

GUIX Studio™

User Guide

May 11, 2020

Renesas SynergyTM Platform

Synergy Software

Synergy Software (SSP) Component

U
s
e

r’s
 M

a
n

u
a

l

www.renesas.com

All information contained in these materials, including products and product specifications, represents

information on the product at the time of publication and is subject to change by Renesas Electronics

Corp. without notice. Please review the latest information published by Renesas Electronics Corp.

through various means, including the Renesas Electronics Corp. website (http://www.renesas.com).

Notice

1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and

application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product

or sy stem. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these

circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or

other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this

document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application exam ples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or

others.

4. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and

all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.

5. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for each

Renesas Electronics product depends on the product’s quality grade, as indicated below.

 "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic

appliances; machine tools; personal electronic equipment; industrial robots; etc.

 "High Quality ": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key

f inancial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas

Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to human

lif e or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space system; undersea

repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all

liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any

Renesas Electronics data sheet, user’s manual or other Renesas Electronics document.

6. When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General Notes f or

Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas

Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas Electronics

disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified

ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific

characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability

product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are

not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibi lity of bodily injury, injury or

damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety design for

hardware and sof tware, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any

other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are responsible for evaluating the

saf ety of the final products or systems manufactured by you.

8. Please contact a Renesas Electronics sales off ice for details as to environmental matters such as the environmental compatibility of each Renesas

Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of

controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these applicable

laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable

laws and regulations.

9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is

prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations

promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.

10. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or

transf ers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics

products.

(Note1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled

subsidiaries.

(Note2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

(Rev .4.0-1 November 2017)

Corporate Headquarters Contact information
TOYOSU FORESIA, 3-2-24 Toyosu,

Koto-ku, Tokyo 135-0061, Japan

www.renesas.com

 For f urther information on a product, technology, the most up-to-date

v ersion of a document, or your nearest sales office, please visit:

www.renesas.com/contact/.

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics

Corporation. All trademarks and registered trademarks are the property

of their respective owners.

https://www.renesas.com/
https://www.renesas.com/contact/

Renesas Synergy Specific Information

If you are using GUIX Studio™ for the Renesas Synergy Platform, please
use the following information.

Customer Support Center

For Renesas Synergy platform support, please contact Renesas directly:

Support: www.renesas.com/synergy/support

http://www.renesas.com/synergy/support

User Guide

V5 for Windows

Express Logic

858.613.6640
Toll Free 888.THREADX

FAX 858.521.4259

www.expresslogic.com

http://www.expresslogic.com/

©2002-2020 by Express Logic, Inc.

All rights reserved. This document and the associated GUIX Studio software are the sole property of
Express Logic, Inc. Each contains proprietary information of Express Logic, Inc. Reproduction or duplication
by any means of any portion of this document without the prior written consent of Express Logic, Inc., is
expressly forbidden.
Express Logic, Inc., reserves the right to make changes to the specifications described herein at any time
and without notice in order to improve design or reliability of GUIX Studio. The information in this document
has been carefully checked for accuracy; however, Express Logic, Inc., makes no warranty pertaining to the
correctness of this document.

Trademarks
GUIX, GUIX Studio, USBX, NetX, Piconet, preemption-threshold, event chaining, and UDP Fast Path are
trademarks of Express Logic, Inc. ThreadX, and FileX are registered trademarks of Express Logic, Inc. All
other product and company names are trademarks or registered trademarks of their respective holders.

Warranty Limitations
Express Logic, Inc., makes no warranty of any kind that the GUIX Studio products will meet the USER’s
requirements, or will operate in the manner specified by the USER, or that the operation of the GUIX Studio
products will operate uninterrupted or error free, or that any defects that may exist in the GUIX Studio
products will be corrected after the warranty period. Express Logic, Inc., makes no warranties of any kind,
either expressed or implied, including but not limited to the implied warranties of merchantability and fitness
for a particular purpose, with respect to the GUIX Studio products. No oral or written information or advice
given by Express Logic, Inc., its dealers, distributors, agents, or employees shall create any other warranty
or in any way increase the scope of this warranty, and licensee may not rely on any such information or
advice.

Part Number: 000-1025
Revision 5.6.1.0

 GUIX Studio 1

Contents

About This Guide .. 3

Organization... 3

Guide Conventions ... 4

Customer Support Center .. 5
Latest Product Information .. 5
What We Need From You ... 5
Where to Send Comments About This Guide .. 5

Chapter 1 Introduction to GUIX Studio .. 6

GUIX Studio Requirements ... 6

GUIX Studio Constraints .. 6

Chapter 2 Installation and Use of GUIX Studio 7

Product Distribution .. 7

GUIX Studio Installation Directory .. 7

GUIX Studio Installation ... 8

Using GUIX Studio .. 15

GUIX Studio Examples .. 15

Keyboard Shortcuts .. 16

Chapter 3 Description of GUIX Studio .. 17

GUIX Studio Views ... 17

The GUIX Studio Project .. 23

Chapter 4 GUIX Studio Resources .. 26

Color Resources ... 26

Font Resources ... 30

Pixelmap Resources ... 35

String Resources ... 38

Adding Language Translations ... 42

Chapter 5 GUIX Studio Screen Designer 45

Creating/Configuring Projects ... 45

Selecting Widgets ... 47

Using Properties .. 47

Manipulating Widgets ... 49

 GUIX Studio 2

Manipulating Multiple Widgets .. 50

Cut/Copy/Paste Operations ... 52

Changing Z-Order ... 54

Assigning Colors, Fonts, and Pixelmaps ... 55

Using templates ... 55

Record and Playback Macro ... 56

Zooming Target View ... 57

Grid/Snap Settings .. 57

Chapter 6 GUIX Studio Generated Code .. 59

Generating Resource Files .. 59

Generating Specification Code ... 60

Integrating with User Code .. 61

Chapter 7 Defining Screen Flow .. 62

Configuring Screen Flow .. 62

Running the Application ... 67

Chapter 8 GUIX Studio Command Line .. 68

Command Line Usage .. 68

Command Line Options ... 68

Chapter 9 .. 70

Simple Example Project ... 70

Index ... 84

 GUIX Studio 3

About This Guide

This guide provides comprehensive information about GUIX Studio, the
Microsoft Windows-based rapid UI development environment specifically
designed for the GUIX runtime library from Express Logic.

It is intended for the embedded real-time software developer using the
ThreadX Real-Time Operating System (RTOS) and the GUIX UI run-time
library. The developer should be familiar with standard ThreadX and GUIX
concepts.

Organization

Chapter 1 Provides a basic overview of GUIX Studio

and its relationship to real-time
development.

Chapter 2 Gives the basic steps to install and use
GUIX Studio to analyze your application
right out of the box.

Chapter 3 Describes the main features of GUIX
Studio.

Chapter 4 Describes how to use GUIX Studio to
create and manage your application
resources.

Chapter 5 Describes how to use the GUIX
WYSIWYG screen designer.

Chapter 6 Describes how your application will utilize
the output files and API functions
generated by GUIX Studio.

Chapter 7 Describes how to configure screen flow
Chapter 8 Describes the usage of command line tool

Chapter 9 Describes a simple but complete UI

application created by GUIX Studio.

 GUIX Studio 4

Guide Conventions

Italics typeface denotes book titles,

emphasizes important words, and
indicates variables.

Boldface typeface denotes file names, key
words, and further emphasizes
important words and variables.

indicates especially useful information.

 GUIX Studio 5

Customer Support Center

Support engineers 858.613.6640
Support fax 858.521.4259
Support e-mail support@expresslogic.com
Web page http://www.expresslogic.ccom

Latest Product Information

Visit the Express Logic web site and select the “Support” menu option to
find the latest online support information, including information about the
latest GUIX Studio product releases.

What We Need From You

Please supply us with the following information in an e-mail message so
we can more efficiently resolve your support request:

• A detailed description of the problem, including frequency of
occurrence and how it can be reliably reproduced.

• Attach the trace file that causes the problem.

• The version of GUIX Studio that you are using (shown in the upper
left of the display).

• The version of GUIX that you are using including the
_gx_version_idstring and _gx_build_options variable.

• The version of ThreadX that you are using including the
_tx_version_idstring.

Where to Send Comments About This Guide

The staff at Express Logic is always striving to provide you with better
products. To help us achieve this goal, e-mail any comments and
suggestions to the CustomerSupportCenter at:

support@expresslogic.com

Enter “GUIX Studio User Guide” in the subject line.

mailto:support@expresslogic.com
http://www.expresslogic.ccom/
mailto:support@expresslogic.com

 GUIX Studio 6

Chapter 1

Introduction to GUIX Studio

GUIX Studio is a Microsoft Windows-based rapid UI development
environment specifically designed for the GUIX runtime library from
Express Logic.

Embedded UI Developers can utilize the GUIX Studio WYSIWYG screen
designer to quickly create and update their embedded UI using the GUIX
run-time environment. GUIX Studio designs are saved and maintained in a
GUIX Studio project file, which has the extension .gxp. When your design
is ready for execution on the target, GUIX Studio generates C code that
contains all the necessary UI information and code.

GUIX Studio Requirements

In order to function properly, Express Logic’s GUIX Studio requires
Windows XP (or above). The system should have a minimum of 200MB of
RAM, 2GB of available hard-disk space, and a minimum display of
1024x768 with 256 colors. In addition, the embedded application must be
running on ThreadX/GUIX V5.0 or later.

To build and run the embedded application as a stand-alone Microsoft
Windows executable, you will also need a compiler or build environment
capable of compiling C source code to produce a Microsoft Windows
executable. The evaluation package included with GUIX Studio also
includes MSVC 2005 and MSVC 2010 project files and solutions. If you
are using a different compiler, you will need to create your own project
files or make files for the purposes of building your example applications.

GUIX Studio Constraints

The GUIX Studio UI design tool has several constraints, as follows:

A maximum of 4 displays per project.
A maximum of 100,000 widgets per GUIX Studio project.
A maximum of 100,000 distinct resources, e.g., colors, fonts, pixelmaps,
strings, etc.

 GUIX Studio 7

Chapter 2

Installation and Use of GUIX Studio

This chapter contains a description of various issues related to installation,
setup, and usage of the GUIX Studio UI system design tool.

Product Distribution

GUIX Studio is shipped on a single CD-ROM compatible disk. The package includes an
installation program Setup.exe that automatically runs from the CD. If the GUIX Studio
installer does not automatically run, please double-click on the Setup.exe program in
order to install GUIX Studio. The GUIX Studio package also contains an example
directory of pre-built traces that should serve as a good starting point for new GUIX
Studio users.

The release notes associated with each new GUIX Studio release can be found in the file
readme_guix_studio.txt. Please review this file to see what has changed between
successive GUIX Studio releases.

GUIX Studio Installation Directory

By default, GUIX Studio is installed in the directory
c:\Express_Logic\GUIX_Studio_v, where “v” is the version of GUIX
Studio being installed. The default location for GUIX Studio installation
may be changed via the installation dialog, as shown in the next section.

Note that if you have an error during the GUIX Studio
installation process, please try selecting Setup.exe,
right-click and select “Run as administrator”.

 GUIX Studio 8

GUIX Studio Installation

GUIX Studio is easily installed, as shown in Figure 2.1 through Figure
2.8. The installation dialogs are fairly straightforward, but it is worth noting
that Figure 2.4 shows the dialog for changing the default installation
directory for GUIX Studio.

Figure 2.1

Selecting “Next” button launches the GUIX Studio installation, as shown in
the next figure.

 GUIX Studio 9

Figure 2.2

Selecting “Next” button indicates the terms of the license agreement are
agreed and GUIX Studio installation continues, as shown in the next
figure.

 GUIX Studio 10

Figure 2.3

If the default installation path is okay, simply select the “Next” button to
continue the installation, as shown in the next figure.

 GUIX Studio 11

Figure 2.4

If everything is acceptable, simply select the "Next" button to continue the
installation, as shown in the next figure.

 GUIX Studio 12

Figure 2.5

If everything is acceptable, simply select the "Next" button to continue the
installation, as shown in the next figure.

 GUIX Studio 13

Figure 2.6

If everything is acceptable, simply select the "Install" button to continue
the installation, as shown in the next figure.

You should now observe the installation of GUIX Studio on your Windows
computer.

 GUIX Studio 14

Figure 2.7

Selecting “Finish” button completes the installation and by default brings
up the GUIX Studio Quickstart Guide. At this point, GUIX Studio is
installed and ready to use!

 GUIX Studio 15

Using GUIX Studio

Using GUIX Studio is easy - simply run GUIX Studio via the “Start” button.
At this point you will observe the GUIX Studio UI. You are now ready to
use GUIX Studio to graphically create your embedded UI. From here you
create a new project or open an existing project, including the GUIX
example projects.

Note that you can also double-click on any GUIX Studio
project file with an extension of “gxp,” which will
automatically launch GUIX Studio and open the
referenced project.

GUIX Studio Examples

A series of example GUIX Studio project files with the extension “gxp” are
found in the “Examples” sub-directory of your installation. These pre-built
example projects will help you get comfortable with using GUIX Studio.

One example project file that is always present is the file simple.gxp. This
example project file shows the definition of a simple GUIX UI, as
described in Chapter 7 of this document.

 GUIX Studio 16

Figure 2.8

Keyboard Shortcuts

Ctrl + C: Copy
Ctrl + X: Cut
Ctrl + V: Paste
Ctrl + N: New Project
Ctrl + O: Open Project
Ctrl + S: Save Project
Ctrl + Shift + S: Save Project As
Alt + F4: Exit

 GUIX Studio 17

Chapter 3

Description of GUIX Studio

This chapter contains a description of the GUIX Studio system analysis
tool. A description of the overall functionality of the GUI is found in this
chapter.

GUIX Studio Views

There are five principal areas of the GUIX Studio UI, namely the Toolbar,
Project View, Properties View, Target View, and Resource View.
Figure 3.1 shows the basic GUIX Studio UI. Each of the views is further
discussed in the following sub-sections.

Figure 3.1

Title

 GUIX Studio 18

The Title displays the GUIX Studio version as well as the currently open
project, as shown at the top of Figure 3.1 previously.

 GUIX Studio 19

Toolbar

The Toolbar shows the buttons available to the GUIX Studio developer,
as shown in Figure 3.2.

Figure 3.2

The toolbar buttons are defined as follows:

 Creates a new GUIX Studio project

 Opens an existing GUIX Studio project

 Saves the project

 Cut widget selected, including children

 Copy selected widget, including children

 Paste widget and children

 Left-align selected widgets

 Right-align selected widgets

 Top-align selected widgets

 Bottom-align selected widgets

 Equally space selected widgets vertically

 Equally space selected widgets horizontally

 Make selected widgets equal width

 Make selected widgets equal height

 Move selected widgets to front

 Move selected widgets to back

 Size selected widget to content

 Zoom out target screen

 Zoom in target screen

 Record Macro

 Playback Macro

 Run Application

 About GUIX Studio

 GUIX Studio 20

Project View

The Project View shows the hierarchical list GUIX objects that comprise
the embedded UI. New GUIX objects can be added by clicking on the
parent object and then selecting an object from the Insert menu (or by
right-clicking on the object and selecting from the right-click menu). Figure
3.3 below shows the GUIX Studio Project View.

Figure 3.3

 GUIX Studio 21

Properties View

The Properties View shows detailed property information of the currently
selected GUIX object, which can be selected via the Project View or by
clicking directly on the object in the Target View. Figure 3.4 below shows
the GUIX Studio Properties View.

Figure 3.4

 GUIX Studio 22

Target View

The Target View is the WYSIWYG screen design and layout area. This
view is meant to represent the physical display or displays available on
your target hardware. Objects can be selected, moved, resized, etc. via
simple mouse operations. In addition, alignment and Z-order button
operations are available on selected objects in the Target View. Selecting
an object in the Target View will also result in the properties for that object
to be displayed in the Properties View. Figure 3.5 below shows the GUIX
Studio Target View.

Figure 3.5

 GUIX Studio 23

Resource View

The Resource View is used to manage the resources (colors, fonts,
pixelmaps, and strings) available to applications screens defined for each
display. You can click on the resource view group headers to expand each
group and examine the group contents. Figure 3.6 below shows the GUIX
Studio Resource View.

Figure 3.6

The title of the resource groups indicates current theme name. If multi
themes available, you are able to switch between themes by clicking on
the up and down arrow.

Each resource group in the view above can be expanded or collapsed by
clicking on the group header. A more detailed description of each resource
groups follows in the next chapter.

The GUIX Studio Project

A GUIX Studio project maintains information about your UI screen design
and UI resources. The project data is saved to an XML format file with the
extension ".gxp". Since the project file is an XML schema file, it can be
versioned controlled and shared similar to any other source file.

When you first start using GUIX Studio, you will need to either open one of
the example projects provided with the distribution or create a new project.
All of your work is saved to the project data file.

GUIX Studio also produces ANSI C source files. These source files
contain either your application resources or data structures describing
your designed screens. GUIX Studio also writes to these generated
source files API functions that know to utilize the generated data
structures to dynamically create your application screens. Your application
software will simply invoke the provided API functions to create the
screens you have designed within GUIX Studio.

 GUIX Studio 24

As you progress in designing your user interface, you will periodically want
to use GUIX Studio to generate the GUIX compatible output files that will
allow you to build and run the interface you have designed. You can
compile and run the generated source files for either your target hardware
or on your Windows desktop that simulates ThreadX and GUIX.

GUIX Studio Project Organization

It is helpful to have some knowledge of the basic organization of a GUIX
Studio project to understand how to use GUIX Studio effectively and to
understand the information presented in the Project View of the GUIX
Studio IDE. The Project View is a summary visual representation of all of
the information contained in your project.

Before describing the project, it is necessary to define few terms. First, we
use the term Display to mean a physical display device. This is most often
an LCD display device but it could be using other technology. The next
term is Screen, which mean a top-level GUIX object, usually a GUIX
Window, and all of its associated child elements. A Screen is a software
construct that can be defined and modified at runtime. Finally, a Theme is
a collection of resources. A theme includes a table of color definitions, font
definitions, and pixelmap definitions that are designed to work well
together and present your end user with a consistent look and feel.

The project first includes a set of global information such as the project
name, number of displays supported, the resolution and color format of
each display, the number of languages supported, the name of each
supported language. The project name is the first node displayed in the
Project View.

The project next organizes all of the information required for up to 4
physical displays and the screens and resources available to each display.
The display names are the next level nodes in the Project View tree.

A unique feature of the GUIX Studio application is built-in support for
multiple physical displays, each with its own x,y resolution, color format,
screens, and resources. While the vast majority of GUIX applications
utilize only one physical display, this capability is important for those
making a product that must support multiple simultaneous physical
displays.

Beneath each display definition are the top-level windows or screens
defined for that display. The screen definitions can be nested to any level
depending on the number and nesting of child widgets on each screen.

 GUIX Studio 25

This screen and child widget organization is displayed in a graphical
manner in the Project View.

Also associated with each display are the Themes supported by the
display and the resource content composing each Theme. If your project
includes multiple displays, you will notice that the Resource View changes
its content when you select one display and then another. This is because
the resource content is linked to each display. Not only the color format
may be different, but the pixelmaps, colors, and fonts you choose to use
may vary from one physical display to another.

The final component maintained by the project is the string table data
associated with each display. Since displays can be of very different x,y
resolutions, the string data is maintained independently for each display
defined in the project.

 GUIX Studio 26

Chapter 4

GUIX Studio Resources

GUIX Studio provides management of all UI resources the application will
use for colors, fonts, pixelmaps and strings. The sections that follow
describe how to add, modify, and delete resources within your UI screen
design.

All resource management is done within the Resource View of the GUIX
Studio UI, as shown below in Figure 4.1.

Figure 4.1

Color Resources

In order to manage color resources the Colors section of the Resource
View must first be expanded by clicking on the + field, resulting in the
dialog shown below in Figure 4.2:

 GUIX Studio 27

Figure 4.2

Color resources consist of one or more colors, each with a unique logical
name. For example, in Figure 4.2 the logical name CANVAS, which is the
system color ID for the screen background fill color, is associated with the
physical color black. This color resource is used whenever the application
specifies GX_COLOR_ID_CANVAS as the color in the object properties.

The color “swatch” indicating the color RGB value is shown on the left,
followed by the color ID name. You can change the RGB value associated
with any ID name at any time. You cannot change the pre-defined system
color ID names because these are used internally by the GUIX library.
You can however change any of the color values. Changing a system
color value is a “global change”, meaning that any widget that does not
have a specific color assignment will take on the new system color value.

You can change both the color name and color value for custom colors
that you have added to the Theme.

Modifying a color resource is easy, simply double-click (or right-click and
menu select) on the color resource. This brings up the color-definition
dialog. From this dialog the color resource can be modified to match the
application’s UI needs. Figure 4.3 shows the modification dialog when
CANVAS is double-clicked. Note that the appearance of this dialog will
change based on the color-format settings of the target display.

 GUIX Studio 28

Figure 4.3

Adding a new color resource is easy, from the Colors section of the
Resource View select the following:

Simply use the resulting color dialog to add a new color resource, as
shown below in Figure 4.4:

Figure 4.4

By selecting Save a new color resource with the name NEW_COLOR with
the physical color green will be available for the application to use.

Special considerations for palette mode operation:
When a project is configured for 256 color palette mode color format, the
user can configure how the palette to be installed and used is defined.
You can access and edit the palette definition by the using the
Configure|Themes dialog, and if your project is set for 8bpp you should
see the "Edit Palette" button. Click this button to bring up the Edit Palette
dialog:

 GUIX Studio 29

GUIX Studio divides the palette into two sections: The "user defined"
section and the "auto-generated" section. GUIX Studio runs a
sophisticated optimal palette generation algorithm to create the best
palette for displaying the images that are included in each theme. You can
carve out any number of palette entries you need to define by typing a
number into the "Predefined Palette Entries" field, and enter any RGB
value you like for any of these slots. The remaining slots will be allocated
to Studio to create an optimal color palette for displaying your images.

When running in this mode, if you want to edit a color defined in the
resource view, the color editor will allow you to select only from the pre-
defined palette entries that you have defined. This is because the
remaining palette entries are auto-generated by GUIX Studio and will
change as the images added to your project are modified.

 GUIX Studio 30

Font Resources

In order to manage font resources the Fonts section of the Resource
View must first be expanded by clicking on the + field, resulting in the
dialog shown below in Figure 4.5:

Figure 4.5

Font resources consist of one or more fonts, each with a unique logical
name. For example, in Figure 4.5 the logical name SYSTEM is associated
with a specific font. This font resource is used whenever the application
specifies SYSTEM as the font in the object properties.

The font group shows you a WYSIWYG preview of the font glyphs on the
left, the font height in pixels, the Font ID name and the font size(in kb).

In the view above, the first four fonts are the pre-defined default fonts that
are required by the GUIX library. You can change the font data associated
with these fonts, however you cannot change these font ID names.

The last font shown above, named “Italic”, is a custom font that has been
added to the project by the user.

Modifying a font resource is easy, simply double-click (or right-click and
menu select) on the font resource. From this dialog the font resource can
be modified to match the application’s UI needs. Figure 4.6 shows the
modification dialog when SYSTEM is double-clicked.

 GUIX Studio 31

Figure 4.6

Adding a new font resource is easy, from the Fonts section of the
Resource View select the following:

Simply use the resulting font dialog to add a new font resource, as shown
below in Figure 4.7:

 GUIX Studio 32

Figure 4.7

New GUIX fonts are created by GUIX Studio rendering a chosen
TrueType font at a particular size. Therefore the dialog above first requires
a TrueType font path. You can use the browse button to browse to a
directory containing font files on your development system. Several
TrueType fonts are also included in the GUIX/fonts sub-folder wherever
you have installed GUIX Studio.

If possible the location of the TrueType font file is stored internally using a
project-relative path. For this reason it is important to keep all of your font
files in a common location and use a common directory tree structure for
your projects and font files in order to enable you to move GUIX Studio
projects from one development station to another.

The Font Name field allows you to specify the font resource ID name. This
is the resource ID that will be used in the code generated by GUIX Studio
and also used by your application when referencing the font. This name
must follow C variable naming syntax requirements.

Once you have chosen a TrueType font file to use as input, enter a font
logical name.

 GUIX Studio 33

The checkbox “Generate Kerning Info” instructs GUIX Studio to include
kerning information within the generated font, which is used to adjust the
relative positions of successive glyphs in a string. If you want to apply
kerning with your strings, you will need to use a font that contains kerning
information and turn on this checkbox. You will also need to define the
GUIX library build option “GX_FONT_KERNING_SUPPORT” to support
rendering text with kerning information.

The checkbox “Include character set defined by String Table” instructs
GUIX Studio to include those glyphs referenced by your static string table
within the generated font. You can include additional glyphs by selecting
and editing the character ranges listed below, but this option can be
selected to quickly generate the minimum character set needed to display
the strings defined within your string table. Of course, if your string table
uses glyphs which are not present in your TrueType source font, those
characters will not be available in your GUIX font, and will not be
displayed on your target system.

To generate a more complete font, or a font that includes characters that
may not be used within your statically defined string table, you can also
select character ranges from the list below. Note that you can select any
number of character ranges, and you can edit the actual starting and
ending character code to be included within each selected range.

The pre-defined character ranges and page names are only suggestions
allowing you to easily select the character set needed for the active
languages in use today. The listed language names do not have any effect
on the generated GUIX font, and you are free to type in any Hex character
range you like for any enabled or selected character range.

For example, if you would like to generate a font which contains only the
numeric characters, you might select the “Ascii” code page, but enter the
starting value 0030 and the ending value 0039 to generate a font
containing only the numeric characters. Note that the character range
values are Hexadecimal values, which is the normal notation for Unicode
character tables.

By default, GUIX Studio and the GUIX library support character codes
0x0000 through 0xffff, which encompasses all active languages,
mathematical forms, and other symbols in use today. If you require the
use of character codes above the value 0xffff, including certain Private
Use Areas, you will need to turn on the checkbox “Support Extended
Character Range”. When this checkbox is selected, GUIX Studio allows
the user to specify character ranges from 0x0000 through 0x10ffff, which
includes the Unicode Private Use character ranges. If you require this
extended character range, you will also need to define the GUIX library

 GUIX Studio 34

build option “GX_EXTENDED_UNICODE_SUPPORT” so that the GUIX
library will internally support 32 bit character codes, rather than the default
configuration which supports 16 bit character codes.

If you select both the “Include character set defined by String Table”
checkbox and one or more of the character ranges in the list below, GUIX
Studio will combine these selection into the superset of both the ranges
selected and those character used within your string table. Of course the
selected TrueType source font must also contain the needed characters in
order for GUIX Studio to produce meaningful glyphs for each requested
character value.

Once the character range is determined, specify the font height in pixels
and the font format. Both anti-aliased and binary fonts are supported.
Binary fonts require less static data storage area, however anti-aliased
fonts produce the best appearance on targets running at 4-bpp grayscale
or higher color depths.

Once all of the font configuration fields are completed, click on the OK
button to create a new font resource. GUIX Studio will generate a GUIX
compatible font with the chosen properties, add that font to the project
resources, and make the font available for the application to use.

 GUIX Studio 35

Pixelmap Resources

In order to manage pixelmap resources the Pixelmaps section of the
Resource View must first be expanded by clicking on the + field, resulting
in the dialog shown below in Figure 4.8:

When the Pixelmap group is expanded, you should see a preview similar
to this:

Figure 4.8

Pixelmap resources consist of one or more pixelmaps, each with a
WYSIWYG preview of the font glyphs on the left, the pixelmap dimensions
in pixels, a unique logical name and the pixemap size(in kb).

The first group of pixelmaps comprises the pre-defined system pixelmaps
required by GUIX widgets such as radio buttons and checkboxes. You can
change the pixelmap data associated with the system pixelmaps, however
you cannot change these pixelmap ID names. Also shown above are two
custom pixelmaps named “ORANGE_BUTTON” and
“ORANGE_BUTTON_PRESSED”. These are examples of pixelmaps a
user has added to the project that might be used to render a
GX_PIXELMAP_BUTTON widget.

Adding a new pixelmap resource is easy, right-click on Pixelmaps section
header of the Resource View select “Add Folder”.

 GUIX Studio 36

Modifying a pixelmap resource is easy, simply double-click (or right-click
and menu select) on the pixelmap resource. From this dialog the pixelmap
resource can be modified to match the application’s UI needs. Figure 4.9
shows the modification dialog when RADIO_ON is double-clicked.

Figure 4.9

The Edit Pixelmap dialog allows you to define a new pixelmap or modify
the content of an existing pixelmap. Behind the scenes, GUIX Studio
reads the input image and converts the image to the GUIX
GX_PIXELMAP format that can be used by the GUIX library. GUIX Studio
also converts the color space of the incoming image to the color space of
the display on which this pixelmap will be used.

The first field of this dialog is the path to the source image. GUIX Studio
supports the input of PNG (.png) or JPEG (.jpg) format image files. You
can use the “browse” button to find the desired input file on your local file
system.

If possible the location of the input image file is stored internally using a
project-relative path. For this reason it is important to keep all of your
image files in a common location and use a common directory tree
structure for your projects and image files in order to enable you to move
GUIX Studio projects from one development station to another and not
lose track of input image data.

The Pixelmap ID fields allow you to specify the logical name of the
Pixelmap resource. This name typed here must be unique and must follow
C variable naming syntax rules.

 GUIX Studio 37

The Specify Output File checkbox allows you to specify a unique output
file for each pixelmap. If this checkbox is not selected, the pixelmap data
is written to the default resource file for this display. If the checkbox is
selected, you can type a specific filename into which the data for this
pixelmap will be written. The purpose for this option is to allow you to
divide your pixelmap data, which can be very large C arrays, into multiple
output files. Certain compilers struggle to handle C files that are hundreds
of thousands of source lines.

The “Compress Output” checkbox allows you to specify if the pixelmap
output is uses a proprietary GUIX compression algorithm. Compressed
output files are generally smaller, but they also require processor time to
render on the target. Most often you will choose compression for your
large pixelmaps, and use non-compressed format for your smaller
pixelmaps.

The “Include Alpha Channel” checkbox determines how GUIX Studio
utilizes alpha channel information that might be present in .png format
input files. If this checkbox is checked and the display is running at 16-bpp
color depth or higher, GUIX Studio will preserve the full incoming alpha
channel data in the output file. If this checkbox is not checked, GUIX will
produce a smaller output file that may include transparency, but will not
include full alpha-blending channel information.

Finally, the “Dither” checkbox instructs GUIX Studio to optionally apply an
advance dithering algorithm when down-sampling the input image to a
lower color depth display data format. Dithering is usually enabled, but can
cause larger output files if compression is used because there will be
fewer “repeating” pixel color values.

Once all options are set as desired, click the OK button to produce a new
pixelmap resource. GUIX Studio will read the input image file, decompress
it, perform color space conversion and dithering, optionally re-compress
the data, and save the data in GUIX compatible GX_PIXELMAP format.
The new pixelmap is added to the project resources and made available
for the application to use.

Adding a new pixelmap resource is easy, from the Pixelmaps section of
the Resource View select the following:

 GUIX Studio 38

String Resources

When the Strings group is expanded you should see a preview of the
project string table, as shown below:

Figure 4.11

String resources consist of one or more strings, each with a unique logical
name. For example, in Figure 4.11 the logical name “PATIENT_LIST” is
associated with the string “Patient List” shown on its right. This string
resource is used whenever the application specifies PATIENT_LIST as
the string in the object properties.

Always remember that your ID names for all resource types must be C
syntax compatible variable names. These names will be used extensively
when your project resource files and specifications files are produced by
Studio.

Modifying a string resource is easy, simply double-click (or right-click and
menu select) on the string resource to invoke the String Table Editor
dialog. From the String Table Editor dialog the string resource can be
modified to match the application’s UI needs. Figure 4.12 shows the
modification dialog when STRING_13 is double-clicked.
In this case, the string ID name is shown on the left, which the string
content for the first or reference language is shown on the right. Of course
the exact string content is very specific to your application, however the
layout of the String group preview is consistent.

GUIX Studio supports static text and multi-lingual application by defining
and maintaining a String Table. The String Table defines one string ID for
each record, and one string constant for each record for each supported
language.

 GUIX Studio 39

The languages to be supported by your application are defined by using
the Language Configuration Dialog, show here:

Figure 4.12

The Language Configuration Dialog is invoked by using the Configure |
Languages command on the application menu. This dialog allows you to
define the number of languages to be supported by your application and
the name or language ID to be associated with each language. The
languages supported can be modified after your project has been created,
however if a language is removed you should be aware that the string
data associated with that language is also removed and cannot be
retrieved.

The checkbox “Statically Defined” indicates the selected language will be
statically defined in source code format in the generated resource file. If
no languages are statically defined, the language table pointer will be set
to NULL in the generated display table and a language must be loaded
and installed by the application using the binary resource loader APIs
provided by the GUIX library.

The checkbox “Support Bidi Text” instructs GUIX Studio to enable bi-
directional text rendering support. You should turn on this checkbox if the
strings you will be entering for this language require bi-directional text
rendering.

The checkbox “Generate Bidi Text in Display Order” instructs GUIX
Studio to generate bidi text to the output file in its display order. If this
option is selected, no runtime processing is required within the GUIX

 GUIX Studio 40

library to properly render BiDi text. When this option is selected, BiDi text
rendering should NOT be enabled within the GUIX library. This
configuration yields the best runtime performance, but does not support
rendering of dynamically defined BiDi text strings.

The first language or “Index 1” language is referred to as your “reference
language”. This is the language that GUIX Studio will use when you are
defining and editing your UI design. All other languages in your string table
are referred to as Translation Languages. GUIX Studio supports exporting
and importing the string table data in industry standard XLIFF or CSV
format data files, convenient for exchanging string information with
translators who might assist the application developer with adding
translations for the languages to be supported other than the reference
language. When you export the GUIX string table to an XLIFF or CSV file,
the reference language along with one translation language are included
in the XLIFF or CSV string data exchange file. Similarly, when you import
an XLIFF or CSV file, the imported data is used to populate one
translation language in your GUIX String table.

 GUIX Studio 41

Figure 4.13

The String Table Editor dialog first displays a list of string IDs on the left,
followed by the reference language string data. If more than one language
is defined, a third column shows any one of the supported translation
languages. You can open and close the third column by clicking on the
small arrow at the top-right of the reference language column.

When the translation language column is visible, you can cycle through
the translation languages contained in the project by clicking on the small
arrows at the top-right of the translation language column of the string list.

You can edit a string record by clicking on the record in the table to select
it. When a record is selected, the record String ID and string content are
shown in the fields below the table view. You can type new values into
these fields to modify the string ID and string content.

 GUIX Studio 42

The box in the right side of the table view shows previews of widgets that
reference the selected string. This is useful to tell if an edited string will
exceed a specific widget area.

The fields to the right of the string content include:

“Number of references”: This field indicates how often a particular string ID
is used within the GUIX Studio project. If the reference count is 0, this
string may be obsolete and may optionally be removed by the user.

String Width (pixels) indicates the display width of the string using the
indicated font.

The “Notes” field is an optional comment field that allows you to add
information about the purpose or use of each string. These notes are
included in any exported XLIFF string data files to aid translators in
making accurate and meaningful string translations.

Any time you have the String Table Editor dialog open you can add
additional strings to your project by clicking on the Add String button at the
top of the dialog. Obsolete or unused strings can be removed from the
project by first selecting the string, then clicking on the Delete String
button at the top of the dialog.

In addition to manually adding new strings to your project using the String
Table Editor dialog, you can also add new strings indirectly by simply
typing string content in the “Text” field of the Properties View of any widget
that supports text. In other words, when you are adding new widgets in the
target view or typing text information in the properties view, these actions
are automatically creating new entries in the project string table.

Adding Language Translations

The GUIX Studio string table editor supports a language definition
workflow that allows the developer to create an application using his
primary language, then export the string data to a standard schema XML
or CSV file to be sent to a language translation expert. The translation file
is then returned to the developer, who can import the language
translations back into his Studio project, thereby adding support for a new
language to his application.

This facility is invoked by using the Export (to write the string data to a file)
and Import (to read the translated strings) buttons at the top of the String
Table Editor. The Export button is used to create an XLIFF schema XML

 GUIX Studio 43

or CSV file which contains your reference language strings. This file can
be utilized by a translator using tools and editors that support the standard
XLIFF or CSV file format.

When a translation expert returns the XLIFF file to you with the new string
translations, you can use the Import button to read the data from this
XLIFF or CSV file. If the XLIFF or CSV file contains a new language, the
new language is added to your project. If the XLIFF file contains new
string data for an existing language, this new data is imported into your
project. The reference language strings are not modified by the Import
operation.

When you click the Export button, the XLIFF/CSV Export Control dialog,
show below, is displayed:

Figure 4.14

The Source Language and Target Language fields specify which string
table columns will be written to the XLIFF or CSV file as the reference
language and the translation language. The Source language is the
reference strings, and the Target Language is the language for which your
translator will provide translated string data.

The XLIFF version field specifies one of two main XLIFF file format
versions, either version 1.2 or version 2.0 (and later). These XLIFF file
format standards are incompatible, and you need to know which version
your tools utilize before using the XLIFF Export/Import commands. More
information about the XLIFF schema and XLIFF standards can be found
here:

 GUIX Studio 44

version 1.2: http://docs.oasis-open.org/xliff/xliff-core/xliff-core.html
version 2.0: http://docs.oasis-open.org/xliff/xliff-core/v2.0/os/xliff-core-v2.0-
os.pdf

The output filename and output path fields allow you to specify the
filename and location to which the output file will be written. The filename
is entirely up to the user, however we suggest that you use names that
indicate the source and target languages contained within the exported
file.

http://docs.oasis-open.org/xliff/xliff-core/xliff-core.html
http://docs.oasis-open.org/xliff/xliff-core/v2.0/os/xliff-core-v2.0-os.pdf
http://docs.oasis-open.org/xliff/xliff-core/v2.0/os/xliff-core-v2.0-os.pdf

 GUIX Studio 45

Chapter 5

GUIX Studio Screen Designer

Designing application screens is the primary purpose of GUIX Studio.
Screen design is accomplished through all the various views described
previously in Chapter 3. However, the main element of screen design in
GUIX Studio is the Target View, which is where all the screen elements
are shown visually and in exactly the same manner they will appear on the
embedded target display. These screen elements can be selected,
moved, resized, etc. via simple mouse and button operations. In addition,
alignment and Z-order button operations are available on selected
object(s). The following sub-sections describe various features of GUIX
Studio screen design.

Creating/Configuring Projects

Creating projects in GUIX Studio is straightforward – simply select the
New Project button or the menu selection Project -> New Project. Next,
GUIX Studio presents the Configure Project dialog. From this dialog,
basic display settings, as well as path information for where to locate code
generated by GUIX Studio is specified.

When a new project is created, the configure project dialog is presented.
This is where the developer specifies the number of hardware displays
available on the target and the properties each display. Properties include
the display’s logical name, x/y resolution, color depth and format, and
other display properties. GUIX Studio supports multiple displays in the
same project. If additional displays are required, the Number of Displays
field should be changed to match the number of displays on the
embedded device. The maximum number of displays in a project is 4.
Figure 5.1 shows the Configure Project dialog.

Modifying the project and/or display settings is accomplished by either the
menu option Configure -> Project/Displays or by selecting the project or
display, right-clicking, and selecting Configure Project/Display. In either
case, the Configure Project dialog is presented to facilitate changes to
the project settings and/or display(s).

 GUIX Studio 46

Figure 5.1

The Directories group is where you can specify the default output
directories for the C source and header files produced by Studio. These
directories are normally saved relative the project location to make it easy
to move projects from one computer to another or from one filesystem to
another.

The Additional Headers field is where you can specify custom header files.
If more than one header file is needed, use semicolons to delimit the list.

When you invoke the Studio “Generate Application” or “Generate
Resources” commands, these are the default directories into which those
source files will be written. Of course you can override these directory
locations at any time by entering new locations in the Output Directory
dialog.

 GUIX Studio 47

Selecting Widgets

Selecting widgets is done by either clicking on the widget in the Project
View widget tree or by clicking on the widget visible in the Target View
area. When a single widget is selected, its properties are displayed in the
Property View area. Figure 5.2 shows the widget “button” selected.

Figure 5.2

Using Properties

As mentioned previously, the properties for a selected widget are
presented in the Properties View. All widgets have a common set of
properties as well as some properties that are specific to the particular
widget type. For example, a button widget has a Pushed property while a
window widget does not. The following are the common set of widget
properties:

 Property Meaning

 GUIX Studio 48

 Widget Type Type of widget, for reference
 Widget Name Name of widget, passed to the widget

create function and used for variable
naming in the generated source files.

 Widget ID ID of widget. This ID value is used to
generate signals from child widgets to
their parent screens.

 Left Left-most coordinate of widget
 Top Top-most coordinate of widget
 Width Width of widget in pixels
 Height Height of widget in pixels
 Border Type of widget border
 Transparent Should be checked if the widget is

partially transparent
 Draw Selected Should be checked if the widget should

initially draw itself in the selected state.
 Enable Should be checked if the widget can be

selected or clicked by the end user.
 Accepts Focus Should be checked if the widget accepts

focus.
 Runtime Allocate Should be checked if the widget control

block should be allocated dynamically.
 Normal Fill Normal fill color resource id
 Selected Fill Selected fill color resource id
 Draw Function User-defined custom drawing function

Name. If this field is blank, the standard
drawing function for that widget type is
used.

 Event Function User-defined custom event handling
function name. If blank, the standard
event handling for this widget type is
used.

Figure 5.3 shows the properties of a simple window widget.

 GUIX Studio 49

Figure 5.3

Many widget types have additional properties specific to each widget type.
For example, in Figure 5.3 above, the Window widget type supports a
Wallpaper pixelmap Id, and a style setting indicating if the wallpaper
should be centered or tiled.

Text widgets support a string ID field, along with text alignment styles and
a font specification. The additional widget properties are normally very
intuitive once you have read the description of each widget type and the
available styles and Create function parameters for that widget type.

Manipulating Widgets

To manipulate a widget, is first must be selected. This is done by either
clicking directly on the widget in the Target View or by selecting it in the

 GUIX Studio 50

Project View widget tree. Once selected, the widget will have a dashed-
outline. In this state, it may be moved by simply clicking on the widget and
dragging it to the desired location on its parent. If the widget is a top-level
widget, dragging the widget is effectively setting the widget’s initial position
on the target display. Of course it is always possible to move or resize any
widget at any time using the GUIX API.

To resize the widget’s height, position the mouse on the top edge of the
widget and wait for the mouse pointer to change to an up-down arrow. At
this point the widget height may be changed by simply moving the mouse
while the right mouse button is depressed. The width of the mouse may be
resized in a similar fashion by positioning the mouse pointer on the left
edge of the widget. Figure 5.4 shows the “button” widget resized and
moved to the left/top area of the parent window.

Figure 5.4

Manipulating Multiple Widgets

Selecting multiple widgets is accomplished by clicking on multiple widgets
in the target view while holding the Ctrl key down. Doing this will show
each of the widgets selected with a dashed-outline around it. Note that

 GUIX Studio 51

when selecting multiple widgets each widget in the selection group must a
child of the same parent.

Once multiple widgets are selected, they may be simultaneously moved
by clicking inside one on the selected widgets and moving the mouse with
the right mouse button pushed down. In addition, the alignment buttons on
the Tool Bar may be used to align the group of selected widgets. Figure
5.5 shows both the “button” and “new button” widgets selected and
Figure 5.6 shows the result of the Align-Left button selection while these
widgets are selected.

Figure 5.5

 GUIX Studio 52

Figure 5.6

Cut/Copy/Paste Operations

A selected widget in the Target View may be cut, copied, and pasted in
standard fashion. Widgets and screens can be copied within one project,
or copied from one project and pasted into another.The Tool Bar has
buttons for cut, copy, and paste. There are also the same options in the
Edit menu option. Note that when pasting a widget, the parent widget
should be selected before pasting the new widget. Figure 5.7 shows the
result of selecting the “button” widget, copying it, and pasting the copy in
the same window.

 GUIX Studio 53

Figure 5.7

Copy/Paste within one project is generally straightforward because the
resources that might be required by the copied widget(s) are always
present when you are working within one project. However, if you copy a
widget from project A and paste that widget into project B, some problems
with resource dependencies can arise.

When you copy widget(s) within Studio, the Studio application makes a list
of the resources required by the copied widgets, and generates a portable
resource dependency table in the form of XML which is copied to the
windows clipboard, along with the actual copied widget information. When
you paste the widget(s) into a different project, Studio first examines the
resource dependency list and adds the needed resources to the open
project if they do not already exist. Studio identifies matching resources by
the resource ID names, and for string resources Studio also compares the
string content. If matching resources are found, Studio updates the
resource IDs of the pasted widgets to properly use the resources in the
new project. If the resources are not found, they are added.
When Studio adds a resource to your project as part of a widget paste
operation, Studio is really adding a link to the resource in the case of font
and pixelmap resources. This link is generated from the source project,

 GUIX Studio 54

and you will receive warning messages if those resources cannot be found
relative to the project location of the project into which you are pasting.
The resource links will be added to the project regardless, but you may
need to manually copy fonts and image files into the proper locations
under your new project tree to eliminate resource loading errors. Studio
does not copy .ttf, .png, or .jpg files from one location to another.

The easy way to avoid any problems in this regard is to keep a consistent
directory structure between projects that you want to share. If you want to
move things from Project A to Project B easily, then keep the graphics
images and fonts used by both projects in a consistent sub-directory of
each project folder.

Changing Z-Order

Widgets can easily be moved in front of or behind other widgets. This is
accomplished by selecting the widget and selecting either the Move to
Front or Move to Back buttons on the Tool Bar. Figure 5.8 shows the
moving the second button to the back.

Figure 5.8

 GUIX Studio 55

Assigning Colors, Fonts, and Pixelmaps

In addition to selecting colors, fonts, and pixelmaps in the Properties View
for a selected widget, a shorthand drag-and-drop method of assigning
resources to widgets is also supported. To use this feature, simply left-
click on a resource such as a color of font in the resource view, and drag
the resource over the desired widget in the target view. Drop the resource
by releasing the left mouse button over the widget.

Color resources are always assigned to the widget normal background
color when using the drag and drop method. Other colors such as
selected color or selected text color must be assigned using the Properties
View.

Similarly, pixelmap resources are assigned to the “normal” or “fill”
pixelmap field of a widget that supports pixelmap display. To assign other
fields to a widget that supports multiple pixelmaps, you must use the
Properties View.

Using templates

Any screen or collection of child widgets that you design in Studio can be
used as a template for new screens and new child controls. Using a
template is similar to copying and pasting a widget, except anything
derived from a template is automatically modified when the template upon
which it is based is modified. You are not allowed to modify the template
widget properties when working with a derived screen or inherited
instance of the template. However, when you modify the template
properties in any way, all instances that reference that template are
automatically updated, since they are derived from that template.

Another advantage of using templates for repeated items is that the Studio
generated specifications file will usually be smaller in size than if you re-
created the repeating items each time they are used.

To designate that a screen or collection of child widgets is to be used as a
template, you turn on the “Template” checkbox in the widget properties
view. Once you turn on the “Template” checkbox, the template widget will
appear in the Insert|Template pull down menu(s).

As an example of using a template, you might define a window that is
used as a button bar. This window may itself contain have several child
buttons, and this button bar is used frequently on various screens. You
can define a small standalone window within your Studio project that holds

 GUIX Studio 56

the required child buttons, and give this window the name “button_bar”.
Then select this window and turn on the “Template” property. Next select
a screen on which you wish to add this button bar. Use the
Insert|Template|button_bar menu command to insert an instance of the
button_bar window on your screen. Note that you can reposition the
button bar, but you are not allowed to change most properties. However
you can use the button_bar widget (and any children) just like any other
pre-defined GUIX widget types. To modify the button_bar, you must select
the button_bar template to make your changes.

Another example of a typical template usage is an application that
includes many similar screens. For example the application might have 10
different screens that all share a common title bar, fill color, size, etc. In
this case, you could define a template screen that includes your title bar
child widgets and configures the screen size, fill color, and other
properties. Once this template screen is defined, you can then derive your
10 different screens from this template. When you use the
Insert|Template|<base_screen> menu command, your screen will start out
with all the child widgets and settings of your template screen. Note that
each screen you derive from the template screen is not a copy of the
template, but is truly a derived instance of the template screen. You can
then customize each derived screen to hold whatever additional content is
required.

Note that in addition to saving size the generated specifications file, using
templates can make it easier to manage changes to your application
appearance. In the above example, suppose you are required to change
the background color of your 10 similar screens. Rather than being
required to select each screen and change the fill color settings, you only
have to select the base template and change its fill color, and this change
will immediately be reflected in all derived screens.

A further comment regarding templates: you must insure that the event
processing flow is maintained, meaning that if you provide an event
handler for both a base screen (for handling the common widget events)
and for a derived screen, the derived screen event handler should call the
base_screen event handler in the default case. This will allow the base
screen event handler to process events generated by widgets common to
all screens derived from this template base.

Record and Playback Macro

Macro record and playback functions help you record and playback
keystrokes and mouse events.

 GUIX Studio 57

Recording to a macro file is accomplished by selecting the Record Macro
toolbar button or the menu selecting Edit -> Record Macro. GUIX Studio
will presents the Record Macro dialog which allows you to specify the
pathname for your macro file. After making this selection, click the Record
button to start recording. After you have finished recording, again select
the Record Macro toolbar button or use the pull-down menu selecting
Edit -> End Macro to end macro recording.

Playback of a macro file is accomplished by selecting the Playback
Macro toolbar button using the main pull-down menu to select the Edit ->
Playback Macro command. GUIX Studio presents the Playback Macro
dialog which allows you to specify the previously recorded macro file to be
run.

When recording macros that choose input or output files, such as adding a
font or image, it is important to use the keyboard to type the file name,
rather than using the mouse to select from the file browser. Since the
macro recorder records mouse and keyboard events, and since your file
browser may change over time, it is more reliable to type the filename
than to select the file graphically.

Zooming Target View

Zoom In function help you to get a close-up view of the target screen.

You are able to choose the percentage zoom setting that you want in
Configure|Target View|Zoom menu option . The Tool Bar also has
buttons for zoom in/out.

Grid/Snap Settings

The Grid and Snap Settings dialog contain some settings and options for
grid and snap. Figure 5.9 shows the Grid and Snap Setting dialog when
menu Congigure|Target View|Grid/Snap is selected.

 GUIX Studio 58

Figure 5.9

Turn on Show Grid option will display grid on target screen, you are able
to specify grid increment (in pixels) in Grid Spacing field. The Snap to
Grid option help you to get the proper position a widget, turn on this option
will active snaps.

When Grid and Snap option is enabled

If you drag an object with the mouse in target view, the object
would move by grid increment.

If you drag the edge of an object to resize, the edge that you are
dragging would snap to grid position.

If you select an object and uses up/left/down/right keys, selected
widget would move by snap increment, you are able to specify the
snap increment (in pixels) in Snap Spacing field.

 GUIX Studio 59

Chapter 6

GUIX Studio Generated Code

When you are done editing your screens and resources, GUIX Studio
produces a set of output files that can be incorporated into your embedded
application. The output files are generated by selecting Generate
Resource Files and Generate Specifications from the Project menu
item. The ‘c’ language source code files generated by GUIX Studio are
intended to be compiled and linked with the embedded application source
code. If a binary format resource file is produced, this file should be
programmed to a non-volatile storage area on the target and the GUIX
API function gx_binres_theme_install should be used to install the binary
resources at runtime.

The user’s embedded application code makes references to the code
generated by GUIX Studio. Furthermore, the GUIX Studio generated code
expects all custom widget drawing, event handling, and memory allocation
functions specified in the project to be defined in the user’s embedded
application code. If they are not, link errors will be present when building
the application.

 The user should never have to modify the code generated by GUIX
Studio and should resist doing so. All UI modifications should be
made in the associated GUIX Studio project. This will keep the
project synchronized with the embedded application.

Generating Resource Files

Resource files generated by GUIX Studio contain preset data structures
that define all of the GUIX Studio resources (colors, fonts, pixelmaps, and
strings), which is effectively all the resources defined in the Resource
View of the project. These resource files can be generated in source code
or binary forms.

By default, there are two files generated, one file is a standard C source
code file and the other is a C header file that provides external references
and constants that are necessary for the application code to access the
GUIX resources defined in the project. The file names are of the form:

 {project-name}_resources.h
 {project-name}_resources.c

 GUIX Studio 60

For example, the Resource files created for the “simple” GUIX Studio
project are:

 simple_resources.h
 simple_resources.c

Generating the Resource files is accomplished by selecting Generate
Resource Files option in the Project menu option. The destination of the
resource files is specified in the Configure Project dialog, which is
accessible via the Configure Project/Displays option in the Configure
menu item.

For Pixelmap and Font resources, you can specify a custom output
filename for each pixelmap and font in the associated resource editing
dialogs. This feature allows you to put very large resources in distinct files,
rather than putting all resources in one common output file. If you do not
specify an overridden filename for a font or pixelmap resource, those
resources are written into the common resource file.

If you prefer to use binary resources, you can specify either raw or
standard s-record output format. Binary resources are not compiled or
linked with the application code, but are instead loaded at runtime using
the gx_binres_them_load() API. This API service builds resource tables
that point to your resources stored in non-volatile memory. You can then
install these resources with a particular display using
gx_display_theme_install();

Generating Specification Code

The Specification files generated by GUIX Studio contain all the C code to
create the UI designed in GUIX Studio. This code also references the
Resource files generated for this project. The user’s application code will
make calls to this code to actually create the UI objects defined in the
project. Furthermore, the user’s application code contains all custom
widget drawing, event handling, and memory allocation functions specified
in the project. By default, there are two files generated, one file is a
standard C source code file and the other is a C header file that provides
external references and constants that are necessary for the application
code to access the GUIX Studio Specifications. The file names are of the
form:

 {project-name}_specifications.h
 {project-name}_specifications.c

 GUIX Studio 61

For example, the Specification files created for the “simple” GUIX Studio
project are:

 simple_specifications.h
 simple_specifications.c

Generating the Specification files is accomplished by selecting Generate
Specification Files option in the Project menu option. The destination of
the Specification files is specified in the Configure Project dialog, which
is accessible via the Configure Project/Displays option in the Configure
menu item.

Integrating with User Code

Integrating the Resource and Specification files generated by GUIX Studio
is straightforward, simply follow these steps:

1. Either copy or make the Resource and Specification files
accessible via path settings to the embedded build environment

2. Add all Resource and Specification files to embedded IDE
project or makefile

3. Ensure the application embedded code calls the necessary
functions to initialize and create the UI contained in the
Resource and Specification files

4. Ensure the application embedded code contains all necessary
custom widget drawing, event handling, and memory allocation
functions

5. Build the application (compile and link)

6. Execute the application!

 GUIX Studio 62

Chapter 7

Defining Screen Flow

GUIX Studio supports automatic generation and execution of screen
transition logic. The user defines the screen transition logic by creating
and editing a graphical screen flow diagram. When a screen flow diagram
is added to the project, it enables two important features: 1) The
application can be executed from within the Studio environment and 2)
Studio automatically generates event handlers and screen transition logic
to implement the designated screen flow within the generated
specifications.c file, removing this burden from the application program.

Running the application on your desktop from within the Studio
environment is a handy feature which saves time in that you are not
required to go through a compile/link cycle to execute your application.
There are of course limitations to what can be done without compiling the
application. Custom drawing functions, custom event handlers, and
complex event handling are not available when running the application
from within the GUIX Studio environment. Still, this capability allows you to
auto-generate screen transition logic, and program animations to be
executed to transition from one screen to another. These effects and
animations can be observed directly from within the GUIX Studio
environment.

Note that when you define screen flow, triggers, and actions which we will
describe in the following paragraphs, you are not only enabling the
execution of your UI from within the Studio environment, but you are also
enabling GUIX Studio to generate logic within your specifications file that
will handle events and take actions based on those events, such as
transitioning from one screen to another.

Configuring Screen Flow

Before an application can be executed from within the Studio environment
a few things must be defined. First, the top level screen or screens that
should be displayed at program startup must be indicated by selecting the
“Visible at Startup” property in the Studio properties view. This flag
indicates that this screen should initially be displayed when the program
starts. More than one screen can have this designation if desired.

 GUIX Studio 63

After defining the screen(s) which are visible at startup, the user can
define how the UI application will flow from screen to screen. GUIX Studio
provides a graphical screen flow diagram to define screen transition logic.
Simply select the menu selection Configure->Screen Flow to bring up
screen flow edit dialog, see the screen shot in Figure 7.1.

Figure 7.1

Each top-level screen defined in the project will be shown as a box
showing the screen name. This box is a placeholder representing each
top-level screen defined in the project. These boxes can be moved and
resized as desired. When a transition from one top-level screen to another
has been defined, a connection line with an arrow head between two
screens will be shown to indicate transitions from one screen to another.

The tree view in left-side of the screen-flow diagram shows each top-level
screen and you are able to select which top-level screens should be
drawn in the screen-flow diagram.

The screen-flow diagram is scrollable. You are able to drag any screen
block down and right outside the visible area to enlarge the scrollable
window. Once your scrollable window is enlarged, you are able to zoom
out to make it fit the visible area by scrolling the mouse wheel down. If the

 GUIX Studio 64

scrollable window is zoomed out, you are able to make it big enough to
hold all of blocks by scrolling the mouse wheel up.

To define transitions for a screen, right click on the placeholder for that
screen to bring up a trigger edit dialog, see Figure 7.2.

Figure 7.2

The trigger edit dialog list the events that the user has defined that will
trigger a screen transition, which is why we call these events triggers.
Triggers are normally signals generated by one or more child widgets of
the selected screen.

To define a new trigger, select Add button in trigger list edit dialog to bring
up Add Trigger dialog shown in Figure 7.3.

 GUIX Studio 65

Figure 7.3

You are able to define the event type that will trigger a new set of actions,
and define the actions that will be executed when that trigger event is
received.

Available Actions:

Animation

Start an animation with specified information.

Attach
Attach the target screen to the parent screen, if the parent screen is
not specified, the target screen will be attached to the root window.

Detach
 Detach the target screen from its parent.

Hide
 Hide the target screen.

Show
 Show the target screen.

 GUIX Studio 66

Toggle

Attach the target screen to the current screen’s parent, and detach
the current screen from its parent.

Window Execute
 Modally executes the target screen.

Window Execute Stop
 Exit modally execution of the current screen.

Once you have defined an action to take based on the selected trigger
event, you can edit various parameters of that action as shown in figure
7.4

Figure 7.4

If you are defining multiple actions to associate with one trigger event, it
can be useful to assign each action a meaningful name. Action names
must follow C syntax naming rules, as these names will be used within the
generated specifications file to define event and action tables.

 GUIX Studio 67

When you define trigger events and actions within GUIX Studio,
automated event handlers are generated within your project specifications
file to handle these events and execute the specified actions. This means
that you do NOT need to handle these events in your application code,
although the trigger events are still passed to any custom event handlers
you have defined. In other words the Studio generated event handlers
augment, rather than replace, your own custom event handlers.

Running the Application

Once startup screens and a screen flow diagram have been created, you
can run your application within Studio by selecting the “Run Application”

button on the toolbar, selecting Edit | Run Application from the project
menu, or by selecting the Run button at the bottom of the Edit Screen
Flow dialog.

When you run the application, you will see the screen(s) you have
designated as “Visible At Startup” display within a new window. The child
widgets on these screen are fully operational. You can click on buttons,
operate sliders and scroll wheels, etc.. If you have defined custom drawing
functions or customer event handling for any of these widgets, you will of
course NOT see this when running the application in this mode. But if you
have defined a screen flow diagram with trigger events and actions, those
triggers will be operational and your screens will transition as you have
defined, including any animations that you may have defined.

 GUIX Studio 68

Chapter 8

GUIX Studio Command Line

GUIX Studio provide some command line options, based on the command
line arguments will not start the GUI interface, but instead just load the
.gxp project and generate the requested output files.

Command Line Usage
 Usage: guix_studio [OPTION] [ARGUMENT]

1. Open .gxp project.
2. Load specified project and generate specified output files.

Examples:
command line: demo.gxp
Open “demo.gxp” project

command line: guix_studio.exe –p demo.gxp
Open “demo.gxp” project

command line: guix_studio.exe –n –p demo.gxp
Generate all output files of demo.gxp project.

command line: guix_studio.exe –n –r –p demo.gxp
Generate resource files of demo.gxp project

Command Line Options
-n
--nogui
The “nogui” option. Tell the Win32 version of the guix_studio.exe to just
run the command line, do not start the Studio UI interface.

-o pathname
--log
Log option, specify a log file.

-b
--binary
Binary resource option. Produces a binary resource file rather than a C file.

-d display1, display2

 GUIX Studio 69

--display
Display names option. If this option is used then only the specified display
names are included in any generated resource or specification files. If this
option is not used then all displays are included.

-t theme1, theme2
--theme
Theme name(s) option. If this option is used then only the specified
display names are included in any generated resource or specification
files. If this option is not used then all displays are included.

-l langage1, language2
--language
Language name(s) option. If this option is used then the specified
language names are included in the generated resource or specification
files. Otherwise all language names are included.

-r [filename]
--resource
The resource option, specifies that Studio should produce a resource file
for previously designated display(s), theme(s), and language(s).

-s [filename]
--specification
The specification option, specify that studio should produce a specification
file for designated display(s), theme(s), and language(s).

-p project_pathname
--project
Project pathname option, specify the .gxp project to be loaded.

-i [pathname]
-- import
Import string from xliff or csv format file.

--big_endian
Generate resource data in big-endian format.

 GUIX Studio 70

Chapter 9

Simple Example Project

This chapter describes how to create a simple example project in GUIX
Studio and execute the example on GUIX.

Create New Project

The first step is creating a new project and configuring the displays and
languages that the project will support. When you first start GUIX Studio,
you will see the Recent Projects screen:

Figure 7.1

Click on the Create New Project… button to begin a new project. You will
be presented with the New GUIX Project dialog, shown here:

Figure 7.2

Type the name “new_example” as the project name. Note that project
names should use standard C variable naming rules, i.e. no special or
reserved characters. Type the path to the location where the project
should be saved. The path must be a valid file system directory, i.e. GUIX
Studio will not create the directory if it does not exist. Click “OK” to create
the project.

 GUIX Studio 71

The next screen shown is the Project Configuration screen, shown here:

Figure 7.3

This dialog allows you to specify how many displays your project will
support, and give a name to each display. You must also specify the color
format supported by each display, and optionally type a pathname for the
output files generated by Studio for each display. The default directory for
the output files is “.\”, meaning the C output files are written to the same
directory as the project itself.

For this example, leave the Number of Displays set to “1”, type the name
“main_display” in the display name field, and check “allocate canvas
memory”. Leave the resolution, color format, and directory fields at their
default values, and click OK.

 GUIX Studio 72

You should now see your project open with the Studio IDE, similar to this:

Figure 7.4

The next step is to create a screen to be shown on the display. To do this,
click on the display name “main_display” in the project view, and use the
menu command Insert -> Window -> Window to add a window to the
display.

You should now see a rather plain gray window centered within the
“main_display“ within the Target View:

 GUIX Studio 73

Figure 7.5

If the window is not selected, click on the window so that the dashed
selection box is drawn around the window. Now in the Properties View,
change the Widget Name, Widget Id, Left, Top, Width, Height, and
Border to match those settings shown below. As you make these
changes, you should see your changes immediately taking effect within
the Target View.

 GUIX Studio 74

Figure 7.6

Next we will add a pixelmap resource to be used within a GX_ICON
widget. Several icons are provided with your GUIX Studio distribution that
will work fine for this example. Expand your Pixelmaps Resource View
and click the Add New Pixelmap button:

Browse to your GUIX Studio installation folder, and within the
./graphics/icons folder select the file named i_history_lg.png. Click
Open to add this resource to your project. Your Pixelmaps Resource
View should now show a preview of the just added icon image:

 GUIX Studio 75

Figure 7.7

We will use this new image resource later as part of our UI design.

Similar to adding a pixelmap resource, we will add a new font resource to
our toolbox so that we can use this font later in our design. Expand the
Fonts Resource View and click on the Add New Font button. This will
bring up the Add/Edit font dialog. Next, browse to the supplied GUIX fonts
in the GUIX Studio installation folder, .\fonts\verasans and select the
TrueType font file named VeraIt.ttf. Type font the font name
“MEDIUM_ITALIC” in the font name field, and type “30” in the height field.
Your dialog should now look like this:

 GUIX Studio 76

Figure 7.8

Click OK to add this font to your project. You should now see the font in
your Resource View:

Figure 7.9

We will use this new font later in our UI design.

Now that we have some new resources available, we need to add some
child widgets to our screen that can utilize these resources. Select the
previously created window named “hello_world” by right-clicking on the

 GUIX Studio 77

window in the Target View. In the pop-up menu that is now displayed,
select the menu command Insert ->Text -> Prompt to insert a new
GX_PROMPT widget and attach the widget to the background window.
Your window should now look like this:

Figure 7.10

Click on the font named “MEDIUM_ITALIC” in the Fonts Resource View,
and drag and drop the font on the prompt widget. Next, edit the prompt
properties as show below to resize the prompt, set the prompt
transparency, and change the prompt text and style:

 GUIX Studio 78

Figure 7.11

You may need to scroll up and down in the Properties View to see each of
these settings depending on your screen resolution. After making these
changes, your Target View should now look like this:

 GUIX Studio 79

Figure 7.12

Next we will place an Icon Button style widget on the screen. Select the
background window by clicking on it, and use either the top-level menu or
the right-click pop-up menu to select Insert -> Button -> Icon Button to
add a new GX_ICON_BUTTON to the window. Click on the Icon named
I_HISTORY_LG that we added earlier and drag it to the icon button. Using
the properties view, adjust the icon position and size as show below:

 GUIX Studio 80

Figure 7.13

Your screen should now look like this:

 GUIX Studio 81

Figure 7.14

We will call this complete for the simple example screen design. Of course
your actual application screens will likely be much more sophisticated, but
this is enough to show you how to use GUIX Studio to create your own
application screens.

Generate Resource and Application Code

The next step is to generate the resource file and specification file that
define the embedded GUIX run-time UI. To do this you will need right-click
on the main_display node in the Project View, and select the Generate
Resource Files command. You should observe an information window
that indicates your resource files have been generated, as show below:

Figure 7.15

Click OK to dismiss this notification, and use the same procedure to right-
click on the main_display node and select the Generate Specification
Files command. You should observe a similar notification window. You
have now generated your simple UI application files.

Create User Supplied Code

The next step is to create your own application file that will invoke the
GUIX Studio generated screen design. Using your preferred editor, create
a source file named new_example.c, and enter the following source code
into this file:

/* This is an example of the GUIX graphics framework in Win32. */

/* Include system files. */

#include <stdio.h>

#include "tx_api.h"

#include "gx_api.h"

/* Include GUIX resource and specification files for example. */

#include "new_example_resources.h"

#include "new_example_specifications.h"

/* Define the new example thread control block and stack. */

TX_THREAD new_example_thread;

UCHAR new_example_thread_stack[4096];

 GUIX Studio 82

/* Define the root window pointer. */

GX_WINDOW_ROOT *root_window;

/* Define function prototypes. */

VOID new_example_thread_entry(ULONG thread_input);

UINT win32_graphics_driver_setup_24bpp(GX_DISPLAY *display);

int main()

{

 /* Enter the ThreadX kernel. */

 tx_kernel_enter();

 return(0);

}

VOID tx_application_define(void *first_unused_memory)

{

 /* Create the new example thread. */

 tx_thread_create(&new_example_thread,

 "GUIX New Example Thread",

 new_example_thread_entry, 0,

 new_example_thread_stack, sizeof(new_example_thread_stack),

 1, 1, TX_NO_TIME_SLICE, TX_AUTO_START);

}

VOID new_example_thread_entry(ULONG thread_input)

{

 /* Initialize the GUIX library */

 gx_system_initialize();

 /* Configure the main display. */

 gx_studio_display_configure(MAIN_DISPLAY, /* Display to configure*/

 win32_graphics_driver_setup_24bpp, /* Driver to use */

 LANGUAGE_ENGLISH, /* Language to install */

 MAIN_DISPLAY_DEFAULT_THEME, /* Theme to install */

 &root_window); /* Root window pointer */

 /* Create the screen - attached to root window. */

 gx_studio_named_widget_create("hello_world", (GX_WIDGET *) root_window, GX_NULL);

 /* Show the root window to make it visible. */

 gx_widget_show(root_window);

 /* Let GUIX run. */

 gx_system_start();

}

The source code above creates a typical ThreadX thread named “GUIX
New Example Thread” with a stack size of 4K bytes. The interesting work
begins in the function named new_example_thread_entry. This is where
the GUIX specific thread begins to run.

The first call is to the function named gx_system_initialize. This call is
always required before any other GUIX APIs are invoked to prepare the
GUIX library for first use.

Next, the example calls the function gx_studio_display_configure. This
function creates the GUIX display instance, installs the requested
language of the application string table, installs the requested theme from
the display resources, and returns a pointer to the root window that has
been created for this display. The root window is used as the parent of all
top-level screens that our application will display.

Next the example calls gx_studio_named_widget_create to create an
instance of our hello_world screen. This function uses the data structures
and resource produces by GUIX Studio to create an instance of the

 GUIX Studio 83

screen as we have defined it. We pass the root window pointer as the
second parameter to this function call, meaning we want the screen to be
immediately attached to the root window. The last parameter is an optional
return pointer that can be used if we want to keep a pointer to the created
screen.

Next gx_widget_show is called, which makes the root window and all of
its children, including the hello_world screen, visible.

Finally, the example calls gx_system_start. This function begins
executing the GUIX system event processing loop.

Build and Run the Example

Building and running the simple example is specific to your build tools and
environment. However we can define the general process:

1) Create a new directory and application project
2) Add these files to the project:

new_example_resources.c
new_example_specification.c
new_example.c

3) Add the Win32 run-time support files from the GUIX Studio installation
path ./win32_runtime. This includes the ThreadX and GUIX Win32
header and run-time library files.

4) Add the GUIX Win32 library (gx.lib) to the project
5) Add the ThreadX Win32 library (tx.lib) to the project
6) Compile, Link, and Run the application!

 GUIX Studio 84

Index

alpha channel 32

ANSI C .. 21
ASCII .. 29

build environment 6, 50

C syntax .. 33

CANVAS .. 25

color format 22, 23, 52
color resources 24

compiler 6, 63

embedded UI 6, 15, 18

example projects 15, 21

font resources 27

global 22, 25
glyphs 27, 29

GUIX objects 18

GUIX Studio

constraints 6

examples 15

installation 7, 8

project 18, 21, 22

requirements 6

screen designer 37

specifications 49

views .. 16

GUIX Studio Quickstart Guide 14

image file 31, 32

LCD display 22
Microsoft Windows 3, 6

multi-lingual application 33

node .. 22, 61
object ... 18, 19, 20, 22, 25, 27, 33, 37

Pixelmap group 30, 55

Pixelmap resources 30

pixelmaps 6, 21, 23, 24, 30, 32, 46,

47, 48
project view 16, 18, 19, 22, 38, 41, 61

properties view 16, 19, 20, 36, 39, 46,

47, 58
resolution 22, 37, 52, 58
resource view ... 16, 21, 23, 24, 26, 27,

28, 30, 32, 48, 55, 57, 58
runtime library 3, 6

screens 21, 22, 37, 40, 48, 61, 62

setup .. 7

static text .. 33

string table 23, 32, 34, 36, 62
string table data 23, 34
Studio IDE 22, 53
Target View 16, 19, 20, 37, 38, 41, 44,

53
theme 22, 23, 25
ThreadX 2, 3, 5, 6, 22, 62, 63

Toolbar 16, 17

TrueType 28, 29, 56

UI development environment 3, 6

widget . 17, 22, 25, 30, 36, 38, 39, 40,

41, 42, 43, 44, 45, 46, 48, 49, 50,
55, 57, 58, 59, 63

Win32 runtime library 63

WYSIWYG 3, 6, 20, 27

XML ... 21
Z-Order ... 45

GUIX Studio™ User Guide

Publication Date: Rev.5.61 May 11, 2020

Published by: Renesas Electronics Corporation

 GUIX Studio™ User Guide

R11UM0002EU0561

	About This Guide
	Organization
	Guide Conventions
	Customer Support Center
	Latest Product Information
	What We Need From You
	Where to Send Comments About This Guide

	Chapter 1 Introduction to GUIX Studio
	GUIX Studio Requirements
	GUIX Studio Constraints

	Chapter 2 Installation and Use of GUIX Studio
	Product Distribution
	GUIX Studio Installation Directory
	GUIX Studio Installation
	Using GUIX Studio
	GUIX Studio Examples
	Keyboard Shortcuts

	Chapter 3 Description of GUIX Studio
	GUIX Studio Views
	The GUIX Studio Project

	Chapter 4 GUIX Studio Resources
	Color Resources
	Font Resources
	Pixelmap Resources
	String Resources
	Adding Language Translations

	Chapter 5 GUIX Studio Screen Designer
	Creating/Configuring Projects
	Selecting Widgets
	Using Properties
	Manipulating Widgets
	Manipulating Multiple Widgets
	Cut/Copy/Paste Operations
	Changing Z-Order
	Assigning Colors, Fonts, and Pixelmaps
	Using templates
	Record and Playback Macro
	Zooming Target View
	Grid/Snap Settings

	Chapter 6 GUIX Studio Generated Code
	Generating Resource Files
	Generating Specification Code
	Integrating with User Code

	Chapter 7 Defining Screen Flow
	Configuring Screen Flow
	Running the Application

	Chapter 8 GUIX Studio Command Line
	Command Line Usage
	Command Line Options

	Chapter 9
	Simple Example Project

	Index

