Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010 Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anticrime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majorityowned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

RENESAS

DATA SHEET

MOS INTEGRATED CIRCUIT μ**PD78095B, 78096B, 78098B**

8-BIT SINGLE-CHIP MICROCONTROLLERS

DESCRIPTION

The μ PD78095B, 78096B, and 78098B are members of the μ PD78098B Subseries of the 78K/0 Series of microcontrollers.

Compared to the µPD78094, 78095, and 78098A, EMI (Electro Magnetic Interference) noise is reduced.

Besides a high-speed and high-performance CPU, each microcontroller has various on-chip peripheral hardware such as ROM, RAM, I/O ports, an IEBus[™] controller, an 8-bit resolution A/D converter, an 8-bit resolution D/A converter, a timer, serial interface, real-time output port, interrupt control, etc.

A one-time PROM version (μ PD78P098B) that operates in the same power supply voltage as the mask ROM version and various development tools are also provided.

The details of the functions are described in the following user's manuals. Be sure to read them before starting design.

μPD78098B Subseries User's Manual: U12761E 78K/0 Series User's Manual – Instructions: U12326E

FEATURES

- EMI noise reduced version
- Internal high capacity ROM and RAM

	Item	Program Memory	In	Internal Data Memory					
Part		(ROM)	High-Speed	Buffer RAM	Expanded RAM				
Number			RAM						
μPD78095B		40 Kbytes	1024 bytes	32 bytes	None	80-pin plastic QFP			
μPD78096B		48 Kbytes				$(14 \times 14 \text{ mm})$			
µPD78098B		60 Kbytes			2048 bytes				

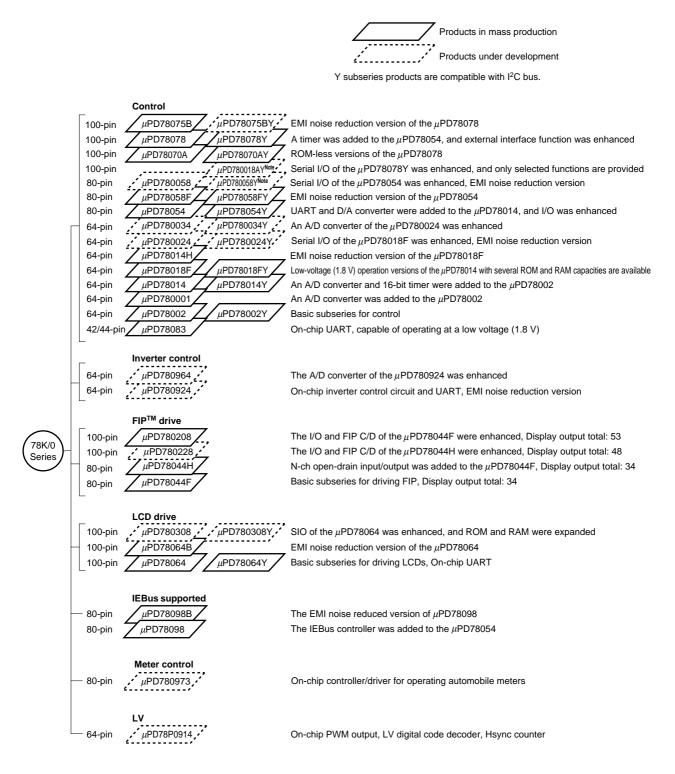
- External memory expansion space: 64 Kbytes
- Minimum instruction execution time can be varied from high-speed (0.48 μs) to ultra-low-speed (122 μs)
- I/O ports: 69 (N-ch open-drain: 4)
- IEBus controller
 - Effective transmission rate: 3.9 kbps/17 kbps/ 26 kbps
- 8-bit resolution A/D converter: 8 channels

- 8-bit resolution D/A converter: 2 channels
- Serial interface: 3 channels
 - 3-wire serial I/O/SBI/2-wire serial I/O mode: 1 channel
 - 3-wire serial I/O mode: 1 channel
 - 3-wire serial I/O/UART mode: 1 channel
- Timer: 5 channels
- Supply voltage: VDD = 2.7 to 5.5 V

APPLICATION FIELDS

Car audio, CD (compact disk) changer, etc.

The information in this document is subject to change without notice.


ORDERING INFORMATION

Part Number	Package
μPD78095BGC-×××-3B9 μPD78096BGC-×××-3B9 μPD78098BGC-×××-3B9	80-pin plastic QFP (14×14 mm) 80-pin plastic QFP (14×14 mm) 80-pin plastic QFP (14×14 mm)

Remark ××× indicates a ROM code suffix.

78K/0 SERIES PRODUCT DEVELOPMENT

These products are a further development in the 78K/0 Series. The designations appearing inside the boxes are subseries names.

Note Under planning

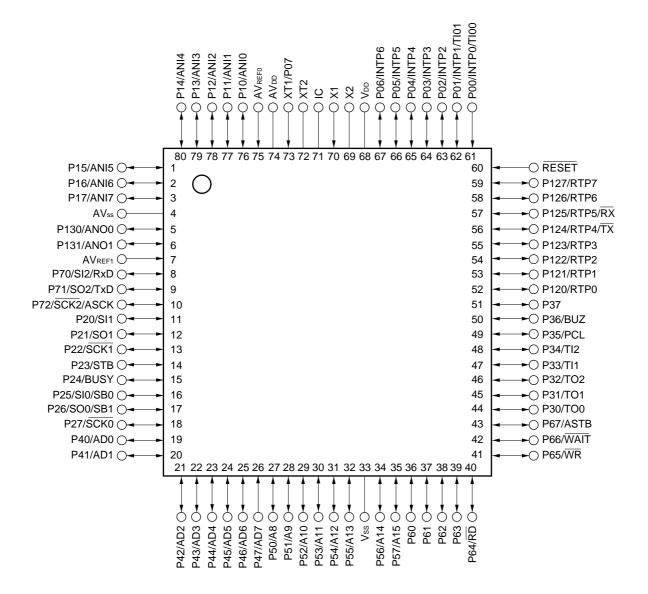
	Function	ROM		Tir	ner		8-bit	10-bit	8-bit	Serial interface	I/O	VDD MIN.	External
Subseries r	name	capacity	8-bit	16-bit	Watch	WDT	A/D	A/D	D/A	Senar Interface	1/0	value	expansion
Control	μPD78075B	32K to 40K	4 ch	1 ch	1 ch	1 ch	8 ch	_	2 ch	3 ch (UART: 1 ch)	88	1.8 V	Available
	μPD78078	48K to 60K											
	μPD78070A	_									61	2.7 V	
	μPD780058	24K to 60K	2 ch							3 ch (Time division UART: 1 ch)	68	1.8 V	
	μPD78058F	48K to 60K								3 ch (UART: 1 ch)	69	2.7 V	
	μPD78054	16K to 60K										2.0 V	
	μPD780034	8K to 32K					_	8 ch	_	3 ch (UART: 1 ch, Time	51	1.8 V	
	μPD780024						8 ch	_		division 3-wire: 1 ch)			
	μPD78014H									2 ch	53		
	μPD78018F	8K to 60K											
	μPD78014	8K to 32K										2.7 V	
	μPD780001	8K		_	_					1 ch	39		_
	μPD78002	8K to 16K			1 ch		_				53		Available
	μPD78083	_			_		8 ch			1 ch (UART: 1 ch)	33	1.8 V	_
Inverter	μPD780964	8K to 32K	3 ch	Note	_	1 ch	_	8 ch	_	2 ch (UART: 2 ch)	47	2.7 V	Available
control	μPD780924						8 ch	_					
FIP driving	μPD780208	32K to 60K	2 ch	1 ch	1 ch	1 ch	8 ch	_	_	2 ch	74	2.7 V	_
	μPD780228	48K to 60K	3 ch							1 ch	72	4.5 V	
	μPD78044H	32K to 48K	2 ch	1 ch	1 ch						68	2.7 V	
	μPD78044F	16K to 40K								2 ch			
LCD driving	μPD780308	48K to 60K	2 ch	1 ch	1 ch	1 ch	8 ch	_	_	3 ch (Time division UART: 1 ch)	57	2.0 V	_
	μPD78064B	32K								2 ch (UART: 1 ch)			
	μPD78064	16K to 32K											
IEBus	μPD78098B	40K to 60K	2 ch	1 ch	1 ch	1 ch	8 ch	_	2 ch	3 ch (UART: 1 ch)	69	2.7 V	Available
supported	μPD78098	32K to 60K											
Meter Control	μPD780973	24 to 32K	3 ch	1 ch	1 ch	1 ch	5 ch	_	_	2 ch (UART: 1 ch)	56	4.5 V	-
LV	μPD78P0914	32K	6 ch	_	_	1 ch	8 ch	_	_	2 ch	54	4.5 V	Available

The following table shows the differences among subseries functions.

Note 10-bit timer: 1 channel

Overview of Function

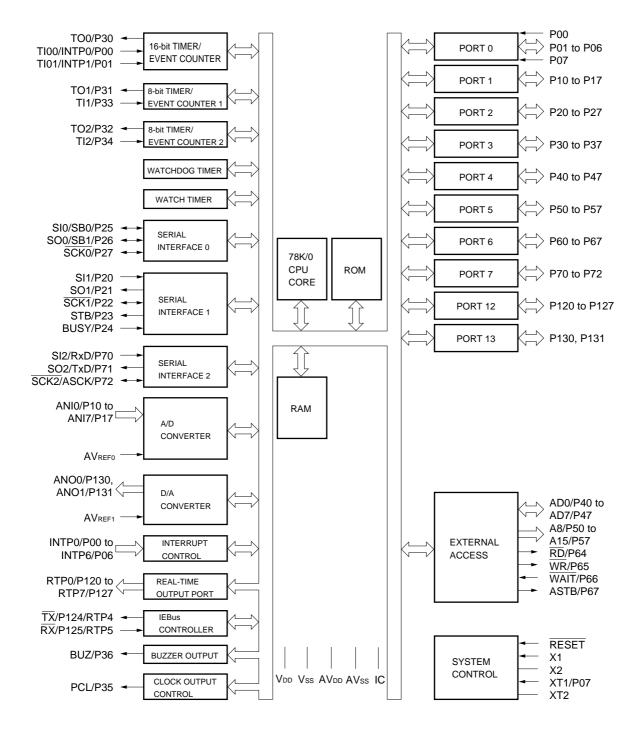
	Part number	μPD78095B	μPD78096B	μPD78098B			
Item							
Internal	ROM	40 Kbytes	48 Kbytes	60 Kbytes			
memory	High-speed RAM	1024 bytes					
	Buffer RAM	32 bytes					
	Expanded RAM	None		2048 bytes			
Memory sp	ace	64 Kbytes					
General reg	gisters	8 bits \times 32 registers (8 bits	imes 8 registers $ imes$ 4 banks)				
Minimum in	nstruction cycle	On-chip minimum instructio	n execution time cycle var	iable function			
When main system		0.5 μs/1.0 μs/2.0 μs/4.0 μs/	8.0 μs/16.0 μs (@ 6.0-MHz	operation with main system clock			
	clock selected						
	When subsystem	122 μs (@ 32.768-kHz ope	ration with subsystem cloc	:k)			
	clock selected						
Instruction	set	16-bit operation					
		• Multiply/divide (8 bits × 8	bits, 16 bits ÷ 8 bits)				
		Bit manipulate (set, reset,					
		BCD adjust, etc.					
I/O ports		Total :	69				
		CMOS input :	2				
		• CMOS I/O : 63					
		• N-ch open-drain I/O : 4					
IEBus conti	roller	Effective transmission rate : 3.9 kbps/17 kbps/26 kbps					
A/D conver	ter	8-bit resolution × 8 channels					
D/A conver	ter	• 8-bit resolution × 2 channel	els				
Serial interf	face	• 3-wire serial I/O/SBI/2-wir	e serial I/O mode selectab	le : 1 channel			
		• 3-wire serial I/O mode (on-chip	max. 32 bytes automatic data	transmit/receive function) : 1 channe			
		• 3-wire serial I/O /UART m	ode selectable : 1 chann	el			
Timer		• 16-bit timer/event counter	: 1 channel				
		• 8-bit timer/event counter	: 2 channels				
		Watch timer	: 1 channel				
		Watchdog timer : 1 channel					
Timer output	ut	3 (14-bit PWM output \times 1)					
Clock outpu	ut	15.6 kHz, 31.3 kHz, 62.5 kHz	Hz, 125 kHz, 250 kHz, 500) kHz, 1.0 MHz, 2.0 MHz,			
		15.6 kHz, 31.3 kHz, 62.5 kHz, 125 kHz, 250 kHz, 500 kHz, 1.0 MHz, 2.0 MHz, 4.0 MHz (@ 6.0-MHz operation with main system clock)					
		32.768 kHz (@ 32.768-kHz operation with subsystem clock)					
Buzzer out	put	977 Hz, 1.95 kHz, 3.9 kHz, 7.8 kHz (@ 6.0-MHz operation with main system clock)					
Vectored	Maskable	Internal: 14, External: 7					
interrupt	Non-maskable	Internal: 1					
sources	Software	1					
	Internal: 2, External: 1						
Test input							
Test input Supply volt	ade	$V_{DD} = 2.7 \text{ to } 5.5 \text{ V}$					


CONTENTS

1.	PIN CONFIGURATION (TOP VIEW)	8
2.	BLOCK DIAGRAM	10
3.	PIN FUNCTIONS 3.1 Port Pins 3.2 Non-port Pins 3.3 Pin I/O Circuits and Recommended Connection of Unused Pins	11 13
4.	MEMORY SPACE	19
5.	PERIPHERAL HARDWARE FUNCTIONS 5.1 Ports 5.2 Clock Generator 5.3 Timer/Event Counter 5.4 Clock Output Control Circuit 5.5 Buzzer Output Control Circuit 5.6 A/D Converter 5.7 D/A Converter 5.8 Serial Interfaces 5.9 Real-Time Output Port 5.10 IEBus Controller	20 21 22 24 25 25 26 26 28
6.	INTERRUPT FUNCTIONS AND TEST FUNCTIONS 6.1 Interrupt Functions 6.2 Test Functions	30
7.	EXTERNAL DEVICE EXPANSION FUNCTIONS	34
8.	STANDBY FUNCTION	34
9.	RESET FUNCTION	34
10.	INSTRUCTION SET	35
11.	ELECTRICAL SPECIFICATIONS	38
12.	CHARACTERISTIC CURVES (REFERENCE VALUES)	65
13.	PACKAGE DRAWING	67

14. RECOMMENDED SOLDERING CONDITIONS	. 68
APPENDIX A. DEVELOPMENT TOOLS	. 69
APPENDIX B. RELATED DOCUMENTS	. 71

PIN CONFIGURATION (TOP VIEW) 1.


• 80-pin plastic QFP (14 × 14 mm) μPD78095BGC-×××-3B9 μPD78096BGC-×××-3B9 μPD78098BGC-×××-3B9

- Cautions 1. Connect IC (Internally Connected) pin directly to Vss.
 - 2. The AV_{DD} pin functions as both an A/D converter power supply and port. When the μ PD78095B, 78096B, and 78098B are used in applications where the noise generated inside the microcontroller needs to be reduced, connect to another power supply that has the same potential as VDD.
 - 3. The AVss pin functions as both an A/D converter and D/A converter and port ground. When the μ PD78095B, 78096B, and 78098B are used in applications where the noise generated inside the microcontroller needs to be reduced, connect to another ground line than Vss.

A8 to A15	: Address Bus	RD	: Read Strobe
AD0 to AD7	: Address/Data Bus	RESET	: Reset
ANI0 to ANI7	: Analog Input	RTP0 to RTP7	: Real-Time Output Port
ANO0, ANO1	: Analog Output	RX	: Receive Data (IEBus
ASCK	: Asynchronous Serial Clock		Controller)
ASTB	: Address Strobe	RxD	: Receive Data (UART)
AVdd	: Analog Power Supply	SB0, SB1	: Serial Bus
AVREF0, AVREF1	: Analog Reference Voltage	SCK0 to SCK2	: Serial Clock
AVss	: Analog Ground	SI0 to SI2	: Serial Input
BUSY	: Busy	SO0 to SO2	: Serial Output
BUZ	: Buzzer Clock	STB	: Strobe
IC	: Internally Connected	TI00, TI01	: Timer Input
INTP0 to INTP6	: Interrupt from Peripherals	TI1, TI2	: Timer Input
P00 to P07	: Port0	TO0 to TO2	: Timer Output
P10 to P17	: Port1	TX	: Transmit Data (IEBus
P20 to P27	: Port2		Controller)
P30 to P37	: Port3	TxD	: Transmit Data (UART)
P40 to P47	: Port4	Vdd	: Power Supply
P50 to P57	: Port5	Vss	: Ground
P60 to P67	: Port6	WAIT	: Wait
P70 to P72	: Port7	WR	: Write Strobe
P120 to P127	: Port12	X1, X2	: Crystal (Main System
P130, P131	: Port13		Clock)
PCL	: Programmable Clock	XT1, XT2	: Crystal (Subsystem Clock)

2. BLOCK DIAGRAM

Remark Internal ROM capacity varies depending on the products.

3. PIN FUNCTIONS

3.1 Port Pins (1/2)

Pin Name	I/O	Function		After	Alternate
				Reset	Function
P00	Input	Port 0 Ir	nput only	Input	INTP0/TI00
P01	Input/	8-bit I/O port	nput/output can be specified bit-wise.	Input	INTP1/TI01
P02	Output	v	Vhen used as an input port, on-chip pull-up		INTP2
P03		re	esistor can be used by software.		INTP3
P04	-				INTP4
P05	1				INTP5
P06	1				INTP6
P07 ^{Note 1}	Input	Ir	nput only	Input	XT1
P10 to P17	Input/	Port 1		Input	ANI0 to ANI7
	Output	8-bit input/output port			
		Input/output can be specified	d bit-wise.		
		When used as an input port,	, on-chip pull-up resistor can be used by		
		software. ^{Note 2}			
P20	Input/	Port 2		Input	SI1
P21	Output	8-bit input/output port			SO1
P22		Input/output can be specified	d bit-wise.		SCK1
P23		When used as an input port	, on-chip pull-up resistor can be used		STB
P24		by software.			BUSY
P25					SI0/SB0
P26					SO0/SB1
P27					SCK0
P30	Input/	Port 3		Input	TO0
P31	Output	8-bit input/output port		-	TO1
P32		Input/output can be specified	d bit-wise.		TO2
P33		When used as an input port	t, on-chip pull-up resistor can be used		TI1
P34		by software.			TI2
P35					PCL
P36					BUZ
P37					
P40 to P47	Input/	Port 4		Input	AD0 to AD7
	Output	8-bit input/output port			
		Input/output can be specified	d in 8-bit units.		
		When used as an input port, o	on-chip pull-up resistor can be used by software.		
		Test input flag (KRIF) is set	to 1 by falling edge detection.		

Notes 1. When using the P07/XT1 pins as an input port, set 1 to bit 6 (FRG) of the processor clock control register (PCC). Do not use the on-chip feedback resistor of the subsystem clock oscillator.

2. When using the P10/ANI0 to P17/ANI7 pins as the A/D converter analog input, the internal pull-up resistor is automatically disconnected.

3.1 Port Pins (2/2)

Pin Name	I/O	Function			Alternate
			Reset	Function	
P50 to P57	Input/	Port 5			A8 to A15
	Output	8-bit input/output port			
		LEDs can be driven direc	tly.		
		Input/output can be speci	ified bit-wise.		
		When used as an input po	rt, on chip pull-up resistor can be used by software.		
P60	Input/	Port 6	N-ch open-drain input/output port. On-chip	Input	—
P61	Output	8-bit input/output port	pull-up resistor can be specified by mask		
P62		Input/output can be	option. LED can be driven directly.		
P63		specified bit-wise.			
P64			When used as an input port, on-chip pull-up	Input	RD
P65			resistor can be used by software.		WR
P66					WAIT
P67					ASTB
P70	Input/	Port 7		Input	SI2/RxD
P71	Output	3-bit input/output port			SO2/TxD
P72		Input/output can be speci	ified bit-wise.		SCK2/ASCK
		When used as an input po	rt, on-chip pull-up resistor can be used by software.		
P120 to P123	Input/	Port 12		Input	RTP0 to RTP3
P124	Output	8-bit input/output port			RTP4/TX
P125		Input/output can be speci		RTP5/RX	
P126, P127		When used as an input po		RTP6, RTP7	
P130, P131	Input/	Port 13		Input	ANO0, ANO1
	Output	2-bit input/output port			
		Input/output can be speci	ified bit-wise.		
		When used as an input po	rt, on-chip pull-up resistor can be used by software.		

Caution Do not perform the following operations for pins that have alternate functions in addition to port during A/D conversion.

The total error rating may be exceeded with the following operations.

- <1> Rewriting the output latch of a port's output when the pin is used as the port.
- <2> Changing the output level of the pin used for an output when the pin is not used as a port.

3.2 Non-port Pins (1/2)

Pin Name	I/O	Function	After Reset	Alternate Function
INTP0	Input	External interrupt request input by which the active edge (rising edge,	Input	P00/TI00
INTP1		falling edge, or both rising and falling edges) can be specified.		P01/TI01
INTP2	-			P02
INTP3				P03
INTP4	-			P04
INTP5	-			P05
INTP6	-			P06
SI0	Input	Serial interface serial data input	Input	P25/SB0
SI1	-			P20
SI2				P70/RxD
SO0	Output	Serial interface serial data output	Input	P26/SB1
SO1				P21
SO2				P71/TxD
SB0	Input/	Serial interface serial data input/output	Input	P25/SI0
SB1	Output			P26/SO0
SCK0	Input/	Serial interface serial clock input/output	Input	P27
SCK1	Output			P22
SCK2	-			P72/ASCK
STB	Output	Serial interface automatic transmit/receive strobe output	Input	P23
BUSY	Input	Serial interface automatic transmit/receive busy input	Input	P24
RxD	Input	Asynchronous serial interface serial data input	Input	P70/SI2
TxD	Output	Asynchronous serial interface serial data output	Input	P71/SO2
ASCK	Input	Asynchronous serial interface serial clock input	Input	P72/SCK2
TI00	Input	External count clock input to 16-bit timer (TM0)	Input	P00/INTP0
TI01		Capture trigger signal input to capture register (CR00)		P01/INTP1
TI1		External count clock input to 8-bit timer (TM1)		P33
TI2	-	External count clock input to 8-bit timer (TM2)		P34
TO0	Output	16-bit timer output (TM0) (also used for 14-bit PWM output)	Input	P30
TO1	-	8-bit timer output (TM1)		P31
TO2	-	8-bit timer output (TM2)		P32
PCL	Output	Clock output (for main system clock, subsystem clock trimming)	Input	P35
BUZ	Output	Buzzer output	Input	P36
RTP0 to RTP3	Output	Real-time output port by which data is output in synchronization	Input	P120 to P123
RTP4		with a trigger		P124/TX
RTP5				P125/RX
RTP6, RTP7	-			P126, P127
TX	Output	IEBus controller data output	Input	P124/RTP4
RX	Input	IEBus controller data input	Input	P125/RTP5

3.2 Non-port Pins (2/2)

Pin Name	I/O	Function	After Reset	Alternate Function
AD0 to AD7	Input/ Output	Low-order address/data bus at external memory expansion.		P40 to P47
A8 to A15	Output	High-order address bus at external memory expansion.	Input	P50 to P57
RD	Output	External memory read operation strobe signal output.	Input	P64
WR		External memory write operation strobe signal output.		P65
WAIT	Input	Wait insertion at external memory access.	Input	P66
ASTB	Output	Strobe output which latches the address data output for ports 4 or 5 to access external memory.	Input	P67
AN10 to AN17	Input	A/D converter analog input.	Input	P10 to P17
ANO0, ANO1	Output	D/A converter analog output.		P130, P131
AV _{REF0}	Input	A/D converter reference voltage input.		—
AV _{REF1}	Input	D/A converter reference voltage input.	_	—
AVdd	—	A/D converter analog power supply. (Also used for power supply of ports)	_	—
AVss	—	A/D converter and D/A converter ground potential. (Also used for ground potential of ports)	_	_
RESET	Input	System reset input.	_	_
X1	Input	Main system clock oscillation crystal connection.	_	_
X2	_		_	_
XT1	Input	Subsystem clock oscillation crystal connection.	Input	P07
XT2	_	-		
Vdd	_	Positive power supply. (Other than ports and analog pins)	_	_
Vss	_	Ground potential. (Other than ports and analog pins)	_	_
IC	—	Internally connected. Connect directly to Vss.	_	—

- Cautions1. The AV_{DD} pin functions as both an A/D converter power supply and port. When the μPD78095B,
78096B, and 78098B are used in applications where the noise generated inside the microcontroller
needs to be reduced, connect to another power supply that has the same potential as V_{DD}.
 - 2. The AVss pin functions as both an A/D converter and D/A converter and port ground. When the μ PD78095B, 78096B, and 78098B are used in applications where the noise generated inside the microcontroller needs to be reduced, connect to another ground line than Vss.

3.3 Pin I/O Circuits and Recommended Connection of Unused Pins

The input/output circuit type of each pin and recommended connection of unused pins are shown in Table 3-1. For the input/output circuit configuration of each type, see Figure 3-1.

Pin Name	Input/Output Circuit Type	I/O	Recommended Connection for Unused Pins
P00/INTP0/TI00	2	Input	Connect to Vss.
P01/INTP1/TI01	8-D	Input/output	Independently connect to Vss via a resistor.
P02/INTP2			
P03/INTP3			
P04/INTP4			
P05/INTP5			
P06/INTP6			
P07/XT1	16	Input	Connect to VDD.
P10/ANI0 to P17/ANI7	11-C	Input/output	Independently connect to VDD or VSS via a resistor.
P20/SI1	8-D	1	
P21/SO1	5-J	1	
P22/SCK1	8-D	-	
P23/STB	5-J	1	
P24/BUSY	8-D	-	
P25/SI0/SB0	10-C	1	
P26/SO0/SB1			
P27/SCK0			
P30/TO0	5-J		
P31/TO1			
P32/TO2			
P33/TI1	8-D		
P34/TI2			
P35/PCL	5-J		
P36/BUZ			
P37			
P40/AD0 to P47/AD7	5-O		Independently connect to VDD via a resistor.
P50/A8 to P57/A15	5-J		Independently connect to VDD or Vss via a resistor.
P60 to P63	13-I		Independently connect to VDD via a resistor.
P64/RD	5-J		Independently connect to VDD or VSS via a resistor.
P65/WR			
P66/WAIT			
P67/ASTB			

Table 3-1. Types of Pin Input/Output Circuits (1/2)

Pin Name	Input/Output Circuit Type	I/O	Recommended Connection for Unused Pins
P70/SI2/RxD	8-D	Input/output	Independently connect to VDD or VSS via a resistor.
P71/SO2/TxD	5-J	-	
P72/SCK2/ASCK	8-D		
P120/RTP0 to P123/RTP3	5-J		
P124/RTP4/TX			
P125/RTP5/RX			
P126/RTP6, P127/RTP7			
P130/ANO0,	12-B	-	Independently connect to Vss via a resistor.
P131/ANO1			
RESET	2	Input	_
XT2	16	_	Leave open.
AV _{REF0}	—		Connect to Vss.
AV _{REF1}			Connect to VDD.
AVdd			Connect to the other power supply that has the same potential as $V_{DD}.$
AVss			Connect to the other ground that has the same potential as Vss.
IC			Connect directly to Vss.

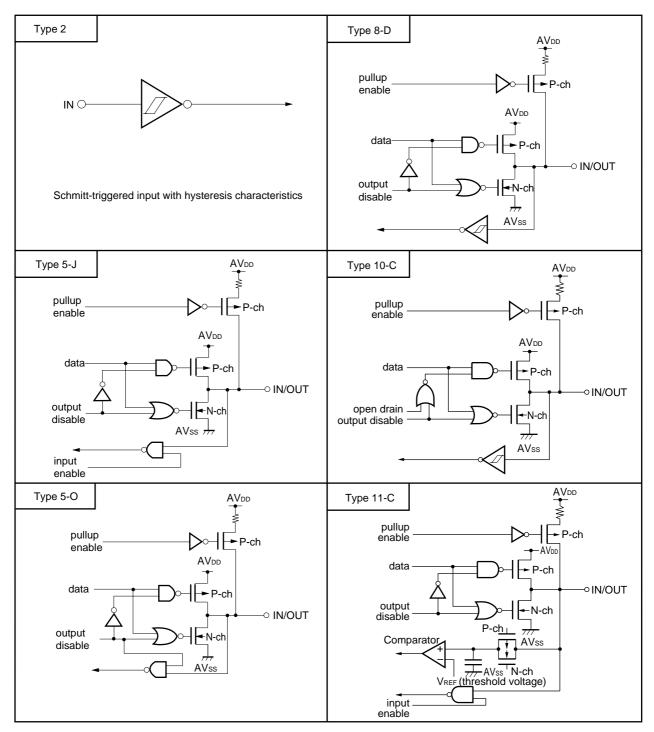


Figure 3-1. Pin Input/Output Circuits (1/2)

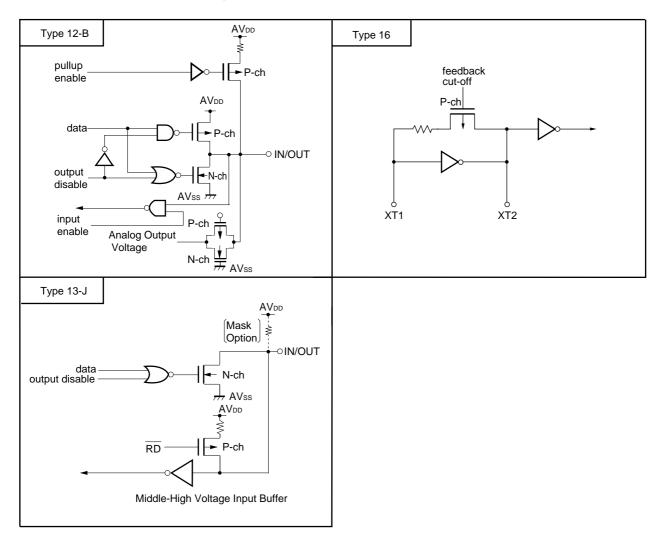


Figure 3-2. Pin Input/Output Circuits (2/2)

4. MEMORY SPACE

The memory map of the μ PD78095B, 78096B, and 78098B is shown in Figure 4-1.

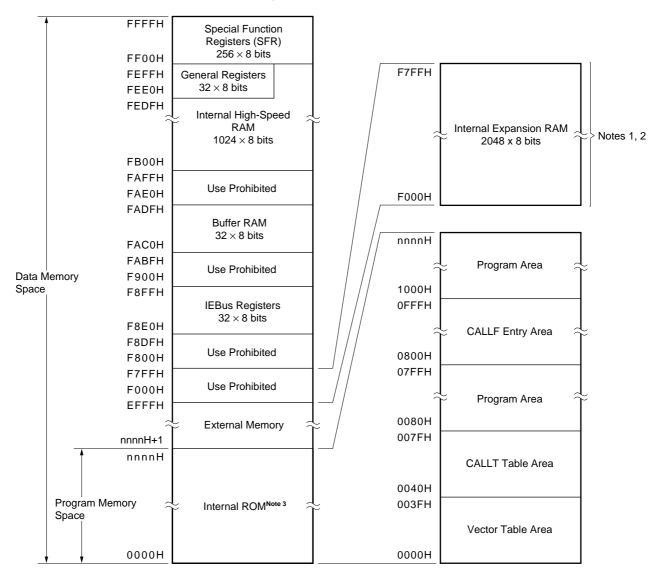


Figure 4-1. Memory Map

Notes 1. Only *μ*PD78098B.

- When using the external device expansion function with the μPD78098B, set the internal ROM capacity to below 56 Kbytes by using a memory size switching register (IMS).
- 3. Internal ROM capacity differs according to the product.

Target	Internal ROM last address	
Part number	nnnnH	
μPD78095B	9FFFH	
μPD78096B	BFFFFH	
μPD78098B	EFFFH	

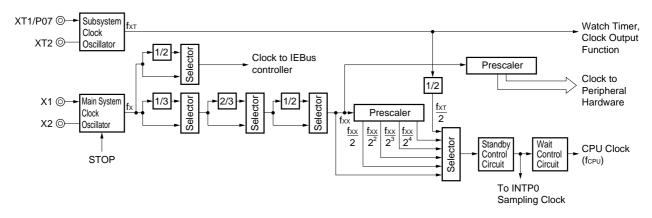
: 2

: 69

5. PERIPHERAL HARDWARE FUNCTIONS

5.1 Ports

Input/output ports are classified into three types.


- CMOS input (P00, P07)
- CMOS input/output (P01 to P06, Ports 1 to 5, P64 to P67, Port 7, Port 12, Port 13) : 63 • N-ch open-drain input/output (P60-P63) : 4
 - Total

Port Name	Pin Name	Function	
Port 0 P00, P07		Input only.	
	P01 to P06	Input/output port. Input/output can be specified bit-wise. When used as an input port, on-chip pull-up resistor can be connected by software.	
Port 1	P10 to P17	Input/output port. Input/output can be specified bit-wise. When used as an input port, on-chip pull-up resistor can be connected by software.	
Port 2	P20 to P27	Input/output port. Input/output can be specified bit-wise. When used as an input port, on-chip pull-up resistor can be connected by software.	
Port 3	P30 to P37	Input/output port. Input/output can be specified bit-wise. When used as an input port, on-chip pull-up resistor can be connected by software.	
Port 4	P40 to P47	Input/output port. Input/output can be specified in 8-bit units. When used as an input port, on-chip pull-up resistor can be connected by software.	
Port 5	P50 to P57	The test input flag (KRIF) is set to 1 by falling edge detection. Input/output port. Input/output can be specified bit-wise. When used as an input port, on-chip pull-up resistor can be connected by software. LEDs can be driven directly.	
Port 6 P60 to P63		N-ch open-drain input/output port. Input/output can be specified bit-wise. On-chip pull-up resistor can be connected by mask option. LEDs can be driven directly.	
	P64 to P67	Input/output port. Input/output can be specified bit-wise. When used as an input port, on-chip pull-up resistor can be connected by software.	
Port 7	P70 to P72	Input/output port. Input/output can be specified bit-wise. When used as an input port, on-chip pull-up resistor can be connected by software.	
Port 12	P120 to P127	Input/output port. Input/output can be specified bit-wise. When used as an input port, on-chip pull-up resistor can be connected by software.	
Port 13	P130, P131	Input/output port. Input/output can be specified bit-wise. When used as an input port, on-chip pull-up resistor can be connected by software.	

5.2 Clock Generator

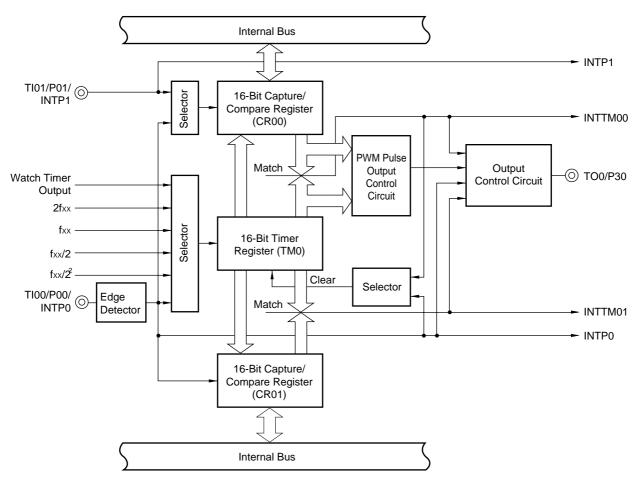
There are two kinds of clock generators: main system and subsystem clock generators. It is possible to change the minimum instruction execution time.

- 0.5 μ s/1.0 μ s/2.0 μ s/4.0 μ s/8.0 μ s/16.0 μ s (@ fx = 6.0-MHz operation with main system clock)
- 122 μ s (@ fxt = 32.768 kHz operation with subsystem clock)

Figure 5-1. Clock Generator Block Diagram

5.3 Timer/Event Counter

There are the following five timer/event counter channels:


: 1 channel

- 16-bit timer/event counter : 1 channel
- 8-bit timer/event counter : 2 channels
- Watch timer
- Watchdog timer : 1 channel

Table 5-2. Operations of Timer/Event Counters

		16-bit Timer/Event Counter	8-bit Timer/Event Counter	Watch Timer	Watchdog Timer
Operation	Interval timer	1 channel	2 channels	1 channel	1 channel
mode	External event counter	1 channel	2 channels	—	—
Function	Timer output	1 output	2 outputs	—	—
	PWM output	1 output	—	—	—
	Pulse width measurement	2 inputs	_		—
	Square wave output	1 output	2 outputs	—	—
	One-shot pulse output	1 output	—	_	—
	Interrupt request	2	2	1	1
	Test input	—	_	1 input	—

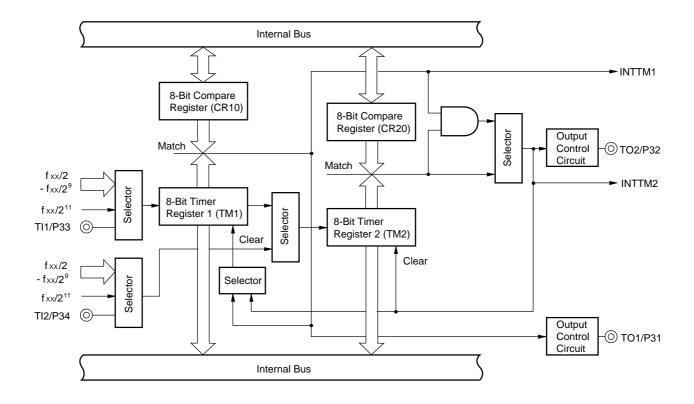
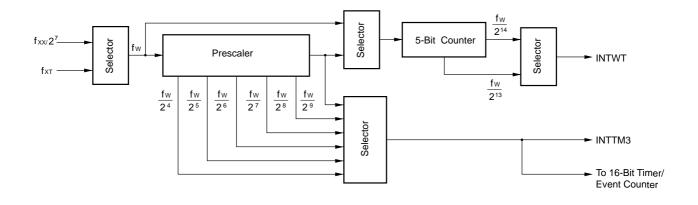
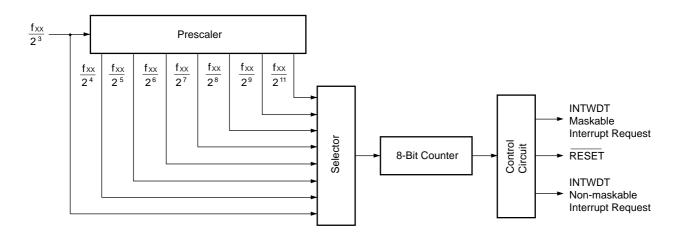
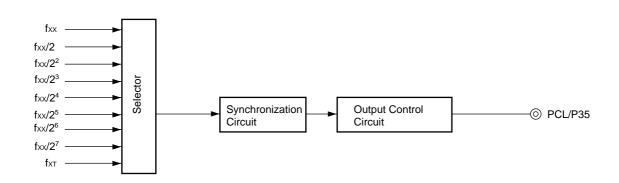




Figure 5-3. 8-Bit Timer/Event Counter Block Diagram

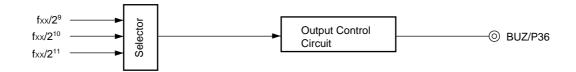
Figure 5-4. Watch Timer Block Diagram



5.4 Clock Output Control Circuit

This circuit can output clocks of the following frequencies:

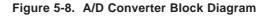
- 15.6 kHz/31.3 kHz/62.5 kHz/125 kHz/250 kHz/500 kHz/1.0 MHz/2.0 MHz/4.0 MHz
 (@ fx = 6.0-MHz operation with main system clock)
- 32.768 kHz (@ fxt = 32.768-kHz operation with subsystem clock)

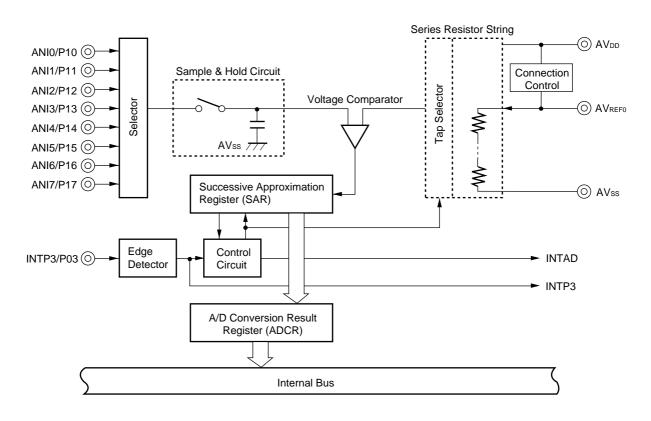

Figure 5-6. Clock Output Control Circuit Block Diagram

5.5 Buzzer Output Control Circuit

- This circuit can output clocks of the following frequencies that can be used for driving buzzers:
 - 977 Hz/1.95 kHz/3.9 kHz/7.8 kHz (@ fx = 6.0-MHz operation with main system clock)

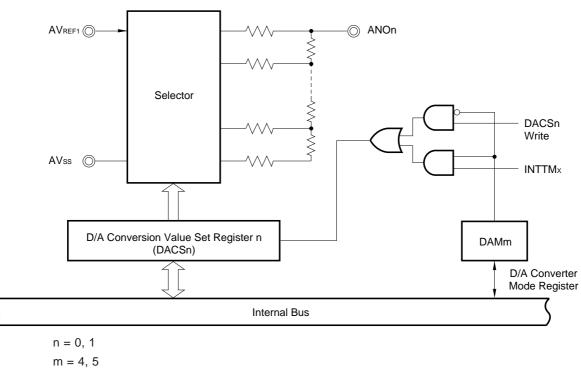
Figure 5-7. Buzzer Output Control Circuit Block Diagram




5.6 A/D Converter

The A/D converter consists of eight 8-bit resolution channels.

A/D conversion can be started by the following two methods:


- Hardware starting
- · Software starting

5.7 D/A Converter

The D/A converter consists of two 8-bit resolution channels. The conversion method is the R-2R resistor ladder method.

x = 1, 2

5.8 Serial Interfaces

There are the following three on-chip serial interface channels synchronous with the clock:

- Serial interface channel 0
- Serial interface channel 1
- Serial interface channel 2

Function	Serial Interface Channel 0	Serial Interface Channel 1	Serial Interface Channel 2
3-wire serial I/O mode	 (MSB/LSB first switching possible) 	 (MSB/LSB first switching possible) 	 (MSB/LSB first switching possible)
3-wire serial I/O mode with automatic data transmit/receive function	_	 (MSB/LSB first switching possible) 	_
2-wire serial I/O mode	O (MSB first)	_	_
SBI (Serial bus interface) mode	○ (MSB first)	_	_
Asynchronous serial interface (UART) mode	_	_	 (On-chip dedicated baud rate generator)

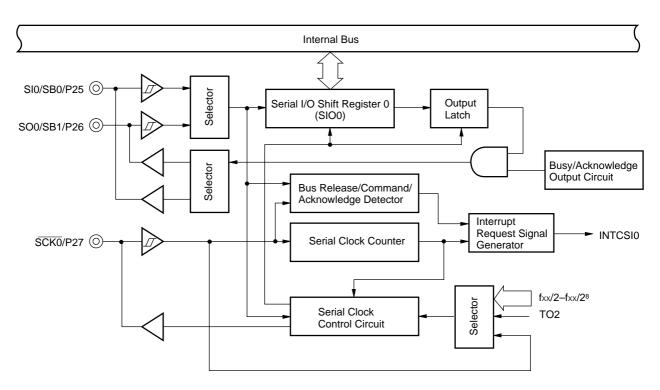
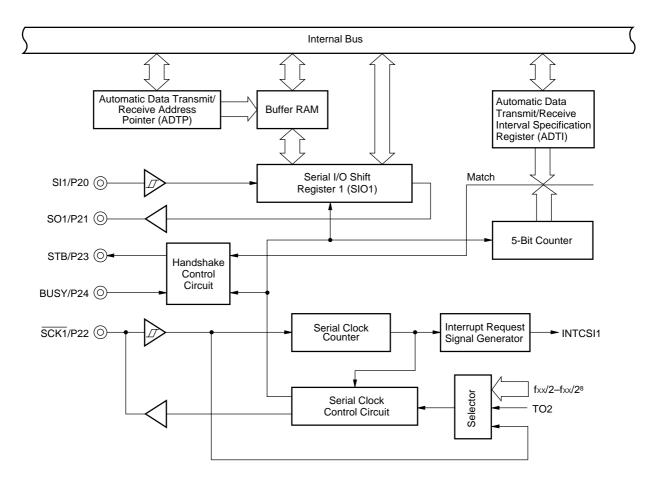
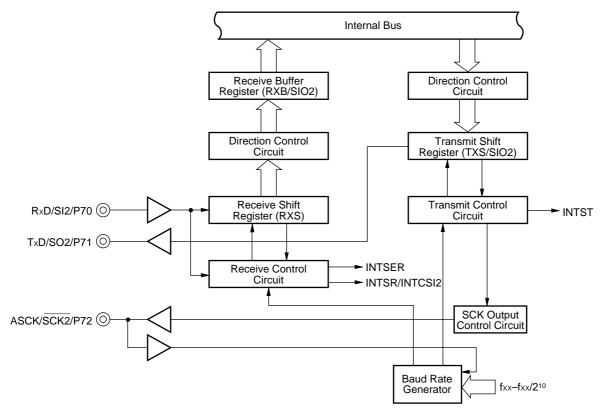
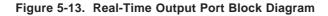
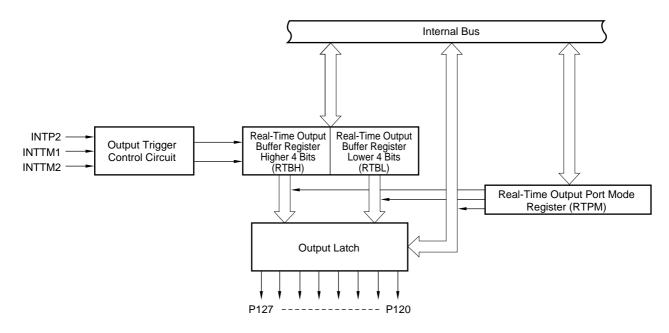




Figure 5-10. Serial Interface Channel 0 Block Diagram




Figure 5-12. Serial Interface Channel 2 Block Diagram

5.9 Real-Time Output Port

Data set previously in the real-time output buffer is transferred to the output latch by hardware concurrently with timer interrupt request or external interrupt request generation in order to output to off-chip. This is a real-time output function. Pins used to output to off-chip are called real-time output ports.

By using a real-time output port, a signal which has no jitter can be output. This is most applicable to control of stepping motors, etc.

5.10 IEBus Controller

IEBus (Inter Equipment BusTM) is a small-scale digital data transmission system for transmitting data between units. When configuring the IEBus with the μ PD78098B Subseries, the IEBus driver/receiver need to be connected externally as they are not incorporated.

Using the IEBus controller incorporated in the μ PD78098B Subseries, positive logic/negative logic can be selected by software for the externally connected IEBus driver/receiver.

6. INTERRUPT FUNCTIONS AND TEST FUNCTIONS

6.1 Interrupt Functions

A total of 23 interrupt sources functions are provided, divided into the following three types.

- Non-maskable : 1
- Maskable : 21
- Software : 1

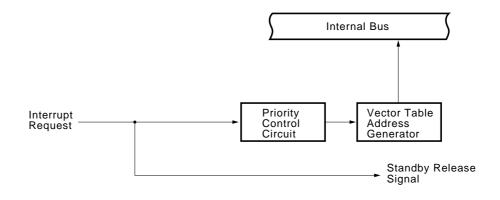

Interrupt	Default ^{Note 1}	Interrupt Factor			Vector	Basic ^{Note 2}
Туре	Priority	Name	Trigger	External	Table	Structure
					Address	Туре
Non-	—	INTWDT	Overflow of watchdog timer (When watchdog timer	Internal	0004H	(A)
maskable			mode 1 is selected)			
Maskable	0	INTWDT	Overflow of watchdog timer (When the interval timer]		(B)
			mode is selected)			
1	1	INTP0	Pin input edge detection	External	0006H	(C)
	2	INTP1			0008H	(D)
	3	INTP2			000AH	1
	4	INTP3			000CH	1
	5	INTP4			000EH	1
	6	INTP5			0010H	1
	7	INTP6			0012H	1
8 9 10	8	INTCSI0	Completion of serial interface channel 0 transfer	Internal	0014H	(B)
	9	INTCSI1	Completion of serial interface channel 1 transfer		0016H	1
	10	INTSER	Occurrence of serial interface channel 2 UART		0018H	1
			reception error			
11	11	INTSR	Completion of serial interface channel 2 UART reception		001AH	1
		INTCSI2	Completion of serial interface channel 2 3-wire transfer			
	12	INTST	Completion of serial interface channel 2 UART		001CH	1
			transmission			
	13	INTTM3	Reference interval signal from watch timer		001EH	1
	14	INTTM00	Generation of matching signal of 16-bit timer register		0020H	1
			and capture/compare register (CR00)			
	15	INTTM01	Generation of matching signal of 16-bit timer register		0022H	1
			and capture/compare register (CR01)			
	16	INTTM1	Generation of matching signal of 8-bit timer/event		0024H	1
18			counter 1			
	17	INTTM2	Generation of matching signal of 8-bit timer/event		0026H	1
			counter 2			
	18	INTAD	Completion of A/D conversion	1	0028H	1
	19	INTIE	Writing data from the IEBus controller to the return	1	002AH	1
			code register (RCR) (including the same value) or			
			detecting an IEBus interface runaway.			
Software	_	BRK	Execution of BRK instruction	_	003EH	(E)

Table 6-1. List of Interrupt Factors

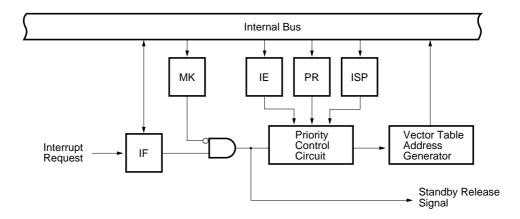
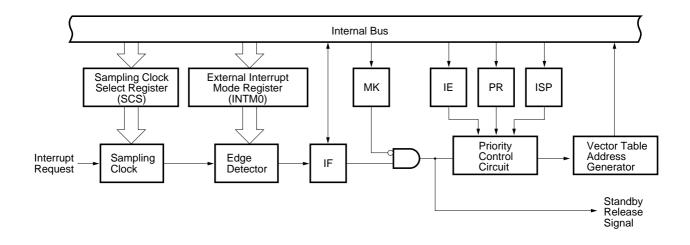
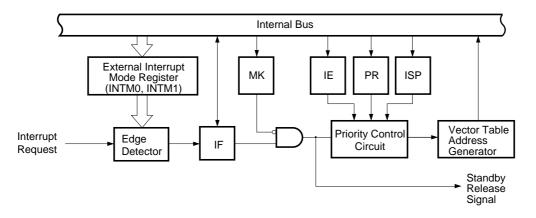

- **Notes 1.** Default priority is the priority order when several maskable interrupt requests are generated at the same time. 0 is the highest order and 19 is the lowest order.
 - 2. Basic structure types (A) to (E) correspond to (A) to (E) in Figure 6-1.


Figure 6-1. Interrupt Function Basic Configuration (1/2)


(A) Internal non-maskable interrupt

(B) Internal maskable interrupt



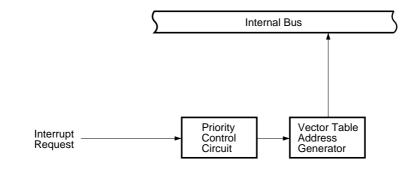


Figure 6-1. Interrupt Function Basic Configuration (2/2)

(D) External maskable interrupt (except INTP0)

(E) Software interrupt

- IF : Interrupt request flag
- IE : Interrupt enable flag
- ISP : In-service priority flag
- MK : Interrupt mask flag
- PR : Priority specification flag

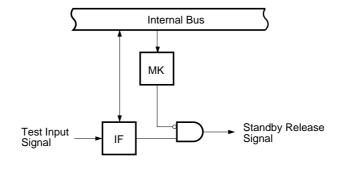

6.2 Test Functions

Table 6-2 shows the two test functions available.

Table 6-2. Test Input Factors

Test Input Factor		Internal/
Name	Name Trigger	
INTWT	Overflow of watch timer	Internal
INTPT4	Detection of falling edge of port 4	External

Figure 6-2. Basic Configuration of Test Function

IF : Test input flag MK : Test mask flag

7. EXTERNAL DEVICE EXPANSION FUNCTIONS

The external device expansion functions connect external devices to areas other than the internal ROM, RAM, and SFR. Ports 4 to 6 are used to connect external devices.

8. STANDBY FUNCTION

The standby function is designed to reduce current consumption.

It has the following two modes:

- HALT mode : In this mode, the CPU operation clock is stopped. The average current consumption can be reduced by intermittent operation by combining this mode with the normal operation mode.
- STOP mode : In this mode, oscillation of the main system clock is stopped. All the operations performed on the main system clock are suspended, and only the subsystem clock is used for extremely small power consumption.

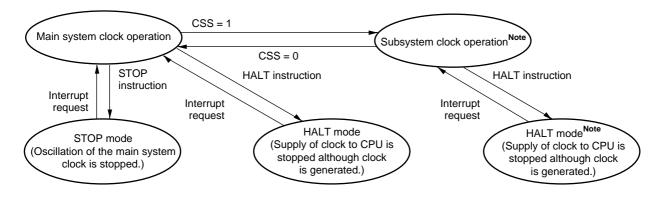


Figure 8-1. Standby Function

Note Current consumption is reduced by shutting off the main system clock. If the CPU is operating on the subsystem clock, shut off the main system clock by setting bit 7 (MCC) of the processor clock control register (PCC). You cannot use a STOP instruction.

Caution When switching on the main system clock again after the subsystem clock has been used with the main system clock stopped, be sure to provide oscillation stabilization time with the program first.

9. RESET FUNCTION

There are the following two reset methods.

- External reset input by RESET pin
- Internal reset by watchdog timer runaway time detection

10. INSTRUCTION SET

(1) 8-bit instructions

MOV, XCH, ADD, ADDC, SUB, SUBC, AND, OR, XOR, CMP, MULU, DIVUW, INC, DEC, ROR, ROL, RORC, ROLC, ROR4, ROL4, PUSH, POP, DBNZ

2nd Operand 1st Operand	#byte	A	r ^{Note}	sfr	saddr	!addr16	PSW	[DE]	[HL]	[HL + byte] [HL + B] [HL + C]	\$addr16	1	None
A	ADD ADDC SUB SUBC AND OR XOR CMP		MOV XCH ADD SUB SUBC AND OR XOR CMP	MOV XCH	MOV XCH ADD SUB SUBC AND OR XOR CMP	MOV XCH ADD ADDC SUB SUBC AND OR XOR CMP	MOV	MOV XCH	MOV XCH ADD ADDC SUB SUBC AND OR XOR CMP	MOV XCH ADD SUB SUBC AND OR XOR CMP		ROR ROL RORC ROLC	
r	MOV	MOV ADD ADDC SUB SUBC AND OR XOR CMP											INC DEC
В, С											DBNZ		
sfr	MOV	MOV											
saddr	MOV ADD ADDC SUB SUBC AND OR XOR CMP	MOV									DBNZ		INC DEC
!addr16		MOV											
PSW	MOV	MOV											PUSH POP
[DE]		MOV											
[HL]		MOV											ROR4 ROL4
[HL + byte] [HL + B] [HL + C]		MOV											
Х													MULU
С													DIVUW

Note Except r = A

(2) 16-bit instructions

MOVW, XCHW, ADDW, SUBW, CMPW, PUSH, POP, INCW, DECW

2nd Operand	#word	AX	rp ^{Note}	sfrp	saddrp	!addr16	SP	None
1st Operand								
AX	ADDW SUBW CMPW		MOVW XCHW	MOVW	MOVW	MOVW	MOVW	
rp	MOVW	MOVW ^{Note}						INCW, DECW PUSH, POP
sfrp	MOVW	MOVW						
saddrp	MOVW	MOVW						
!addr16		MOVW						
SP	MOVW	MOVW						

Note Only when rp = BC, DE, HL

(3) Bit manipulation instructions

MOV1, AND1, OR1, XOR1, SET1, CLR1, NOT1, BT, BF, BTCLR

2nd Operand	A.bit	sfr.bit	saddr.bit	PSW.bit	[HL].bit	CY	\$addr16	None
A.bit						MOV1	BT BF BTCLR	SET1 CLR1
sfr.bit						MOV1	BT BF BTCLR	SET1 CLR1
saddr.bit						MOV1	BT BF BTCLR	SET1 CLR1
PSW.bit						MOV1	BT BF BTCLR	SET1 CLR1
[HL].bit						MOV1	BT BF BTCLR	SET1 CLR1
СҮ	MOV1 AND1 OR1 XOR1	MOV1 AND1 OR1 XOR1	MOV1 AND1 OR1 XOR1	MOV1 AND1 OR1 XOR1	MOV1 AND1 OR1 XOR1			SET1 CLR1 NOT1

(4) Call instruction/Branch instructions

CALL, CALLF, CALLT, BR, BC, BNC, BZ, BNZ, BT, BF, BTCLR, DBNZ

2nd Operand	AX	!addr16	!addr11	[addr5]	\$addr16
1st Operand					
Basic instruction	BR	CALL BR	CALLF	CALLT	BR, BC, BNC, BZ, BNZ
Compound instruction					BT, BF BTCLR DBNZ

(5) Other instructions

ADJBA, ADJBS, BRK, RET, RETI, RETB, SEL, NOP, EI, DI, HALT, STOP

11. ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings (T_A = 25°C)

Parameter	Symbol	Test Condition	ns		Ratings	Unit
Supply voltage	Vdd				-0.3 to +7.0	V
	AVDD				-0.3 to V _{DD} + 0.3	V
	AV REF0				-0.3 to VDD + 0.3	V
	AV _{REF1}				-0.3 to VDD + 0.3	V
	AVss				-0.3 to +0.3	V
Input voltage	VI1	P00 to P07, P10 to P17, P20 to	o P27, P	30 to P37,	-0.3 to VDD + 0.3	V
		P40 to P47, P50 to P57, P64 to	o P67, P	70 to P72,		
		P120 to P127, P130, P131, X	(1, X2, X	T2,		
		RESET				
	V _{I2}	P60 to P63	N-ch ope	n-drain	-0.3 to +16	V
Output voltage	Vo				-0.3 to VDD + 0.3	V
Analog input voltage	Van	P10 to P17 A	Analog ir	nput pins	AVss - 0.3 to AVREF0 + 0.3	V
Output current, high	Іон	Per pin			-10	mA
		Total for P01 to P06, P30 to F	P37, P56	6, P57,	-15	mA
		P60 to P67, P120 to P127				
		Total for P10 to P17, P20 to F	P27, P40) to P47,	-15	mA
		P50 to P55, P70 to P72, P130	0, P131			
Output current, low	IOL Note	Per pin		Peak value	30	mA
				r.m.s. value	15	mA
		Total for P50 to P55		Peak value	100	mA
			-	r.m.s. value	70	mA
		Total for P56, P57, P60 to P6	3	Peak value	100	mA
				r.m.s. value	70	mA
		Total for P10 to P17, P20 to F	P27,	Peak value	50	mA
		P40 to P47, P70 to P72, P130), P131	r.m.s. value	20	mA
		Total for P01 to P06, P30 to P	P37,	Peak value	50	mA
		P64 to P67, P120 to P127		r.m.s. value	20	mA
Operating ambient temperature	TA		I		-40 to +85	°C
Storage temperature	Tstg				-65 to +150	°C
Power dissipation	Pd				650	mW

Note The r.m.s. value should be calculated as follows: [r.m.s. value] = [Peak value] $x \sqrt{Duty}$

Caution Exposure to Absolute Maximum Ratings for extended periods may affect device reliablity; exceeding the ratings could cause permanent damage. The parameters apply independently.

Resonator	Recommended Circuit	Parameter	Test Conditions	MIN.	TYP.	MAX.	Unit
Ceramic resonator	X2 X1 IC	Oscillation frequency (fx) Note 1	V _{DD} = Oscillation voltage range	1.0	6.0	6.29	MHz
		Oscillation stabilization time Note 2	After V _{DD} came to MIN. of oscillation voltage range			4	ms
Crystal resonator	X2 X1 IC	Oscillation frequency (fx) Note 1		1.0	6.0	6.29	MHz
		Oscillation stabilization	V _{DD} = 4.5 to 5.5 V			10	ms
		time Note 2				30	
External clock		X1 input frequency (fx) ^{Note 1}		1.0	6.0	6.29	MHz
		X1 input high- and	Using at f _{xx} = f _x	85		500	ns
		low-level widths (txH, txL)	Other than above	72		500	

Main System Clock Oscillator Characteristics ($T_A = -40$ to $+85^{\circ}C$, $V_{DD} = 2.7$ to 5.5 V)

Notes 1. Only the oscillator characteristics are shown. For the instruction execution time, refer to AC Characteristics.2. Time required for oscillation to stabilize after a reset or the STOP mode has been released.

Cautions 1. When using the main system clock oscillator, wire the portion enclosed by the dotted line in the figures as follows to avoid adverse influence on the wiring capacitance:

- Keep the wiring length as short as possible.
- Do not cross the wiring over other signal lines.
- Do not route the wiring in the vicinity of lines through which a high fluctuating current flows.
- Always keep the ground point of the capacitor of the oscillator circuit at the same potential as VDD.
- Do not connect a power source pattern through which a high current flows.
- Do not extract signals from the oscillation circuit.
- 2. When switching on the main system clock again after the subsystem clock has been used with the main system clock stopped, be sure to provide oscillation stabilization time with the program first.

Resonator	Recommended	Parameter	Test Conditions	MIN.	TYP.	MAX.	Unit
	Circuit						
Crystal resonator		Oscillation frequency (fxT) Note 1		32	32.768	35	kHz
	≷R2 →] - → C4 - C3 -	Oscillation stabilization time Note 2	V _{DD} = 4.5 to 5.5 V		1.2	2	S
	· · · · · · · · · · · · · · · · · · ·					10	
External clock	XT2 XT1	XT1 input frequency (f _{XT}) Note 1		32		100	kHz
		XT1 input high-, low-level widths (txth, txtL)		5		15	μs

Subsystem Clock Oscillator Characteristics ($T_A = -40$ to $+85^{\circ}C$, $V_{DD} = 2.7$ to 5.5 V)

- Notes 1. Only the oscillator characteristics are shown. For the instruction execution time, refer to AC Characteristics.2. Time required for oscillation to stabilize after power (VDD) is turned on.
- Cautions 1. When using the subsystem clock oscillator, wire the portion enclosed in dotted line in the figures as follows to avoid adverse influence on the wiring capacitance:
 - Keep the wiring length as short as possible.
 - Do not cross the wiring over other signal lines.
 - Do not route the wiring in the vicinity of lines through which a high fluctuating current flows.
 - Always keep the ground point of the capacitor of the oscillator circuit at the same potential as VDD.
 - Do not connect a power source pattern through which a high current flows.
 - Do not extract signals from the oscillation circuit.
 - 2. The amplification factor of the subsystem clock oscillator circuit is designed to be low to reduce the current consumption and therefore, the subsystem clock circuit is influenced by noise more easily than the main system clock oscillator. When using the subsystem clock, therefore, exercise utmost care in wiring the circuit.

Capacitance (TA = 25°C, VDD = Vss = 0 V)

Parameter	Symbol		Test Conditions			MAX.	Unit
Input capacitance	CIN	f = 1 MHz Unr	f = 1 MHz Unmeasured pins returned to 0 V.			15	pF
I/O capacitance	Сю	f = 1 MHz	P01 to P06, P10 to P17, P20 to P27,			15	pF
		Unmeasured	Unmeasured P30 to P37, P40 to P47,				
		pins returned	P50 to P57, P64 to P67, P70 to P72,				
		to 0 V.	P120 to P127, P130, P131				
			P60 to P63			20	pF

Parameter	Symbol	Test Cor	nditions	MIN.	TYP.	MAX.	Unit
Input voltage, high	VIH1	P10 to P17, P21, P23, P30 to	P32, P35 to P37, P40 to P47,	0.7Vdd		Vdd	V
		P50 to P57, P64 to P67, P7	1, P120 to P127, P130, P131				
	VIH2	P00 to P06, P20, P22, I	P24 to P27, P130, P131	0.8Vdd		Vdd	V
		RESET					
	Vінз	P60 to P63	N-ch open-drain	0.7Vdd		15	V
	VIH4	X1, X2		Vdd - 0.5		Vdd	V
	Vih5	XT1/P07, XT2	$4.5 \leq V_{\text{DD}} \leq 5.5 \text{ V}$	0.8Vdd		Vdd	V
			$2.7 \le V_{\text{DD}} \le 4.5 \text{ V}$	0.9Vdd		Vdd	V
Input voltage, low	VIL1	P10 to P17, P21, P23, P30 to	P32, P35 to P37, P40 to P47	0		0.3Vdd	V
		P50 to P57, P64 to P67, P7	1, P120 to P127, P130, P131				
	VIL2	P00 to P06, P20, P22, P24	to P27, P33, P34, P70, P72	0		0.2Vdd	V
		RESET					
	VIL3	P60 to P63	$4.5~V \le V_{\text{DD}} \le 5.5~V$	0		0.3Vdd	V
		(N-ch open drain)	$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 4.5 \text{ V}$	0		0.2Vdd	V
	VIL4	X1, X2		0		0.4	V
	VIL5	XT1/P07, XT2	VDD = 4.5 to 5.5 V	0		0.2Vdd	V
				0		0.1Vdd	V
Output voltage, high	Vон1	VDD = 4.5 to 5.5 V, Іон	= -1 mA	Vdd - 1.0			V
		Іон = -100 <i>µ</i> А		Vdd - 0.5			V
Output voltage, low	Vol1	P50 to P57, P60 to P63	VDD = 4.5 to 5.5 V,		0.4	2.0	V
			lo∟ = 15 mA				
		P01 to P06, P10 to P17,	VDD = 4.5 to 5.5 V,			0.4	V
		P20 to P27, P30 to P37,	lo∟ = 1.6 mA				
		P40 to P47, P64 to P67,					
		P70 to P72, P120 to P127,					
		P130, P131					
	Vol2	SB0, SB1, SCK0	V _{DD} = 4.5 to 5.5 V,			0.2Vdd	V
			Open-drain				
			pulled-up (R = 1 k Ω)				
	Vol3	IoL = 400 μA	· · ·			0.5	V

DC Characteristics (TA = -40 to $+85^{\circ}$ C, VDD = 2.7 to 5.5 V)

DC Characteristics (TA = -40 to $+85^{\circ}$ C, VDD = 2.7 to 5.5 V)

Parameter	Symbol	Test Cor	nditions	MIN.	TYP.	MAX.	Unit
Input leakage current, high	Ілні	Vin = Vdd	P00 to P06, P10 to P17,			3	μΑ
			P20 to P27, P30 to P37,				
			P40 to P47, P50 to P57,				
			P60 to P67, P70 to P72,				
			P120 to P127, P130,				
			P131, RESET				
	ILIH2		X1, X2, XT1/P07, XT2			20	μΑ
	Іцнз	Vin = 15 V	P60 to P63			80	μA
Input leakage current, low		$V_{IN} = 0 V$	P00 to P06, P10 to P17,			-3	μA
			P20 to P27, P30 to P37,				
			P40 to P47, P50 to P57,				
			P64 to P67, P70 to P72,				
			P120 to P127, P130,				
			P131, RESET				
	ILIL2		X1, X2, XT1/P07, XT2			-20	μA
	ILIL3		P60 to P63			-3 ^{Note}	μA
Output leakage current, high	Ігон	Vout = Vdd				3	μΑ
Output leakage current, low	Ilol	Vout = 0 V				-3	μΑ
Mask option pull-up resistor	R1	$V_{IN} = 0 V, P60 to P63$		20	40	90	kΩ
Software pull-up resistor	R ₂	V _{IN} = 0 V, P01 to P06,	$4.5 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	15	40	90	kΩ
		P10 to P17, P20 to P27,					
		P30 to P37, P40 to P47,					
		P50 to P57, P64 to P67,	$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 4.5 \text{ V}$	20		500	kΩ
		P70 to P72, P120 to P127,					
		P130, P131					

Note When no pull-up resistor is incorporated to P60-63 (to be specified by mask option), the value is –200 μA in either of the following cases.

(1) When external device expansion function is used and low-level is input to P60 to P63 pins.

(2) During the 1.5 clocks when read out instruction is executed to port 6 (P6) and port mode register 6 (PM6).

Parameter	Symbol	Test C	Conditions	MIN.	TYP.	MAX.	Unit
Supply current Note 1	IDD1	5.0-MHz crystal oscil-	V_{DD} = 5.0 V \pm 10% $^{Note\;6}$		4	15	mA
		lation operating mode	V_{DD} = 3.0 V \pm 10% $^{Note \ 7}$		0.6	2.4	mA
		(f _{xx} = 2.5 MHz) Note 2					
		5.0-MHz crystal oscil-	V_{DD} = 5.0 V \pm 10% $^{Note\;6}$		6.5	22.5	mA
		lation operating mode	V_{DD} = 3.0 V \pm 10% $^{Note~7}$		0.8	3.1	mA
		(f _{xx} = 5.0 MHz) ^{Note 3}					
		6.29-MHz crystal oscil-	V_{DD} = 5.0 V \pm 10% $^{Note\;6}$		3.8	14.5	mA
		lation operating mode					
		(f _{xx} = 2.1 MHz) ^{Note 4}					
		6.29-MHz crystal oscil-	V_{DD} = 5.0 V \pm 10% $^{Note\;6}$		6	21	mA
		lation operating mode					
		(f _{xx} = 4.19 MHz) ^{Note 5}					

DC Characteristics (TA = -40 to $+85^{\circ}$ C, VDD = 2.7 to 5.5 V)

- **Notes 1.** This is current flowing into the V_{DD} and AV_{DD} pin. However, the current flowing into the A/D converter, D/A converter, and on-chip pull-up resistors are not included.
 - When bit 0 (IECL10) of the clock switch selection register 1 (IECL1) is set to 0, bit 0 (IECL20) of the clock switch selection register 2 (IECL2) is set to 0, and oscillation mode selection register (OSMS) is set to 00H.
 - 3. When IECL10 is set to 0, IECL20 is set to 0, and OSMS is set to 01H.
 - 4. When IECL10 is set to 1, IECL20 is set to 0, and OSMS is set to 00H. Only the characteristics of supply current are indicated. Refer to IEBus controller characteristics for IEBus rating.
 - When IECL10 is set to 1, IECL20 is set to 0, and OSMS is set to 01H. Only the characteristics of supply current are indicated. Refer to IEBus controller characteristics for IEBus rating.
 - 6. High-speed mode operation (when processor clock control register (PCC) is set to 00H)
 - 7. Low-speed mode operation (when PCC is set to 04H).
- **Remark** f_{xx}: Main system clock frequency

Parameter	Symbol	Test C	Conditions	MIN.	TYP.	MAX.	Unit
Supply current Note 1	IDD2	5.0-MHz crystal oscil-	$V_{DD} = 5.0 \text{ V} \pm 10\%$ Note 7		1.5	4.5	mA
		lation HALT mode	$V_{DD} = 3.0 \text{ V} \pm 10\%$ Note 8		0.5	1.5	mA
		$(f_{xx} = 2.5 \text{ MHz})^{\text{Note 2}}$					
		5.0-MHz crystal oscil-	$V_{DD} = 5.0 \text{ V} \pm 10\% \text{ Note 7}$		1.8	5.4	mA
		lation HALT mode	VDD = 3.0 V ±10% Note 8		0.7	2.1	mA
		(f _{xx} = 5.0 MHz) ^{Note 3}					
		6.29-MHz crystal oscil-	VDD = 5.0 V ±10% Note 7		1.5	4.5	mA
		lation HALT mode					
		(f _{xx} = 2.1 MHz) ^{Note 4}					
		6.29-MHz crystal oscil-	VDD = 5.0 V ±10% Note 7		1.8	5.4	mA
		lation HALT mode					
		$(f_{xx} = 4.19 \text{ MHz})^{\text{Note 5}}$					
	Idd3	32.768-kHz	Vdd = 5.0 V ±10%		60	120	μΑ
		crystal oscillation	VDD = 3.0 V ±10%		32	64	μΑ
		operating mode Note 6					
	Idd4	32.768-kHz	Vdd = 5.0 V ±10%		25	55	μΑ
		crystal oscillation	VDD = 3.0 V ±10%		5	15	μΑ
		HALT mode Note 6					
	IDD5	XT1 = 0 V	Vdd = 5.0 V ±10%		1	30	μΑ
		STOP mode, feed-	VDD = 3.0 V ±10%		0.5	10	μΑ
		back resistor used					
	IDD6	XT1 = 0 V	Vdd = 5.0 V ±10%		0.1	30	μΑ
		STOP mode, feed-	Vdd = 3.0 V ±10%		0.05	10	μA
		back resistor not used					

Notes 1. This is current flowing into the V_{DD} and AV_{DD} pin. However, the current flowing into the A/D converter, D/A converter, and on-chip pull-up resistors are not included.

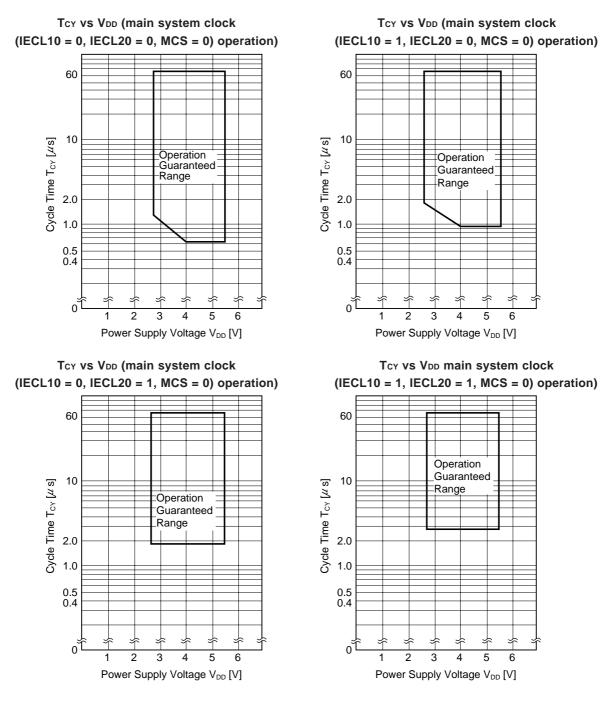
- 2. When bit 0 (IECL10) of the clock switch selection register 1 (IECL1) is set to 0, bit 0 (IECL20) of the clock switch selection register 2 (IECL2) is set to 0, and oscillation mode selection register (OSMS) is set to 00H.
- 3. When IECL10 is set to 0, IECL20 is set to 0, and OSMS is set to 01H.
- 4. When IECL10 is set to 1, IECL20 is set to 0, and OSMS is set to 00H. Only the characteristics of supply current are indicated. Refer to IEBus controller characteristics for IEBus rating.

 When IECL10 is set to 1, IECL20 is set to 0, and OSMS is set to 01H. Only the characteristics of supply current are indicated. Refer to IEBus controller characteristics for IEBus rating.

- 6. When the main system clock is stopped.
- 7. High-speed mode operation (when processor clock control register (PCC) is set to 00H)
- 8. Low-speed mode operation (when PCC is set to 04H).
- Remark fxx: Main system clock frequency

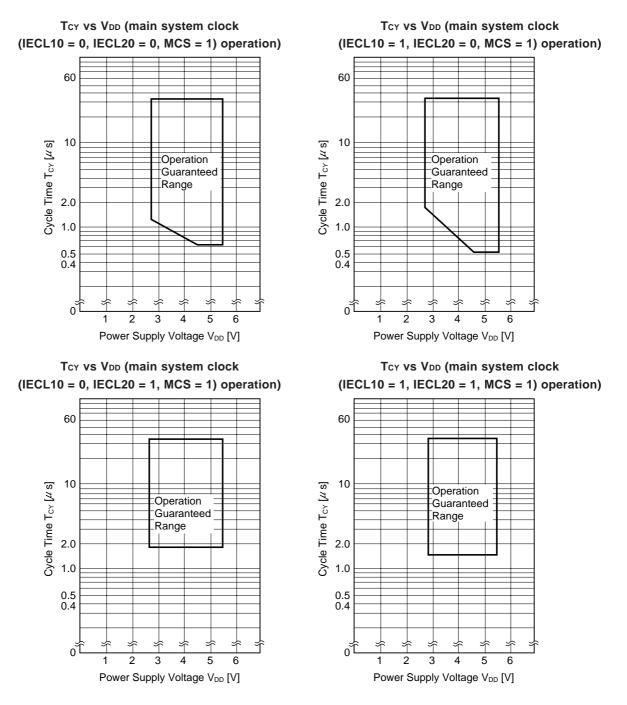
AC Characteristics

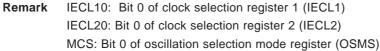
(1) Basic Operation ($T_A = -40$ to $+85^{\circ}C$, $V_{DD} = 2.7$ to 5.5 V)


Parameter	Symbol	Те	st Conditio	ns	MIN.	TYP.	MAX.	Unit
Cycle time	Тсү	Operating with	fxx = fx/2	V _{DD} = 4.0 to 5.5 V	0.64		64	μs
(minimum instruction execution		main system clock			1.27		64	μs
time)		(MCS = 0 Note 1)	fxx = fx/3	$V_{DD} = 4.0$ to 5.5 V	0.95		64	μs
		fx = 6.29 MHz)			1.91		64	μs
			fxx = fx/6		1.91		64	μs
			fxx = fx/9		2.86		64	μs
		Operating with	fxx = fx	$V_{DD} = 4.5 \text{ to } 5.5 \text{ V}$	0.64		32	μs
		main system clock			1.27		32	μs
		(MCS = 1 Note 2)	fxx = 2fx/3	V _{DD} = 4.5 to 5.5 V	0.48		32	μs
		fx = 6.29 MHz)			1.91		32	μs
			fxx = fx/3		1.91		32	μs
			fxx = 2fx/9		1.43		32	μs
		Operating with sub	system clo	ck	40 Note 3	122	125	μs
TI00 input frequency	f т100	$f_{TIOO} = t_{TIHOO} + t_{TILOO}$			0		1/tт100	MHz
TI00 input high-/low-level	tтіноо				8/fsam ^{Note 4}			μs
width	t tiloo							
TI01, TI1, TI2 input	fti1	V _{DD} = 4.5 to 5.5 V			0		4	MHz
frequency					0		275	kHz
TI01, TI1, TI2 input high-/low-	t ⊤iH1	VDD = 4.5 to 5.5 V			100			ns
level width	t ⊤IL1				1.8			μs
Interrupt request high-/low-	t inth	INTP0			8/fsam Note 4			μs
level width	t intl	INTP1 to INTP6			10			μs
		KR0 to KR7			10			μs
RESET input high-/low-	trsl				10			μs
level width								

Notes 1. When oscillation mode selection register (OSMS) is set to 00H.

- 2. When OSMS is set to 01H.
- 3. When an external clock is used. When crystal resonator is used, the value is 114 μ s (MIN.).
- fsam can be selected as fxx/2^N, fxx/32, fxx/64, or fxx/128 (N = 0 to 4) by bits 0 and 1 (SCS0, SCS1) of the sampling clock selection register (SCS).


Remarks 1. fxx : Main system clock frequency


2. fx : Main system clock oscillation frequency

Remark IECL10: Bit 0 of clock selection register 1 (IECL1) IECL20: Bit 0 of clock selection register 2 (IECL2) MCS: Bit 0 of oscillation selection mode register (OSMS)

(2) Read/Write Operation

(a) When MCS = 1, PCC2-PCC0 = 000B (T_A = -40 to $+85^{\circ}$ C, V_{DD} = 4.5 to 5.5 V)

Parameter	Symbol	Test Conditions	MIN.	MAX.	Unit
ASTB high-level width	tasth		0.85tcy - 50		ns
Address setup time	tads		0.85tcy - 50		ns
Address hold time	t adh		50		ns
$Address \to data \text{ input time}$	tadd1			(2.85 + 2n) tcr - 80	ns
	tadd2			(4 + 2n) tcy - 100	ns
$\overline{\text{RD}} \downarrow \rightarrow \text{data input time}$	trdd1			(2 + 2n) tcy - 100	ns
	trdd2			(2.85 + 2n) tcy - 100	ns
Read data hold time	t rdh		0		ns
RD low-level width	trdl1		(2 + 2n) tcy - 60		ns
	trdl2		(2.85 + 2n) tcr - 60		ns
$\overline{RD} \downarrow \to \overline{WAIT} \downarrow input$ time	t RDWT1			0.85tcy - 50	ns
	trdwt2			2tcy - 60	ns
$\overline{WR}\downarrow \rightarrow \overline{WAIT}\downarrow$ input time	t wrwt			2tcy - 60	ns
WAIT low-level width	tw⊤∟		(1.15 + 2n) tor	(2 + 2n) tcr	ns
Write data setup time	twos		(2.85 + 2n) tcr - 100		ns
Write data hold time	twdн		20		ns
WR low-level width	twrl		(2.85 + 2n) tcr - 60		ns
$ASTB \downarrow \to \overline{RD} \downarrow delay \ time$	t astrd		25		ns
$ASTB \downarrow \to \overline{WR} \downarrow delay \ time$	t astwr		0.85tcy + 20		ns
In external fetch $\overline{\text{RD}} \uparrow \rightarrow$	t rdast		0.85tcy - 10	1.15tcr + 20	ns
ASTB ↑ delay time					
In external fetch $\overline{\text{RD}} \uparrow \rightarrow$	t rdadh		0.85tcy - 50	1.15tcy + 50	ns
address hold time					
$\overline{\mathrm{RD}} \uparrow \rightarrow \mathrm{write} \ \mathrm{data} \ \mathrm{output} \ \mathrm{time}$	trdwd		40		ns
$\overline{\text{WR}} \downarrow \rightarrow$ write data output time	twrwd		0	50	ns
$\overline{WR} \uparrow \rightarrow address$ hold time	t wradh		0.85tcy + 40	1.15tcy + 40	ns
$\overline{WAIT} \uparrow \to RD \uparrow delay$ time	t wtrd		1.15tcy + 40	3.15tcy + 40	ns
$\overline{WAIT} \uparrow \to WR \uparrow delay time$	t wtwr		1.15tcy + 30	3.15tcy + 30	ns

Remarks 1. MCS: Bit 0 of the oscillation mode selection register (OSMS)

2. PCC2 to PCC0: Bit 2 to bit 0 of the processor clock control register (PCC)

3. tcy = Tcy/4

4. n indicates the number of waits

Parameter	Symbol	Test Conditions	MIN.	MAX.	Unit
ASTB high-level width	t asth		tcy - 80		ns
Address setup time	tads		tcy - 80		ns
Address hold time	tadh		0.4tcy - 10		ns
$Address \to data \text{ input time}$	tadd1			(3 + 2n) tcy - 160	ns
	tadd2			(4 + 2n) tcy - 200	ns
$\overline{\text{RD}} \downarrow \rightarrow \text{data input time}$	trdd1			(1.4 + 2n) tcy - 70	ns
	trdd2			(2.4 + 2n) tcy - 70	ns
Read data hold time	t rdh		0		ns
RD low-level width	trdl1		(1.4 + 2n) tcr - 20		ns
	trdl2		(2.4 + 2n) tcy - 20		ns
$\overline{RD} \downarrow \to \overline{WAIT} \downarrow input time$	trdwt1			tcy – 100	ns
	trdwt2			2tcy - 100	ns
$\overline{WR} \downarrow \rightarrow \overline{WAIT} \downarrow \text{ input time}$	t wrwt			2tcy - 100	ns
WAIT low-level width	tw⊤∟		(1 + 2n) tcr	(2 + 2n) tcr	ns
Write data setup time	twos		(2.4 + 2n) tcy - 60		ns
Write data hold time	twdн		20		ns
WR low-level width	twrl		(2.4 + 2n) tcr - 20		ns
$ASTB \downarrow \to \overline{RD} \downarrow delay \ time$	t astrd		0.4tcy - 30		ns
$ASTB \downarrow \to \overline{WR} \downarrow delay \ time$	t astwr		1.4tcy -30		ns
In external fetch $\overline{\text{RD}} \uparrow \rightarrow$	t rdast		tcy - 10	tcy + 20	ns
ASTB					
In external fetch $\overline{\text{RD}} \uparrow \rightarrow$	t rdadh		tcy – 50	tcy + 50	ns
address hold time					
$\overline{\mathrm{RD}} \uparrow \rightarrow \mathrm{write} \ \mathrm{data} \ \mathrm{output} \ \mathrm{time}$	t rdwd		0.4tcy - 20		ns
$\overline{\text{WR}} \downarrow \rightarrow$ write data output time	twrwd		0	60	ns
$\overline{\mathrm{WR}} \uparrow \rightarrow \mathrm{address}$ hold time	twradh		tcy	tcy + 60	ns
$\overline{\text{WAIT}} \uparrow \rightarrow \overline{\text{RD}} \uparrow \text{delay time}$	t wtrd		0.6tcy + 180	2.6tcy + 180	ns
$\overline{WAIT} \uparrow \rightarrow \overline{WR} \uparrow delay time$	t wtwr		0.6tcy + 120	2.6tcy + 120	ns

(b)	Except when	MCS = 1,	PCC2-PCC0 =	= 000B (T/	∧ = −40 to	+85°C, V⊡	b = 2.7 to 5.5 V)
-----	-------------	----------	-------------	------------	------------	-----------	-------------------

Remarks 1. MCS: Bit 0 of the oscillation mode selection register (OSMS)

2. PCC2 to PCC0: Bit 2 to bit 0 of the processor clock control register (PCC)

3. tcy = Tcy/4

4. n indicates the number of waits

(3) Serial Interface (T_A = -40 to $+85^{\circ}$ C, V_{DD} = 2.7 to 5.5 V)

(a) Serial Interface Channel 0

(i) 3-wire serial I/O mode (SCK0 --- internal clock output)

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
SCK0 cycle time	tkcy1	VDD = 4.5 to 5.5 V	800			ns
			1600			ns
SCK0 high-/low-level widths	tкнı,	VDD = 4.5 to 5.5 V	tксү1/2–50			ns
	tĸ∟1		tkcy1/2-100			ns
SI0 setup time	tsiĸ1	VDD = 4.5 to 5.5 V	100			ns
(to SCK0 ↑)			150			ns
SI0 hold time (from SCK0 ↑)	tksi1		400			ns
$\overline{SCK0}\downarrow \to SO0$	tkso1	C = 100 pF ^{Note}			300	ns
output delay time						

Note C is the SO0 output line load capacitance.

(ii) 3-wire serial I/O mode (SCK0 --- external clock input)

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
SCK0 cycle time	tксү2	V _{DD} = 4.5 to 5.5 V	800			ns
			1600			ns
SCK0 high-/low-level widths	t кн2,	V _{DD} = 4.5 to 5.5 V	400			ns
	tĸL2		800			ns
SI0 setup time	tsik2		100			ns
(to SCK0 ↑)						
SI0 hold time (from SCK0 ↑)	tksi2		400			ns
$\overline{SCK0}\downarrow \to SO0$	tkso2	$C = 100 \text{ pF}^{Note}$			300	ns
output delay time						
SCK0 rise, fall time	t _{R2} ,	When using external device			160	ns
	tF2	expansion function				
		When not using external device			1000	ns
		expansion function				

Note C is the SO0 output line load capacitance.

Parameter	Symbol	Test C	Conditions	MIN.	TYP.	MAX.	Unit
SCK0 cycle time	tксүз	V _{DD} = 4.5 to 5.5 V		800			ns
				3200			ns
SCK0 high-/low-level widths	tкнз,	V _{DD} = 4.5 to 5.5 V		tксүз/2–50			ns
	tкіз			tксүз/2–150			ns
SB0, SB1 setup time	tsiкз	V _{DD} = 4.5 to 5.5 V		100			ns
(to SCK0 ↑)				300			ns
SB0, SB1 hold time	tksi3			tксүз/2			ns
(from SCK0 ↑)							
$\overline{SCK0} \downarrow \rightarrow SB0, SB1$	tкsoз	$R = 1 k\Omega$,	VDD = 4.5 to 5.5 V	0		250	ns
output delay time		$C = 100 \text{ pF}^{Note}$		0		1000	ns
$\overline{\texttt{SCK0}} \uparrow \rightarrow \texttt{SB0}, \texttt{SB1} \downarrow$	tкsв			tксүз			ns
SB0, SB1 $\downarrow \rightarrow \overline{\text{SCK0}} \downarrow$	tsвк			tксүз			ns
SB0, SB1 high-level width	tsвн			tксүз			ns
SB0, SB1 low-level width	tsbl			tксүз			ns

(iii) SBI mode (SCK0 internal clock output)	(iii) SBI mode (SCK0	internal	clock	output)
---	------------------	------	----------	-------	---------

Note R and C are the SB0 and SB1 output line load resistance and load capacitance.

(iv) SBI mode (SCK0 --- external clock input)

Parameter	Symbol	Test	Conditions	MIN.	TYP.	MAX.	Unit
SCK0 cycle time	tkCY4	V _{DD} = 4.5 to 5.5 V		800			ns
				3200			ns
SCK0 high-/low-level widths	tкн4,	VDD = 4.5 to 5.	V _{DD} = 4.5 to 5.5 V				ns
	tĸl4			1600			ns
SB0, SB1 setup time	tsik4	V _{DD} = 4.5 to 5.5 V		100			ns
(to SCK0 ↑)				300			ns
SB0, SB1 hold time	tksi4			tксү4/2			ns
(from SCK0 ↑)							
$\overline{SCK0} \downarrow \rightarrow SB0, SB1$	tkso4	$R = 1 k\Omega$,	V _{DD} = 4.5 to 5.5 V	0		300	ns
output delay time		$C = 100 \text{ pF}^{Note}$		0		1000	ns
$\overline{\operatorname{SCK0}} \uparrow \to \operatorname{SB0}, \operatorname{SB1} \downarrow$	tкsв			tксү4			ns
SB0, SB1 $\downarrow \rightarrow \overline{\text{SCK0}} \downarrow$	tsвк			tксү4			ns
SB0, SB1 high-level width	tsвн			tксү4			ns
SB0, SB1 low-level width	t SBL			tксү4			ns
SCK0 rise, fall time	tR4,	When using external device				160	ns
	tF4	expansion function					
		When not using external device				1000	ns
		expansion fun	expansion function				

Note R and C are the SB0 and SB1 output line load resistance and load capacitance.

Parameter	Symbol	Test	Test Conditions		TYP.	MAX.	Unit
SCK0 cycle time	tксү5	$R = 1 k\Omega$,	V _{DD} = 4.5 to 5.5 V	1600			ns
		$C = 100 \text{ pF}^{\text{Note}}$		3200			ns
SCK0 high-level widths	tкн5			tксү5/2–160			ns
SCK0 low-level width	tĸ∟5	-	VDD = 4.5 to 5.5 V	tксү5/2–50			ns
SB0, SB1 setup time	tsik5		VDD = 4.5 to 5.5 V	100			ns
(to SCK0 ↑)				150			ns
SB0, SB1 hold time	tksi5	-		600			ns
(from SCK0 ↑)							
$\overline{\text{SCK0}} \downarrow \rightarrow \text{SB0, SB1}$	tkso5	1		0		300	ns
output delay time							

(v) 2-wire serial I/O mode (SCK0 --- internal clock input)

Note R and C are the SCK0, SB0, and SB1 output line load resistance and load capacitance.

(with a surface a seried 1/) mode (SCK0 … externa	
(VI) 2-WIRE SERIAL I/) mode (SCKU externa	

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
SCK0 cycle time	tксү6	V _{DD} = 4.5 to 5.5 V	1600			ns
			3200			ns
SCK0 high-level widths	tкнө		650			ns
SCK0 low-level width	tĸl6		800			ns
SB0, SB1 setup time	tsik6		100			ns
(to SCK0 ↑)						
SB0, SB1 hold time	tksi6		tксү6/2			ns
(from SCK0 ↑)						
$\overline{SCK0} \downarrow \rightarrow SB0, SB1$	tkso6	$R = 1 k\Omega, C = 100 pF^{Note}$	0		300	ns
output delay time						
SCK0 rise, fall time	tre,	When using external device			160	ns
	tF6	expansion function				
		When not using external device			1000	ns
		expansion function				

Note R and C are the SCK0, SB0, and SB1 output line load resistance and load capacitance.

(b) Serial Interface Channel 1

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
SCK1 cycle time	tксү7	VDD = 4.5 to 5.5 V	800			ns
			1600			ns
SCK1 high-/low-level widths	tкн7,	VDD = 4.5 to 5.5 V	tксү7/2–50			ns
	tĸl7		tксү7/2–100			ns
SI1 setup time	tsik7	VDD = 4.5 to 5.5 V	300			ns
(to SCK1 ↑)			350			ns
SI1 hold time	tksi7		400			ns
(from SCK1 ↑)						
$\overline{\text{SCK1}} \downarrow \rightarrow \text{SO1}$	tkso7	C = 100 pF ^{Note}			300	ns
output delay time						

(i) 3-wire serial I/O mode (SCK1 --- internal clock output)

Note C is the SO1 output line load capacitance.

(ii) 3-wire serial I/O mode (SCK1 --- external clock input)

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
SCK1 cycle time	tксув	V _{DD} = 4.5 to 5.5 V	800			ns
			1600			ns
SCK1 high-/low-level widths	tкнв,	V _{DD} = 4.5 to 5.5 V	400			ns
	tkl8		800			ns
SI1 setup time	tsik8		100			ns
(to SCK1 ↑)						
SI1 hold time	tksi8		400			ns
(from SCK1 ↑)						
$\overline{\text{SCK1}} \downarrow \rightarrow \text{SO1}$	tkso8	C = 100 pF ^{Note}			300	ns
output delay time						
SCK1 rise, fall time	trs,	When using external device			160	ns
	tF8	expansion function				
		When not using external device			1000	ns
		expansion function				

Note C is the SO1 output line load capacitance.

Parameter	Symbol	Test C	Test Conditions		TYP.	MAX.	Unit
SCK1 cycle time	tксүэ	VDD = 4.5 to 5.5	5 V	800			ns
							ns
SCK1 high-/low-level widths	tкнэ,	VDD = 4.5 to 5.5 V		tксү9/2–50			ns
	tĸ∟9		tr				ns
SI1 setup time (to SCK1 ↑)	tsik9	V _{DD} = 4.5 to 5.5 V		100			ns
							ns
SI1 hold time (from SCK1 ↑)	tksi9			400			ns
$\overline{\text{SCK1}} \downarrow \rightarrow \text{SO1}$	tĸso9	$C = 100 \text{ pF}^{Note}$	V _{DD} = 4.5 to 5.5 V			300	ns
output delay time							
$\overline{\operatorname{SCK1}} \uparrow \to \operatorname{STB} \uparrow$	tsвd			tксү9/2–100		tксү9/2+100	ns
Strobe signal high-level width	tsвw			tксүз –30		tксүз +30	ns
Busy signal setup time	tвys			100			ns
(to busy signal detection timing)							
Busy signal hold time	tвүн	VDD = 4.5 to 5.5	5 V	100			ns
(from busy signal detection timing)				150			ns
Busy inactivation \rightarrow SCK1 \downarrow	tses					2tксүэ	ns

(iii) Automatic transmission/reception		
(IIII) Automatic transmission/recention	tunction 3-wire cerial 1/() mode	ISI'K1 Internal clock output
	IUIICIUII J-WIE SEIIAI I/O IIIOUE	
(,		(

Note C is the SO1 output line load capacitance.

(iv) Automatic transmission/reception function 3-wire serial I/O mode (SCK1 --- external clock input)

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
SCK1 cycle time	t ксү10	V _{DD} = 4.5 V to 5.5 V	800			ns
			1600			ns
SCK1 high-/low-level widths	tкн10,	V _{DD} = 4.5 V to 5.5 V	400			ns
	tKL10		800			ns
SI1 setup time (to SCK1 ↑)	tsiк10		100			ns
SI1 hold time (from SCK1 ↑)	tksi10		400			ns
$\overline{\text{SCK1}} \downarrow \rightarrow \text{SO1}$	tkso10	$C = 100 \text{ pF}^{\text{Note}}$			300	ns
output delay time						
SCK1 rise, fall time	t R10,	When using external device			160	ns
	tF10	expansion function				
		When not using external device			1000	ns
		expansion function				

Note C is the SO1 output line load capacitance.

(c) Serial Interface Channel 2

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
SCK2 cycle time	tксү11	VDD = 4.5 to 5.5 V	800			ns
			1600			ns
SCK2 high-/low-level widths	t кн11,	VDD = 4.5 to 5.5 V	tксү11/2–50			ns
	tKL11		tксү11/2–100			ns
SI2 setup time	tsik11	VDD = 4.5 to 5.5 V	100			ns
(to SCK2 ↑)			150			ns
SI2 hold time	tksi11		400			ns
(from SCK2 ↑)						
$\overline{SCK2} \downarrow \rightarrow SO2$	tkso11	C = 100 pF ^{Note}			300	ns
output delay time						

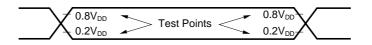
(i) 3-wire serial I/O mode (SCK2 --- internal clock output)

Note C is the SO2 output line load capacitance.

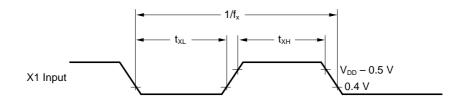
(ii) 3-wire serial I/O mode (SCK2 --- external clock input)

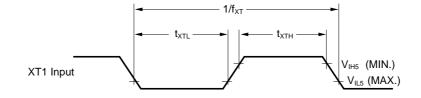
Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
SCK2 cycle time	tkCY12	V _{DD} = 4.5 to 5.5 V	800			ns
			1600			ns
SCK2 high-/low-level widths	t кн12,	V _{DD} = 4.5 to 5.5 V	400			ns
	tKL12		800			ns
SI2 setup time	tsik12		100			ns
(to SCK2 ↑)						
SI2 hold time	t KSI12		400			ns
(from SCK2 ↑)						
$\overline{SCK2} \downarrow \to SO2$	tkso12	C = 100 pF ^{Note}			300	ns
output delay time						
SCK2 rise, fall time	t R12,	When using external device			160	ns
	tF12	expansion function				
		When not using external device			1000	ns
		expansion function				

Note C is the SO2 output line load capacitance.

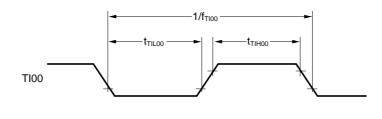

(iii) UART mode (dedicated baud rate generator output)

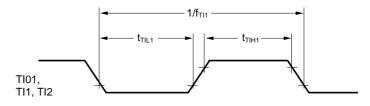
Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
Transfer rate		V _{DD} = 4.5 to 5.5 V			78125	bps
					39063	bps

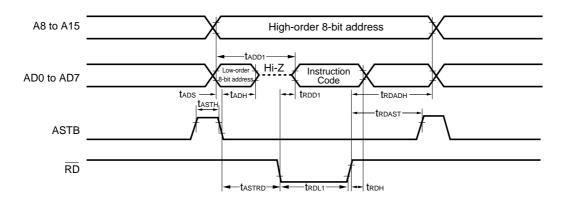

(iv) UART mode (external clock input)

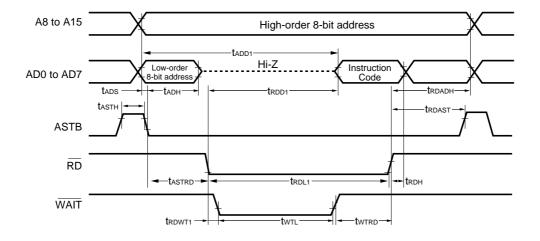

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
ASCK cycle time	t ксү13	V _{DD} = 4.5 to 5.5 V	800			ns
			1600			ns
ASCK high-/low-level widths	t кн13,	V _{DD} = 4.5 to 5.5 V	400			ns
	tĸ∟13		800			ns
Transfer rate		V _{DD} = 4.5 to 5.5 V			39063	bps
					19531	bps
ASCK rise, fall time	t R13,	When using external device			160	ns
	tF13	expansion function				
		When not using external device			1000	ns
		expansion function				

AC Timing Test Point (Excluding X1, XT1 Input)

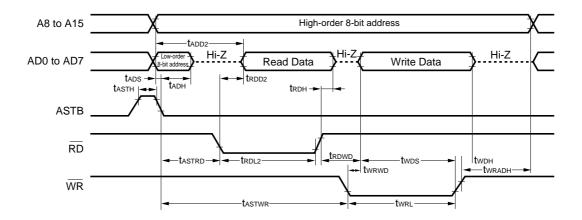


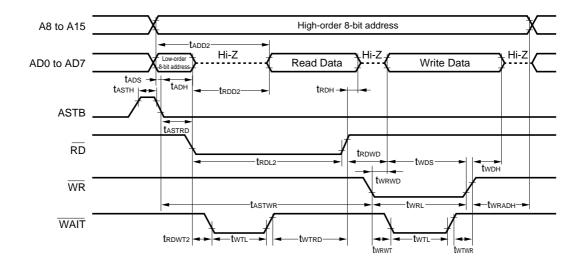

Clock Timing


TI Timing

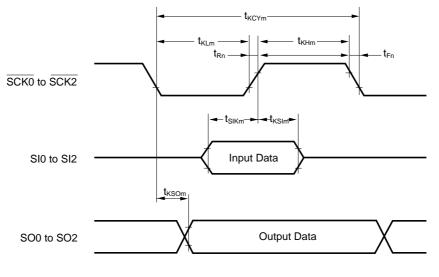


Read/Write Operations

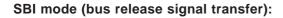

External fetch (no wait):

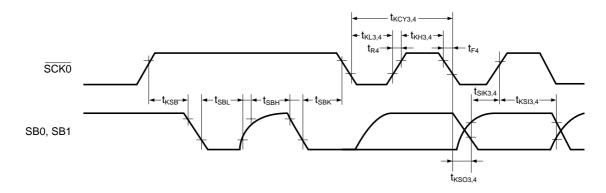

External fetch (wait insertion):

External data access (no wait):

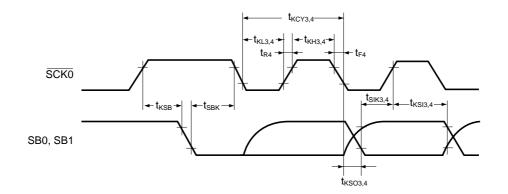


External data access (wait insertion):

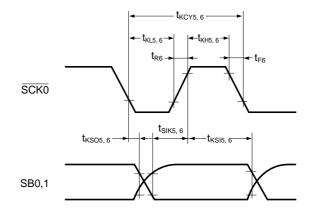


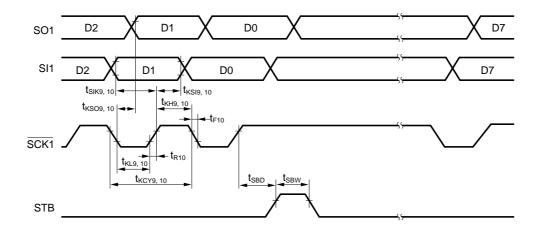

Serial Transfer Timing

3-wire serial I/O mode:



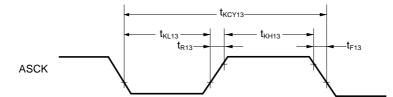
Remark m = 1, 2, 7, 8, 11 or 12 n = 2, 8 or 12




SBI mode (command signal transfer):


2-wire serial I/O mode:

Automatic transmission/reception function 3-wire serial I/O mode:



Automatic transmission/reception function 3-wire serial I/O mode (busy processing):

Note The signals are not actually low here, but are represented in this way to show the timing convention.

UART Mode (External Clock Input)

A/D Converter Characteristics (TA = -40 to $+85^{\circ}$ C, AVDD = VDD = 2.7 to 5.5 V, AVss = Vss = 0 V)

Parameter	Symbol	Test Conditions		MIN.	TYP.	MAX.	Unit
Resolution			8	8	8	bit	
Total error Note		IEAD = 00H				0.6	%
		IEAD = 01H	V _{DD} = 4.5 to 5.5 V		1	2.2	%
					1.4	2.6	%
Conversion time	tconv			19.1		200	μs
Sampling time	t SAMP			12/f _{xx}			μs
Analog input voltage	VIAN			AVss		AV _{REF0}	V
Reference voltage	AV _{REF0}			2.7		AVdd	V
AVREFO-AVSS resistance	RAIREFO			4	14		kΩ

Note Excluding quantization error ($\pm 1/2$ LSB). Shown as a percentage of the full scale value.

Remark f_{xx} : Main system clock frequency

IEAD: A/D current cut selection register

D/A Converter Characteristics (TA = -40 to $+85^{\circ}$ C, VDD = 2.7 to 5.5 V, AVss = Vss = 0 V)

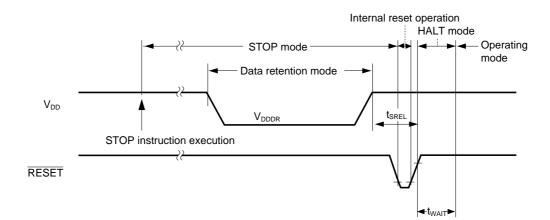
Parameter	Symbol	Test Conditions		MIN.	TYP.	MAX.	Unit
Resolution						8	bit
Total error		$R = 2 M\Omega^{Note1}$	$R = 2 M\Omega^{Note1}$			1.2	%
		$R = 4 M\Omega^{Note1}$				0.8	%
		$R = 10 M\Omega^{Note}$	$R = 10 M\Omega^{Note1}$			0.6	%
Settling time		C = 30 pF ^{Note1}	V _{DD} = 4.5 to 5.5 V			10	μs
						15	μs
Output resistor	Ro	DACS0, DACS	S1 = 55H ^{Note2}		10		kΩ
Analog reference voltage	AV _{REF1}			2.7		Vdd	V
AVREF1 current	IREF1	Note 2				1.5	mA

Notes 1. R and C are the D/A converter output pin load resistance and load capacitance.

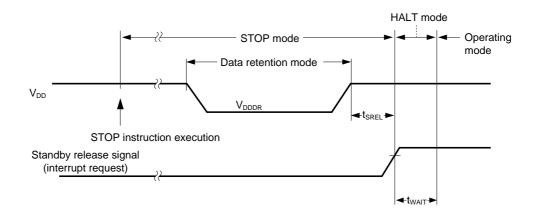
2. Value for one D/A converter channel.

Remark DACS0, DACS1 : D/A Conversion value set register 0, 1

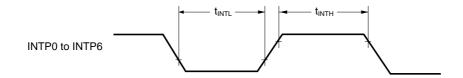
Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
Data retention supply voltage	Vdddr		2.0		5.5	V
Data retention supply current	Idddr	$V_{DDDR} = 2.0 V$		0.1	10	μΑ
		Subsystem clock stopped,				
		feedback resistor disconnected				
Release signal setup time	tsrel		0			μs
Oscillation stabilization	twait	Release by RESET		217/fx		ms
wait time		Release by interrupt request		Note		ms

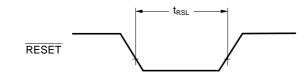

Data Memory STOP Mode Low Supply Voltage Data Retention	Characteristics ($T_A = -40$ to $85^{\circ}C$)
---	--

Note 2¹²/f_{xx}, or 2¹⁴/f_{xx} through 2¹⁷/f_{xx} can be selected by bits 0 to 2 (OSTS0 to OSTS2) of the oscillation stabilization time selection register (OSTS).


Remarks fxx: Main system clock frequency

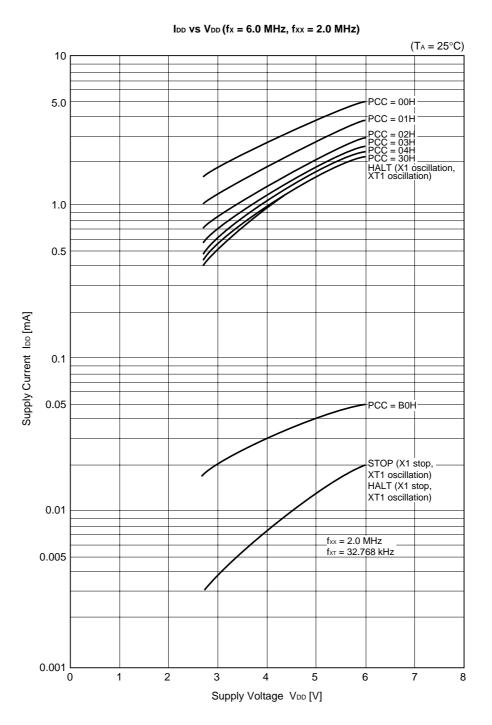
fx : Main system clock oscillation frequency

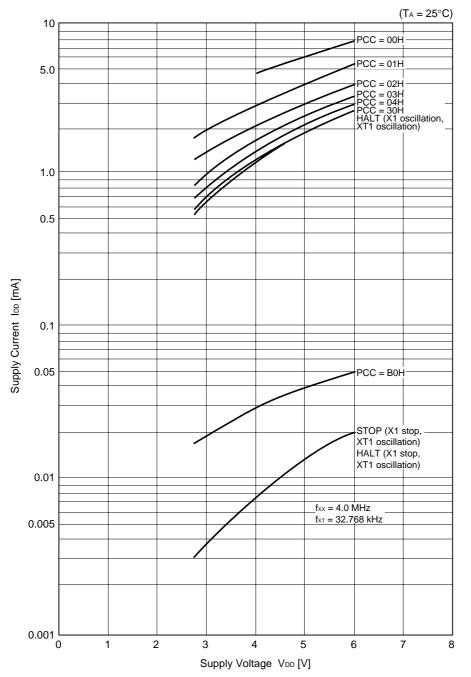

Data Retention Timing (STOP mode released by RESET)


Data Retention Timing (Standby released signal: STOP mode released by interrupt request signal)

Interrupt Request Input Timing

RESET Input Timing


IEBus Controller Characteristics (TA = -40 to 85°C, VDD = 5 V \pm 10 %)

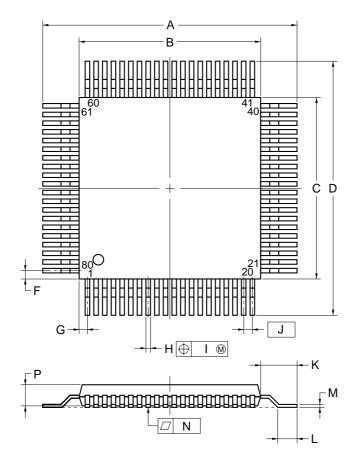

Parameter	Symbol	Test Conditions		MIN.	TYP.	MAX.	Unit
IEBus controller system clock	fs	When using mode 0 or mode 1 ^{Note 1}		5.91	6.00	6.09	MHz
frequency				6.20	6.29	6.39	MHz
		When using m	When using mode 2 ^{Note1}		6.00	6.03	MHz
					6.29	6.32	MHz
Driver delay time		$C = 50 \text{ pF}^{Note2}$	fs = 6.00 MHz			1.6	μs
$\overline{(TX} \text{ output} \rightarrow Bus \text{ line})$			fs = 6.29 MHz			1.5	μs
Receiver delay time		fs = 6.00 MHz				0.75	μs
(Bus line $\rightarrow \overline{RX}$ input)		fs = 6.29 MHz				0.7	μs
Propagation delay time on		fs = 6.00 MHz				0.90	μs
the bus		fs = 6.29 MHz				0.85	μs

Notes 1. Values in lower line do not satisfy the standard as IEBus.

2. C is the \overline{TX} output line load capacitance.

12. CHARACTERISTIC CURVES (REFERENCE VALUES)

IDD VS VDD (fx = 6.0 MHz, fxx = 4.0 MHz)


detail of lead end

R

S

13. PACKAGE DRAWING

80 PIN PLASTIC QFP (14×14)

Remark Dimensions and materials of ES product are the same as those of mass-production products.

ITEM	MILLIMETERS	INCHES
А	17.2±0.4	0.677±0.016
В	14.0±0.2	$0.551^{+0.009}_{-0.008}$
С	14.0±0.2	$0.551^{+0.009}_{-0.008}$
D	17.2±0.4	0.677±0.016
F	0.825	0.032
G	0.825	0.032
Н	0.30±0.10	$0.012^{+0.004}_{-0.005}$
I	0.13	0.005
J	0.65 (T.P.)	0.026 (T.P.)
К	1.6±0.2	0.063±0.008
L	0.8±0.2	$0.031^{+0.009}_{-0.008}$
М	$0.15^{+0.10}_{-0.05}$	$0.006^{+0.004}_{-0.003}$
Ν	0.10	0.004
Р	2.7	0.106
Q	0.1±0.1	0.004±0.004
R	5°±5°	5°±5°
S	3.0 MAX.	0.119 MAX.
		S80GC-65-3B9-4

GC-65-3B9-4

14. RECOMMENDED SOLDERING CONDITIONS

These products should be soldered and mounted under the conditions recommended below.

For details on the recommended soldering conditions, refer to information document "Semiconductor Device Mounting Technology Manual" (C10535E).

For soldering methods and conditions other than those recommended, please contact your NEC sales representative.

Table 14-1. Soldering Conditions for Surface Mount Devices

```
\muPD78095BGC-×××-3B9: 80-pin plastic QFP (14 × 14 mm)
\muPD78096BGC-×××-3B9: 80-pin plastic QFP (14 × 14 mm)
\muPD78098BGC-×××-3B9: 80-pin plastic QFP (14 × 14 mm)
```

Soldering Method	Soldering Conditions	Symbol
Infrared ray reflow	Package peak temperature: 235°C,	IR35-00-3
	Reflow time: 30 seconds or less (at 210°C or higher),	
	Number of reflow processes: 3 or less	
VPS	Package peak temperature: 215°C,	VP15-00-3
	Reflow time: 40 seconds or less (at 200°C or higher),	
	Number of reflow processes: 3 or less	
Wave soldering	Solder temperature: 260°C or below,	WS60-00-1
	Flow time: 10 seconds or less, Number of flow processes: 1,	
	Preheating temperature: 120°C max. (package surface temperature)	
Partial heating	Pin temperature: 300°C or below,	—
	Flow time: 3 seconds or less (per device side)	

Caution Using two or more soldering methods together should be avoided (except in the case of partial heating).

APPENDIX A. DEVELOPMENT TOOLS

The following tools are available for system development using the μ PD78098 Subseries.

Language Processing Software

RA78K/0 ^{Notes 1, 2, 3, 4}	Assembler package used in common for the 78K/0 Series
CC78K/0 ^{Notes 1, 2, 3, 4}	C compiler package used in common for the 78K/0 Series
DF78098 ^{Notes 1, 2, 3, 4}	Device file used for the μ PD78098 Subseries
CC78K/0-L ^{Notes 1, 2, 3, 4}	C compiler library source file used in common for the 78K/0 Series

PROM Writing Tools

PG-1500	PROM programmer
PA-78P054GC	Programmer adapter connected to the PG-1500
PG-1500 Controller ^{Notes 1, 2}	Control program for the PG-1500

Debugging Tools

IE-78000-R	In-circuit emulator used in common among the 78K/0 Series
IE-78000-R-A	In-circuit emulator used in common among the 78K/0 Series (for integrated debugger)
IE-78000-R-BK	Break board used in common among the 78K/0 Series
IE-78098-R-EM ^{Note 8}	Emulation board used in common for µPD78098 Subseries
IE-780908-R-EM	
IE-78000-R-SV3	Interface adapter and cable (for IE-78000-R-A) when the host machine is an EWS
IE-70000-98-IF-B	Interface adapter (for IE-78000-R-A) when the host machine is a PC-9800 Series (other than notebooks)
IE-70000-98N-IF	Interface adapter and cable (for IE-78000-R-A) when the host machine is a PC-9800
	Series notebook
IE-70000-PC-IF-B	Interface adapter (for IE-78000-R-A) when the host machine is an IBM PC/AT™
EP-78230GC-R	Emulation probe used in common for µPD78234 Subseries
EV-9200GC-80	Socket to mount on the target system board that is created for 80-pin plastic QFP (GC-3B9 type)
SM78K0 ^{Notes 5, 6, 7}	System simulator used in common for 78K/0 Series
ID78K0 ^{Notes 4, 5, 6, 7}	Integrated debugger for IE-78000-R-A
SD78K/0 ^{Notes 1, 2}	Screen debugger for IE-78000-R
DF78098 ^{Notes 1, 2, 4, 5, 6, 7}	Device files used in common for μ PD78098 Subseries

Real-Time OS

RX78K/0 ^{Notes 1, 2, 3, 4}	Real-time OS used for the 78K/0 Series
MX78K0 ^{Notes 1, 2, 3, 4}	OS used for the 78K/0 Series

Fuzzy Inference Development Support System

FE9000 ^{Note 1} /FE9200 ^{Note 6}	Fuzzy knowledge data creation tool
FT9080 ^{Note 1} /FT9085 ^{Note 2}	Translator
FI78K0 ^{Notes 1, 2}	Fuzzy inference module
FD78K0 ^{Notes 1, 2}	Fuzzy inference debugger

- Notes 1. Based on PC-9800 Series (MS-DOS[™])
 - 2. Based on IBM PC/AT[™] and compatibles (PC DOS[™]/IBM DOS[™]/MS-DOS)
 - 3. Based on HP9000 Series 300[™] (HP-UX[™]),
 - 4. Based on HP9000 Series 700[™] (HP-UX), SPARCstation[™] (SunOS[™]), and EWS-4800 Series (EWS-UX/V)
 - 5. Based on PC-9800 Series (MS-DOS + Windows™)
 - 6. Based on IBM PC/AT and compatibles (PC DOS/IBM DOS/MS DOS + Windows)
 - 7. Based on NEWS[™] (NEWS-OS[™])
 - 8. Maintenance product
- **Remark** Use the RA78K/0, CC78K/0, SM78K0, RX78K/0, ID78K/0, and SD78K/0 in combination with the DF78098.

APPENDIX B. RELATED DOCUMENTS

Documents Related to Devices

Document	Document No.	
	English	Japanese
μPD78098B Subseries User's Manual	To be prepared	U12761J
μPD78095B, 78096B, 78098B Data Sheet	To be prepared	U12735J
μPD78P098B Data Sheet	To be prepared	To be prepared
78K/0 Series User's Manual Instruction	U12326E	U12326J
78K/0 Series Instruction Table	—	U10903J
78K/0 Series Instruction Set	_	U10904J
µPD78098B Subseries Special Function Register Table	—	To be prepared

Documents Related to Development Tools (User's Manual) (1/2)

Document		Document No.	
		English	Japanese
RA78K Series Assembler Package	Operation	EEU-1339	EEU-809
	Language	EEU-1404	EEU-815
RA78K Series Structured Assembler Preprocessor	·	EEU-1402	U12323J
RA78K0 Assembler Package	Operation	U11802E	U11802J
	Assembly	U11801E	U11801J
	Structured Assembly Language	U11789E	U11789J
CC78K Series C Compiler	Operation	EEU-1280	EEU-656
	Language	EEU-1284	EEU-655
CC78K0 C Compiler	Operation	U11517E	U11517J
	Language	U11518E	U11518J
CC78K/0 C Compiler Application Note	Programming know-how	EEA-1208	EEA-618
CC78K Series Library Source File	—	U12322J	
PG-1500 PROM Programmer	EEU-1335	U11940J	
PG-1500 Controller PC-9800 Series (MS-DOS) Based		EEU-1291	EEU-704
PG-1500 Controller IBM PC Series (PC DOS) Based		U10540E	EEU-5008
IE-78000-R		U11376E	U11376J
IE-78000-R-A		U10057E	U10057J
IE-78000-R-BK		EEU-1427	EEU-867
IE-780908-R-EM	To be prepared	To be prepared	
EP-78230		EEU-1515	EEU-985
SM78K0 System Simulator Windows Based Reference		U10181E	U10181J
SM78K Series System Simulator	External Parts User Open	U10092E	U10092J
	Interface Specifications		

Caution The contents of the documents listed above are subject to change without prior notice. Make sure to use the latest edition when starting design.

Documents Related to Development Tools (User's Manual) (2/2)

Document		Document No.	
		English	Japanese
ID78K0 Integrated Debugger EWS Based	Reference	—	U11151J
ID78K0 Integrated Debugger PC Based	Reference	U11539E	U11539J
ID78K0 Integrated Debugger Windows Based	Guide	U11649E	U11649J
SD78K/0 Screen Debugger	Introduction	_	EEU-852
PC-9800 Series (MS-DOS) Based	Reference	_	U10952J
SD78K/0 Screen Debugger	Introduction	U10539E	EEU-5024
IBM PC/AT (PC DOS) Based	Reference	U11279E	U11279J

Documents Related to Embedded Software (User's Manual)

Document		Document No.	
		English	Japanese
78K/0 Series Real-Time OS	Fundamental	U11537E	U11537J
	Installation	U11536E	U11536J
78K/0 Series OS MX78K0	Fundamental	_	U12257J
Fuzzy Knowledge Data Input Tool		EEU-1438	EEU-829
78K/0, 78K/II, 87AD Series Fuzzy Interface Development Support System Translator		EEU-1444	EEU-862
78K/0 Series Fuzzy Inference Development Support System Fuzzy Inference Module		EEU-1441	EEU-858
78K/0 Series Fuzzy Inference Development Support System Fuzzy Inference Knowledge Debugger		EEU-1458	EEU-921

Other Documents

Document	Document No.	
	English	Japanese
IC PACKAGE MANUAL	C10943X	
Semiconductor Device Mounting Technology Manual	C10535E	C10535J
Quality Grades on NEC Semiconductor Devices	C11531E	C11531J
Semiconductor Device Reliability/Quality Control System	C10983E	C10983J
Guide to Quality Assurance for Semiconductor Devices	MEI-1202	C11893J

Caution The contents of the documents listed above are subject to change without prior notice. Be sure to use the latest edition when starting design.

- NOTES FOR CMOS DEVICES

1 PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note: Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it.

(2) HANDLING OF UNUSED INPUT PINS FOR CMOS

Note: No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices.

(3) STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note: Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function.

FIP, IEBus, and Inter Equipment Bus are trademarks of NEC Corporation.

MS-DOS and Windows are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.

IBM DOS, PC/AT and PC DOS are trademarks of International Business Machines Corporation.

HP9000 Series 300, HP9000 Series 700, and HP-UX are trademarks of Hewlett Packard Company.

SPARCstation is a trademark of SPARC International, Inc.

SunOS is a trademark of Sun Microsystems, Inc.

NEWS and NEWS-OS are trademarks of Sony Corporation.

The related documents indicated in this publication may include preliminary versions. However, preliminary versions are not marked as such.

The export of this product from Japan is regulated by the Japanese government. To export this product may be prohibited without governmental license, the need for which must be judged by the customer. The export or re-export of this product from a country other than Japan may also be prohibited without a license from that country. Please call an NEC sales representative.

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document.

NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others.

While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features.

NEC devices are classified into the following three quality grades:

"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application.

- Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
- Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
- Specific: Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc.

The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact an NEC sales representative in advance.

Anti-radioactive design is not implemented in this product.

M4 96.5