Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010 Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anticrime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majorityowned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

MOS INTEGRATED CIRCUIT μ **PD780226, 780228**

8-BIT SINGLE-CHIP MICROCONTROLLERS

DESCRIPTION

The μ PD780226 and μ PD780228 are members of the μ PD780228 Subseries of the 78K/0 Series.

The FIPTM (VFD) controller/driver and N-ch open-drain port of the conventional μ PD78044H Subseries have been enhanced for the μ PD780228 Subseries.

A flash memory version, the μ PD78F0228, that can operate within the same power supply voltage range as the mask ROM version, and various development tools are under development.

The details of functions are described in the following user's manuals. Be sure to read them before designing.

 $\mu \text{PD780228}$ Subseries User's Manual : U12012E 78K/0 Series User's Manual Instructions : IEU-1372

FEATURES

- I/O ports: 72 (sixteen N-ch open-drain I/O ports)
- · Internal high-capacity ROM and RAM

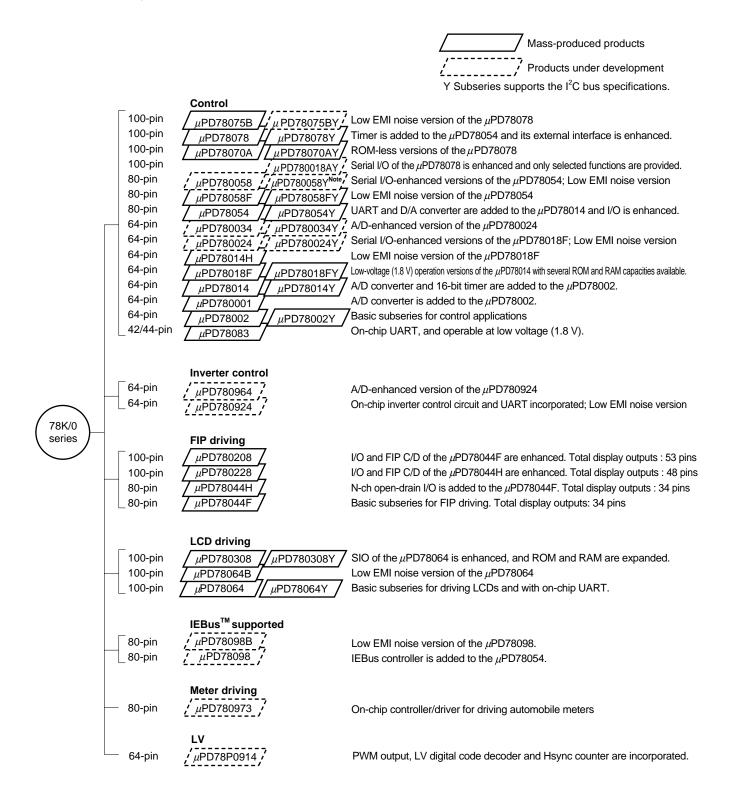
ltem	Program memory		Data memory	
Part Number	(ROM)	Internal high-speed RAM	Internal expanded RAM	FIP display RAM
μPD780226	48 Kbytes	1024 bytes 512 bytes		96 bytes
μPD780228	60 Kbytes			

- Minimum instruction execution time can be changed from high-speed (0.4 μs) to low-speed (6.4 μs)
- FIP controller/driver: 48 display outputs (Universal grid supported)
- 8-bit resolution A/D converter: eight channels
- Serial interface: one channel
- Timer: Four channels
- Power supply voltage: VDD = 4.5 to 5.5 V

APPLICATIONS

Compact-type integrated system components, separate-type system components, tuners, cassette tape decks, compact disc players, audio amplifiers, etc.

ORDERING INFORMATION


Part Number	Package
μ PD780226GF-×××-3BA	100-pin plastic QFP (14 $ imes$ 20 mm)
μPD780228GF-×××-3BA	100-pin plastic QFP (14 $ imes$ 20 mm)

Remark ××× indicates the ROM code suffix.

The information in this document is subject to change without notice.

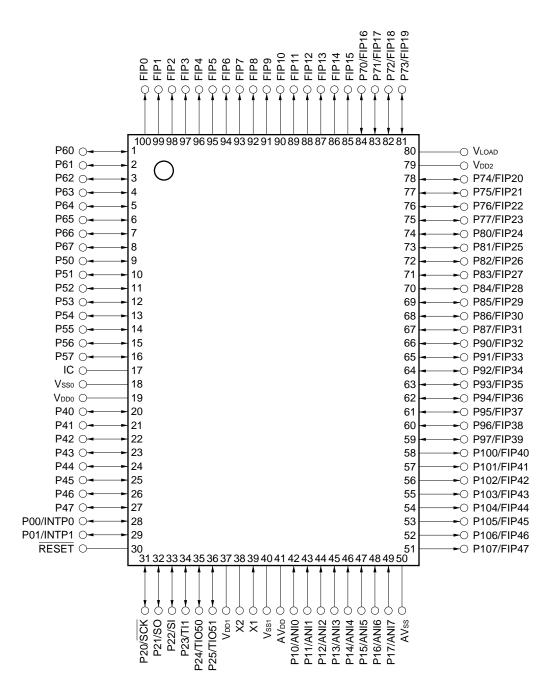
* 78K/0 Series Development

The following shows the 78K/0 Series products development. Subseries names are shown inside frames.

The following table shows the differences among subseries functions.

Function Subseries name		ROM	ROM Timer		8-bit	B-bit 10-bit 8		Serial interface	I/O	VDD MIN.	External		
		capacity	8-bit	16-bit	Watch	WDT	A/D	A/D	D/A		1,0	value	expansion
Control	μPD78075B	32K to 40K	4 ch	1 ch	1 ch	1 ch	8 ch	_	2 ch	3 ch (UART: 1 ch)	88	1.8 V	Available
	μPD78078	48K to 60K											
	μPD78070A	—									61	2.7 V	
	μPD780058	24K to 60K	2 ch						2 ch	3 ch (Time division UART: 1 ch)	68	1.8 V	
	μPD78058F	48K to 60K								3 ch (UART: 1 ch)	69	2.7 V	
	μPD78054	16K to 60K										2.0 V	1
	μPD780034	8K to 32K						8 ch	_	3 ch (UART: 1 ch, Time	51	1.8 V	-
	μPD780024						8 ch	_		division 3-wire: 1 ch)			
	μPD78014H									2 ch	53		
	μPD78018F	8K to 60K											
	μPD78014	8K to 32K										2.7 V	-
	μPD780001	8K		_	_					1 ch	39		_
	μPD78002	8K to 16K			1 ch						53		Available
	μPD78083				_		8 ch			1 ch (UART: 1 ch)	33	1.8 V	_
Inverter	μPD780964	8K to 32K	3 ch	Note	_	1 ch	_	8 ch	_	2 ch (UART: 2 ch)	47	2.7 V	Available
control	μPD780924						8 ch	_					
FIP driving	μPD780208	32K to 60K	2 ch	1 ch	1 ch	1 ch	8 ch	_	_	2 ch	74	2.7 V	_
	μPD780228	48K to 60K	3 ch	_	_					1 ch	72	4.5 V	
	μPD78044H	32K to 48K	2 ch	1 ch	1 ch						68	2.7 V	
	μPD78044F	16K to 40K								2 ch			
LCD driving	μPD780308	48K to 60K	2 ch	1 ch	1 ch	1 ch	8 ch	_		3 ch (Time division UART: 1 ch)	57	2.0 V	_
	μPD78064B	32K								2 ch (UART: 1 ch)			
	μPD78064	16K to 32K											
IEBus	μPD78098B	40K to 60K	2 ch	1 ch	1 ch	1 ch	8 ch	_	2 ch	3 ch (UART: 1 ch)	69	2.7 V	Available
supported	μPD78098	32K to 60K											
Meter driving	μPD780973	24K to 32K	3 ch	1 ch	1 ch	1 ch	5 ch	_	_	2 ch (UART: 1 ch)	56	4.5 V	_
LV	μPD78P0914	32K	6 ch	_	_	1 ch	8 ch	_	_	2 ch	54	4.5 V	Available

Note 10-bit timer: 1 channel

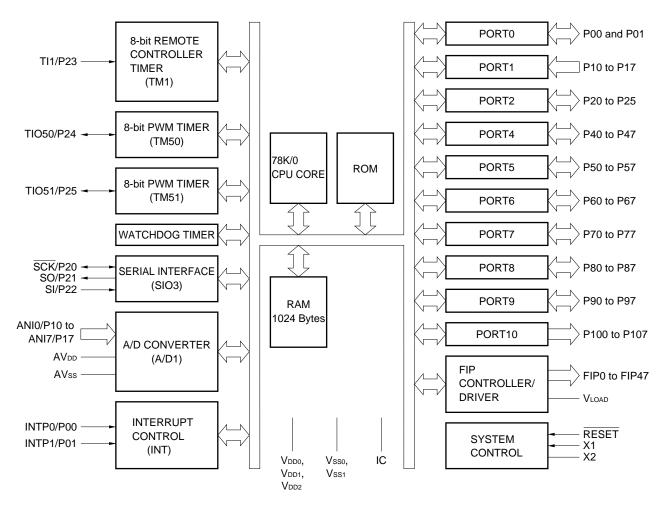

FUNCTION OVERVIEW

	Product Name	μPD780226	μPD780228			
Item						
Internal memory	ROM	48 Kbytes	60 Kbytes			
	High-speed RAM	1024 bytes				
	Expansion RAM	512 bytes				
	FIP display RAM	96 bytes				
General-purpose	register	8 bits \times 32 registers (8 bits \times 8 registers	× 4 banks)			
Minimum instruction	on execution time	On-chip minimum instruction execution	time variable function			
		• 0.4 μs/0.8 μs/1.6 μs/3.2 μs/6.4 μs (@ 5	.0-MHz operation with main system clock)			
Instruction set		• Multiply/divide (8 bits \times 8 bits, 16 bits \div	8 bits)			
		• Bit manipulate (set, reset, test, Boolean	operation)			
I/O ports (includin	g alternate	Total : 72				
function pins for F	IP)	CMOS inputs : 8				
		• CMOS I/Os : 16				
		N-ch open-drain I/Os : 16				
		P-ch open-drain I/Os : 24				
		P-ch open-drain outputs : 8				
FIP controller/drive	er	Total of display outputs : 48				
		• 10-mA display current : 16				
		• 3-mA display current : 32				
A/D converter		8-bit resolution × 8 channels				
		• Power supply voltage: AVDD = 4.5 to 5.5	5 V			
Serial interface		3-wired serial interface I/O mode: 1 chan	nel			
Timer		• 8-bit remote control timer : 1 chann	nel			
		• 8-bit PWM timer : 2 chann	nels			
		Watchdog timer : 1 channel				
Timer output		2 (8-bit PWM output is available)				
Vectored interrupt	Maskable	Internal: 6, external: 4				
sources	Non-maskable	Internal: 1				
	Software	1				
Power supply volta	age	V _{DD} = 4.5 to 5.5 V				
Package		100-pin plastic QFP (14 \times 20 mm)				

CONTENTS

	1.	PIN CONFIGURATION (TOP VIEW) 6	į
	2.	BLOCK DIAGRAM	,
	3.	PIN FUNCTION LIST 9 3.1 Port Pins 3.2 Non-port Pins 3.3 Pin I/O Circuits and Recommended Connection of Unused Pins 12)
	4.	MEMORY SPACE 14	•
	5.	PERIPHERAL HARDWARE FUNCTION FEATURES155.1Port155.2Clock Generator165.3Timer/Event Counter165.4A/D Converter185.5Serial Interface195.6FIP Controller/Driver19	;;;;;
	6.	INTERRUPT FUNCTIONS	
	7.	STANDBY FUNCTION	,
	8.	RESET FUNCTION	
	9.	INSTRUCTION SET	,
*	10.	ELECTRICAL SPECIFICATIONS	,
	11.	PACKAGE DRAWING	:
*	12.	RECOMMENDED SOLDERING CONDITIONS	,
	AP	PENDIX A. DEVELOPMENT TOOLS 44	•
	AP	PENDIX B. RELATED DOCUMENTS	

- 1. PIN CONFIGURATION (TOP VIEW)
- 100-pin plastic QFP (14 × 20 mm) μPD780226GF-×××-3BA, 780228GF-×××-3BA


Cautions 1. Connect directly the IC (Internally Connected) pin to Vss1.

- 2. Connect AVDD pin to VDD1.
- 3. Connect AVss pin to Vss1.
- **Remark** When the μ PD780226 or μ PD780228 is used in application fields that require reduction of the noise from inside the microcontroller, the implementation of noise reduction measures, such as supplying voltage to V_{DD0} and V_{DD1} individually and connecting V_{SS0} and V_{SS1} to different ground lines, is recommended.

ANI0 to ANI7	:	Analog Input
AVdd	:	Analog Power Supply
AVss	:	Analog Ground
FIP0 to FIP47	:	Fluorescent Indicator Panel
IC	:	Internally Connected
INTP0 and INTP1	:	Interrupt from Peripherals
P00 and P01	:	Port 0
P10 to P17	:	Port 1
P20 to P25	:	Port 2
P40 to P47	:	Port 4
P50 to P57	:	Port 5
P60 to P67	:	Port 6
P70 to P77	:	Port 7

P80 to P87	: Port 8
P90 to P97	: Port 9
P100 to P107	: Port 10
RESET	: Reset
SCK	: Serial Clock
SI	: Serial Input
SO	: Serial Output
TI1	: Timer Input
TIO50 and TIO51	: Timer Input/Output
VDD0 to VDD2	: Power Supply
Vload	: Negative Power Supply
Vsso and Vss1	: Ground
X1, and X2	: Crystal

2. BLOCK DIAGRAM

Remark The internal ROM capacity differs depending on the product.

3. PIN FUNCTION LIST

3.1 Port Pins (1/2)

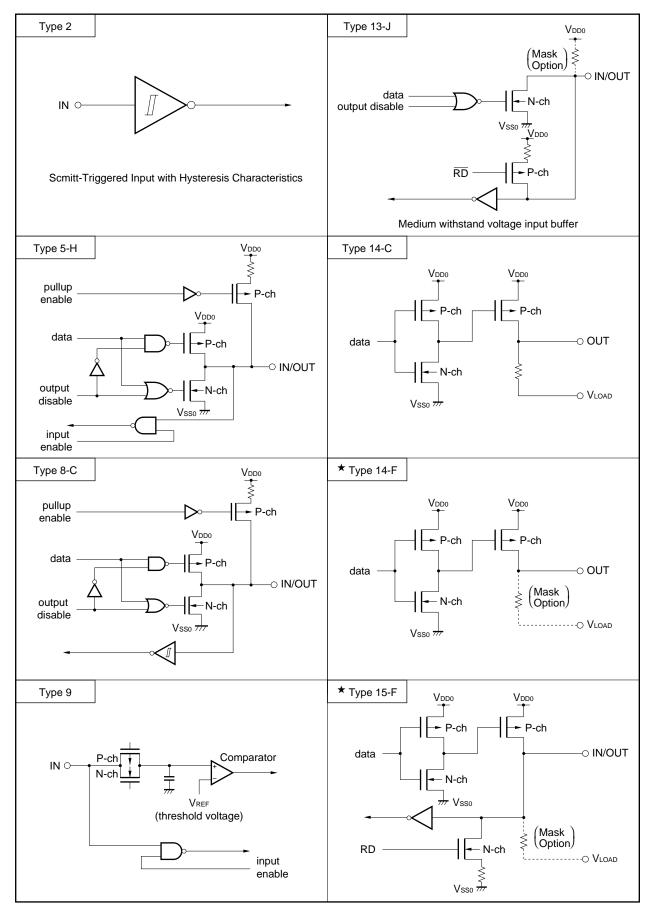
Pin Name	I/O	Function	After Reset	Alternate Function
P00	I/O	Port 0. 2-bit I/O port.	Input	INTP0
P01		Input/output can be specified bit-wise. When used as an input port, an on-chip pull-up resistor can be connected by means of software.		INTP1
P10 to P17	Input	Port 1. 8-bit input only port.	Input	ANI0 to ANI7
P20	I/O	Port 2.	Input	SCK
P21		6-bit I/O port.		SO
P22		Input/output can be specified bit-wise.		SI
P23	-	When used as an input port, an on-chip pull-up resistor can be		TI1
P24	-	connected by means of software.		TIO50
P25				TIO51
P40 to P47	I/O	Port 4. 8-bit I/O port. Input/output can be specified bit-wise. LEDs can be driven directly. When used as an input port, an on-chip pull-up resistor can be connected by means of software.	Input	_
P50 to P57	I/O	Port 5. N-ch open-drain 8-bit medium-voltage I/O port. Input/output can be specified bit-wise. LEDs can be driven directly. A pull-up resistor can be incorporated bit-wise by mask option.	Input	_
P60 to P67	I/O	Port 6. N-ch open-drain 8-bit medium-voltage I/O port. Input/output can be specified bit-wise. LEDs can be driven directly. A pull-up resistor can be incorporated bit-wise by mask option.	Input	_

3.1 Port Pins (2/2)

Pin Name	I/O	Function	After Reset	Alternate Function
P70 to P77	I/O	Port 7. P-ch open-drain 8-bit high-voltage I/O port. Input/output can be specified bit-wise. LEDs can be driven directly. A pull-down resistor can be incorporated bit-wise by mask option.	Input	FIP16 to FIP23
P80 to P87	I/O	Port 8. P-ch open-drain 8-bit high-voltage I/O port. Input/output can be specified bit-wise. A pull-down resistor can be incorporated bit-wise by mask option.	Input	FIP24 to FIP31
P90 to P97	I/O	Port 9. P-ch open-drain 8-bit high-voltage I/O port. Input/output can be specified bit-wise. A pull-down resistor can be incorporated bit-wise by mask option.	Input	FIP32 to FIP39
P100 to P107	Output	Port 10. P-ch open-drain 8-bit high-voltage I/O port. A pull-down resistor can be incorporated bit-wise by mask option.	Output	FIP40 to FIP47

3.2 Non-port Pins

Pin Name	I/O	Function	After Reset	Alternate Function
INTP0	Input	Effective edge (rising edge, falling edge, or both rising and	Input	P00
INTP1		falling edges) can be specified. External interrupt request input.		P01
SCK	I/O	Serial interface serial clock I/O.	Input	P20
SO	Output	Serial interface serial data output.	Input	P21
SI	Input	Serial interface serial data input.	Input	P22
TI1	Input	8-bit remote control timer (TM1) timer input.	Input	P23
TIO50	I/O	8-bit PWM timer (TM50) capture trigger input/timer output.	Input	P24
TIO51	I/O	8-bit PWM timer (TM51) capture trigger input/timer output.	Input	P25
FIP0 to FIP15	Output	FIP controller/driver high-voltage withstand large current output.	Output	_
FIP16 to FIP23			Input	P70 to P77
FIP24 to FIP31				P80 to P87
FIP32 to FIP39				P90 to P97
FIP40 to FIP47				P100 to P107
Vload	_	FIP controller/driver pull-down resistor connection.	_	_
RESET	Input	System reset input.	—	_
X1	Input	Crystal connection for main system clock oscillation.		—
X2	—		—	_
ANI0 to ANI7	Input	A/D converter analog input.	Input	P10 to P17
AVdd	—	A/D converter analog power supply (the same potential with V_{DD1}).	—	_
AVss	—	A/D converter ground potential (the same potential with $V_{\mbox{SS1}}$).	—	—
Vddo	—	Positive power supply for ports.	—	_
Vdd1	—	Positive power supply except for ports, analog, and FIP controller/driver.	_	_
Vdd2	—	Positive power supply for FIP controller/driver.	_	_
Vsso	_	Ground potential for ports.	_	—
Vss1	—	Ground potential except for ports and analog.		_
IC		Internal connection. Connect directly to Vss1 pin.		_


3.3 Pin I/O Circuits and Recommended Connection of Unused Pins

The I/O circuit type of each pin and the recommended connection of unused pins are shown in Table 3-1. For the I/O circuit configuration of each type, see Figure 3-1.

	Pin Name	I/O Circuit Type	I/O	Recommended Connection of Unused Pins
	P00/INTP0	8-C	I/O	Individually connect to Vsso via a resistor.
	P01/INTP1			
	P10/ANI0 to P17/ANI7	9	Input	
	P20/SCK	8-C	I/O	Individually connect to VDD0 or VSS0 via a resistor.
	P21/SO	5-H		
	P22/SI	8-C		
	P23/TI1			
	P24/TIO50			
	P25/TIO51			
	P40 to P47			
	P50 to P57	13-J	I/O	Individually connect to VDD0 via a resistor.
	P60 to P67			
*	P70/FIP16 to P77/FIP23	15-F	I/O	Individually connect to VDD0 or VSS0 via a resistor.
	P80/FIP24 to P87/FIP31			
	P90/FIP32 to P97/FIP39			
*	P100/FIP40 to P107/FIP47	14-F	Output	
	FIP0 to FIP15	14-C	Output	
	RESET	2	Input	_
	AVDD	_		Connect to VDD1.
	AVss			Connect to Vss1.
	Aload			
	IC			Connect to Vss1 directly.

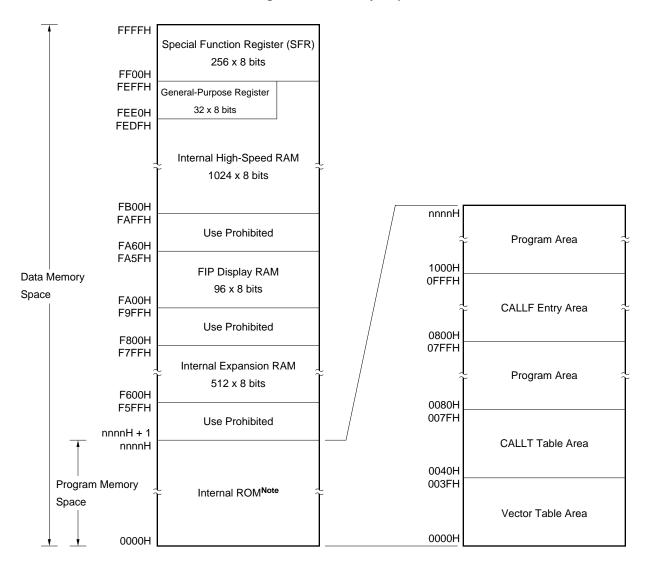

Table 3-1. Types of Pin I/O Circuits

Figure 3-1. Pin I/O Circuits

4. MEMORY SPACE

The memory map of the μ PD780226 and μ PD780228 is shown in Figure 4-1.

Figure 4-1. Memory Map

Note The internal ROM capacity differs depending on the product (see the table below).

Part Number	Internal ROM Last Address nnnnH
μPD780226	BFFFH
μPD780228	EFFFH

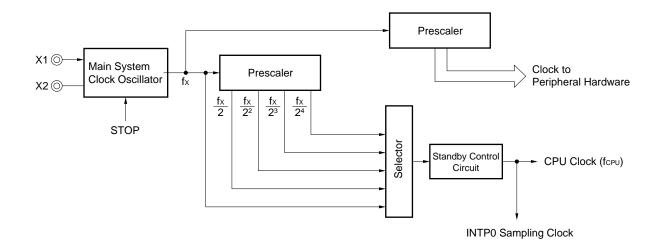
5. PERIPHERAL HARDWARE FUNCTION FEATURES

5.1 Port

There are five kinds of I/O ports.

CMOS inputs (Port 1)	: 8
• CMOS I/Os (Ports 0, 2, 4)	: 16
N-ch open-drain I/Os (Ports 5, 6)	: 16
 P-ch open-drain I/Os (Ports 7 to 9) 	: 24
 P-ch open-drain outputs (Port 10) 	: 8
	Total : 72

Table 5-1. Functions of Ports


Name	Pin Name	Function
Port 0	P00 and P01	I/O port. Input/output is specifiable bit-wise. When using as an input port, an on-chip resistor can be connected by means of software.
Port 1	P10 to P17	Input only port.
Port 2	P20 to P25	I/O port. Input/output is specifiable bit-wise. When using as an input port, an on-chip resistor can be connected by means of software.
Port 4	P40 to P47	 I/O port. Input/output is specifiable bit-wise. When using as an input port, an on-chip resistor can be connected by means of software. LEDs can be driven directly.
Port 5	P50 to P57	N-ch open-drain medium-voltage I/O port. Input/output is specifiable bit-wise. A pull-up resistor can be incorporated bit-wise by mask option. LEDs can be driven directly.
Port 6	P60 to P67	N-ch open-drain medium-voltage I/O port. Input/output is specifiable bit-wise. A pull-up resistor can be incorporated bit-wise by mask option. LEDs can be driven directly.
Port 7	P70 to P77	P-ch open-drain high-voltage I/O port. Input/output is specifiable bit-wise. A pull-down resistor can be incorporated bit-wise by mask option.
Port 8	P80 to P87	P-ch open-drain high-voltage I/O port. Input/output is specifiable bit-wise. A pull-down resistor can be incorporated bit-wise by mask option.
Port 9	P90 to P97	P-ch open-drain high-voltage I/O port. Input/output is specifiable bit-wise. A pull-down resistor can be incorporated bit-wise by mask option.
Port 10	P100 to P107	P-ch open-drain high-voltage output port. A pull-down resistor can be incorporated bit-wise by mask option.

5.2 Clock Generator

The minimum instruction execution time can be changed.

• 0.4 μ s/0.8 μ s/1.6 μ s/3.2 μ s/6.4 μ s (@ 5.0-MHz operation with main system clock)

Figure 5-1. Clock Generator Block Diagram

5.3 Timer/Event Counter

Four timer/event counter channels are incorporated.

- 8-bit remote control timer : 1 channel
- 8-bit PWM timer : 2 channels
- Watchdog timer : 1 channel

Table 5-2. Types and Functions of Timer/Event Counters

		8-bit Remote/ Control Timer	8-bit PWM Timer	Watchdog Timer
Туре	Interval timer	-	2 channels	1 channel
	External event counter	-	2 channels	-
Function	Timer output	-	2 outputs	-
	PWM output	-	2 outputs	-
	Pulse width measurement	1 input	2 inputs	-
	Square wave output	-	2 outputs	-
	Interrupt request	2	2	1

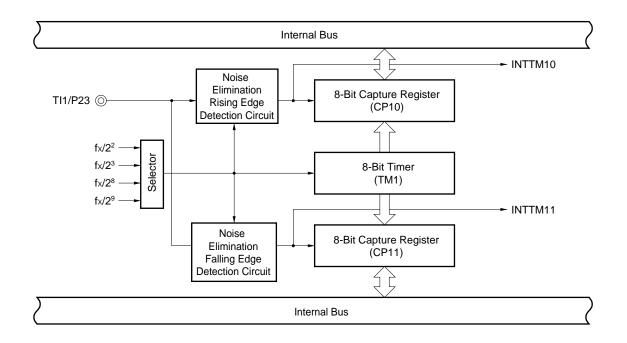
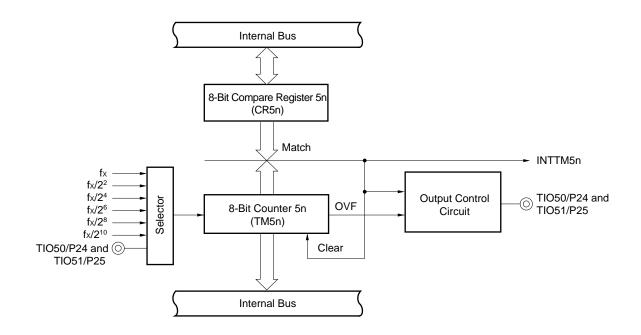
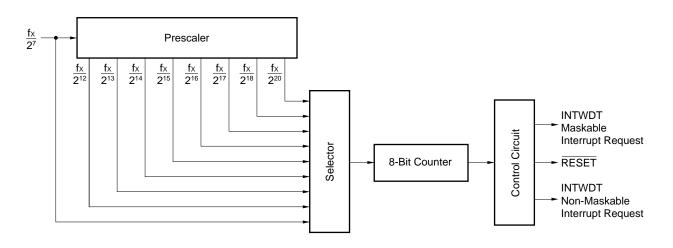
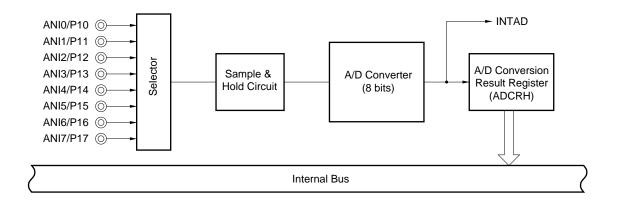


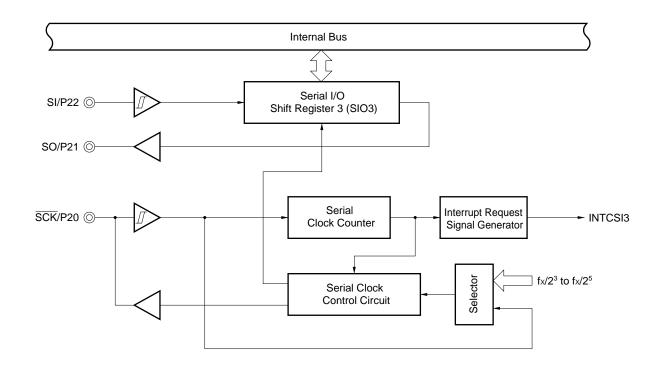
Figure 5-2. 8-Bit Remote Control Timer Block Diagram


Figure 5-4. Watchdog Timer Block Diagram

5.4 A/D Converter

An 8-bit resolution 8-channel A/D converter is incorporated. A/D conversion starts by software only.



5.5 Serial Interface

A 1-channel clocked serial interface is incorporated.

The serial interface operates in the MSB-first fixed 3-wired serial I/O mode.

5.6 FIP Controller/Driver

An FIP controller/driver with the following functions is incorporated.

- (a) Total number of display outputs: 48. Output of 16 patterns is enabled.
- (b) 96-byte display RAM is provided to enable display signal output by reading display data automatically (direct memory access).
- (c) A port pin which is not used for FIP display can be used as an output port or an I/O port (except for FIP 0 to FIP 15, which are FIP output only pins).
- (d) The luminance can be adjusted in 8 stages with display mode register 1 (DSPM1).
- (e) Hardware taking into consideration the key scan application is incorporated.
- (f) Whether the key scan timing is inserted or not is selectable.
- (g) A high-voltage output buffer (FIP driver) that can drive the FIP directly is incorporated.
- (h) The FIP output pin can incorporate the pull-down resistor by mask option (A pull-down resistor is preinstalled to pins FIP0 to 15).

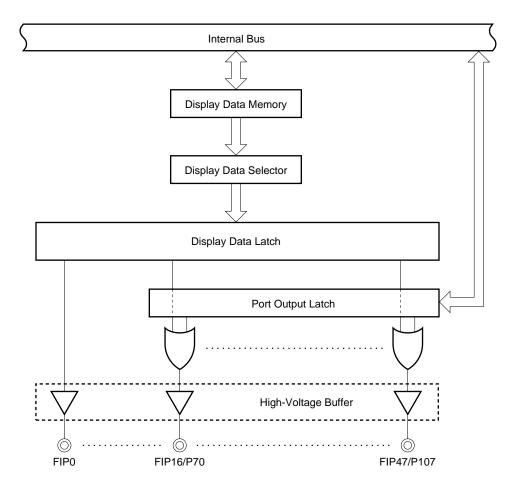


Figure 5-7. FIP Controller/Driver Block Diagram

6. INTERRUPT FUNCTIONS

There are twelve interrupt functions of three different kinds, as shown below.

- Non-maskable : 1
- Maskable : 10
- Software : 1

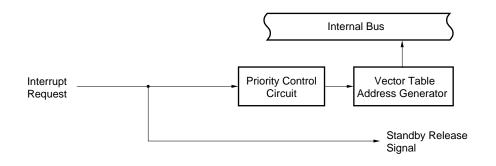
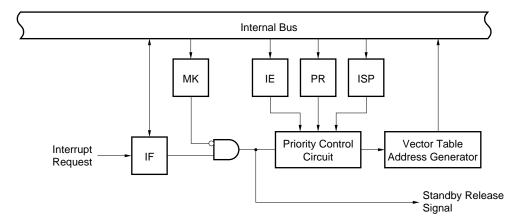
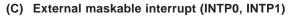
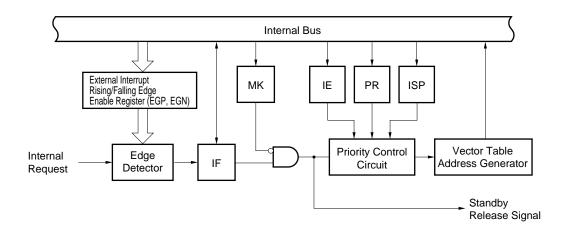

Interrupt	Default		Interrupt Source	Internal/	Vector Table	Basic	
Type Priority Note 1		Name	Trigger	External	Address	Configuration Type Note 2	
Non- maskable	_	INTWDT	Watchdog timer overflow (when watchdog timer mode 1 is selected)	Internal	0004H	(A)	
Maskable	0	INTWDT	Watchdog timer overflow (when interval timer mode is selected)			(B)	
	1 INTPO F		Pin input edge detection	External	0006H	(C)	
2		INTP1			0008H		
	3	INTTM10	Timer input edge detection	Ī	000AH	(D)	
	4	INTTM11			000CH		
	5	INTKS	Key scan timing from FIP controller/driver	Internal	000EH	(B)	
	6	INTCSI3	Serial interface transfer termination		0010H]	
	7	INTTM50	8-bit timer (TM50) match	1	0012H		
8		INTTM51	8-bit timer (TM51) match]	0014H]	
	9	INTAD	A/D conversion termination		0016H		
Software		BRK	BRK instruction execution	_	003EH	(E)	

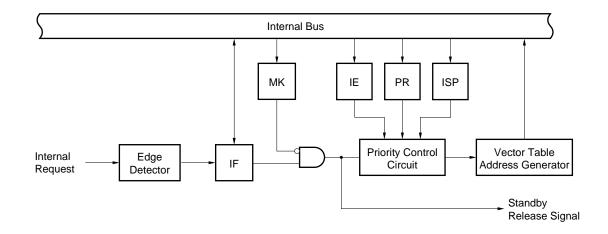
Table 6-1. Interrupt Source List


- **Notes 1.** Default priority is a priority order when more than one maskable interrupt requests are generated simultaneously. 0 is the highest priority and 9 the lowest priority.
 - 2. Basic configuration types (A) to (E) correspond to those shown in Figure 6-1.


Figure 6-1. Basic Interrupt Function Configuration (1/2)


(A) Internal non-maskable interrupt

(B) Internal maskable interrupt



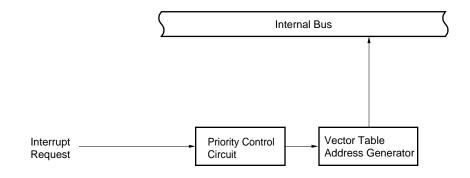
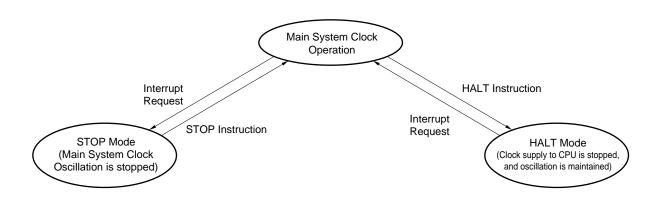


Figure 6-1. Basic Interrupt Function Configuration (2/2)

(D) External maskable interrupt

(E) Software interrupt

- IF : Interrupt request flag
- IE : Interrupt enable flag
- ISP : In-service priority flag
- MK : Interrupt mask flag
- PR : Priority specification flag


7. STANDBY FUNCTION

NEC

The standby function is a function to reduce the current consumption. There are the following two kinds of standby functions.

- HALT mode : Halts the CPU operating clock and can reduce the average consumption current by intermittent operation along with normal operation.
- STOP mode : Halts the main system clock oscillation. Halts all operations with the main system clock and sets ultra-low power dissipation state with the subsystem clock only.

Figure 7-1. Standby Function

8. RESET FUNCTION

There are the following two kinds of resetting methods.

- External reset by the RESET input
- · Internal reset by watchdog timer runaway time detection

9. INSTRUCTION SET

(1) 8-bit instructions

MOV, XCH, ADD, ADDC, SUB, SUBC, AND, OR, XOR, CMP, MULU, DIVUW, INC, DEC, ROR, ROL, RORC, ROLC, ROR4, ROL4, PUSH, POP, DBNZ

2nd operand										[HL+byte]			
1st operand	#byte	A	۲ ^{Note}	sfr	saddr	!addr16	PSW	[DE]	[HL]	[HL+B] [HL+C]	\$addr16	1	None
А	ADD		MOV	MOV	MOV	MOV	MOV	MOV	MOV	MOV		ROR	
	ADDC		XCH	ХСН	ХСН	ХСН		ХСН	ХСН	ХСН		ROL	
	SUB		ADD		ADD	ADD			ADD	ADD		RORC	
	SUBC		ADDC		ADDC	ADDC			ADDC			ROLC	
	AND		SUB		SUB	SUB			SUB	SUB			
	OR		SUBC		SUBC	SUBC			SUBC	SUBC			
	XOR		AND		AND	AND			AND	AND			
	CMP		OR		OR	OR			OR	OR			
			XOR		XOR	XOR			XOR	XOR			
			CMP		CMP	CMP			CMP	CMP			
r	MOV	MOV											INC
		ADD											DEC
		ADDC											
		SUB											
		SUBC											
		AND											
		OR											
		XOR											
B, C		CMP									DBNZ		
sfr	MOV	MOV									DBINZ		
saddr	MOV	MOV									DBNZ		INC
34441	ADD										DDINZ		DEC
	ADDC												DLO
	SUB												
	SUBC												
	AND												
	OR												
	XOR												
	CMP												
!addr16		MOV											
PSW	MOV	MOV											PUSH
													POP
[DE]		MOV											
[HL]		MOV											ROR4
													ROL4
[HL+byte]		MOV											
[HL+B]													
[HL+C]													
X													MULU
С													DIVUW

Note Except r = A

(2) 16-bit instructions

MOVW, XCHW, ADDW, SUBW, CMPW, PUSH, POP, INCW, DECW

2nd operand 1st operand	#word	AX	rp ^{Note}	sfrp	saddrp	!addr16	SP	None
AX	ADDW SUBW CMPW		MOVW XCHW	MOVW	MOVW	MOVW	MOVW	
rp	MOVW	MOVW Note						INCW,DECW PUSH, POP
sfrp	MOVW	MOVW						
saddrp	MOVW	MOVW						
!addr16		MOVW						
SP	MOVW	MOVW						

Note Only when rp = BC, DE, HL

(3) Bit manipulation instructions

MOV1, AND1, OR1, XOR1, SET1, CLR1, NOT1, BT, BF, BTCLR

2nd operand 1st operand	A.bit	sfr.bit	saddr.bit	PSW.bit	[HL].bit	CY	\$addr16	None
A.bit						MOV1	BT	SET1
							BF	CLR1
							BTCLR	
sfr.bit						MOV1	BT	SET1
							BF	CLR1
							BTCLR	
saddr.bit						MOV1	BT	SET1
							BF	CLR1
							BTCLR	
PSW.bit						MOV1	BT	SET1
							BF	CLR1
							BTCLR	
[HL].bit						MOV1	BT	SET1
							BF	CLR1
							BTCLR	
CY	MOV1	MOV1	MOV1	MOV1	MOV1			SET1
	AND1	AND1	AND1	AND1	AND1			CLR1
	OR1	OR1	OR1	OR1	OR1			NOT1
	XOR1	XOR1	XOR1	XOR1	XOR1			

(4) Call instruction/branch instructions

CALL, CALLF, CALLT, BR, BC, BNC, BZ, BNZ, BT, BF, BTCLR, DBNZ

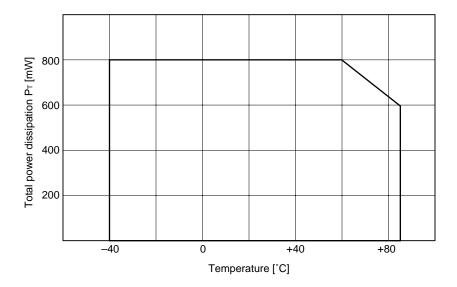
2nd operand 1st operand	AX	!addr16	!addr11	[addr5]	\$addr16
Basic instruction	BR	CALL BR	CALLF	CALLT	BR, BC, BNC, BZ, BNZ
Compound					BT, BF,
instruction					BTCLR
					DBNZ

(5) Other instructions

ADJBA, ADJBS, BRK, RET, RETI, RETB, SEL, NOP, EI, DI, HALT, STOP

***** 10. ELECTRICAL SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS (T_A = 25° C)


Parameter	Symbol	Conditions		Rating	Unit	
Supply voltage	Vdd			-0.3 to +6.5	V	
	Vload			VDD - 40 to VDD + 0.3	V	
	AVDD			-0.3 to V _{DD} + 0.3	V	
	AVss			-0.3 to +0.3	V	
Input voltage	VI1	P00, P01, P10 to P17 (except analog P20 to P25, P40 to P47, X1, X2, RES		-0.3 to V _{DD} + 0.3	V	
	V _{I2}	P50 to P57, P60 to P67	N-ch open drain	-0.3 to +13 Note 1	V	
	Vi3	P70 to P77, P80 to P87, P90 to P97	P-ch open drain	VDD - 40 to VDD + 0.3	V	
Output voltage	Vo1	P00, P01, P10 to P17, P20 to P25, P	40 to P47	-0.3 to V _{DD} + 0.3	V	
	Vo2	P50 to P57, P60 to P67	N-ch open drain	-0.3 to +13 Note 1	V	
	Vod	P70 to P77, P80 to P87, P90 to P97, P100 to P107	P-ch open drain	VDD - 40 to VDD + 0.3	V	
Analog input voltage	Van	ANI0 to ANI7	Analog input pins	AVss to AVDD	V	
High-level	Іон	1 pin of P00, P01, P20 to P25, P40 to	0 P47	-10	mA	
output current		Total for P00, P01, P20 to P25, P40 t	o P47	-30	mA	
		1 pin of FIP0 to FIP15		-15	mA	
		1 pin of FIP16 to FIP47 (P7 to P10)	-5	mA		
		Total for FIP0 to FIP47	or FIP0 to FIP47			
Low-level	lol	1 pin of P00, P01, P20 to P25	r.m.s.	10	mA	
output current		1 pin of P40 to P47, P50 to P57, P60 to P67	r.m.s.	20	mA	
		Total for P00, P01, P20 to P25, P40 to P47, P50 to P57, P60 to P67	r.m.s.	260	mA	
Total power	P⊤ ^{Note 2}	$T_{A} = -40 \text{ to } +60^{\circ}\text{C}$		800	mW	
dissipation		T _A = +85°C		600	mW	
Operating ambient temperature	TA			-40 to +85	°C	
Storage temperature	Tstg			-65 to +150	°C	

Caution Product quality may suffer if the absolute maximum rating is exceeded for even a single parameter, even momentarily. In other words, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions which ensure that the absolute maximum ratings are not exceeded.

Remark Unless specified otherwise, alternate-function pin characteristics are the same as port pin characteristics.

Notes 1. With the mask option, the range of the internal pull-up resistor pin is -0.3 to VDD +0.3.

2. Total power dissipation differs depending on the temperature (see the following figure).

How to calculate total power dissipation

Total power dissipation of the μ PD780226 and 780228 can be divided to the following three. The sum of the three power dissipation should be less than the total power dissipation PT rated in the above figure (80% or less of ratings is recommended).

- <1> CPU power dissipation: calculate VDD (MAX.) × IDD (MAX.).
- <2> Output pin power dissipation: Power dissipation when maximum current flows into FIP output pins.
- <3> Pull-down resistor power dissipation: Power dissipation by the pull-down resistors incorporated in FIP output pins by mask option.

The following is how to calculate total power dissipation for the example in Figure 10-1.

Example Assume the following conditions:

 $V_{DD} = 5.5 \text{ V}, 5.0\text{-MHz oscillation}$ Supply current (IbD) = 21.0 mA
FIP output: 11 grids × 10 segments (Blanking width = 1/16)
Maximum current at the grid pin is 10 mA.
Maximum current at the segment pin is 3 mA.
At the key scan timing, FIP output pin is OFF.
FIP output voltage: grid Vod = Vdd - 2 V (voltage drop of 2 V)
segments Vod = Vdd - 0.5 V (voltage drop of 0.5 V)
Fluorescent display control voltage (VLOAD) = -35 V
Mask option pull-down resistor = 25 kΩ

By placing the above conditions in calculation <1> to <3>, the total dissipation can be worked out.

- <1> CPU power dissipation: 5.5 V × 21.0 mA = 115.5 mW
- <2> Output pin power dissipation:

$$(V_{DD} - V_{OD}) \times \frac{\text{Total current value of each grid}}{\text{The number of grids + 1}} \times (1 - \text{Blanking width})$$

=
$$2 \text{ V} \times \frac{10 \text{ mA} \times 11 \text{ Grids}}{11 \text{ Grids} + 1} \times (1 - \frac{1}{16}) = 17.2 \text{ mW}$$

Segment
$$(V_{DD} - V_{OD}) \times \frac{\text{Total segment current value of illuminated dots}}{\text{The number of grids +1}} \times (1 - \text{Blanking width})$$

=
$$0.5 \text{ V} \times \frac{3 \text{ mA} \times 31 \text{ Dots}}{11 \text{ Grids + 1}} \times (1 - \frac{1}{16}) = 3.6 \text{ mW}$$

<3> Pull-down resistor power dissipation:

Grid

$$\frac{(V_{OD} - V_{LOAD})^2}{Pull-down resistor value} \times \frac{\text{The number of grids}}{\text{The number of grids + 1}} \times (1 - \text{Blanking width})$$

$$= \frac{(5.5 \text{ V} - 2 \text{ V} - (-35 \text{ V}))^2}{25 \text{ k}\Omega} \times \frac{11 \text{ Grids}}{11 \text{ Grids + 1}} \times (1 - \frac{1}{16}) = 50.9 \text{ mW}$$
Segment

$$\frac{(V_{OD} - V_{LOAD})^2}{Pull-down resistor value} \times \frac{\text{The number of illuminated dots}}{\text{The number of grids + 1}} \times (1 - \text{Blanking width})$$

$$= \frac{(5.5 \text{ V} - 0.5 \text{ V} - (-35 \text{ V}))^2}{25 \text{ k}\Omega} \times \frac{31 \text{ dots}}{11 \text{ Grids + 1}} \times (1 - \frac{1}{16}) = 155.0 \text{ mW}$$

Total power dissipation = <1> + <2> + <3> = 115.5 + 17.2 + 3.6 + 50.9 + 155.0 = 342.2 mW

In this example, the total power dissipation does not exceed the rating of the total power dissipation, so there is no problem in power dissipation.

However, when the total power dissipation exceeds the rating of the total power dissipation, it is necessary to lower the power dissipation. To reduce power dissipation, reduce the number of pull-down resistors.

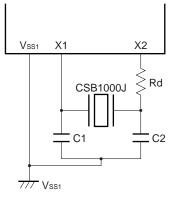
0 0 0 0 0 0 0 0		1 T0
	0 1	
0 0		0 T1
	1 0	0 T2
0 1	0 0	0 T3
1 0	0 0	0 T4
0 0	0 0	0 T5
0 0	0 0	0 T6
0 0	0 0	0 T7
0 0	0 0	0 T8
0 0	0 0	0 T9
0 0	0 0	0 T10
↓ ↓	↓ ↓	Ļ
4 3	2 1	0
		a
		f g b
	I_	e d c
8	9	10 h

Figure 10-1. Display Example of 10 Segments-11 Digits

Resonator	Recommended Circuit	Parameter	Conditions	MIN.	TYP.	MAX.	Unit
Ceramic resonator		Oscillation frequency (fx) ^{Note 1}	V _{DD} = Oscillation voltage range	1		5	MHz
		Oscillation stabilization time ^{Note 2}	After V _{DD} reaches the minimum value of oscillation voltage range			4	ms
Crystal resonator		Oscillation frequency (fx) ^{Note 1}		1		5	MHz
		Oscillation stabilization time ^{Note 2}				10	ms
External clock		X1 input frequency (fx) ^{Note 1}		1		5	MHz
	μPD74HCU04	X1 input high-/low-level width (txн/txL)		85		500	ns

MAIN SYSTEM CLOCK OSCILLATION CIRCUIT CHARACTERISTICS (TA = -40 to +85°C, VDD = 4.5 to 5.5 V)

- Notes 1. Only the oscillator characteristics are shown. See AC CHARACTERISTICS for instruction execution times.2. This is the time required for oscillation to stabilize after reset, or STOP mode release.
- Caution When the main system clock oscillator is used, the following should be noted concerning wiring in the area in the figure enclosed by a broken line to prevent the influence of wiring capacitance, etc.
 - The wiring should be kept as short as possible.
 - No other signal lines should be crossed.
 - Keep away from lines carrying a high fluctuating current.
 - The oscillator capacitor grounding point should always be at the same potential as VSS1.
 - Do not connect to a ground pattern carrying a high current.
 - A signal should not be taken from the oscillator.


RECOMMENDED OSCILLATOR CONSTANT

MAIN SYSTEM CLOCK: CERAMIC RESONATOR (T_A = -40 to $+85^{\circ}$ C)

Manufacturer	Product Name	Frequency	Circuit C	Constant	Oscillator Vo	oltage Range	Remark
Manalastarei	i foudot fiumo	(MHz)	C1 (pF)	C2 (pF)	MIN. (V)	MAX. (V)	Koman
Murata Mfg. Co., Ltd.	CSB1000J	1.000	100	100	4.5	5.5	$Rd = 5.6 \ k\Omega$ Note
Toyama	CSA2.00MG040	2.000	100	100	4.5	5.5	
	CST2.00MG040	2.000	_	_	4.5	5.5	Built-in capacitor
	CSA4.19MG	4.194	30	30	4.5	5.5	
	CST4.19MGW	4.194	_	—	4.5	5.5	Built-in capacitor
	CSA5.00MG	5.000	30	30	4.5	5.5	
	CST5.00MGW	5.000	_	—	4.5	5.5	Built-in capacitor
TDK Corp.	CCR1000K2	1.00	100	100	4.5	5.5	
	CCR4.19MC3	4.19	_		4.5	5.5	Built-in capacitor, surface-mount type
	FCR4.19MC5	4.19	—	—	4.5	5.5	Built-in capacitor
	CCR5.0MC3	5.00	_	_	4.5	5.5	Built-in capacitor, surface-mount type
	FCR5.0MC5	5.00	_	_	4.5	5.5	Built-in capacitor
Matsushita Electronics	EFOEC2004A4	2.00	—	_	4.5	5.5	Built-in capacitor
Components Co., Ltd.	EFOEC4194A4	4.19	—	—	4.5	5.5	Built-in capacitor
	EFOEC5004A4	5.00	_		4.5	5.5	Built-in capacitor

- **Note** When using the CSB1000J (1.000 MHz) of Murata Mfg. Co., Ltd. Toyama for a ceramic resonator, a restrict resistor of 5.6 kΩ is required (see **Example of Main System Clock Recommended Circuit** below). When using other recommended resonators, a restrict resistor is not required.
- Caution The oscillation circuit constants and oscillation voltage range indicate conditions for stable oscillation. However, they do not guarantee accuracy of the oscillation frequency. If the application circuit requires accuracy of the oscillation frequency, it is necessary to set the oscillation frequency in the application circuit. For this, it is necessary to directly contact the manufacturer of the resonator being used.

Example of Main System Clock Recommended Circuit (CSB1000J of Murata Mfg. Co., Ltd. Toyama)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Input capacitance	CIN	f = 1 MHz Unmeasured pins returned to 0 V	P10 to P17			15	pF
Output capacitance	Соит	f = 1 MHz Unmeasured pins returned to 0 V	P100 to P107, FIP0 to FIP15			35	pF
Input/output capacitance	Сю	f = 1 MHz Unmeasured pins returned to 0 V	P00, P01, P20 to P27			15	pF
			P40 to P47, P50 to P57, P60 to P67			20	pF
			P70 to P77, P80 to P87, P90 to P97			35	pF

CAPACITANCE (T_A = 25° C, V_{DD} = V_{SS} = 0 V)

Remark Unless otherwise specified, the characteristics of alternate-function pins are the same as those of port pins.

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
High-level input	VIH1	P00, P01, P10 to P17, P20 to P25, P40 to P47, RESET		0.7Vdd		Vdd	V
voltage	VIH2	P50 to P57, P60 to P67		0.7Vdd		12	V
	Vінз	P70 to P77, P80 to P87, P90 to P97		0.7Vdd		Vdd	V
	VIH4	X1, X2		Vdd - 0.5		Vdd	V
Low-level input	VIL1	P00, P01, P10 to P17, P20 to P25, RESET		0		0.2Vdd	V
voltage	VIL2	P40 to P47, P50 to P57, P60 to P67		0		0.3Vdd	V
	VIL3	P70 to P77, P80 to P87, P90 to P97		Vdd - 35		0.3Vdd	V
	VIL4	X1, X2		0		0.4	V
High-level output voltage	Vон	Іон = –1 mA		Vdd - 1.0		Vdd	V
		Іон = -100 <i>µ</i> А		Vdd - 0.5		Vdd	V
Low-level output voltage	Vol1	P00, P01, P20 to P25	IoL = 400 μA			0.5	V
	VOL2	P40 to P47	lo∟ = 10 mA		0.4	2.0	V
	Vol3	P50 to P57, P60 to P67	lo∟ = 15 mA		0.4	2.0	V
High-level input leakage current	Іция	P00, P01, P10 to P17, P20 to P25, P40 to P47, P50 to P57, P60 to P67, P70 to P77, P80 to P87, P90 to P97, RESET	Vin = Vdd			3	μA
	LIH2	X1, X2				20	μA
	Іцнз	P50 to P57, P60 to P67	Vin = 13 V			10	μA
	Іцн4	P70 to P77, P80 to P87, P90 to P97				3	μA
Low-level input leakage current	ILIL1	P00, P01, P10 to P17, P20 to P25, P40 to P47, P50 to P57, P60 to P67, P70 to P77, P80 to P87, P90 to P97, RESET	V _{IN} = 0 V			-3	μA
		X1, X2				-20	μA
	LIL3	P50 to P57, P60 to P67				3Note 1	μΑ
	ILIL4	P70 to P77, P80 to P87, P90 to P97	Vin = -35 V			-10	μA
High-level output leakage current ^{Note 2}	Iloh1	P00, P01, P20 to P25, P40 to P47, P70 to P77, P80 to P87, P90 to P97, P100 to P107, FIP0 to FIP15	Vout = Vdd			3	μΑ
	Iloh2	P50 to P57, P60 to P67	Vout = 15 V			80	μA
Low-level output leakage current ^{Note 2}	Ilol1	P00, P01, P20 to P25, P40 to P47, P50 to P57, P60 to P67	Vout = 0 V			-3	μA
	Ilol2	P70 to P77, P80 to P87, P90 to P97, P100 to P107, FIP0 to FIP15	$V_{OUT} = V_{LOAD} = V_{DD} - 35 V$			-10	μA

DC CHARACTERISTICS (T_A = -40 to $+85^{\circ}$ C, V_{DD} = 4.5 to 5.5 V)

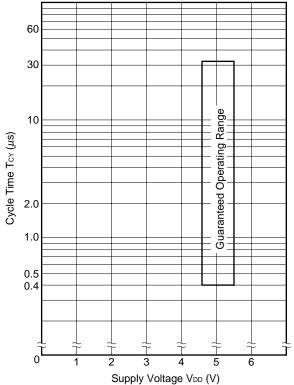
- **Notes 1.** For P50 to P57 and P60 to P67 without on-chip pull-up resistor (specifiable by mask option), a low-level input leakage current of –200 μA (MAX.) flows only during the 1st clock after an instruction has been executed to read out ports 5 and 6 (P5, P6) or port mode registers 5 and 6 (PM5, PM6). Outside the period of 1 clock following executing a read-out instruction, the current is –3 μA (MAX.).
 - 2. This current excludes the current which flows in the on-chip pull-up/pull-down resistor.

Remark Unless otherwise specified, the characteristics of alternate-function pins are the same as those of port pins.

Parameter	Symbol	Condi	tions	MIN.	TYP.	MAX.	Unit
FIP output current	lod	FIP0 to FIP15	$V_{OD} = V_{DD} - 2 V$			-10	mA
		FIP16 to FIP47				-3	mA
Software pull-up resistance	R1	P00, P01, P20 to P25, P40 to P47	$V_{IN} = 0 V$	10	30	100	kΩ
On-chip mask option pull-up resistance	R ₂	P50 to P57, P60 to P67		20	40	90	kΩ
On-chip pull-down resistance	R₃	FIP0 to FIP15	$V_{OD} - V_{LOAD} = 35 V$	25	70	135	kΩ
On-chip mask option pull-down resistance	R4	FIP16 to FIP47		25	70	135	kΩ
Power supply current Note	Idd1	5.0-MHz crystal oscillation Operating mode	PCC = 00H		7	21	mA
	Idd2	5.0-MHz crystal oscillation HALT mode			1.5	4.5	mA
	IDD3	STOP mode			1	30	μA

DC CHARACTERISTICS (T_A = -40 to $+85^{\circ}$ C, V_{DD} = 4.5 to 5.5 V)

Note This current excludes the port current and the current which flows in the FIP output pin, on-chip pull-up resistor (mask option), and on-chip pull-down resistor (mask option).


Remark Unless otherwise specified, the characteristics of alternate-function pins are the same as those of port pins.

AC CHARACTERISTICS

(1)	Basic Operation	$(T_A = -40 \text{ to } +85^\circ \text{C},$	VDD = 4.5 to 5.5 V)
-----	------------------------	--	---------------------

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Cycle time (minimum instruction execution time)	Тсү	Operated with main system clock	0.4		32	μs
Interrupt request input high-/low-level width	tinth tintl	INTP0, INTP1	10			μs
RESET low-level width	trsl		10			μs

(2) Timer/Counter (T_A = -40 to $+85^{\circ}$ C, V_{DD} = 4.5 to 5.5 V)

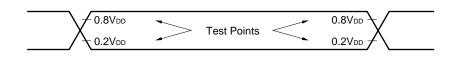
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
TI1 input high-/ low-level width	tт⊓н tтп⊾		2/F _{count} +0.2 ^{Note}			μs
TIO50, TIO51 input high-/ low-level width	t⊤ı5H t⊤ı5∟		0.1			μs
TIO50, TIO51 input frequency	fti5				4	MHz

Note FCOUNT is the frequency of the count clock selected by TM1 (the frequency can be selected from fx/4, fx/8, fx/256, and fx/512).

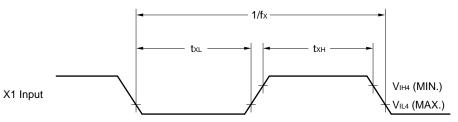
(3) Serial Interface (T_A = -40 to $+85^{\circ}$ C, V_{DD} = 4.5 to 5.5 V)

(a) 3-wire serial I/O mode (SCK: Internal clock output)

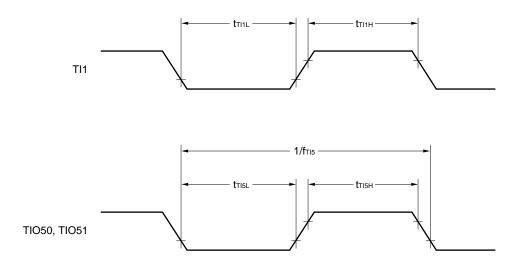
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
SCK cycle time	tKCY1		800			ns
SCK high-/low-level width	tкнı tк∟ı		tксү1/2 — 50			ns
SI setup time (to SCK↑)	tsiĸ1		100			ns
SI hold time (from SCK↑)	tksi1		400			ns
SO output delay time from $\overline{SCK}\downarrow$	tkso1	C = 100 pF ^{Note}			300	ns


Note C is a load capacitance of the \overline{SCK} and SO output line.

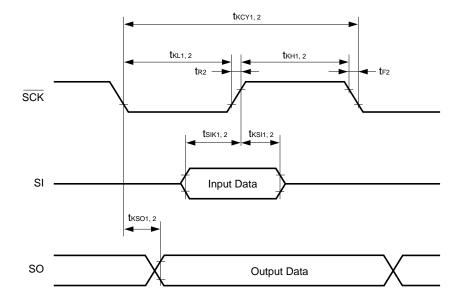
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
SCK cycle time	t ксү2		800			ns
SCK high-/low- level width	tкн2 tкL2		400			ns
SI setup time (to SCK↑)	tsik2		100			ns
SI hold time (from SCK↑)	tksi2		400			ns
SO output delay time from $\overline{SCK}\downarrow$	tkso2	C = 100 pF ^{Note}			300	ns
SCK rise/fall time	tr2 tF2				1	μs


(b) 3-wire serial I/O mode (SCK: External clock input)

Note C is a load capacitance of the SO output line.


AC Timing Test Point (Excluding X1 Input)

Clock Timing



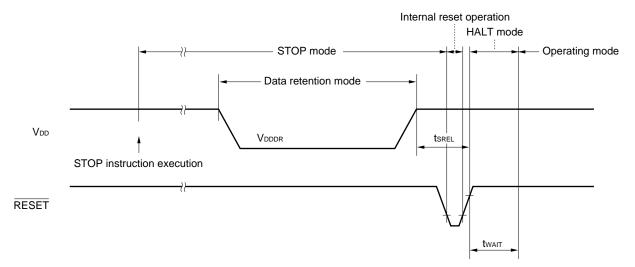
TI Timing

Serial Transfer Timing

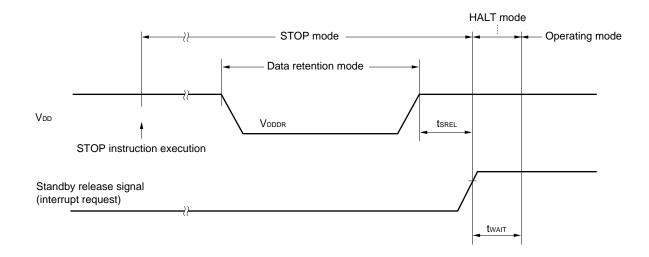
3-Wire Serial I/O Mode:

A/D CONVERTER CHARACTERISTICS (T_A = -40 to +85°C, AV_{DD} = V_{DD} = 4.0 to 5.5 V, AV_{SS} = V_{SS} = 0 V)

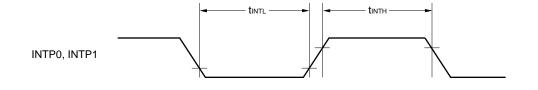
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Resolution					8	bit
Total error Note 1					±1.0	%
Conversion time Note 2	t CONV	$1 \text{ MHz} \le f_X \le 5.0 \text{ MHz}$	14		144	μs
Analog input voltage	VIAN		AVss		AVdd	V
Resistance between AV _{DD} and AV _{SS}	Rref	When A/D conversion is not operated.		24.7		kΩ

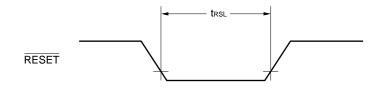

Notes 1. Quantization error ($\pm 1/2$ LSB) is not included. This parameter is indicated as the ratio to the full-scale value. **2.** Set the A/D conversion time to 14 μ s or more.

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data retention supply voltage	Vdddr		2.0		5.5	V
Data retention supply current	Idddr	VDDDR = 2.0 V		0.1	10	μA
Release signal set time	t SREL		0			μs
Oscillation stabili-	twait	Release by RESET		2 ¹⁶ /fx		ms
zation wait time		Release by interrupt request		Note		ms

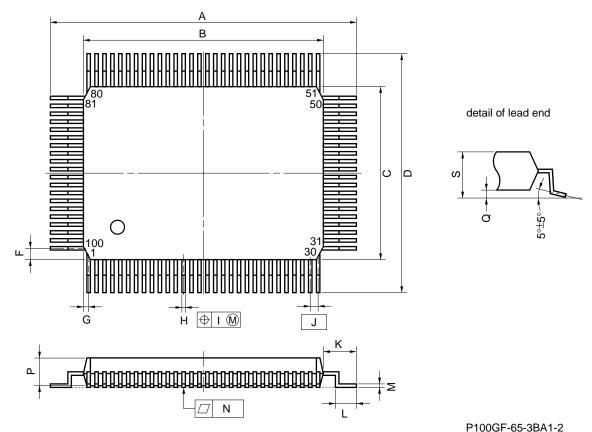

DATA MEMORY STOP MODE LOW SUPPLY VOLTAGE DATA RETENTION CHARACTERISTICS (TA = -40 to +85°C)

Note 2¹¹/fx, 2¹³/fx to 2¹⁶/fx can be selected by bits 0 to 2 (OSTS0 to OSTS2) of oscillation stabilization time select register (OSTS).


Data Retention Timing (STOP mode release by RESET)


Data Retention Timing (standby release signal: STOP mode release by interrupt signal)

Interrupt Request Input Timing



RESET Input Timing

11. PACKAGE DRAWING

100 PIN PLASTIC QFP (14 \times 20)

NOTE

Each lead centerline is located within 0.15 mm (0.006 inch) of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS	INCHES
		INCHES
A	23.6±0.4	0.929±0.016
В	20.0±0.2	$0.795\substack{+0.009\\-0.008}$
С	14.0±0.2	$0.551\substack{+0.009\\-0.008}$
D	17.6±0.4	0.693±0.016
F	0.8	0.031
G	0.6	0.024
Н	0.30±0.10	$0.012\substack{+0.004\\-0.005}$
I	0.15	0.006
J	0.65 (T.P.)	0.026 (T.P.)
К	1.8±0.2	$0.071^{+0.008}_{-0.009}$
L	0.8±0.2	$0.031^{+0.009}_{-0.008}$
М	$0.15_{-0.05}^{+0.10}$	$0.006\substack{+0.004\\-0.003}$
N	0.10	0.004
Р	2.7	0.106
Q	0.1±0.1	0.004±0.004
S	3.0 MAX.	0.119 MAX.

★ **Remark** The shape and material of the ES version are the same as those of the corresponding mass-produced product.

12. RECOMMENDED SOLDERING CONDITIONS

The conditions listed below shall be met when soldering the μ PD780226 and 780228.

For details of the recommended soldering conditions, refer to the document Semiconductor Device Mounting

Technology Manual (C10535E).

Please consult with an NEC sales representative in case any other soldering process is used, or in case soldering is done under different conditions.

Table 12-1. Soldering Conditions for Surface-Mount Type

μ PD780226GF- \times × \times -3BA: 100-pin plastic QFP (14 \times 20 mm) μ PD780228GF-×××-3BA: 100-pin plastic QFP (14 × 20 mm)

Soldering Method	Soldering Conditions	Recommended Condition Symbol
Infrared reflow	Package peak temperature: 235°C, Duration: 30 sec. max. (at 210°C or above), Number of times: Thrice max.	IR35-00-3
VPS	Package peak temperature: 215°C, Duration: 40 sec. max. (at 200°C or above), Number of times: Thrice max.	VP15-00-3
Wave soldering	Solder bath temperature: 260°C max. Duration: 10 sec. max. Number of times: Once Preliminary heat temperature: 120°C max. (Package surface temperature)	WS60-00-1
Partial heating	Pin temperature: 300°C max., Duration: 3 sec. max. (per device side)	—

Caution Using more than one soldering method should be avoided (except in the case of partial heating).

APPENDIX A. DEVELOPMENT TOOLS

The following development tools are available for system development using the μ PD780226, 780228.

Language Processing Software

RA78K/0 Notes 1, 2, 3, 4	78K/0 Series common assembler package
CC78K/0 Notes 1, 2, 3, 4	78K/0 Series common C compiler package
DF780228 Notes 1, 2, 3, 4, 8	μPD780228 Subseries common device file
CC78K/0-L Notes 1, 2, 3, 4	78K/0 Series common C compiler library source file

★ Flash Memory Writing Tools

Flashpro II	Dedicated flash memory writer
(type number FL-PR2)	
FA-100GF	Adapter to write data to the flash memory

★ Debugging Tools

IE-78001-R-A Note 8	78K/0 Series common in-circuit emulator
IE-78K0-SL-P01 ^{Note 8}	I/O board to emulate the μ PD780228 Subseries product
IE-780228-SL-EM4 Note 8	Probe board to emulate the μ PD780228 Subseries product
EP-100GF-SL	Emulation probe for 100-pin plastic QFP (GF-3BA type)
NQPACK100RB	Coversion socket for 100-pin plastic QFP (GF-3BA type) to mount a device on a target system board
YQPACK100RB	Adapter used to connect the NQPACK100RB with the EP-100GF-SL
HQPACK100RB	Cover of the NQPACK100RB when device is mounted
SM78K/0 Notes 5, 6, 7	78K/0 Series common system simulator
ID78K0 Notes 4, 5, 6, 7	IE-78001-R-A integrated debugger
DF780228 Notes 4, 5, 6, 7, 8	μ PD780228 Subseries common device file

Notes 1. PC-9800 Series (MS-DOS™) based

- 2. IBM PC/AT[™] and compatibles (PC DOS[™]/IBM DOS[™]/MS-DOS) based
- **3.** HP9000 Series 300[™] (HP-UX[™]) based
- HP9000 Series 700[™] (HP-UX) based, SPARCstation[™] (SunOS[™]) based, EWS-4800 series (EWS-UX/V) based
- 5. PC-9800 Series (MS-DOS + Windows[™]) based
- 6. IBM PC/AT and compatibles (PC DOS/IBM DOS/MS-DOS + Windows) based
- 7. NEWS[™] (NEWS-OS[™]) based
- 8. Under development

Remarks 1. The RA78K/0, CC78K/0, SM78K0, ID78K0, and RX78K/0 are used in combination with the DF780228.

- 2. Flashpro II and FA-100GF are products of Naitou Densei Machidaseisakusho Co., Ltd.
- **3.** The NQPACK100RB, YQPACK100RB, and HQPACK100RB are products of TOKYO ELETECH Co., Ltd. (Tokyo (03) 5295-1661). Consult an NEC sales representative for purchase.

Real-Time OSs

RX78K/0 Notes 1, 2, 3, 4	78K/0 Series real-time OS
MX78K0 Notes 1, 2, 3, 4	78K/0 Series OS

Fuzzy Inference Development Support Systems

FE9000 Note 1, FE9200 Note 5	Fuzzy knowledge data creation tool	
FT9080 Note 1, FT9085 Note 2	Translator	
FI78K0 Notes 1, 2	Fuzzy inference module	
FD78K0 Notes 1, 2	Fuzzy inference debugger	

Notes 1. PC-9800 Series (MS-DOS) based

- 2. IBM PC/AT and compatibles (PC DOS/IBM DOS/MS-DOS) based
- 3. HP9000 Series 300 (HP-UX) based
- HP9000 Series 700 (HP-UX) based, SPARCstation (SunOS) based, EWS-4800 Series (EWS-UX/V) based
- 5. IBM PC/AT and compatibles (PC DOS/IBM DOS/MS-DOS + Windows) based

*

APPENDIX B. RELATED DOCUMENTS

Device Related Documents

Document Name	Document No. (English)	Document No. (Japanese)
μPD780228 Subseries User's Manual	U12012E	U12012J
μPD780226, 780228 Data Sheet	This manual	U11797J
µPD78F0228 Preliminary Product Information	U11971E	U11971J
78K/0 Series User's Manual Instructions	IEU-1372	U12326J
78K/0 Series Instruction Table		U10903J
78K/0 Series Instruction Set	_	U10904J
78K/0 Series Application Note Basics (II)	U10121E	U10121J

Development Tool Related Documents (User's Manual)

	Document Name		Document No. (English)	Document No. (Japanese)
	RA78K Series Assembler Package	Operation	EEU-1399	EEU-809
		Language	EEU-1404	EEU-815
	RA78K Series Structured Assembler Prepro	ocessor	EEU-1402	EEU-817
*	RA78K0 Assembler Package	Operation	U11802E	U11802J
*		Assembly Language	U11801E	U11801J
*		Structured assembly language	U11789E	U11789J
	CC78K Series C Compiler	Operation	EEU-1280	EEU-656
		Language	EEU-1284	EEU-655
	CC78K0 C Compiler	Operation	U11517E	U11517J
		Language	U11518E	U11518J
	CC78K/0 C Compiler Application Note	Programming know-how	EEA-1208	EEA-618
	CC78K Series Library Source File		—	U12322J
	IE-78001-R-A		Planned	Planned
	IE-78K0-SL-P01		Planned	Planned
	IE-780228-SL-EM4		Planned	Planned
	EP-100GF-SL		Planned	Planned
	SM78K0 System Simulator Windows-based	Reference	U10181E	U10181J
	SM78K Series System Simulator	External parts user open interface specifications	U10092E	U10092J
	ID78K0 Integrated Debugger EWS-based	Reference	—	U11151J
	ID78K0 Integrated Debugger PC-based	Reference	U11539E	U11539J
	ID78K0 Integrated Debugger Windows-based	Guide	U11649E	U11649J

Caution The above related documents are subject to change without notice. Be sure to use the latest documents when starting design.

Embedded Software Related Documents (User's Manuals)

Document Name		Document No. (English)	Document No. (Japanese)
78K/0 Series Real-time OS	Basics	—	U11537J
	Installation	—	U11536J
78K/0 Series OS MX78K0	Basics	_	U12257J
Fuzzy Knowledge Data Creation Tool		EEU-1438	EEU-829
78K/0, 78K/II, 87AD Series Fuzzy Inference Development Support System Translator		EEU-1444	EEU-862
78K/0 Series Fuzzy Inference Development Support System Fuzzy Inference Module		EEU-1441	EEU-858
78K/0 Series Fuzzy Inference Development Support System Fuzzy Inference Debugger		EEU-1458	EEU-921

Other Related Documents

Document Name	Document No. (English)	Document No. (Japanese)
IC Package Manual	C10943X	
Semiconductor Device Mounting Technology Manual	C10535E	C10535J
Quality Grades on NEC Semiconductor Devices	C11531E	C11531J
NEC Semiconductor Device Reliability/Quality Control System	C10983E	C10983J
Electrostatic Discharge (ESD) Test	—	MEM-539
Guide to Quality Assurance for Semiconductor Devices	MEI-1202	C11893J
Microcomputer Product Series Guide	_	U11416J

Caution The above related documents are subject to change without notice. Be sure to use the latest documents when starting design.

[MEMO]

[MEMO]

NOTES FOR CMOS DEVICES-

1 PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note: Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it.

(2) HANDLING OF UNUSED INPUT PINS FOR CMOS

Note: No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS device behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices.

(3) STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note: Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function.

NEC

Regional Information

Some information contained in this document may vary from country to country. Before using any NEC product in your application, please contact the NEC office in your country to obtain a list of authorized representatives and distributors. They will verify:

- Device availability
- Ordering information
- Product release schedule
- · Availability of related technical literature
- Development environment specifications (for example, specifications for third-party tools and components, host computers, power plugs, AC supply voltages, and so forth)
- Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary from country to country.

NEC Electronics Inc. (U.S.) Santa Clara, California

Tel: 800-366-9782 Fax: 800-729-9288

NEC Electronics (Germany) GmbH

Duesseldorf, Germany Tel: 0211-65 03 02 Fax: 0211-65 03 490

NEC Electronics (UK) Ltd.

Milton Keynes, UK Tel: 01908-691-133 Fax: 01908-670-290

NEC Electronics Italiana s.r.1.

Milano, Italy Tel: 02-66 75 41 Fax: 02-66 75 42 99

NEC Electronics (Germany) GmbH Benelux Office Eindhoven, The Netherlands Tel: 040-2445845 Fax: 040-2444580

NEC Electronics (France) S.A. Velizy-Villacoublay, France Tel: 01-30-67 58 00 Fax: 01-30-67 58 99

NEC Electronics (France) S.A. Spain Office Madrid, Spain Tel: 01-504-2787 Fax: 01-504-2860

NEC Electronics (Germany) GmbH

Scandinavia Office Taeby, Sweden Tel: 08-63 80 820 Fax: 08-63 80 388 **NEC Electronics Hong Kong Ltd.** Hong Kong Tel: 2886-9318 Fax: 2886-9022/9044

NEC Electronics Hong Kong Ltd. Seoul Branch Seoul, Korea Tel: 02-528-0303 Fax: 02-528-4411

NEC Electronics Singapore Pte. Ltd. United Square, Singapore 1130 Tel: 253-8311 Fax: 250-3583

NEC Electronics Taiwan Ltd. Taipei, Taiwan Tel: 02-719-2377 Fax: 02-719-5951

NEC do Brasil S.A. Sao Paulo-SP, Brasil Tel: 011-889-1680 Fax: 011-889-1689 FIP and IEBus are trademarks of NEC Corporation.

NEC

MS-DOS and Windows are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.

IBM DOS, PC/AT, and PC DOS are trademarks of International Business Machines Corporation.

HP9000 Series 300, HP9000 Series 700, and HP-UX are trademarks of Hewlett-Packard Company.

SPARCstation is a trademark of SPARC International, Inc.

SunOS is a trademark of Sun Microsystems, Inc.

NEWS and NEWS-OS are trademarks of Sony Corporation.

The related documents indicated in this publication may include preliminary versions. However, preliminary versions are not marked as such.

The export of this product from Japan is regulated by the Japanese government. To export this product may be prohibited without governmental license, the need for which must be judged by the customer. The export or re-export of this product from a country other than Japan may also be prohibited without a license from that country. Please call an NEC sales representative.

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document.

NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others.

While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features.

NEC devices are classified into the following three quality grades:

"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application.

- Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
- Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
- Specific: Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc.

The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact an NEC sales representative in advance.

Anti-radioactive design is not implemented in this product.