# Old Company Name in Catalogs and Other Documents

On April 1<sup>st</sup>, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1<sup>st</sup>, 2010 Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.



#### Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
  of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
  No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
  of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
  - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
  - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; safety equipment; and medical equipment not specifically designed for life support.
  - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

# **DATA SHEET**



# MOS INTEGRATED CIRCUIT $\mu$ PD161641

#### 240-OUTPUT TFT-LCD GATE DRIVER

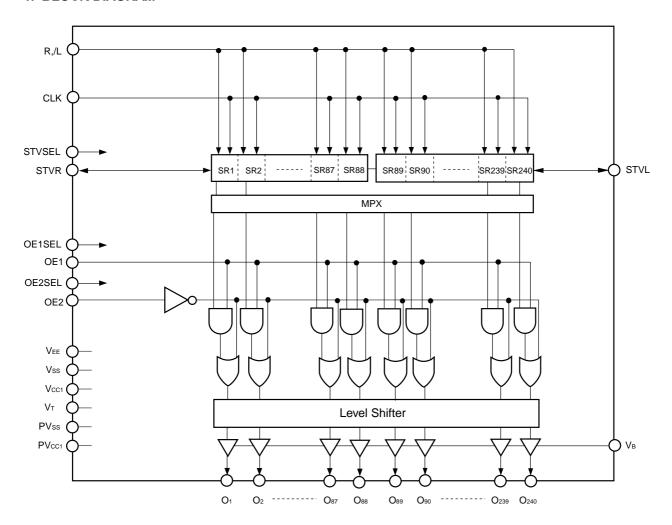
#### **DESCRIPTION**

The  $\mu$ PD161641 is a TFT-LCD gate driver. Because this gate driver has a level shift circuit for logic input, it can output a high gate scanning voltage in response to a CMOS-level input.

#### **FEATURES**

- High breakdown voltage output (V<sub>T</sub>-V<sub>B</sub> = 37 V MAX.)
- 3.0 V CMOS level input
- Number of output: 240

#### **★ ORDERING INFORMATION**


| Part number Package |                   |
|---------------------|-------------------|
| μPD161641N-xxx      | TCP (TAB package) |
| μPD161641P          | Chip              |

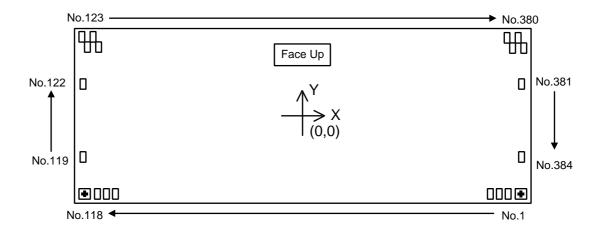
**Remark** Purchasing the above chip entails the exchange of documents such as a separate memorandum or product quality, so please contact one of our sales representatives.

The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version.

Not all devices/types available in every country. Please check with local NEC representative for availability and additional information.

#### 1. BLOCK DIAGRAM




Remark /xxx indicates active low signal.



# 2. PIN CONFIGURATION (Pad Layout)

Chip size: 9.4 x 3.5 mm<sup>2</sup>

Bump size: INPUT (include input side dummy and short-side dummy): 49 x 85  $\mu m^2$  OUTPUT (include output side dummy): 35 x 94  $\mu m^2$ 



# Alignment Mark

 $30~\mu m$   $30~\mu m$   $30~\mu m$ 

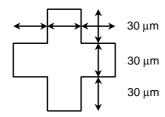





Table 2 1. Pad Layout (1/4)

| Gate Inputs 75 μm pich |                  |                    |                    |  |
|------------------------|------------------|--------------------|--------------------|--|
| Pad No.                | Pad Name         | X [mm]             | Y [mm]             |  |
| _                      | Alignment Mark   | 4.5650             | -1.6145            |  |
| -                      | Alignment Mark   | 4.5050             | -1.0145            |  |
| 1                      | DUMMY            | 4.3875             | -1.6145            |  |
| 3                      | DUMMY            | 4.3125             | -1.6145            |  |
| 4                      | DUMMY<br>DUMMY   | 4.2375<br>4.1625   | -1.6145<br>-1.6145 |  |
| 5                      | DUMMY            | 4.0875             | -1.6145            |  |
| 6                      | DUMMY            | 4.0125             | -1.6145            |  |
| 7<br>8                 | DUMMY            | 3.9375             | -1.6145<br>-1.6145 |  |
| 9                      | DUMMY<br>DUMMY   | 3.8625<br>3.7875   | -1.6145<br>-1.6145 |  |
| 10                     | DUMMY            | 3.7125             | -1.6145            |  |
| 11                     | DUMMY            | 3.6375             | -1.6145            |  |
| 12<br>13               | DUMMY<br>DUMMY   | 3.5625<br>3.4875   | -1.6145<br>-1.6145 |  |
| 14                     | DUMMY            | 3.4125             | -1.6145            |  |
| 15                     | DUMMY            | 3.3375             | -1.6145            |  |
| 16                     | DUMMY            | 3.2625             | -1.6145            |  |
| 17<br>18               | DUMMY            | 3.1875<br>3.1125   | -1.6145<br>-1.6145 |  |
| 19                     | PVCC1            | 3.0375             | -1.6145            |  |
| 20                     | OE1SEL           | 2.9625             | -1.6145            |  |
| 21                     | OE1SEL           | 2.8875             | -1.614 <u>5</u>    |  |
| 22<br>23               | OE1SEL<br>OE1SEL | 2.8125<br>2.7375   | -1.6145<br>-1.6145 |  |
| 24                     | OE1SEL           | 2.6625             | -1.6145            |  |
| 25                     | PVSS             | 2.5875             | -1.6145            |  |
| 26                     | OE2SEL<br>OE2SEL | 2.5125<br>2.4375   | -1.614 <u>5</u>    |  |
| 27<br>28               | OE2SEL<br>OE2SEL | 2.4375             | -1.6145<br>-1.6145 |  |
| 29                     | OE2SEL           | 2.2875             | -1.6145            |  |
| 30                     | OE2SEL           | 2.2125             | -1.6145            |  |
| 31<br>32               | DUMMY<br>PVCC1   | 2.1375<br>2.0625   | -1.6145<br>-1.6145 |  |
| 33                     | STVSEL           | 1.9875             | -1.6145            |  |
| 34                     | STVSEL           | 1.9125             | -1.6145            |  |
| 35                     | STVSEL           | 1.8375             | -1.6145            |  |
| 36<br>37               | STVSEL<br>STVSEL | 1.7625<br>1.6875   | -1.6145<br>-1.6145 |  |
| 38                     | PVSS             | 1.6125             | -1.6145            |  |
| 39                     | R,/L             | 1.5375             | -1.6145            |  |
| 40                     | R,/L             | 1.4625             | -1.6145            |  |
| 41<br>42               | R,/L<br>R./L     | 1.3875<br>1.3125   | -1.6145<br>-1.6145 |  |
| 43                     | R,/L             | 1.2375             | -1.6145            |  |
| 44                     | PVCC1            | 1.1625             | -1.6145            |  |
| 45<br>46               | DUMMY<br>VT      | 1.0875<br>1.0125   | -1.6145<br>1.6145  |  |
| 46                     | VT               | 0.9375             | -1.6145<br>-1.6145 |  |
| 48                     | VT               | 0.8625             | -1.6145            |  |
| 49                     | VT               | 0.7875             | -1.6145            |  |
| 50<br>51               | VT<br>DUMMY      | 0.7125<br>0.6375   | -1.6145<br>-1.6145 |  |
| 52                     | DUMMY            | 0.5625             | -1.6145            |  |
| 53                     | VCC1             | 0.4875             | -1.6145            |  |
| 54                     | VCC1             | 0.4125             | -1.6145            |  |
| 55<br>56               | VCC1<br>VCC1     | 0.3375<br>0.2625   | -1.6145<br>-1.6145 |  |
| 57                     | VCC1             | 0.2625             | -1.6145<br>-1.6145 |  |
| 58                     | DUMMY            | 0.1125             | -1.6145            |  |
| 59                     | DUMMY            | 0.0375             | -1.6145            |  |
| 60<br>61               | DUMMY<br>VSS     | -0.0375<br>-0.1125 | -1.6145<br>-1.6145 |  |
| 62                     | VSS              | -0.1125            | -1.6145            |  |
| 63                     | VSS              | -0.2625            | -1.6145            |  |
| 64                     | VSS              | -0.3375            | -1.6145            |  |
| 65                     | VSS              | -0.4125            | -1.6145            |  |

| Gate Inputs 75 μm pich |                |                    |                    |  |  |  |
|------------------------|----------------|--------------------|--------------------|--|--|--|
| Pad No.                | Pad Name       | X [mm]             | Y [mm]             |  |  |  |
| 66                     | DUMMY          | -0.4875            | -1.6145            |  |  |  |
| 67                     | DUMMY          | -0.5625            | -1.6145            |  |  |  |
| 68                     | DUMMY          | -0.6375            | -1.6145            |  |  |  |
| 69                     | DUMMY          | -0.7125            | -1.6145            |  |  |  |
| 70                     | VEE            | -0.7875            | -1.6145            |  |  |  |
| 71                     | VEE            | -0.8625            | -1.6145            |  |  |  |
| 72                     | VEE            | -0.9375            | -1.6145            |  |  |  |
| 73                     | VEE            | -1.0125            | -1.6145            |  |  |  |
| 74                     | VEE            | -1.0875            | -1.6145            |  |  |  |
| 75<br>70               | DUMMY          | -1.1625            | -1.6145            |  |  |  |
| 76<br>77               | DUMMY<br>VB    | -1.2375<br>1.2125  | -1.6145<br>-1.6145 |  |  |  |
| 77<br>78               | VB             | -1.3125<br>-1.3875 | -1.6145            |  |  |  |
| 78<br>79               | VB             | -1.4625            | -1.6145            |  |  |  |
| 80                     | VB             | -1.5375            | -1.6145            |  |  |  |
| 81                     | VB             | -1.6125            | -1.6145            |  |  |  |
| 82                     | DUMMY          | -1.6875            | -1.6145            |  |  |  |
| 83                     | DUMMY          | -1.7625            | -1.6145            |  |  |  |
| 84                     | DUMMY          | -1.8375            | -1.6145            |  |  |  |
| 85                     | STVR           | -1.9125            | -1.6145            |  |  |  |
| 86                     | STVR           | -1.9875            | -1.6145            |  |  |  |
| 87                     | STVR           | -2.0625            | -1.6145            |  |  |  |
| 88                     | STVR           | -2.1375            | -1.6145            |  |  |  |
| 89                     | STVR           | -2.2125            | -1.6145            |  |  |  |
| 90                     | DUMMY          | -2.2875            | -1.6145            |  |  |  |
| 91                     | STVL           | -2.3625            | -1.6145            |  |  |  |
| 92                     | STVL           | -2.4375            | -1.6145            |  |  |  |
| 93                     | STVL           | -2.5125            | -1.6145            |  |  |  |
| 94                     | STVL           | -2.5875            | -1.6145            |  |  |  |
| 95                     | STVL           | -2.6625            | -1.6145            |  |  |  |
| 96                     | DUMMY          | -2.7375            | -1.6145            |  |  |  |
| 97                     | CLK            | -2.8125            | -1.6145            |  |  |  |
| 98<br>99               | CLK            | -2.8875<br>-2.9625 | -1.6145<br>-1.6145 |  |  |  |
| 100                    | CLK            | -2.9025            | -1.6145            |  |  |  |
| 100                    | CLK            | -3.1125            | -1.6145            |  |  |  |
| 102                    | DUMMY          | -3.1125            | -1.6145            |  |  |  |
| 103                    | OE1            | -3.2625            | -1.6145            |  |  |  |
| 104                    | OE1            | -3.3375            | -1.6145            |  |  |  |
| 105                    | OE1            | -3.4125            | -1.6145            |  |  |  |
| 106                    | OE1            | -3.4875            | -1.6145            |  |  |  |
| 107                    | OE1            | -3.5625            | -1.6145            |  |  |  |
| 108                    | DUMMY          | -3.6375            | -1.6145            |  |  |  |
| 109                    | OE2            | -3.7125            | -1.6145            |  |  |  |
| 110                    | OE2            | -3.7875            | -1.6145            |  |  |  |
| 111                    | OE2            | -3.8625            | -1.6145            |  |  |  |
| 112                    | OE2            | -3.9375            | -1.6145            |  |  |  |
| 113                    | OE2            | -4.0125            | -1.6145            |  |  |  |
| 114                    | DUMMY          | -4.0875            | -1.6145            |  |  |  |
| 115                    | DUMMY          | -4.1625            | -1.6145            |  |  |  |
| 116                    | DUMMY          | -4.2375            | -1.6145            |  |  |  |
| 117                    | DUMMY          | -4.3125            | -1.6145            |  |  |  |
| 118                    | DUMMY          | -4.3875            | -1.6145            |  |  |  |
|                        | Alignment Mort | -4.5650            | -1.6145            |  |  |  |
|                        | Alignment Mark | -4.5030            | -1.0143            |  |  |  |



Table 2-1. Pad Layout (2/4)

| Gate Outputs 35 μm pich |            |                    |        |  |
|-------------------------|------------|--------------------|--------|--|
| Pad No. Pad Name        |            | X [mm]             | Y [mm] |  |
|                         |            |                    |        |  |
| 123                     | DUMMY      | -4.4975            | 1.6100 |  |
| 124                     | DUMMY      | -4.4625            | 1.4800 |  |
| 125                     | DUMMY      | -4.4275            | 1.6100 |  |
| 126                     | DUMMY      | -4.3925            | 1.4800 |  |
| 127                     | DUMMY      | -4.3575            | 1.6100 |  |
| 128                     | DUMMY      | -4.3225            | 1.4800 |  |
| 129                     | DUMMY      | -4.2875            | 1.6100 |  |
| 130                     | DUMMY      | -4.2525            | 1.4800 |  |
| 131                     | DUMMY      | -4.2175            | 1.6100 |  |
| 132                     | 240        | -4.1825            | 1.4800 |  |
| 133                     | 239        | -4.1475            | 1.6100 |  |
| 134                     | 238        | -4.1125            | 1.4800 |  |
| 135                     | 237        | -4.0775            | 1.6100 |  |
| 136                     | 236        | -4.0425            | 1.4800 |  |
| 137                     | 235        | -4.0075            | 1.6100 |  |
| 138                     | 234        | -3.9725            | 1.4800 |  |
|                         |            |                    |        |  |
| 139                     | 233        | -3.9375            | 1.6100 |  |
| 140                     | 232        | -3.9025            | 1.4800 |  |
| 141                     | 231        | -3.8675            | 1.6100 |  |
| 142                     | 230        | -3.8325            | 1.4800 |  |
| 143                     | 229        | -3.7975            | 1.6100 |  |
| 144                     | 228        | -3.7625            | 1.4800 |  |
| 145                     | 227        | -3.7275            | 1.6100 |  |
| 146                     | 226        | -3.6925            | 1.4800 |  |
| 147                     | 225        | -3.6575            | 1.6100 |  |
| 148                     | 224        | -3.6225            | 1.4800 |  |
| 149                     | 223        | -3.5875            | 1.6100 |  |
| 150                     | 222        | -3.5525            | 1.4800 |  |
| 151                     | 221        | -3.5175            | 1.6100 |  |
| 152                     | 220        | -3.4825            | 1.4800 |  |
| 153                     | 219        | -3.4475            | 1.6100 |  |
| 154                     | 218        | -3.4125            | 1.4800 |  |
| 155                     | 217        | -3.3775            | 1.6100 |  |
| 156                     | 216        | -3.3425            | 1.4800 |  |
| 157                     | 215        | -3.3075            | 1.6100 |  |
| 158                     | 214        | -3.2725            | 1.4800 |  |
| 159                     | 213        | -3.2375            | 1.6100 |  |
| 160                     | 212        | -3.2025            | 1.4800 |  |
| 161                     | 211        | -3.1675            | 1.6100 |  |
| 162                     | 210        |                    |        |  |
|                         |            | -3.1325<br>-3.0975 | 1.4800 |  |
| 163                     | 209        |                    | 1.6100 |  |
| 164                     | 208        | -3.0625            | 1.4800 |  |
| 165                     | 207        | -3.0275            | 1.6100 |  |
| 166                     | 206        | -2.9925            | 1.4800 |  |
| 167                     | 205        | -2.9575            | 1.6100 |  |
| 168                     | 204        | -2.9225            | 1.4800 |  |
| 169                     | 203        | -2.8875            | 1.6100 |  |
| 170                     | 202        | -2.8525            | 1.4800 |  |
| 171                     | 201        | -2.8175            | 1.6100 |  |
| 172                     | 200        | -2.7825            | 1.4800 |  |
| 173                     | 199        | -2.7475            | 1.6100 |  |
| 174                     | 198        | -2.7125            | 1.4800 |  |
| 175                     | 197        | -2.6775            | 1.6100 |  |
| 176                     | 196        | -2.6425            | 1.4800 |  |
| 177                     | 195        | -2.6075            | 1.6100 |  |
| 178                     | 194        | -2.5725            | 1.4800 |  |
| 179                     | 193        | -2.5375            | 1.6100 |  |
| 180                     | 192        | -2.5025            | 1.4800 |  |
| 181                     | 191        | -2.4675            | 1.6100 |  |
| 182                     | 190        | -2.4325            | 1.4800 |  |
| 183                     | 189        | -2.3975            | 1.6100 |  |
| 184                     |            | -2.3625            | 1.4800 |  |
| 107                     | 1188       |                    | 1.7000 |  |
| 125                     | 188        |                    | 1 6100 |  |
| 185<br>186              | 187        | -2.3275            | 1.6100 |  |
| 186                     | 187<br>186 | -2.3275<br>-2.2925 | 1.4800 |  |
|                         | 187        | -2.3275            |        |  |

| Gate Outputs 35 μm pich |                |                    |                  |  |  |
|-------------------------|----------------|--------------------|------------------|--|--|
| Pad No.                 | Pad Name       | X [mm]             | Y [mm]           |  |  |
| 400                     | 400            | 0.4075             | 4 0400           |  |  |
| 189<br>190              | 183<br>182     | -2.1875<br>-2.1525 | 1.6100<br>1.4800 |  |  |
| 191                     | 181            | -2.1175            | 1.6100           |  |  |
| 192                     | 180            | -2.0825            | 1.4800           |  |  |
| 193                     | 179            | -2.0475            | 1.6100           |  |  |
| 194<br>195              | 178<br>177     | -2.0125<br>-1.9775 | 1.4800<br>1.6100 |  |  |
| 196                     | 176            | -1.9775            | 1.4800           |  |  |
| 197                     | 175            | -1.9075            | 1.6100           |  |  |
| 198                     | 174            | -1.8725            | 1.4800           |  |  |
| 199                     | 173            | -1.8375            | 1.6100           |  |  |
| 200<br>201              | 172<br>171     | -1.8025<br>-1.7675 | 1.4800<br>1.6100 |  |  |
| 202                     | 170            | -1.7325            | 1.4800           |  |  |
| 203                     | 169            | -1.6975            | 1.6100           |  |  |
| 204                     | 168            | -1.6625            | 1.4800           |  |  |
| 205                     | 167            | -1.6275            | 1.6100           |  |  |
| 206<br>207              | 166<br>165     | -1.5925<br>-1.5575 | 1.4800<br>1.6100 |  |  |
| 208                     | 164            | -1.5225            | 1.4800           |  |  |
| 209                     | 163            | -1.4875            | 1.6100           |  |  |
| 210                     | 162            | -1.4525            | 1.4800           |  |  |
| 211                     | 161            | -1.4175            | 1.6100           |  |  |
| 212<br>213              | 160<br>159     | -1.3825<br>-1.3475 | 1.4800<br>1.6100 |  |  |
| 214                     | 158            | -1.3125            | 1.4800           |  |  |
| 215                     | 157            | -1.2775            | 1.6100           |  |  |
| 216                     | 156            | -1.2425            | 1.4800           |  |  |
| 217                     | 155            | -1.2075            | 1.6100           |  |  |
| 218<br>219              | 154<br>153     | -1.1725<br>-1.1375 | 1.4800<br>1.6100 |  |  |
| 220                     | 152            | -1.1375            | 1.4800           |  |  |
| 221                     | 151            | -1.0675            | 1.6100           |  |  |
| 222                     | 150            | -1.0325            | 1.4800           |  |  |
| 223                     | 149            | -0.9975            | 1.6100           |  |  |
| 224<br>225              | 148<br>147     | -0.9625<br>-0.9275 | 1.4800<br>1.6100 |  |  |
| 226                     | 146            | -0.8925            | 1.4800           |  |  |
| 227                     | 145            | -0.8575            | 1.6100           |  |  |
| 228                     | 144            | -0.8225            | 1.4800           |  |  |
| 229                     | 143            | -0.7875            | 1.6100           |  |  |
| 230<br>231              | 142<br>141     | -0.7525<br>-0.7175 | 1.4800<br>1.6100 |  |  |
| 232                     | 140            | -0.7173            | 1.4800           |  |  |
| 233                     | 139            | -0.6475            | 1.6100           |  |  |
| 234                     | 138            | -0.6125            | 1.4800           |  |  |
| 235                     | 137            | -0.5775            | 1.6100           |  |  |
| 236<br>237              | 136<br>135     | -0.5425<br>-0.5075 | 1.4800<br>1.6100 |  |  |
| 238                     | 134            | -0.4725            | 1.4800           |  |  |
| 239                     | 133            | -0.4375            | 1.6100           |  |  |
| 240                     | 132            | -0.4025            | 1.4800           |  |  |
| 241                     | 131            | -0.3675            | 1.6100           |  |  |
| 242<br>243              | 130<br>129     | -0.3325<br>-0.2975 | 1.4800<br>1.6100 |  |  |
| 243                     | 128            | -0.2975            | 1.4800           |  |  |
| 245                     | 127            | -0.2275            | 1.6100           |  |  |
| 246                     | 126            | -0.1925            | 1.4800           |  |  |
| 247                     | 125            | -0.1575<br>0.1335  | 1.6100           |  |  |
| 248<br>249              | 124<br>123     | -0.1225<br>-0.0875 | 1.4800<br>1.6100 |  |  |
| 250                     | 122            | -0.0525            | 1.4800           |  |  |
| 251                     | 121            | -0.0175            | 1.6100           |  |  |
| 252                     | DUMMY          | 0.0175             | 1.4800           |  |  |
| 253<br>254              | DUMMY<br>DUMMY | 0.0525             | 1.6100<br>1.4800 |  |  |
| 254                     | DOININI Y      | 0.0875             | 1.4800           |  |  |



Table 2-1. Pad Layout (3/4)

| Gate Outputs 35 μm pich |            |                  |                  |  |
|-------------------------|------------|------------------|------------------|--|
| Pad No.                 | Pad Name   | X [mm]           | Y [mm]           |  |
| 255                     | DUMMY      | 0.1225           | 1.6100           |  |
| 256                     | DUMMY      | 0.1223           | 1.4800           |  |
| 257                     | DUMMY      | 0.1925           | 1.6100           |  |
| 258                     | 120        | 0.2275           | 1.4800           |  |
| 259                     | 119        | 0.2625           | 1.6100           |  |
| 260                     | 118        | 0.2975           | 1.4800           |  |
| 261                     | 117        | 0.3325           | 1.6100           |  |
| 262                     | 116        | 0.3675           | 1.4800           |  |
| 263<br>264              | 115<br>114 | 0.4025<br>0.4375 | 1.6100<br>1.4800 |  |
| 265                     | 113        | 0.4375           | 1.6100           |  |
| 266                     | 112        | 0.5075           | 1.4800           |  |
| 267                     | 111        | 0.5425           | 1.6100           |  |
| 268                     | 110        | 0.5775           | 1.4800           |  |
| 269                     | 109        | 0.6125           | 1.6100           |  |
| 270                     | 108        | 0.6475           | 1.4800           |  |
| 271                     | 107        | 0.6825           | 1.6100           |  |
| 272                     | 106        | 0.7175           | 1.4800           |  |
| 273                     | 105        | 0.7525           | 1.6100           |  |
| 274<br>275              | 104        | 0.7875           | 1.4800<br>1.6100 |  |
| 276                     | 103        | 0.8225<br>0.8575 | 1.6100<br>1.4800 |  |
| 277                     | 101        | 0.8925           | 1.6100           |  |
| 278                     | 100        | 0.9275           | 1.4800           |  |
| 279                     | 99         | 0.9625           | 1.6100           |  |
| 280                     | 98         | 0.9975           | 1.4800           |  |
| 281                     | 97         | 1.0325           | 1.6100           |  |
| 282                     | 96         | 1.0675           | 1.4800           |  |
| 283                     | 95         | 1.1025           | 1.6100           |  |
| 284                     | 94         | 1.1375           | 1.4800           |  |
| 285                     | 93         | 1.1725           | 1.6100           |  |
| 286                     | 92         | 1.2075           | 1.4800           |  |
| 287<br>288              | 91<br>90   | 1.2425<br>1.2775 | 1.6100<br>1.4800 |  |
| 289                     | 89         | 1.3125           | 1.6100           |  |
| 290                     | 88         | 1.3475           | 1.4800           |  |
| 291                     | 87         | 1.3825           | 1.6100           |  |
| 292                     | 86         | 1.4175           | 1.4800           |  |
| 293                     | 85         | 1.4525           | 1.6100           |  |
| 294                     | 84         | 1.4875           | 1.4800           |  |
| 295                     | 83         | 1.5225           | 1.6100           |  |
| 296                     | 82         | 1.5575           | 1.4800           |  |
| 297                     | 81         | 1.5925           | 1.6100           |  |
| 298<br>299              | 80<br>79   | 1.6275           | 1.4800<br>1.6100 |  |
| 300                     | 79<br>78   | 1.6625<br>1.6975 | 1.4800           |  |
| 301                     | 77         | 1.7325           | 1.6100           |  |
| 302                     | 76         | 1.7675           | 1.4800           |  |
| 303                     | 75         | 1.8025           | 1.6100           |  |
| 304                     | 74         | 1.8375           | 1.4800           |  |
| 305                     | 73         | 1.8725           | 1.6100           |  |
| 306                     | 72         | 1.9075           | 1.4800           |  |
| 307                     | 71         | 1.9425           | 1.6100           |  |
| 308                     | 70         | 1.9775           | 1.4800           |  |
| 309                     | 69         | 2.0125           | 1.6100           |  |
| 310                     | 68         | 2.0475<br>2.0825 | 1.4800           |  |
| 311                     | 67         |                  | 1.6100<br>1.4800 |  |
| 312<br>313              | 66<br>65   | 2.1175<br>2.1525 | 1.4800           |  |
| 314                     | 64         | 2.1325           | 1.4800           |  |
| 315                     | 63         | 2.1073           | 1.6100           |  |
| 316                     | 62         | 2.2575           | 1.4800           |  |
| 317                     | 61         | 2.2925           | 1.6100           |  |
| 318                     | 60         | 2.3275           | 1.4800           |  |
| 319                     | 59         | 2.3625           | 1.6100           |  |
|                         |            |                  |                  |  |

| Gate Outputs 35 μm pich |                |                  |                  |  |
|-------------------------|----------------|------------------|------------------|--|
| Pad No. Pad Name        |                | X [mm]           | Y [mm]           |  |
|                         |                |                  |                  |  |
| 320                     | 58             | 2.3975           | 1.4800           |  |
| 321                     | 57             | 2.4325           | 1.6100           |  |
| 322<br>323              | 56<br>55       | 2.4675<br>2.5025 | 1.4800<br>1.6100 |  |
| 324                     | 54             | 2.5375           | 1.4800           |  |
| 325                     | 53             | 2.5725           | 1.6100           |  |
| 326                     | 52             | 2.6075           | 1.4800           |  |
| 327                     | 51             | 2.6425           | 1.6100           |  |
| 328                     | 50             | 2.6775           | 1.4800           |  |
| 329                     | 49             | 2.7125           | 1.6100           |  |
| 330                     | 48             | 2.7475           | 1.4800           |  |
| 331                     | 47             | 2.7825           | 1.6100           |  |
| 332                     | 46             | 2.8175           | 1.4800           |  |
| 333<br>334              | 45<br>44       | 2.8525<br>2.8875 | 1.6100<br>1.4800 |  |
| 335                     | 43             | 2.9225           | 1.6100           |  |
| 336                     | 42             | 2.9575           | 1.4800           |  |
| 337                     | 41             | 2.9925           | 1.6100           |  |
| 338                     | 40             | 3.0275           | 1.4800           |  |
| 339                     | 39             | 3.0625           | 1.6100           |  |
| 340                     | 38             | 3.0975           | 1.4800           |  |
| 341                     | 37             | 3.1325           | 1.6100           |  |
| 342                     | 36             | 3.1675           | 1.4800           |  |
| 343                     | 35             | 3.2025           | 1.6100           |  |
| 344<br>345              | 33             | 3.2375<br>3.2725 | 1.4800<br>1.6100 |  |
| 346                     | 32             | 3.3075           | 1.4800           |  |
| 347                     | 31             | 3.3425           | 1.6100           |  |
| 348                     | 30             | 3.3775           | 1.4800           |  |
| 349                     | 29             | 3.4125           | 1.6100           |  |
| 350                     | 28             | 3.4475           | 1.4800           |  |
| 351                     | 27             | 3.4825           | 1.6100           |  |
| 352                     | 26             | 3.5175           | 1.4800           |  |
| 353                     | 25             | 3.5525           | 1.6100           |  |
| 354<br>355              | 24             | 3.5875           | 1.4800<br>1.6100 |  |
| 355<br>356              | 22             | 3.6225<br>3.6575 | 1.4800           |  |
| 357                     | 21             | 3.6925           | 1.6100           |  |
| 358                     | 20             | 3.7275           | 1.4800           |  |
| 359                     | 19             | 3.7625           | 1.6100           |  |
| 360                     | 18             | 3.7975           | 1.4800           |  |
| 361                     | 17             | 3.8325           | 1.6100           |  |
| 362                     | 16             | 3.8675           | 1.4800           |  |
| 363                     | 15             | 3.9025           | 1.6100           |  |
| 364<br>365              | 14             | 3.9375           | 1.4800           |  |
| 365<br>366              | 13<br>12       | 3.9725<br>4.0075 | 1.6100<br>1.4800 |  |
| 367                     | 11             | 4.0075           | 1.4800           |  |
| 368                     | 10             | 4.0425           | 1.4800           |  |
| 369                     | 9              | 4.1125           | 1.6100           |  |
| 370                     | 8              | 4.1475           | 1.4800           |  |
| 371                     | 7              | 4.1825           | 1.6100           |  |
| 372                     | 6              | 4.2175           | 1.4800           |  |
| 373                     | 5              | 4.2525           | 1.6100           |  |
| 374                     | 4              | 4.2875           | 1.4800           |  |
| 375                     | 3              | 4.3225           | 1.6100           |  |
| 376                     | 2              | 4.3575           | 1.4800           |  |
| 377                     | 1              | 4.3925           | 1.6100           |  |
| 378<br>379              | DUMMY<br>DUMMY | 4.4275<br>4.4625 | 1.4800<br>1.6100 |  |
| 380                     | DUMMY          | 4.4975           | 1.4800           |  |
| 300                     | D O IVIIVI I   | 7.7373           | 1.∓000           |  |



Table 2-1. Pad Layout (4/4)

| Gate Right 75 μm pich |          |        |         |  |  |
|-----------------------|----------|--------|---------|--|--|
| Pad No.               | Pad Name | X [mm] | Y [mm]  |  |  |
|                       |          |        |         |  |  |
| 381                   | DUMMY    | 4.5825 | 1.1250  |  |  |
| 382                   | DUMMY    | 4.5825 | 0.3750  |  |  |
| 383                   | DUMMY    | 4.5825 | -0.3750 |  |  |
| 384                   | DUMMY    | 4.5825 | -1.1250 |  |  |

| Gate Left 75 μm pich |          |         |         |  |  |
|----------------------|----------|---------|---------|--|--|
| Pad No.              | Pad Name | X [mm]  | Y [mm]  |  |  |
|                      |          |         |         |  |  |
| 119                  | DUMMY    | -4.5825 | -1.1250 |  |  |
| 120                  | DUMMY    | -4.5825 | -0.3750 |  |  |
| 121                  | DUMMY    | -4.5825 | 0.3750  |  |  |
| 122                  | DUMMY    | -4.5825 | 1.1250  |  |  |



# 3. PIN FUNCTIONS

(1/2)

| _          |                           | T           | Ti-    | (1/2)                                                                                                                                                              |
|------------|---------------------------|-------------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Symbol     | Pin Name                  | Pad No.     | I/O    | Function                                                                                                                                                           |
| O1 to O240 | Driver output             | 132 to 251, | Output | Scan signal output pins that drive the gate electrode of a TFT-                                                                                                    |
|            |                           | 258 to 377  |        | LCD. The status of each output pin changes in synchronization                                                                                                      |
|            |                           |             |        | with the rising edge of shift clock. The output voltage of the driver                                                                                              |
|            |                           |             |        | is V <sub>T</sub> -V <sub>B</sub> .                                                                                                                                |
| STVR,      | Start pulse input/output  | 85 to 89,   | I/O    | Input/output pin of the internal shift register.                                                                                                                   |
| STVL       |                           | 91 to 95    |        | Read of start pulse signal is set at rising edge of shift clock, and                                                                                               |
|            |                           |             |        | outputs a scanning signal from a driver output pin. In addition,                                                                                                   |
|            |                           |             |        | the effective level of a STVR/STVL pin is determined by setup                                                                                                      |
|            |                           |             |        | of STVSEL pin. Moreover, an input/output level is Vcc1-Vss                                                                                                         |
|            |                           |             |        | (logic level).                                                                                                                                                     |
|            |                           |             |        | STVSEL = L: Start pulse is set to low level by the 240th falling                                                                                                   |
|            |                           |             |        | edge of shift clock, and is set to a high level by the 241st falling                                                                                               |
|            |                           |             |        | edge.                                                                                                                                                              |
| STVSEL     | Start pulse input         | 33 to 37    | Input  | The effective level of the start pulse signal inputted into                                                                                                        |
|            | effective level selection |             |        | STVR/STVL is selected.                                                                                                                                             |
|            |                           |             |        | STVSEL = L: Low level                                                                                                                                              |
|            |                           |             |        | STVSEL = H: High level                                                                                                                                             |
| CLK        | Shift clock input         | 97 to 101   | Input  | Shift clock input for the internal shift register. The contents of                                                                                                 |
|            |                           |             |        | internal shift register is shifted at the rising edge of CLK.                                                                                                      |
|            |                           |             |        | Connect to GCLK pin of source driver.                                                                                                                              |
| R,/L       | Shift direction           | 39 to 43    | Input  | Shift direction switching input pin of the internal shift register.                                                                                                |
|            | switching input           |             |        | R,/L = H (right shift): STVR $\rightarrow$ O <sub>1</sub> $\rightarrow$ O <sub>2</sub> $\cdots$ O <sub>239</sub> $\rightarrow$ O <sub>240</sub> $\rightarrow$ STVL |
|            |                           |             |        | R,/L = L (left shift): STVL $\rightarrow$ O <sub>240</sub> $\rightarrow$ O <sub>239</sub> $\cdots$ O <sub>2</sub> $\rightarrow$ O <sub>1</sub> $\rightarrow$ STVR  |
| OE1        | Enable input              | 103 to 107  | Input  | Input of the level selected by OE1SEL fixes a driver output to a                                                                                                   |
|            |                           |             |        | low level (input of a low level fixes driver output to low level at                                                                                                |
|            |                           |             |        | the time of OE1SEL = L). However, shift register is not cleared.                                                                                                   |
|            |                           |             |        | Moreover, output enable operation is asynchronous on a clock.                                                                                                      |
|            |                           |             |        | Connect with GOE1 pin of sauce driver.                                                                                                                             |
| OE1SEL     | OE1 effective level       | 20 to 24    | Input  | This pin selects effective level of OE1 pin.                                                                                                                       |
|            | selection                 |             |        | OE1SEL = L: Low level                                                                                                                                              |
|            |                           |             |        | OE1SEL = H: High level                                                                                                                                             |
| OE2        | Enable input              | 109 to 113  | Input  | Input of the level selected by OE2SEL fixes a driver output to a                                                                                                   |
|            |                           |             |        | high level (input of a low level fixes driver output to high level at                                                                                              |
|            |                           |             |        | the time of OE2SEL = L). However, shift register is not cleared.                                                                                                   |
|            |                           |             |        | Moreover, output enable operation is asynchronous on a clock.                                                                                                      |
|            |                           |             |        | Connect with GOE2 pin of sauce driver.                                                                                                                             |
| OE2SEL     | OE2 effective level       | 26 to 30    | Input  | This pin selects effective level of OE2 pin.                                                                                                                       |
|            | selection                 |             |        | OE2SEL = L: Low level                                                                                                                                              |
|            |                           |             |        | OE2SEL = H: High level                                                                                                                                             |

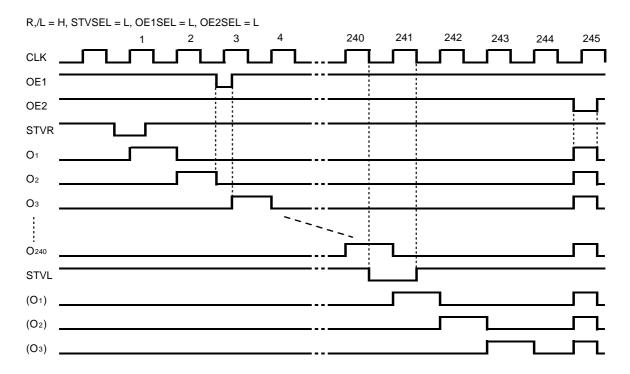


(2/2)

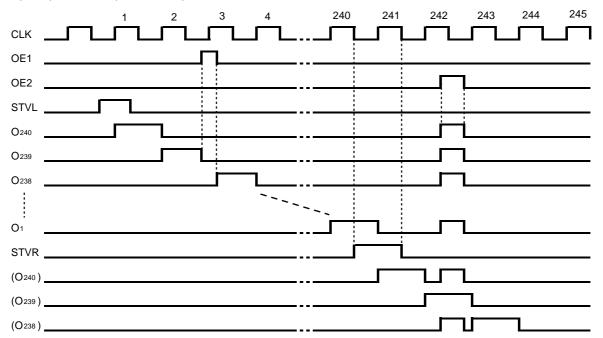
| Symbol         | Name                             | Pad No.    | I/O | Function                                                                                              |
|----------------|----------------------------------|------------|-----|-------------------------------------------------------------------------------------------------------|
| VT             | Positive power supply for driver | 48 to 50   | -   | Positive power supply for level shifter and output buffer.  Positive power supply for Liquid crystal. |
| VEE            | Negative power supply for logic  | 70 to 74   | -   | Negative power supply for level shifter.                                                              |
| V <sub>B</sub> | Negative power supply for driver | 77 to 81   | -   | Negative power supply for output buffer.  Negative power supply for Liquid crystal.                   |
| Vcc1           | Positive power supply for logic  | 53 to 57   | -   | Positive power supply for logic circuit.                                                              |
| Vss            | Ground                           | 61 to 65   | _   | Connect to the system ground.                                                                         |
| PVcc1          | Pull-up power supply             | 19, 32, 44 | -   | Pull-up power supply for mode setting pins (R,/L, STVSEL, OE1SEL, OE2SEL).                            |
| PVss           | Pull-down power supply           | 25, 38     | -   | Pull-down power supply for mode setting pins (R,/L, STVSEL, OE1SEL, OE2SEL).                          |

# 4. MODE DESCRIPTION

# **Output Mode Selection**


| R,/L | STVR   | STVL   | Scan Direction |
|------|--------|--------|----------------|
| Н    | Input  | Output | 1→240          |
| L    | Output | Input  | 240→1          |

Remark H: Vcc1, L: Vss




#### 5. TIMING CHART

The timing chart in each conditions is shown as follows.









#### 6. ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings (T<sub>A</sub> = 25°C, V<sub>SS</sub> = 0 V)

| Parameter                     | Symbol           | Rating                       | Unit |
|-------------------------------|------------------|------------------------------|------|
| Supply Voltage                | VT               | -0.5 to +23                  | V    |
| Supply Voltage                | V <sub>CC1</sub> | -0.5 to +7.0                 | V    |
| Supply Voltage                | VT-VEE           | -0.5 to +40                  | V    |
| Supply Voltage                | VEE              | V⊤–38 to +0.5                | V    |
| Supply Voltage                | V <sub>B</sub>   | V <sub>EE</sub> +0.5 to +0.5 | V    |
| Input Voltage Note            | Vı               | −0.5 to Vcc₁+0.5             | V    |
| Operating Ambient Temperature | TA               | -40 to +85                   | °C   |
| Storage Temperature           | Tstg             | –55 to +150                  | °C   |

Note R,/L, CLK, STVR, STVL, OE1, OE2, STVSEL, OE1SEL, OE2SEL

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

Recommended Operating Conditions (T<sub>A</sub> = -40 to +85°C, Vss = 0 V)

| Parameter          | Symbol | MIN.               | TYP.        | MAX.                | Unit |
|--------------------|--------|--------------------|-------------|---------------------|------|
| Supply Voltage     | VT     | 8.5                | 15          | 20.5                | V    |
| Supply Voltage     | VEE    | -16.5              | <b>–</b> 15 | -13.5               | V    |
| Supply Voltage     | VB     | V <sub>EE</sub> +1 |             | V <sub>EE</sub> +12 | V    |
| Supply Voltage     | VT-VEE | 22                 |             | 37                  | V    |
| Supply Voltage     | Vcc1   | 2.5                | 2.7         | 3.6                 | V    |
| Input Voltage Note | Vı     | 0                  |             | V <sub>CC1</sub>    | ٧    |

Note R,/L, CLK, STVR, STVL, OE1, OE2, STVSEL, OE1SEL, OE2SEL

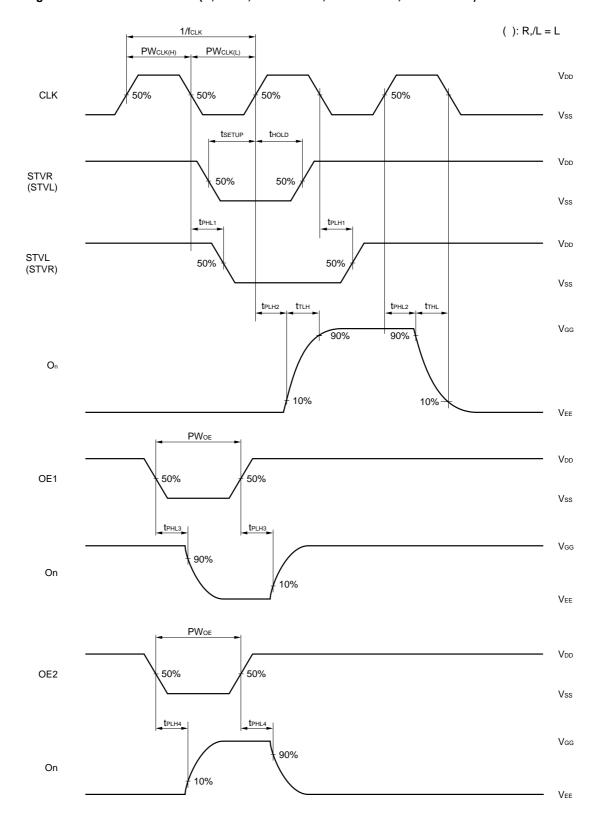


#### Electrical Characteristics (T<sub>A</sub> = -40 to +85°C, V<sub>CC1</sub> = 2.5 to 3.6 V, V<sub>T</sub> = 15 V, V<sub>EE</sub> = -15 V, V<sub>B</sub> = -11 V, V<sub>SS</sub> = 0 V)

| Parameter                 | Symbol           | Condition                                          | MIN.       | TYP. | MAX.     | Unit     |
|---------------------------|------------------|----------------------------------------------------|------------|------|----------|----------|
| High Level Input Voltage  | V <sub>IH1</sub> | R,/L, CLK, STVR, STVL, OE1, OE2,                   | 0.8 Vcc1   |      | Vcc1     | V        |
| Low Level Input Voltage   | V <sub>IL1</sub> | STVSEL, OE1SEL, OE2SEL                             | 0          |      | 0.2 Vcc1 | <b>V</b> |
| High Level Output Voltage | Vон              | STVR, STVL, IOH = $-40 \mu$ A                      | Vcc1 - 0.4 |      | Vcc1     | <b>V</b> |
| Low Level Output Voltage  | VoL              | STVR, STVL, I <sub>OH</sub> = +40 $\mu$ A          | 0          |      | 0.4      | <b>V</b> |
| Output ON Resistance      | R <sub>ON1</sub> | O <sub>1</sub> to O <sub>240</sub>                 |            |      | 1.0      | kΩ       |
| Input Current             | l <sub>11</sub>  | Logic input pin                                    |            |      | ±1.0     | μΑ       |
| Dynamic Current 1         | Icc1             | Vcc1, Note                                         |            |      | 200      | μΑ       |
| Dynamic Current 2         | lτ               | V⊤, <b>Note</b>                                    |            |      | 100      | μΑ       |
| Dynamic Current 3         | lee              | VEE, Note                                          |            |      | 100      | μΑ       |
| Static Current Note       | Iss              | V <sub>CC1</sub> , V <sub>T</sub> in stand-by mode |            |      | 10       | μΑ       |

Note fclk = 45.5 kHz, output no load

#### Switching Characteristics ( $T_A = -40 \text{ to } +85^{\circ}\text{C}$ , $V_{CC1} = 2.5 \text{ to } 3.6 \text{ V}$ , $V_T = 15 \text{ V}$ , $V_{EE} = -15 \text{ V}$ , $V_B = -11 \text{ V}$ , $V_{SS} = 0 \text{ V}$ )


| Parameter                  | Symbol            | Condition                     | MIN. | TYP. | MAX. | Unit |
|----------------------------|-------------------|-------------------------------|------|------|------|------|
| Cascade Output Delay Time  | t <sub>PHL1</sub> | C <sub>L</sub> = 20 pF,       |      |      | 800  | ns   |
|                            | <b>t</b> PLH1     | $CLK \rightarrow STVL (STVR)$ |      |      | 800  | ns   |
| Driver Output Delay Time 1 | tPHL2             | C <sub>L</sub> = 300 pF,      |      |      | 500  | ns   |
|                            | t <sub>PLH2</sub> | $CLK 	o O_n$                  |      |      | 500  | ns   |
| Driver Output Delay Time2  | t <sub>PHL3</sub> | C <sub>L</sub> = 300 pF,      |      |      | 500  | ns   |
|                            | t <sub>PLH3</sub> | OE1 → On                      |      |      | 500  | ns   |
| Driver Output Delay Time 3 | tPHL4             | C <sub>L</sub> = 300 pF,      |      |      | 500  | ns   |
|                            | t <sub>PLH4</sub> | $OE2 \rightarrow On$          |      |      | 500  | ns   |
| Output Rise Time           | tтьн              | C <sub>L</sub> = 300 pF       |      |      | 800  | ns   |
| Output Fall Time           | <b>t</b> THL      |                               |      |      | 800  | ns   |
| Input Capacitance          | Cı                | T <sub>A</sub> = 25°C         |      |      | 15   | pF   |
| Clock Frequency            | fclk              | When connected in cascade     |      |      | 500  | kHz  |

# Timing Requirement ( $T_A = -40 \text{ to } +85^{\circ}\text{C}$ , $V_{CC1} = 2.5 \text{ to } 3.6 \text{ V}$ , $V_T = 15 \text{ V}$ , $V_{EE} = -15 \text{ V}$ , $V_B = -11 \text{ V}$ , $V_{SS} = 0 \text{ V}$ )

| Parameter                | Symbol               | Condition           | MIN. | TYP. | MAX. | Unit |
|--------------------------|----------------------|---------------------|------|------|------|------|
| Clock Pulse High Period  | PW <sub>CLK(H)</sub> |                     | 500  |      |      | ns   |
| Clock Pulse Low Period   | PW <sub>CLK(L)</sub> |                     | 500  |      |      | ns   |
| Enable Pulse High Period | PWoE                 | OE1, OE2            | 1    |      |      | μs   |
| Data Setup Time          | <b>t</b> SETUP       | STVR (STVL) ↓ →CLK↑ | 200  |      |      | ns   |
| Data Hold Time           | thold                | CLK↑→STVR (STVL)↑   | 200  |      |      | ns   |

**Remark** The rise and fall times of logic input must be  $t_r = t_f = 20$  ns (10 to 90%)

# Switching Characteristics Waveform (R,/L = H, STVSEL = L, OE1SEL = L, OE2SEL = L)



[MEMO]



#### **NOTES FOR CMOS DEVICES -**

#### (1) PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note:

Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it.

# 2 HANDLING OF UNUSED INPUT PINS FOR CMOS

Note:

No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices.

#### (3) STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note:

Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function.



#### ★ Reference Documents

NEC Semiconductor Device Reliability/Quality Control System (C10983E)
Quality Grades On NEC Semiconductor Devices (C11531E)

- The information in this document is current as of July 2002. The information is subject to change
  without notice. For actual design-in, refer to the latest publications of NEC's data sheets or data
  books, etc., for the most up-to-date specifications of NEC semiconductor products. Not all products
  and/or types are available in every country. Please check with an NEC sales representative for
  availability and additional information.
- No part of this document may be copied or reproduced in any form or by any means without prior written consent of NEC. NEC assumes no responsibility for any errors that may appear in this document.
- NEC does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from the use of NEC semiconductor products listed in this document or any other liability arising from the use of such products. No license, express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC or others.
- Descriptions of circuits, software and other related information in this document are provided for illustrative
  purposes in semiconductor product operation and application examples. The incorporation of these
  circuits, software and information in the design of customer's equipment shall be done under the full
  responsibility of customer. NEC assumes no responsibility for any losses incurred by customers or third
  parties arising from the use of these circuits, software and information.
- While NEC endeavours to enhance the quality, reliability and safety of NEC semiconductor products, customers
  agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize
  risks of damage to property or injury (including death) to persons arising from defects in NEC
  semiconductor products, customers must incorporate sufficient safety measures in their design, such as
  redundancy, fire-containment, and anti-failure features.
- NEC semiconductor products are classified into the following three quality grades:
  - "Standard", "Special" and "Specific". The "Specific" quality grade applies only to semiconductor products developed based on a customer-designated "quality assurance program" for a specific application. The recommended applications of a semiconductor product depend on its quality grade, as indicated below. Customers must check the quality grade of each semiconductor product before using it in a particular application.
  - "Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
  - "Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
  - "Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems and medical equipment for life support, etc.

The quality grade of NEC semiconductor products is "Standard" unless otherwise expressly specified in NEC's data sheets or data books, etc. If customers wish to use NEC semiconductor products in applications not intended by NEC, they must contact an NEC sales representative in advance to determine NEC's willingness to support a given application.

(Note)

- (1) "NEC" as used in this statement means NEC Corporation and also includes its majority-owned subsidiaries.
- (2) "NEC semiconductor products" means any semiconductor product developed or manufactured by or for NEC (as defined above).