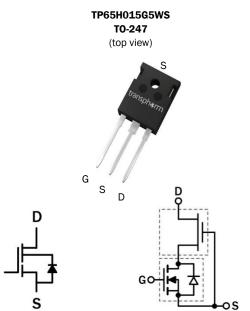
TP65H015G5WS

RENESAS

650V SuperGaN® FET in TO-247 (source tab)

Description

The TP65H015G5WS 650V, 15 m Ω gallium nitride GaN FET is a normally-off device using Renesas's Gen V platform. It combines a state-of-the-art high voltage GaN HEMT with a low voltage silicon MOSFET to offer superior reliability and performance.


The Gen V SuperGaN[®] platform uses advanced epi and patented design technologies to simplify manufacturability while improving efficiency over silicon via lower gate charge, output capacitance, crossover loss, and reverse recovery charge.

Related Literature

- <u>Recommended External Circuitry for GaN FETs</u>
- Printed Circuit Board Layout and Probing
- Paralleling GaN FETs

Ordering Information

Part Number	Package	Package Configuration
TP65H015G5WS	3 lead TO-247	Source

Cascode Schematic Symbol

Cascode Device Structure

Features

- JEDEC qualified GaN technology
- Dynamic R_{DS(on)eff} production tested
- Robust design, defined by
 - Intrinsic lifetime tests
 - Wide gate safety margin
 - Transient over-voltage capability
- Very low QRR
- Reduced crossover loss

Benefits

- Enables AC-DC bridgeless totem-pole PFC designs
 - Increased power density
 - Reduced system size and weight
 - Overall lower system cost
- Achieves increased efficiency in both hard- and soft-switched circuits
- Easy to drive with commonly-used gate drivers
- GSD pin layout improves high speed design

Applications

- Datacom
- Broad industrial
- PV inverter
- Servo motor

Key Specifications		
V _{DSS} (V)	650	
V _{(TR)DSS} (V)	725	
$R_{DS(on)eff}(m\Omega)$ max*	18	
Q _{RR} (nC) typ	430	
Q _G (nC) typ	74	

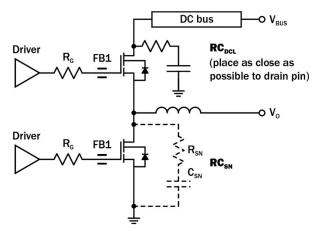
* Dynamic on-resistance; see Figures 18 and 19

Symbol	Parameter	Limit Value	Unit	
V _{DSS}	Drain to source voltage (TJ = -55°C	to 150°C)	650	
V _{(TR)DSS}	Transient drain to source voltage a	ain to source voltage ^a		V
V _{GSS}	Gate to source voltage		±20	
PD	Maximum power dissipation @Tc=2	Maximum power dissipation @Tc=25°C		
	Continuous drain current @Tc=25°	99	А	
ID	Continuous drain current @Tc=100	°C ^b	62	А
I _{DM}	Pulsed drain current (pulse width: 10µs)		600	А
Tc	Operating temperature	Case	-55 to +150	°C
Tر	 Operating temperature 	Junction	-55 to +150	°C
Ts	Storage temperature		-55 to +150	°C
T _{SOLD}	Soldering peak temperature °		260	°C

Absolute Maximum Ratings (T_c=25 °C unless otherwise stated.)

Notes:

a. In off-state, spike duty cycle D<0.01, spike duration <1 μ s


b. For increased stability at high current operation, see Circuit Implementation on page 3

c. For 10 sec., 1.6mm from the case

Thermal Resistance

Symbol	Parameter	Typical	Unit	
Rojc	Junction-to-case	0.47	°C/W	
Roja	Junction-to-ambient	40	°C/W	

Circuit Implementation

Simplified Half-bridge Schematic (See also on Figure 14)

Recommended gate drive: (OV, 12V) with R_G=15 Ω

For additional gate driver options/configurations, please see Application Note <u>Recommended External Circuitry for GaN FETs</u>

Layout Recommendations Gate Loop:

- Gate Driver: SiLab Si823x/Si827x
- Keep gate loop compact
- Minimize coupling with power loop
- Power loop: (For reference see page 13)
- Minimize power loop path inductance
- Minimize switching node coupling with high and low power plane
- Add DC bus snubber to reduce to voltage ringing
- Add Switching node snubber for high current operation

Gate Ferrite Bead (FB1)	Required DC Link RC Snubber (RC _{DCL}) ^a	Recommended Switching Node RC Snubber (RC _{SN}) ^{b,c}
80-120 Ω at 100MHz	[10nF + 3.3 Ω] x 3	Not necessary

Notes:

a. $\mathsf{RC}_{\scriptscriptstyle \mathsf{DCL}}$ should be placed as close as possible to the drain pin

b. RC_{sv} is needed only if R_{G} is smaller than recommendations or operational current exceeds 100C rated I_{DMAX}

c. If required, please use (100 pF + 10 ohm) or parallel two or three of the same

Symbol	Parameter	Min	Тур	Max	Unit	Test Conditions	
Forward Device Characteristics							
$V_{(BL)DSS}$	Drain-source voltage	650	-	_	V	V _{GS} =OV	
$V_{\text{GS}(\text{th})}$	Gate threshold voltage	3.3	4	4.8	V	V _{DS} =V _{GS} , I _D =2mA	
	Durin annual an araintean a	-	15	18	mΩ	V _{GS} =10V, I _D =60A	
R _{DS(on)} eff	Drain-source on-resistance ^a	_	27	_		V _{GS} =10V, I _D =60A, T _J =150°C	
	Drain to course leakage ourrent	-	7	70		V _{DS} =650V, V _{GS} =0V	
IDSS	Drain-to-source leakage current	_	50	_	μA	V _{DS} =650V, V _{GS} =0V, T _J =150°C	
lasa	Gate-to-source forward leakage current	-	_	400	nA	V _{GS} =20V	
Igss	Gate-to-source reverse leakage current	_	_	-400	ΠA	V _{GS} =-20V	
CISS	Input capacitance	-	5218	_		V _{GS} =0V, V _{DS} =400V, <i>f</i> =1MHz	
Coss	Output capacitance	-	307	_	pF		
CRSS	Reverse transfer capacitance	-	4.5	_			
C _{O(er)}	Output capacitance, energy related b	-	476	_		V_{GS} =0V, V_{DS} =0V to 400V	
C _{O(tr)}	Output capacitance, time related °	-	1026	_	pF		
Q_{G}	Total gate charge	-	74	100		V_{DS} =400V, V_{GS} =0V to 10V, I_D =60A	
Q _{GS}	Gate-source charge	-	34	_	nC		
Q_{GD}	Gate-drain charge	-	21	_			
Qoss	Output charge	_	430	_	nC	V_{GS} =0V, V_{DS} =0V to 400V	
t _{D(on)}	Turn-on delay	_	87	_		V _{DS} =400V, V _{GS} =0V to 12V, R _G =15Ω, Z _{FB} =120Ω at 100MHz, I _D =60A	
t _R	Rise time	_	18	_			
t _{D(off)}	Turn-off delay	_	123		ns		
tr	Fall time	_	9.4	_			
E _{off}	Turn off Energy	_	200	_		V _{DS} =400V, V _{GS} =0V to 12V,	
Eon	Turn on Energy	_	663	_	μJ	$\begin{array}{c} R_{G}\texttt{=}15\Omega, \ I_{D}\texttt{=}60A, \ Z_{FB}\texttt{=}180\Omega\\ \text{at 100MHz} \end{array}$	
	l	1	1				

Electrical Parameters (T_=25 °C unless otherwise stated)

Notes:

a. Dynamic on-resistance; see Figures 18 and 19 for test circuit and conditions

b. Equivalent capacitance to give same stored energy as $V_{\mbox{\tiny DS}}$ rises from 0V to 400V

c. Equivalent capacitance to give same charging time as $V_{\mbox{\tiny DS}}$ rises from OV to 400V

Electrical Parameters (T=25°C unless otherwise stated)

Symbol	Parameter	Min	Тур	Max	Unit	Test Conditions	
Reverse Device Characteristics							
Is	Reverse current	-	_	60	A	V_{GS} =0V, Tc=100°C ≤15% duty cycle	
V _{SD} Reverse	Deverse velkere 2	_	1.6	-	v	V _{GS} =0V, I _S =60A	
	Reverse voltage ^a	_	1.2	_		V _{GS} =0V, I _S =30A	
t _{RR}	Reverse recovery time	_	100	-	ns	Is=60A, V _{DD} =400V,	
Qrr	Reverse recovery charge	_	430	-	nC	di/dt=1000A/µs	
(di/dt) _{RM}	Reverse diode di/dt ^b	_	_	3500	A/µs	Circuit implementation an parameters on page 3	

Notes:

a. Includes dynamic $R_{\text{DS(on)}}$ effect

b. Reverse conduction di/dt will not exceed this max value with recommended $R_{\mbox{\tiny G}}$

Typical Characteristics (Tc=25°C unless otherwise stated)

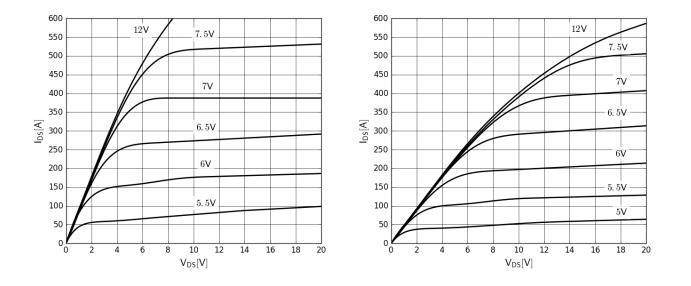
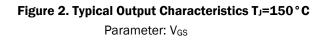
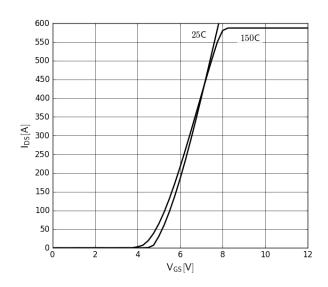
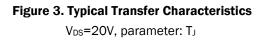





Figure 1. Typical Output Characteristics T_J=25 $^{\circ}\text{C}$ Parameter: V_{GS}

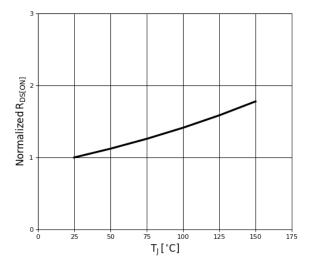


Figure 4. Normalized On-resistance $$I_{\rm D}$=60A, V_{\rm GS}$=8V$

Typical Characteristics (Tc=25 °C unless otherwise stated)

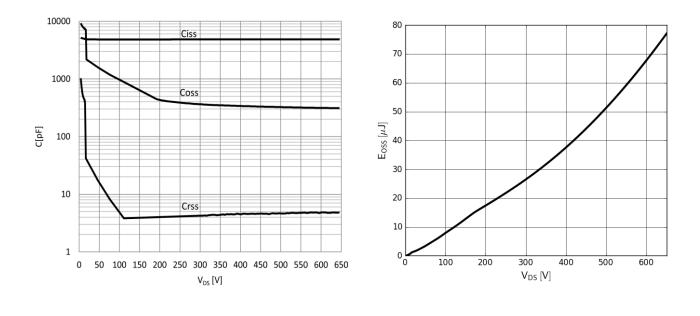


Figure 5. Typical Capacitance V_{GS} =OV, f=1MHz

Figure 6. Typical Coss Stored Energy

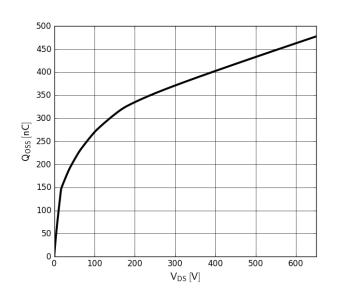
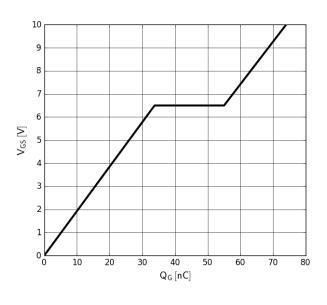
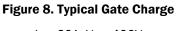
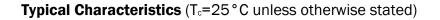





Figure 7. Typical Qoss

I_{DS}=60A, V_{DS}=400V

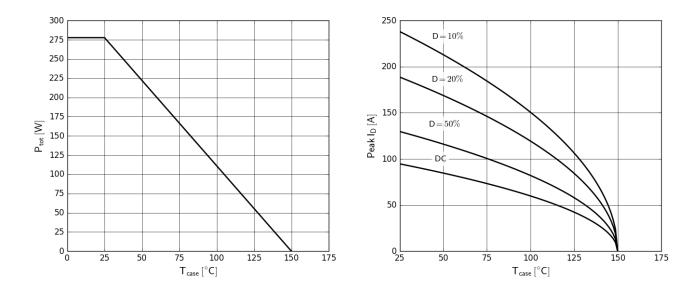


Figure 9. Power Dissipation

Figure 10. Current Derating

Pulse width \leq 10µs, $V_{GS} \geq 10V$

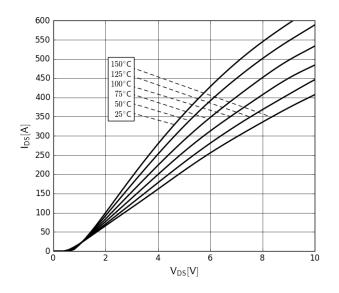


Figure 11. Forward Characteristics of Rev. Diode $I_{S}{=}f(V_{SD}), \ parameter; \ T_{J}$

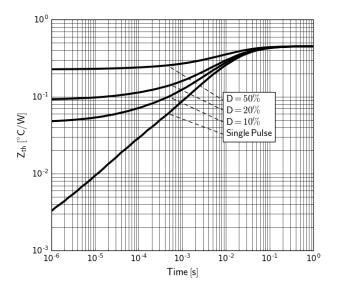
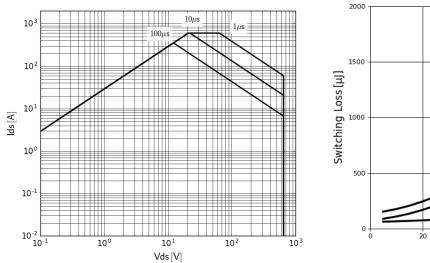
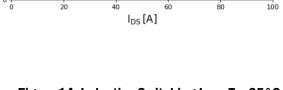
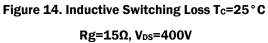
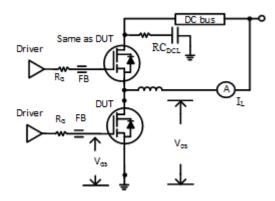


Figure 12. Transient Thermal Resistance

Typical Characteristics (T_c =25 °C unless otherwise stated)


Figure 13. Safe Operating Area Tc=25°C


Etotal

Eon

 E_{off}

Test Circuits and Waveforms

Figure 14. Switching Time Test Circuit

(see circuit implementation on page 3 for methods to ensure clean switching)

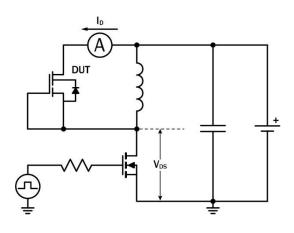


Figure 16. Diode Characteristics Test Circuit

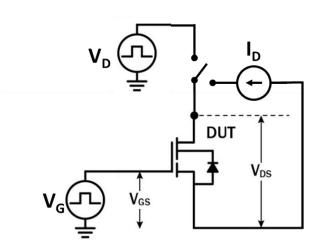


Figure 18. Dynamic RDS(on)eff Test Circuit

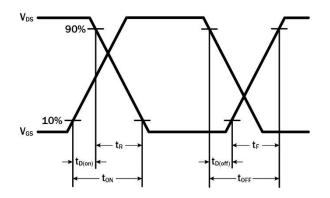


Figure 15. Switching Time Waveform

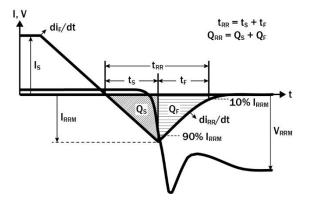
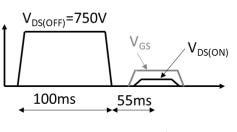



Figure 17. Diode Recovery Waveform

 $R_{DS(ON) Eff} = V_{DS(ON)}/I_D$

Figure 19. Dynamic RDS(on)eff Waveform

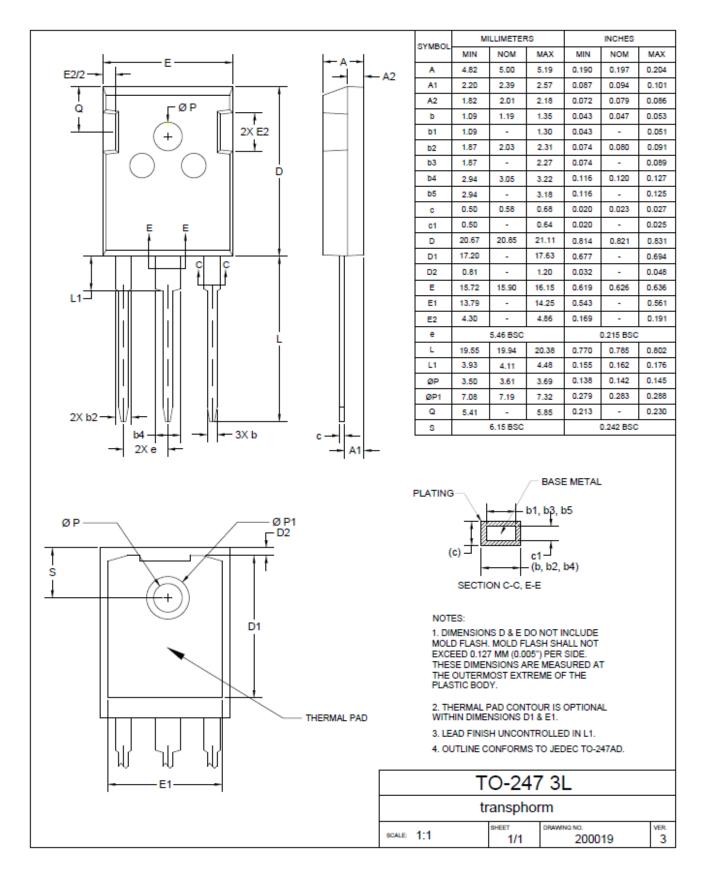
Design Considerations

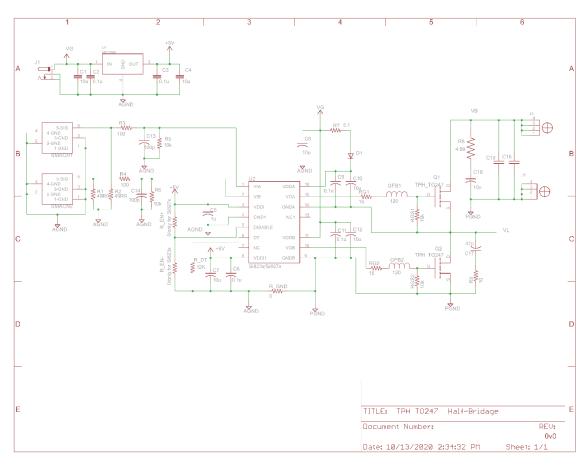
The fast switching of GaN devices reduces current-voltage crossover losses and enables high frequency operation while simultaneously achieving high efficiency. However, taking full advantage of the fast switching characteristics of GaN switches requires adherence to specific PCB layout guidelines and probing techniques.

Before evaluating Renesas GaN devices, see application note <u>Printed Circuit Board Layout and Probing for GaN</u> <u>Power Switches</u>. The table below provides some practical rules that should be followed during the evaluation.

When Evaluating Renesas GaN Devices:

DO	DO NOT		
Minimize circuit inductance by keeping traces short,	Twist the pins of TO-220 or TO-247 to accommodate GDS		
both in the drive and power loop	board layout		
Minimize lead length of TO-220 and TO-247 package	Use long traces in drive circuit, long lead length of the		
when mounting to the PCB	devices		
Use shortest sense loop for probing; attach the probe	Use differential mode probe or probe ground clip with long		
and its ground connection directly to the test points	wire		
See Printed Circuit Board Layout and Probing			

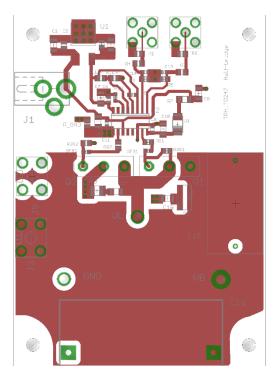

GaN Design Resources

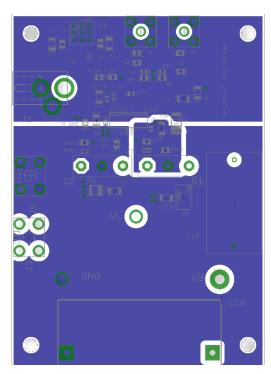

The complete technical library of GaN design tools can be found at <u>Renesasusa.com/design</u>:

- Evaluation kits
- Application notes
- Design guides
- Simulation models
- Technical papers and presentations

Mechanical

3 Lead TO-247 Package





Half-bridge Reference Schematic and PCB Layout

Half-bridge layout Sample (Top Layer)

