{REFP}} = \text{V}_{\text{DD}} \leq 5.5 \text{ V}$			±0.17	%FSR
		$2.7 \text{ V} \leq \text{AV}_{\text{REFP}} = \text{V}_{\text{DD}} \leq 5.5 \text{ V}$			±0.21	%FSR
Integral linearity errorNotes 1, 4, 5	ILE	$4.5 \text{ V} \leq \text{AV}_{\text{REFP}} = \text{V}_{\text{DD}} \leq 5.5 \text{ V}$			±3.0	LSB
		$2.7 \text{ V} \leq \text{AV}_{\text{REFP}} = \text{V}_{\text{DD}} \leq 5.5 \text{ V}$			±3.0	LSB
Differential linearity error ^{Note} 1	DLE	$4.5 \text{ V} \leq \text{AV}_{\text{REFP}} = \text{V}_{\text{DD}} \leq 5.5 \text{ V}$		±1.0		LSB
		$2.7 \text{ V} \leq \text{AV}_{\text{REFP}} = \text{V}_{\text{DD}} \leq 5.5 \text{ V}$		±1.0		LSB
Analog input voltage	VAIN		0		AVREFP	V

Note 1. This value does not include the quantization error ($\pm 1/2$ LSB).

Note 2. This value is indicated as a ratio (%FSR) to the full-scale value.

Note 3. When pins ANI16 to ANI30 are selected as the conversion target, the maximum values are as follows.

Overall error: Add ±3 LSB to the maximum value.

Zero-scale/full-scale error: Add ±0.04%FSR to the maximum value.

Note 4. The maximum values are as follows when VDD is selected for reference voltage (+) and VSS is selected for reference voltage (-).

Overall error: Add ±10 LSB to the maximum value.

Zero-scale/full-scale error: Add ±0.25%FSR to the maximum value.

Integral linearity error: Add ±4 LSB to the maximum value.

Note 5. When AVREFP < VDD, the maximum values are as follows. Overall error/zero-scale/full-scale error: Add ±0.75 LSB × (VDD voltage (V) – AVREFP voltage (V)) to the maximum value. Integral linearity error: Add ±0.2 LSB × (VDD voltage (V) – AVREFP voltage (V)) to the maximum value.

Note 6. When the sample & hold circuit is selected as the conversion target, the maximum values are as follows.

Overall error: Add ±1 LSB to the maximum value.

Zero-scale/full-scale error: Add ±0.03%FSR to the maximum value.

Note 7. Add the following values to the listed values in the cases below.

• 7 fAD when the conversion target includes low-speed conversion ANI (ANI16 to ANI30)

• 12 fAD when the conversion target includes the PGA with the gain of \times 4 to \times 16.

• 43 fAD when the conversion target includes the PGA with the gain of ×32.

Note 8. When the internal reference voltage or the temperature sensor output voltage is selected as the conversion target, the sampling time must be at least 5 µs. Accordingly, use normal mode 2 with the longer sampling time.

3. Low-voltage modes 1 and 2

 $(TA = -40 \text{ to } +125^{\circ}\text{C}, 2.7 \text{ V} \le \text{AVREFP} \le \text{VDD} \le 5.5 \text{ V}, \text{VSS} = 0 \text{ V}, \text{fCLK} \le 32 \text{ MHz},$ reference voltage (+) = AVREFP (ADREFP[1:0] = 01B), reference voltage (-) = AVREFM (ADREFM = 1), target pins: ANI2 to ANI7, ANI16 to ANI30, PGA, S&H, internal reference voltage, and temperature sensor output voltage)

Item	Symbol	Conditions	Min.	Тур.	Max.	Unit
Resolution	RES		8		12	Blt
Conversion clock	fad		1		24	MHz
Overall errorNotes 1, 3, 4, 5	AINL	$2.7 \text{ V} \leq \text{AV}_{\text{REFP}} = \text{V}_{\text{DD}} \leq 5.5 \text{ V}$			±9.0	LSB
Conversion timeNote 6	tCONV	$2.7 \text{ V} \leq \text{AV}_{\text{REFP}} = \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	3.33			μs
Zero-scale errorNotes 1, 2, 3, 4, 5	Ezs	$2.7 \text{ V} \leq \text{AV}_{\text{REFP}} = \text{V}_{\text{DD}} \leq 5.5 \text{ V}$			±0.21	%FSR
Full-scale errorNotes 1, 2, 3, 4, 5	Efs	$2.7 \text{ V} \leq \text{AV}_{\text{REFP}} = \text{V}_{\text{DD}} \leq 5.5 \text{ V}$			±0.21	%FSR
Integral linearity error Notes 1, 4, 5	ILE	$2.7 \text{ V} \leq \text{AV}_{\text{REFP}} = \text{V}_{\text{DD}} \leq 5.5 \text{ V}$			±4.0	LSB
Differential linearity error ^{Note 1}	DLE	$2.7 \text{ V} \leq \text{AV}_{\text{REFP}} = \text{V}_{\text{DD}} \leq 5.5 \text{ V}$		±1.5		LSB
Analog input voltage	VAIN		0		AVREFP	V

Note 1. This value does not include the quantization error $(\pm 1/2 \text{ LSB})$.

Note 2. This value is indicated as a ratio (%FSR) to the full-scale value.

Note 3. When pins ANI16 to ANI30 are selected as the conversion target, the maximum values are as follows. Overall error: Add ±3 LSB to the maximum value.

Zero-scale/full-scale error: Add ±0.04%FSR to the maximum value.

Note 4. The maximum values are as follows when VDD is selected for reference voltage (+) and VSS is selected for reference voltage (-).

Overall error: Add ±10 LSB to the maximum value.

Zero-scale/full-scale error: Add $\pm 0.25\% FSR$ to the maximum value.

Integral linearity error: Add ±4 LSB to the maximum value.

- Note 5. When AVREFP < VDD, the maximum values are as follows. Overall error/zero-scale/full-scale error: Add ±0.75 LSB × (VDD voltage (V) – AVREFP voltage (V)) to the maximum value. Integral linearity error: Add ±0.2 LSB × (VDD voltage (V) – AVREFP voltage (V)) to the maximum value.
- **Note 6.** When the internal reference voltage or the temperature sensor output voltage is selected as the conversion target, the sampling time must be at least 5 µs. Accordingly, use low-voltage mode 2 with the longer sampling time and the conversion clock (fAD) with a frequency of no more than 16 MHz.

4. Low-voltage modes 1 and 2 (advanced mode)

 $(TA = -40 \text{ to } +125^{\circ}\text{C}, 2.7 \text{ V} \le \text{AVREFP} \le \text{VDD} \le 5.5 \text{ V}, \text{VSs} = 0 \text{ V}, \text{fcLK} \le 48 \text{ MHz},$ reference voltage (+) = AVREFP (ADREFP[1:0] = 01B), reference voltage (-) = AVREFM (ADREFM = 1), target pins: ANI2 to ANI7, ANI16 to ANI30, PGA, S&H, internal reference voltage, and temperature sensor output voltage)

Item	Symbol	Conditions	Min.	Тур.	Max.	Unit
Resolution	RES		8		12	Blt
Conversion clock	fad		1		24	MHz
Overall errorNotes 1, 3, 4, 5, 6	AINL	$2.7 \text{ V} \leq \text{AV}_{\text{REFP}} = \text{V}_{\text{DD}} \leq 5.5 \text{ V}$			±9.0	LSB
Conversion timeNote 7	tCONV	$2.7 \text{ V} \leq \text{AV}_{\text{REFP}} = \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	3.63			μs
Zero-scale error Notes 1, 2, 3, 4, 5, 6	Ezs	$2.7 \text{ V} \leq \text{AVREFP} = \text{VDD} \leq 5.5 \text{ V}$			±0.21	%FSR
Full-scale errorNotes 1, 2, 3, 4, 5, 6	Efs	$2.7 \text{ V} \leq \text{AV}_{\text{REFP}} = \text{V}_{\text{DD}} \leq 5.5 \text{ V}$			±0.21	%FSR
Integral linearity errorNotes 1, 4, 5	ILE	$2.7 \text{ V} \leq \text{AV}_{\text{REFP}} = \text{V}_{\text{DD}} \leq 5.5 \text{ V}$			±4.0	LSB
Differential linearity errorNote 1	DLE	$2.7 \text{ V} \leq \text{AV}_{\text{REFP}} = \text{V}_{\text{DD}} \leq 5.5 \text{ V}$		±1.5		LSB
Analog input voltage	VAIN		0		AVREFP	V

Note 1. This value does not include the quantization error ($\pm 1/2$ LSB).

Note 2. This value is indicated as a ratio (%FSR) to the full-scale value.

Note 3. When pins ANI16 to ANI30 are selected as the conversion target, the maximum values are as follows.

Overall error: Add ±3 LSB to the maximum value. Zero-scale/full-scale error: Add ±0.04%FSR to the maximum value.

Note 4. The maximum values are as follows when VDD is selected for reference voltage (+) and VSS is selected for reference voltage (-).

Overall error: Add±10 LSB to the maximum value.

Zero-scale/full-scale error: Add ±0.25%FSR to the maximum value.

Integral linearity error: Add ±4 LSB to the maximum value.

Note 5. When AVREFP < VDD, the maximum values are as follows. Overall error/zero-scale/full-scale error: Add ±0.75 LSB × (VDD voltage (V) – AVREFP voltage (V)) to the maximum value. Integral linearity error: Add ±0.2 LSB × (VDD voltage (V) – AVREFP voltage (V)) to the maximum value.

Note 6. When the sample & hold circuit is selected as the conversion target, the maximum values are as follows. Overall error: Add ±1 LSB to the maximum value. Zero-scale/full-scale error: Add ±0.03%FSR to the maximum value.

Note 7. When the internal reference voltage or the temperature sensor output voltage is selected as the conversion target, the sampling time must be at least 5 μs. Accordingly, use low-voltage mode 2 with the longer sampling time and the conversion clock (fAD) with a frequency of no more than 16 MHz.

5. When the internal reference voltage is selected as reference voltage (+)

 $(TA = -40 \text{ to } +125^{\circ}\text{C}, 2.7 \text{ V} \le \text{VDD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V}, \text{low-voltage modes 1 and 2, fcLK} \le 32 \text{ MHz}^{\text{Note 1}}, \text{fcLK} \le 48 \text{ MHz}^{\text{Note 2}}, \text{reference voltage (+)} = \text{internal reference voltage (ADREFP[1:0] = 10B)}, \text{reference voltage (-)} = \text{AVREFM (ADREFM = 1)})$

Item	Symbol	Conditions	Min.	Тур.	Max.	Unit
Resolution	RES		8			Blt
Conversion clock	fad		1		2	MHz
Zero-scale errorNotes 3, 4, 6	Ezs				±0.6	%FSR
Integral linearity errorNotes 3, 6	ILE				±2.0	LSB
Differential linearity errorNote 3	DLE			±1.0		LSB
Analog input voltage	VAIN		0		VBGR Note 5	V

Note 1. This applies when the advanced mode is disabled.

Note 2. This applies when the advanced mode is enabled.

Note 3. This value does not include the quantization error (±1/2 LSB).

Note 4. This value is indicated as a ratio (%FSR) to the full-scale value.

Note 5. Refer to 3.6.2 Temperature sensor/internal reference voltage characteristics.

Note 6. When reference voltage (-) is selected as VSS, the maximum values are as follows.

Zero-scale error: Add ±0.35%FSR to the maximum value. Integral linearity error: Add ±0.5 LSB to the maximum value.

3.6.2 Temperature sensor/internal reference voltage characteristics

Item	Symbol	Conditions Min. Typ. Max.		Unit		
Temperature sensor output voltage	VTMPS25	ADS register is set to 80H, TA = +25°C		1.05		V
Internal reference voltage	VBGR	ADS register is set to 81H	1.40	1.48	1.56	V
Temperature coefficient	F VTMPS	Temperature dependency of the temperature sensor voltage		-3.3		mV/°C
Operation stabilization wait time	tamp		5			μs

 $(TA = -40 \text{ to } +125^{\circ}\text{C}, 2.7 \text{ V} \le \text{VDD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

3.6.3 D/A converter characteristics

Item	Symbol	Conditions	Min.	Тур.	Max.	Unit
Resolution	RES	DAC0, DAC1 (DACONF = 0)			10	Blt
		DAC1 (DACONF = 1), DAC2			8	Blt
Overall error	AINL	Rload = 8 MΩ			±2.5	LSB
Differential non-linearity error	ADNL				±1.0	LSB
Settling time	t SET	Cload = 20 pF when DACO is output			6	μs
		During full code conversion using CMP reference			3	μs
		During 1LSB code conversion using CMP reference			1	μs

Caution The voltage on the ANO0 to ANO2 pins must not exceed EVDD0.

3.6.4 Comparator characteristics

(TA = -40 to $+125^{\circ}$ C, 2.7 V \leq EVDD0 \leq VDD \leq 5.5 V, Vss = EVss0 = 0 V)

Item	Symbol	Conditions	Min.	Тур.	Max.	Unit
Input voltage range	IVREF	IVREF0 pin, IVREF1 pin input	0		EVDD0	V
	IVCMP	IVCMP0, IVCMP1, IVCMP2, ICMP3 pin input	0		EVDD0	V
Output delay	td	Input amplitude ±100 mV		50	100	ns
Offset voltage	—			±5	±40	mV
Operation stabilization time ^{Note}	tCMP		1			μs
Input channel switching stabilization wait time	—		0.3			μs

Note The listed values indicate the time until the DC/AC characteristics of the comparator are satisfied following enabling of the comparator operation (CnENB = 1).

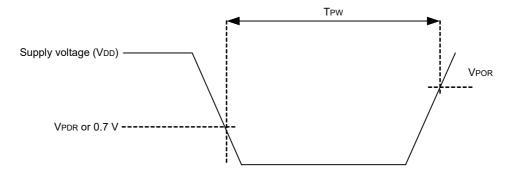
3.6.5 PGA characteristics

Item	Symbol		Conditions		Min.	Тур.	Max.	Unit
Input offset voltage	VIOPGA						±10	mV
Input voltage range ^{Note} 1	Vipga				0		0.9 × VDD/ amplification rate	V
Amplification rate error		×4, ×8					±1	%
		×16					±1.5	%
		×32					±2	%
Slew rate ^{Note 1}	Srrpga	Rising Vin = VDD × 0.1/	4.0 V ≤ VDD ≤ 5.5 V	Other than ×32	3.5			V/µs
		amplification rate to VDD × 0.9/	$4.0 \text{ V} \leq \text{VDD} \leq 5.5 \text{ V}$	×32	3			V/µs -
		amplification rate 10 to 90% of output amplitude	2.7 V ≤ VDD ≤ 4.0 V		0.5			
	Sfpga	Falling Vin = VDD × 0.1/	$4.0 \text{ V} \le \text{VDD} \le 5.5 \text{ V}$	Other than ×32	3.5			
		amplification rate to VDD × 0.9/	$4.0 \text{ V} \leq \text{VDD} \leq 5.5 \text{ V}$	×32	3			V/µs
		amplification rate 90 to 10% of output amplitude	2.7 V ≤ VDD ≤ 4.0 V		0.5			
Operation stabilization wait	tpga	×4, ×8	-				5	μs
time ^{Note 2}		×16, ×32					10	μs

(TA = -40 to +125°C, 2.7 V \leq EVDD0 \leq VDD \leq 5.5 V, Vss = EVss0 = 0 V)

Note 1. A voltage of EVDD0 is supplied to the PGAI0 to PGAI3 pins.

Note 2. The listed values indicate the time until the DC/AC characteristics of PGA operation are satisfied following enabling of the PGA operation (PGAEN = 1).



3.6.6 POR circuit characteristics

(TA = -40 to +125°C, Vss = 0 V)

Item	Symbol	Conditions	Min.	Тур.	Max.	Unit
Detection voltage	VPOR, VPDR		1.43	1.50	1.57	V
Minimum pulse width ^{Note}	TPW		300			μs

Note This width is the minimum time required for a POR reset when VDD falls below VPDR. This width is also the minimum time required for a POR reset from when VDD falls below 0.7 V to when VDD exceeds VPOR in the STOP mode or while the main system clock is stopped through setting bit 0 (HIOSTOP) and bit 7 (MSTOP) in the clock operation status control register (CSC).

3.6.7 LVD circuit characteristics

1. LVD detection voltage in the LVD0 reset mode and interrupt mode

 $(T_A = -40 \text{ to } +125^{\circ}\text{C}, \text{ VPDR} \le \text{VDD} \le 5.5 \text{ V}, \text{ Vss} = 0 \text{ V})$

	ltem	Symbol	Conditions	Min.	Тур.	Max.	Unit
Detection	Supply voltage level	VLVD00	The power supply voltage is rising.	3.84	3.96	4.08	V
voltage			The power supply voltage is falling.	3.76	3.88	4.00	V
		VLVD01	The power supply voltage is rising.	2.88	2.97	3.06	V
			The power supply voltage is falling.	2.82	2.91	3.00	V
Minimum pulse	width	tLW		500			μs
Detection delay	y time					500	μs

2. LVD detection voltage in the LVD1 reset mode and interrupt mode

(TA = -40 to $+125^{\circ}$ C, VPDR \leq VDD \leq 5.5 V, VSS = 0 V)

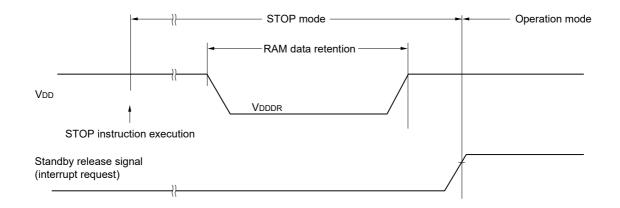
	Item	Symbol	Conditions	Min.	Тур.	Max.	Unit
Detection	Supply voltage level	VLVD10	The power supply voltage is rising.	4.08	4.16	4.24	V
voltage			The power supply voltage is falling.	4.00	4.08	4.16	V
		VLVD11	The power supply voltage is rising.	3.88	3.96	4.04	V
			The power supply voltage is falling.	3.80	3.88	3.96	V
		VLVD12	The power supply voltage is rising.	3.68	3.75	3.82	V
			The power supply voltage is falling.	3.60	3.67	3.74	V
		VLVD13	The power supply voltage is rising.	3.48	3.55	3.62	V
			The power supply voltage is falling.	3.40	3.47	3.54	V
		VLVD14	The power supply voltage is rising.	3.28	3.35	3.42	V
			The power supply voltage is falling.	3.20	3.27	3.34	V
		VLVD15	The power supply voltage is rising.	3.07	3.13	3.19	V
			The power supply voltage is falling.	3.00	3.06	3.12	V
		VLVD16	The power supply voltage is rising.	2.91	2.97	3.03	V
			The power supply voltage is falling.	2.85	2.91	2.97	V
		VLVD17	The power supply voltage is rising.	2.76	2.82	2.87	V
			The power supply voltage is falling.	2.70	2.76	2.81	V
Minimum pul	se width	tLW		500			μs
Detection de	lay					500	μs

3.6.8 Power supply voltage rising slope characteristics

(TA = -40 to +125°C, Vss = 0 V)

Item	Symbol	Conditions	Min.	Тур.	Max.	Unit
Power voltage rising slope	SVDD				54	V/ms

Caution Make sure to keep the internal reset state by the LVD0 circuit or an external reset until VDD reaches the operating voltage range shown in AC characteristics.



3.7 RAM Data Retention Characteristics

(TA = -40 to +125°C, Vss = 0 V)

Item	Symbol	Conditions	Min.	Тур.	Max.	Unit
Data retention power voltage	VDDDR		1.43Note		5.5	V

Note This voltage depends on the POR detection voltage. When the voltage drops, the data in RAM are retained until a POR is applied, but are not retained following a POR.

3.8 Flash Memory Programming Characteristics

 $(TA = -40 \text{ to } +125^{\circ}\text{C}, 2.7 \text{ V} \le \text{VDD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Item	Symbol	Conditions	Min.	Тур.	Max.	Unit
CPU/peripheral hardware clock frequency	fclk		1		48	MHz
Number of code flash memory rewritesNotes 1, 2, 3	Cerwr	Retained for 10 years TA = +85°C	10,000			Times
		Retained for 20 years TA = +85°C	1,000			
Number of data flash memory rewritesNotes 1, 2, 3		Retained for 1 year TA = +25°C		1,000,000		
		Retained for 5 years TA = +85°C	100,000			
		Retained for 20 years TA = +85°C	10,000			

Note 1. 1 erase + 1 write after the erase is regarded as 1 rewrite. The retaining years are until next rewrite after the rewrite.

Note 2. The listed numbers of times apply when using the flash memory programmer and the Renesas Electronics self-programming library.

Note 3. These are the characteristics of the flash memory and the results obtained from reliability testing by Renesas Electronics Corporation.

1. Code flash memory

Item		Symbol	fCL	_ĸ = 1	MHz	fcL	к = 2 I 3 MH	,		Hz ≤ fc 8 MHz			Hz ≤ fc 32 MH:		fCLF	(= 32 l	MHz	fCL	к = 48	MHz	Unit
			Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	1
Programming time	4 bytes	tP4	_	75.8	666.6	—	51.5	469.7	—	41.9	387.3	—	37.2	347.4	—	34.2	322.3	—	33.9	319.7	μs
Erasure time	2 Kbytes	tE2Κ	_	10.4	312.2	_	7.7	258.5	_	6.4	231.8	_	5.8	218.4	_	5.6	214.4	_	5.6	213.9	ms
	4 bytes	tBC4	_	_	38.4	_	_	19.2	_	_	13.1	_	_	10.2	_	_	8.3	_	_	8.1	μs
time	2 Kbytes	tBC2K	_	_	2618.9	_	_	1309.5	_	_	658.3	_	_	332.8	_	_	234.1	_	_	223.19	μs
Time taken to fo erasure	rcibly stop	tSED	_	_	19.0	_	_	14.5	_	_	12.3	_	_	11.1	_	_	10.4	—	_	10.3	μs
Security setting	time	tawssas	_	18.2	526.4	_	14.4	469.3	_	12.6	441.1	_	11.6	427.1	_	11.3	422.6	_	11.3	422.1	ms
Time until progra starts following cancellation of th instruction	, in the second s		20		_	20		_	20	_	_	20		_	20		_	20		_	μs

$(TA = -40 \text{ to } +125^{\circ}C, 2.7 \text{ V} \le \text{VDD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Caution The listed values do not include the time until the operations of the flash memory start following execution of an instruction by software.

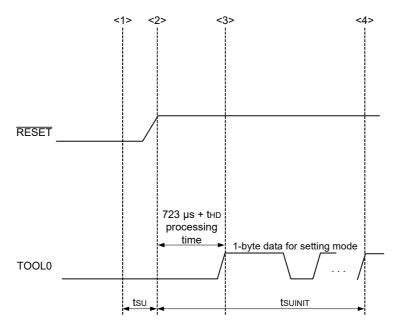
2. Data flash memory

 $(TA = -40 \text{ to } +125^{\circ}\text{C}, 2.7 \text{ V} \le \text{VDD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

ltem		Symbol	fCL	.κ = 1 l	MHz	fCl	к = 2 N 3 MHz	,	4 N	IHz ≤ f 8 MH		8 N	/Hz ≤ fo 32 MH		fCLł	< = 32	MHz	fCL	к = 48 I	MHz	Unit
			Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	
Programming time	1 byte	tP4	—	75.8	666.6	_	51.51	469.7	_	41.9	387.34	—	37.24	347.4	—	34.2	322.3	—	33.92	319.7	μs
Erasure time	256 bytes	tE2K	_	7.8	259.2	_	6.4	232.0	_	5.8	218.5	_	5.5	211.8	_	5.4	209.7	_	5.3	209.5	ms
Blank checking	1 byte	tBC4	_	_	38.4	_	_	19.2	_	_	13.1	_	_	10.2	_	_	8.3	_	_	8.1	μs
time	256 bytes	tBC2K	_	_	1326.1	_	_	663.1	_	_	335.1	_	_	171.2	_		121.0	_	_	115.5	μs
Time taken to fo erasure	rcibly stop	tsed	_	_	19.0	_	_	14.5	_	_	12.3	_	_	11.1	_	_	10.4	_	_	10.3	μs
Time until progra starts following cancellation of th instruction	0		20		_	20	_	_	20		_	20	_	_	20		_	20	_	_	μs
Time until readir following setting DFLCTL.DFLEN	•	_	0.25	_	_	0.25	_	_	0.25		_	0.25	_	_	0.25	_	_	0.25	_	_	ns

Caution The listed values do not include the time until the operations of the flash memory start following execution of an instruction by software.

3.9 Dedicated Flash Memory Programmer Communication (UART)


		· · · · · · · · · · · · · · · · · · ·				
Item	Symbol	Conditions	Min.	Тур.	Max.	Unit
Transfer rate		During serial programming	115,200		1,000,000	bps

(TA = -40 to $+125^{\circ}$ C, 2.7 V \leq EVDD0 \leq VDD \leq 5.5 V, VSS = EVSS0 = 0 V)

3.10 Timing of Entry to Flash Memory Programming Modes

((TA = -40 to +125°C, 2.7 V ≤ EVDD0 ≤ VDD ≤ 5.5 V, VSS = EVSS0 = 0 V)	1
	(17.10.00.120.0, 2.1.10 = 2.000 = 0.00.0, 0.000 = 0.000, 0.000, 0.000 = 0.000, 0.00	1.

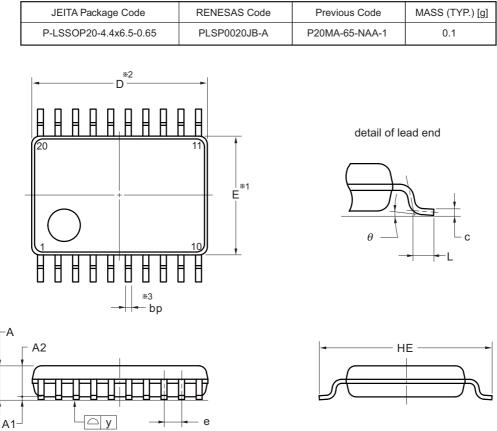
Item	Symbol	Conditions	Min.	Тур.	Max.	Unit
Time to complete the communication for the initial setting after the external reset is released	tsuinit	POR and LVD reset must be released before the external reset is released			100	ms
Time to release the external reset after the TOOL0 pin is set to the low level	tsu	POR and LVD reset must be released before the external reset is released	10			μs
Time to hold the TOOL0 pin at the low level after the external reset is released (the processing time of the firmware to control the flash memory is not included)	thd	POR and LVD reset must be released before the external reset is released	1			ms

<1> The low level is input to the TOOL0 pin.

<2> The external reset is released. Note that the POR and LVD reset must be released before the external reset is released.

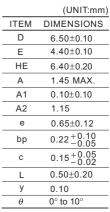
<3> The TOOL0 pin is set to the high level.

<4> The baud rate setting is complete upon UART reception.


Remark tsuinit: The time during which the communications for the initial setting must be completed within 100 ms after the external reset is released.

- $\ensuremath{\text{tsu:}}$ Time to release the external reset after the TOOL0 pin is set to the low level
- tHD: Time to hold the TOOL0 pin at the low level after the external reset is released. It does not include the processing time of the firmware to control the flash memory.

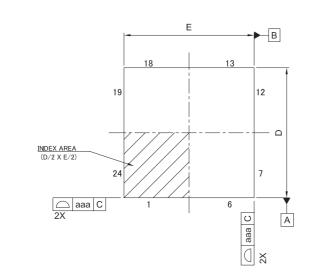
4. Package Drawings

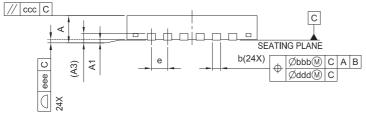

4.1 20-pin Products

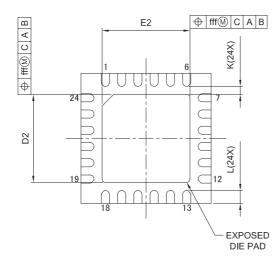
NOTE

1.Dimensions "%1" and "%2" do not include mold flash.

2.Dimension " \otimes 3" does not include tim offset.

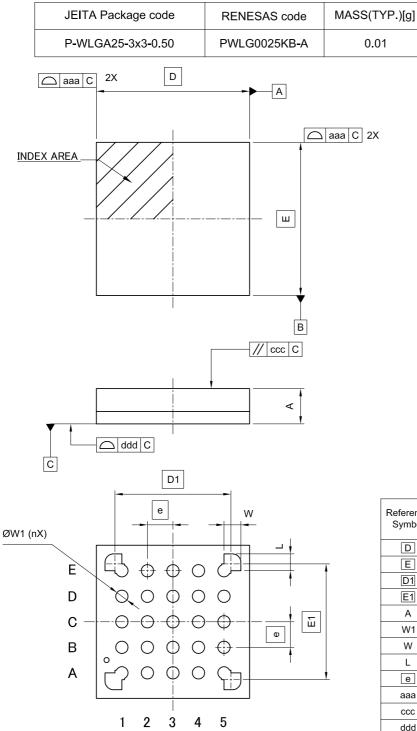



©2012 Renesas Electronics Corporation. All rights reserved.



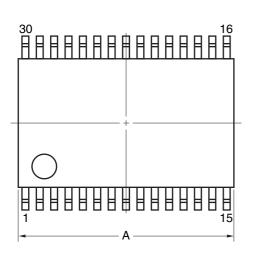
4.2 24-pin Products

JEITA Package Code	RENESAS Code	MASS(Typ.)[g]
P-HWFQFN24-4 × 4-0. 50	PWQN0024KG-A	0.04

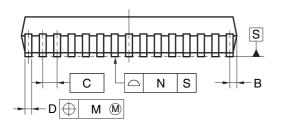


Reference	Dimensi	on in Mil	limeters			
Symbol	Min.	Nom.	Max.			
A	_	—	0.80			
A 1	0.00	0.02	0.05			
A3	0	. 203 RE	F.			
b	0.18	0.25	0.30			
D	4.00 BSC					
E	4.00 BSC					
е	0.50 BSC					
L	0.35 0.40 0.4					
K	0.20	—	_			
D ₂	2.65	2.70	2.75			
E2	2.65	2.70	2.75			
aaa		0.15				
bbb		0.10				
ccc	0.10					
ddd	0.05					
eee	0.08					
fff		0.10				

4.3 25-pin Products

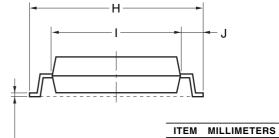


Reference	Dimens	sion in Milli	meters
Symbol	Min.	Nom.	Max.
D	—	3.00	-
E	-	3.00	-
D1		2.27	
E1		2.27	
А	—	-	0.76
W1	0.19	0.24	0.29
W	—	0.330	—
L	—	0.330	—
е		0.50	
aaa	—	l	0.10
ccc	_	_	0.20
ddd	_		0.08
n	_	25	_



4.4 30-pin Products

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-LSSOP30-0300-0.65	PLSP0030JB-B	S30MC-65-5A4-3	0.18

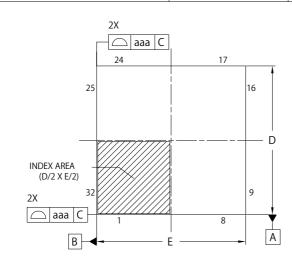


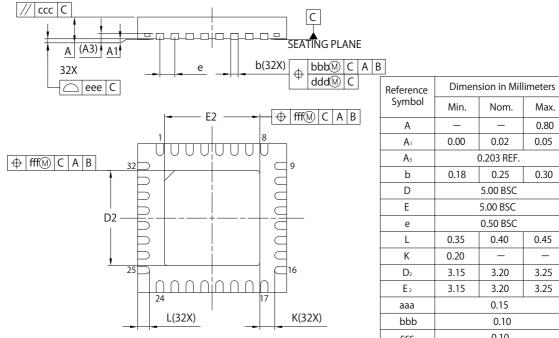
detail of lead end

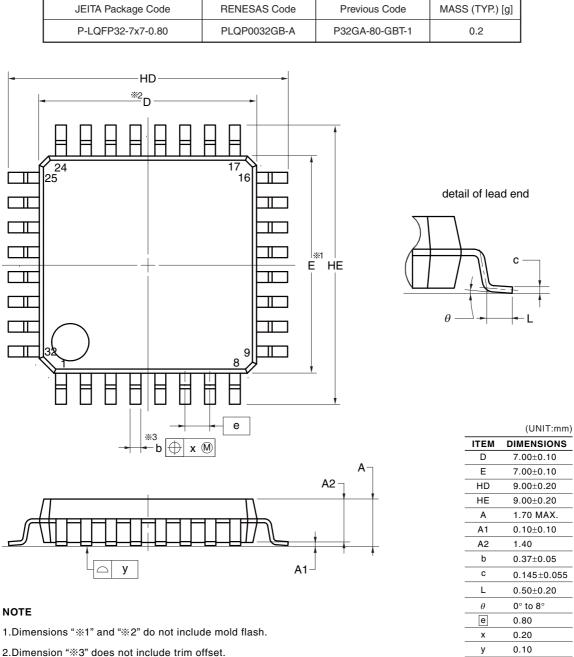
NOTE

Each lead centerline is located within 0.13 mm of its true position (T.P.) at maximum material condition.

κ

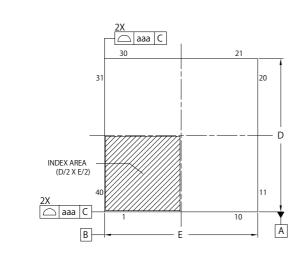

	-
A	9.85±0.15
В	0.45 MAX.
С	0.65 (T.P.)
D	$0.24^{+0.08}_{-0.07}$
E	0.1±0.05
F	1.3±0.1
G	1.2
Н	8.1±0.2
I	6.1±0.2
J	1.0±0.2
K	0.17±0.03
L	0.5
М	0.13
Ν	0.10
Р	3° ^{+5°} -3°
Т	0.25
U	0.6±0.15

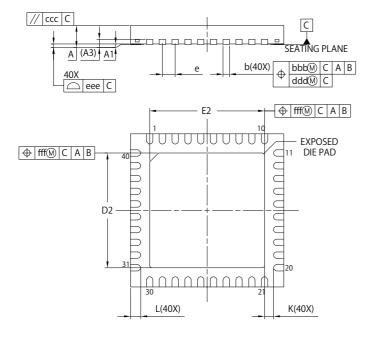

©2012 Renesas Electronics Corporation. All rights reserved.


32-pin Products 4.5

JEITA Package code	RENESAS code	MASS(TYP.)[g]
P-HWQFN032-5x5-0.50	PWQN0032KE-A	0.06

Reference	Billerision in Millineters			
Symbol	Min.	Nom.	Max.	
А	-	-	0.80	
A1	0.00	0.02	0.05	
A ₃	(0.203 REF.		
b	0.18	0.25	0.30	
D		5.00 BSC		
E	5.00 BSC			
е	0.50 BSC			
L	0.35	0.40	0.45	
К	0.20	—	-	
D_2	3.15	3.20	3.25	
E 2	3.15	3.20	3.25	
aaa	0.15			
bbb	0.10			
ссс	0.10			
ddd	0.05			
eee		0.08		
fff	0.10			


2.Dimension "%3" does not include trim offset.


 $\ensuremath{\mathbb{C}}$ 2012 Renesas Electronics Corporation. All rights reserved.

4.6 40-pin Products

JEITA Package code	RENESAS code	MASS(TYP.)[g]
P-HWQFN040-6x6-0.50	PWQN0040KD-A	0.08

Reference	Dimension in Millimeters		
Symbol	Min.	Nom.	Max.
А	_	-	0.80
A1	0.00	0.02	0.05
A₃		0.203 REF.	
b	0.18	0.25	0.30
D		6.00 BSC	
E	6.00 BSC		
e	0.50 BSC		
L	0.30	0.40	0.50
К	0.20	—	_
D2	4.45	4.50	4.55
E 2	4.45	4.50	4.55
ааа		0.15	
bbb	0.10		
ссс	0.10		
ddd	0.05		
eee		0.08	
fff	0.10		

4.7 44-pin Products

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-LQFP44-10x10-0.80	PLQP0044GC-A	P44GB-80-UES-2	0.36

NOTE

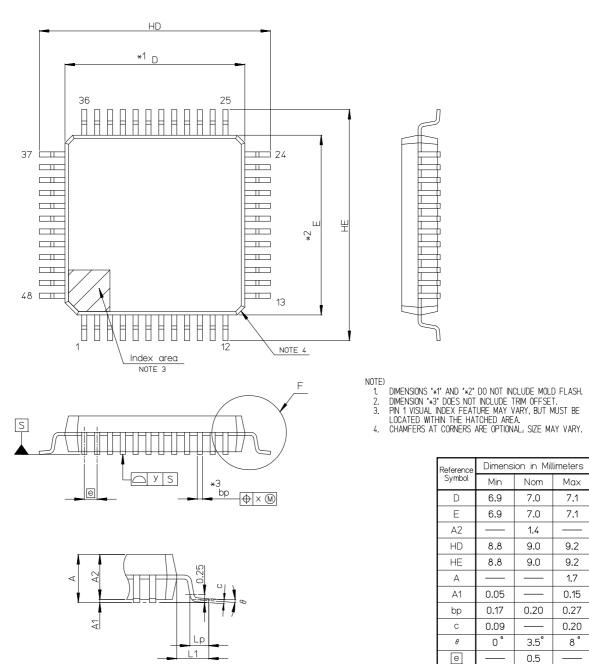
Each lead centerline is located within 0.20 mm of its true position at maximum material condition.

© 2012 Renesas Electronics Corporation. All rights reserved.

0.10

1.00

1.00


y

ZD

ZE

4.8 48-pin Products

JEITA Package Code	RENESAS Code	Previous Code	MASS[Typ.]
P-LFQFP48-7x7-0.50	PLQP0048KB-B		0.2g

Detail F

0.08

0.08

0.75

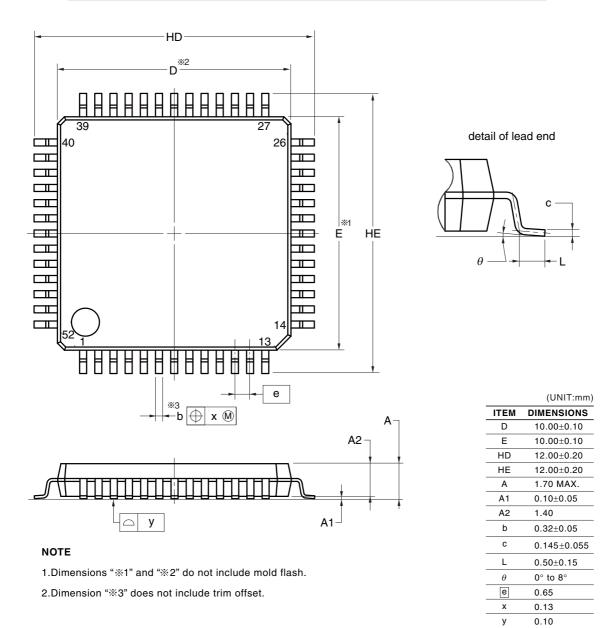
х

У

Lp L1 0.45

0.6

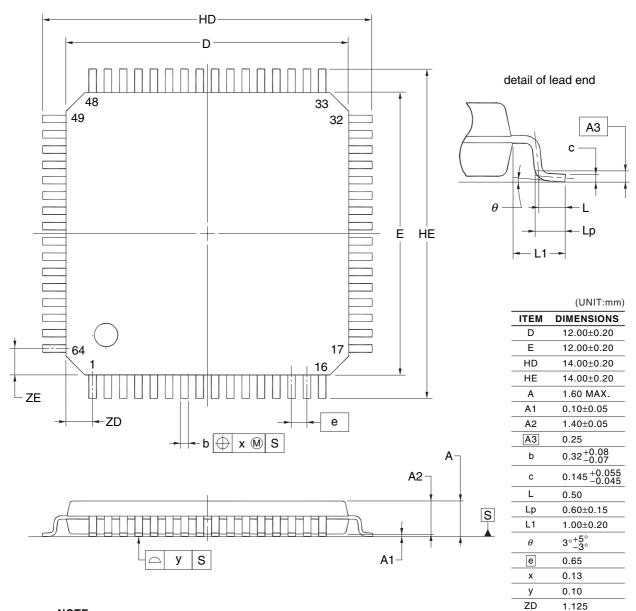
1.0


	JEITA Package code	RENESAS code	MASS(TYP.)[g]
	P-HWQFN048-7x7-0.50	PWQN0048KC-A	0.13 g
	2X aaa C 36 37 INDEX AREA (D/2 X E/2) 48 2X 48	25 24 D 13	
/// c	cc C $A (A3) A1$ $A (A3) A1$ $eee C$	C SEATIN b(48X) ⊕ bbbŵ (dddŵ (G PLANE
			POSED A1 E PAD A3 b
			D E e L K
			D ₂ E ₂ aaa bbb
	L(48X)		

Reference	Dimension in Millimeters		
Symbol	Min.	Nom.	Max.
А	0.8		0.80
A ₁	0.00	0.02	0.05
A ₃	(0.203 REF.	
b	0.20	0.25	0.30
D		7.00 BSC	
E	7.00 BSC		
e	0.50 BSC		
L	0.30 0.40 0.50		0.50
К	0.20	_	—
D_2	5.25	5.30	5.35
E 2	5.25	5.30	5.35
aaa		0.15	
bbb	0.10		
ссс	0.10		
ddd		0.05	
eee		0.08	
fff	0.10		

4.9 52-pin Products

ſ	JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
	P-LQFP52-10x10-0.65	PLQP0052JA-A	P52GB-65-GBS-1	0.3

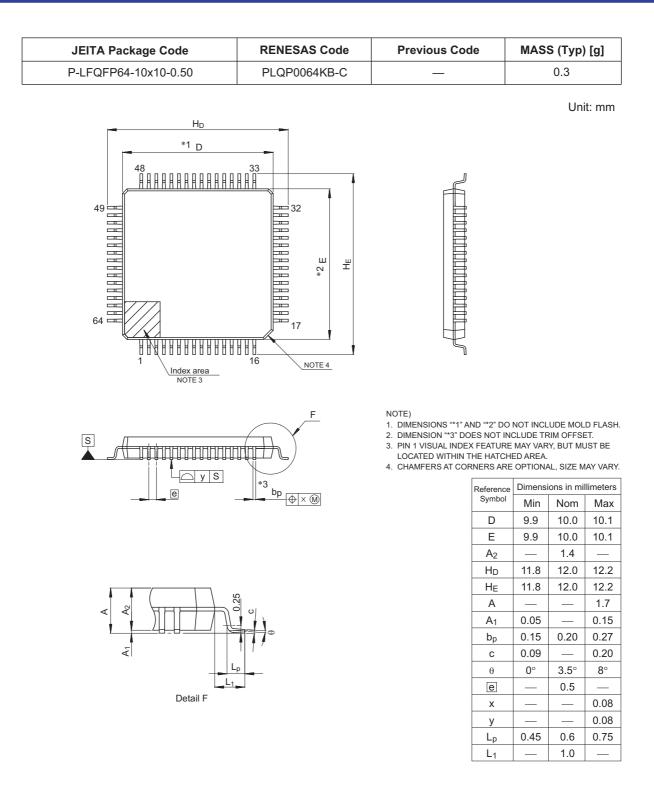


© 2012 Renesas Electronics Corporation. All rights reserved.

4.10 64-pin Products

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-LQFP64-12x12-0.65	PLQP0064JA-A	P64GK-65-UET-2	0.51

NOTE


Each lead centerline is located within 0.13 mm of its true position at maximum material condition.

©2012 Renesas Electronics Corporation. All rights reserved.

ΖE

1.125

© 2015 Renesas Electronics Corporation. All rights reserved.

Revision History	
------------------	--

RL78/G24 Datasheet

Rev.	Date		Description
		Page	Summary
1.00	May 10, 2023	—	First edition issued
1.10	Nov 1, 2023	p.5	Figure 1 - 1 Part Number, Memory Size, and Package of RL78/G24 was modified.
		p.6	Table 1 - 1 List of Ordering Part Numbers was modified.
		p.65	2.3.2 Supply current characteristics was modified.
		p.108	2.6.1 A/D converter characteristics: 1. Normal modes 1 and 2 was modified.
		p.143	3.3.2 Supply current characteristics was modified.
1.20	Dec 27, 2024	p.5	Figure 1 - 1 Part Number, Memory Size, and Package of RL78/G24 was modified.
		p.6	Table 1 - 1 List of Ordering Part Numbers was modified.
		p.16	1.3.5 32-pin products was modified.
		p. 48	2.2.1 Characteristics of the X1 oscillator was modified.
		p. 48	2.2.2 Characteristics of the XT1 oscillator was modified.
		p. 59	2.3.2 Supply current characteristics (TA = -40 to $+105$ °C, 1.6 V \leq EVDD0 \leq VDD \leq 5.5 V, VSS = EVSS0 = 0 V) (2/5): Note 1 was modified.
		p. 62	2.3.2 Supply current characteristics (TA = -40 to $+105^{\circ}$ C, 1.6 V \leq EVDD0 \leq VDD \leq 5.5 V, VSS = EVSS0 = 0 V) (4/5): Note 1 was modified.
		p. 128	3.2.1 Characteristics of the X1 oscillator was modified.
		p. 128	3.2.2 Characteristics of the XT1 oscillator was modified.
		p. 137	3.3.2 Supply current characteristics (TA = -40 to $+125$ °C, 2.7 V \leq EVDD0 \leq VDD \leq 5.5 V, VSS = EVSS0 = 0 V) (2/5): Note 1 was modified.
		p. 140	3.3.2 Supply current characteristics (TA = -40 to $+125^{\circ}$ C, 2.7 V \leq EVDD0 \leq VDD \leq 5.5 V, VSS = EVSS0 = 0 V) (4/5): Note 1 was modified.
		p. 145	3.4 AC Characteristics was modified.

SuperFlash is a registered trademark of Silicon Storage Technology, Inc. in several countries including the United States and Japan.

Caution: This product uses SuperFlash[®] technology licensed from Silicon Storage Technology, Inc.

All trademarks and registered trademarks are the property of their respective owners.

General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Precaution against Electrostatic Discharge (ESD)

A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.

2. Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power is supplied until the power is supplied until the power reaches the level at which resetting is specified.

3. Input of signal during power-off state

Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements. Follow the guideline for input signal during power-off state as described in your product documentation.

4. Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible.

5. Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.

6. Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL (Max.) and VIH (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed, and also in the transition period when the input level passes through the area between VIL (Max.) and VIH (Min.).

7. Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these addresses as the correct operation of the LSI is not guaranteed.

8. Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems. The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values, operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-evaluation test for the given product.

Notice

- 1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information.
- Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.
- 3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 4. You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export, manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.
- 5. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.
- 6. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document.

- 7. No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but not limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE, HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION ("Vulnerability Issues"). RENESAS ELECTRONICS DISCLAIMS ANY AND ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.
- 8. When using Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, "General Notes for Handling and Using Semiconductor Devices" in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are responsible for systems manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.
- 12. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.
- 13. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 14. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.
- (Note1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries.
- (Note2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

(Rev.5.0-1 October 2020)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit: www.renesas.com/contact/

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.