
Skkynet Embedded Toolkit
for Renesas Synergy

User's Guide

Abstract

This is the full documentation for the Skkynet Embedded Toolkit for Renesas Synergy, including an
introduction to the ETK, and what you need to create and test a Renesas Synergy project, along with API
and class reference information.

Copyright © 2016 Skkynet Cloud Systems, Inc. and its subsidiaries and licensors. All rights reserved.

Skkynet and the Skkynet logo, SkkyHub are trademarks of Skkynet Cloud Systems, Inc. DataHub and WebView are trademarks
used under license. Protected by U.S. and foreign patents. For terms and conditions of use and full intellectual property notices,
see: http://skkynet.com/legal/

space
Skkynet Embedded Toolkit for Renesas Synergy

space
ii

© Skkynet Cloud Systems, Inc • 2233 Argentia Road • Suite 306 • Mississauga • ON • L5N 2X7 • 1.905.702.7851 • http://skkynet.com

Table of Contents
Overview ... 1
Skkynet ETK Architecture ... 3
DataHub and SkkyHub .. 5

Using Cogent DataHub .. 5
Using SkkyHub .. 5
Using Them Together .. 6

Data Points .. 7
User Threads ... 8
Modbus Master Support ... 9
Getting Started .. 10
Creating a New Project .. 11

1) Create a Project ... 11
2) Configure the SSP .. 11
3) Configure the Skkynet ETK .. 13
4) Generate the project content .. 14
5) Configure the build environment ... 14
6) Build your project .. 16

Testing the Sample Application .. 17
1) Install and Configure Cogent DataHub .. 17
2) Configure a DataHub Connection .. 17
3) Configure a SkkyHub Connection .. 18
4) Next Steps ... 21

Customizing Your Application .. 22
Application Mainline .. 22
Template Files .. 22
ThreadX Memory Usage .. 22

API ... 25
Data Quality Values ... 25
Modbus Addressing ... 25
Multi-threaded API ... 27

Typedef Documentation .. 28
Function Documentation ... 28

ThreadX Memory Usage .. 35
Define Documentation .. 36

config_app.c ... 38
Function Documentation ... 39

config_app.h .. 39
Typedef Documentation .. 40
Function Documentation ... 40
Define Documentation .. 42

config_modbus.c .. 43
Typedef Documentation .. 44
Variable Documentation .. 44
Function Documentation ... 44

config_points.c ... 45
Variable Documentation .. 46
Function Documentation ... 46

config_threads.c ... 47
Variable Documentation .. 47

space
Skkynet Embedded Toolkit for Renesas Synergy

space
iii

© Skkynet Cloud Systems, Inc • 2233 Argentia Road • Suite 306 • Mississauga • ON • L5N 2X7 • 1.905.702.7851 • http://skkynet.com

Function Documentation ... 47
config_timers.c ... 48

Variable Documentation .. 48
Function Documentation ... 48

mainline.c .. 49
Variable Documentation .. 50
Function Documentation ... 51
Define Documentation .. 55

Classes ... 56
Arg struct Reference .. 56
Buf struct Reference .. 56
BufferSpec struct Reference .. 56
Bytecode struct Reference ... 56
CAppConfig struct Reference ... 57
CBufferedSocket struct Reference ... 62
CCharBuffer struct Reference .. 63
CCommand struct Reference ... 63
CCommandList struct Reference .. 63
CConnectionFactory struct Reference .. 64
CDataHubPoint struct Reference ... 64
Cell struct Reference ... 64
CellList struct Reference .. 65
Cons struct Reference ... 65
CSocket struct Reference ... 66
CSortedPtrArray struct Reference .. 66
CTCPClient struct Reference .. 66
CTCPConnection struct Reference ... 67
CTCPConnectionContainer struct Reference .. 69
CTimer struct Reference .. 70
CWebSocketDecoder struct Reference ... 70
Environment struct Reference ... 71
ETK_Api struct Reference ... 71
EtkThread struct Reference ... 71
EtkThreadData struct Reference .. 72
EtkThreadStruct struct Reference .. 72
File struct Reference .. 72
Function struct Reference .. 73
GCContext struct Reference ... 73
Heap struct Reference ... 73
Instance struct Reference .. 74
Klass struct Reference ... 74
Lambda struct Reference ... 74
LispInterpreter struct Reference .. 75
LispTimer struct Reference .. 77
MessageQueue struct Reference ... 78
ModbusConnection struct Reference ... 78
ModbusDataType struct Reference .. 78
ModbusDataValue struct Reference ... 79
ModbusIoMap struct Reference ... 79
ModbusMessage struct Reference ... 79
ModbusMessageType struct Reference .. 80
ModbusPointRef struct Reference ... 80

space
Skkynet Embedded Toolkit for Renesas Synergy

space
iv

© Skkynet Cloud Systems, Inc • 2233 Argentia Road • Suite 306 • Mississauga • ON • L5N 2X7 • 1.905.702.7851 • http://skkynet.com

ModbusPointSpec struct Reference ... 81
ModbusTransform struct Reference .. 81
PointerStack struct Reference .. 82
PrintContext struct Reference .. 82
PT_ChangeRequest struct Reference .. 82
PT_stCPOINT struct Reference ... 83
PT_uVALUE union Reference .. 83
Scope struct Reference .. 83
StackPosition struct Reference .. 83
StringStream struct Reference ... 83
Symbol struct Reference .. 84
SymbolMap struct Reference ... 84
ThreadMessage struct Reference ... 84
TryState struct Reference .. 84
Type struct Reference .. 85
UT_stCMD struct Reference ... 85
ValueStack struct Reference .. 85
Vector struct Reference ... 85
WriteContext struct Reference ... 86

space
Overview

space
1

© Skkynet Cloud Systems, Inc • 2233 Argentia Road • Suite 306 • Mississauga • ON • L5N 2X7 • 1.905.702.7851 • http://skkynet.com

Overview
The Skkynet Embedded Toolkit (ETK) is a C library that allows the developer to quickly
create applications that can send and receive data in real time to both to the Cogent
DataHub® industrial middleware application and to the SkkyHub™ cloud service.

 Data Data is identified as (name, value, quality, timestamp) tuples, allowing your
application and all cooperating applications to interact with your data by name rather
than by hardware address.

 Cogent DataHub Data from the ETK can be transmitted on your local LAN to the
Cogent DataHub industrial middleware, which can automatically convert it to OPC, DDE,
ODBC, E-mail, TCP, Modbus or custom formats. The Cogent DataHub can also trigger
scripts and actions based on data changes from your application, and update information
on any industrial HMI. In effect, with the DataHub your application immediately becomes
a first-class participant in any industrial control system.

 SkkyHub In addition, your data can be transmitted via the Internet to the SkkyHub
cloud service, where it can be accessed remotely by any authorized user. This allows
you to monitor and control your embedded device without presenting an attack surface
to the Internet. The SkkyHub service provides everything you need to not only connect
your device, but also to create web-accessible graphical HMIs for your service engineers,
analysts and end users.

 Developer-friendly The Skkynet ETK provides a developer-friendly method to
establish and maintain a TCP socket connection and set of data points, distributing
changes to these data points among connected client and server applications. Developers
using the ETK can also use a thread-safe API within the ETK to create their own processing
threads that can write data and subscribe to data point changes from the ETK engine.

 More Help If questions come up that are not covered by this documentation, please
feel free to contact Skkynet at our website, by email: info@skkynet.com, or by phone: +1
905 702 7851.
Features include:

• Full-time connectivity to the server for minimum latency
• Transfer latencies only microseconds above network ping time
• Event-driven communication - only data changes are transmitted
• Bi-directional communication, allowing both monitoring and control
• Publish/subscribe data model
• Server-side data discovery - no server configuration necessary
• Efficient structured text data format for low bandwidth usage
• Multiple ingoing and outgoing data sockets on a single thread
• Integrated timers with round-robin sharing with socket data
• Automatic resynchronization when connection is lost and recovered
• Automatic connection retries
• Runs on architectures with no floating point support
• Small footprint
• Thread-safe API for developer threads to emit and consume data
• Optional built-in WebSocket support for traversing proxies

http://skkynet.com/about/
mailto:info@skkynet.com

space
Overview

space
2

© Skkynet Cloud Systems, Inc • 2233 Argentia Road • Suite 306 • Mississauga • ON • L5N 2X7 • 1.905.702.7851 • http://skkynet.com

• Optional built-in scripting for powerful local processing
• Optional support for SSL
• Optional support for IPV6
• Optional support for Modbus master to multiple slaves

Supports the following targets:

• Linux (ARM, x86)
• uClinux
• ThreadX (for Renesas Synergy)
• Windows (Cygwin)
• Windows (Visual Studio)
• QNX
• Portable to most platforms offering a BSD socket API

space
Skkynet ETK Architecture

space
3

© Skkynet Cloud Systems, Inc • 2233 Argentia Road • Suite 306 • Mississauga • ON • L5N 2X7 • 1.905.702.7851 • http://skkynet.com

Skkynet ETK Architecture
The Skkynet ETK provides a simple API to transmit and receive data between the
application and one or more data servers. The data servers can be Cogent DataHub for
LAN and in-plant industrial use, or SkkyHub for cloud-based remote monitoring and
control.

The data produced and consumed by the user application consists of data points. Each
data point represents a single sensor, actuator, computed value or information item. The
value, quality and timestamp of a point can change at any time. Any change to value or
quality is considered a significant event and should be written to the Skkynet ETK. This will
result in a network message being sent to the server, and propagated to any clients that
are connected and listening for changes to that data point.

The Skkynet ETK provides an optional Modbus/TCP layer that can be used to communicate
with Modbus slave devices, and to translate the data from those devices into data events
in the data server. This Modbus capability offers an alternative to data collection using
directly connected sensors and transducers.

The core of the API is a single-threaded event loop, called the mainline thread (mainline.c),
that waits for events from the following sources:

• incoming data from TCP connections
• a tick or an expiry from a user-specified timer
• a message arriving from another application thread

In theory any number of TCP connections can be open at once, allowing the application
to transfer data to and from multiple servers simultaneously. In practice the number of
threads is limited by available resources. In the NetX BSD socket implementation up to 32
concurrently open sockets are allowed.

The mainline thread configures the Synergy device and network, then enters an infinite
loop. Within that loop, it calls select for all connected sockets, and waits up to a
configurable poll time for incoming data. If no data arrives, it then proceeds to check for
incoming messages from ETK-enabled application threads. All queued incoming messages
are processed without waiting. Finally, it increments the tick for a set of user-defined
timers, and calls the application callbacks when those timers expire.

All of the processing for these events occurs in the mainline thread. The developer can
write application code to respond to these events in the mainline thread, or can trigger
activity in other application threads. The Skkynet ETK provides two mechanisms for safely
crossing thread boundaries:

• An application thread can register for data change notifications from the mainline
thread. The thread only registers for points that it is interested in, so different threads
can see any subset of the data that they need. When a value changes in the mainline
thread, whether from a remote source or from another thread, an event is queued to
the application thread. The application thread must periodically service its queue to
process incoming messages. The Skkynet ETK provides convenient functions for waiting
on the queue and for traversing the events on the queue. If a point change notification
is already enqueued to a thread when another change notification arrives for the same
data point, the old notification is discarded and the new notification is placed at the end
of the queue.

space
Skkynet ETK Architecture

space
4

© Skkynet Cloud Systems, Inc • 2233 Argentia Road • Suite 306 • Mississauga • ON • L5N 2X7 • 1.905.702.7851 • http://skkynet.com

• The application can extend the Skkynet ETK message queue to add its own messages.
These messages will not be discarded when new messages arrive, so an application
should be careful to regularly process queued messages to avoid memory exhaustion,
which would lead to a program failure.

The Skkynet ETK provides two levels of API. The lowest level consists of functions that can
only be called in the mainline thread. This is effectively any public function in the Skkynet
ETK. The second level consists of a thread-safe wrapper on some of these functions that
can be called freely from within application threads.

The sample mainline.c file provides a complete implementation of the low-level API
configuration and event loop. You may be able to use this mainline without modification in
your application.

In order to use the multi-threaded API, each thread must individually create an ETK object
that acts as an identifier for the thread when calling the API functions. This encapsulated
the thread's message queue, data point registrations and interface with the mainline
thread.

space
DataHub and SkkyHub

space
5

© Skkynet Cloud Systems, Inc • 2233 Argentia Road • Suite 306 • Mississauga • ON • L5N 2X7 • 1.905.702.7851 • http://skkynet.com

DataHub and SkkyHub
The Skkynet ETK is designed to connect to the Cogent DataHub® software and the
SkkyHub™ cloud service.

Using Cogent DataHub

The Cogent DataHub is industrial middleware that accepts connections from the Skkynet
ETK and integrate its data into any industrial control system. The DataHub provides
bidirectional, real-time communication between OPC servers and clients, ODBC-compliant
databases, Excel spreadsheets, Modbus devices, custom programs, and more. It can also
trigger scripts and actions based on data changes from your application, and update
information on any industrial HMI.
Figure 1.

The Cogent DataHub runs on any modern Windows platform. You can download a free
demo version from the Cogent DataHub website. The product documentation provides
complete instructions on how to use the DataHub, and a series of how-to videos help you
get quickly up to speed.

Using SkkyHub

The SkkyHub cloud service allows you to securely monitor and control your embedded
device from anywhere in the world in real time. The ETK's outbound-only connection
architecture allows it to connect securely to SkkyHub, while presenting zero attack surface
to the Internet. In this way, SkkyHub supports real-time M2M connectivity, as well as a
web-based HMI that allows authorized access to application data.
Figure 2.

http://www.cogentdatahub.com/
http://skkynet.com/remote-monitoring/
http://www.cogentdatahub.com/
http://www.cogentdatahub.com/TechSpecs.html
http://www.cogentdatahub.com
http://www.cogentdatahub.com/Docs/bookcdh.html
http://www.cogentdatahub.com/DataHub_Videos.html
http://skkynet.com/remote-monitoring/

space
DataHub and SkkyHub

space
6

© Skkynet Cloud Systems, Inc • 2233 Argentia Road • Suite 306 • Mississauga • ON • L5N 2X7 • 1.905.702.7851 • http://skkynet.com

You can test a connection with SkkyHub in demo mode, as demonstrated in our sample
application test. To use SkkyHub with your application on an on-going basis, you will need
a SkkyHub account. There are several different service types available to accommodate
your needs, described in detail on the Skkynet website. The SkkyHub documentation
provides the information you will need to access the service, administer your account, use
Skkynet WebView, and more.

Using Them Together

The Cogent DataHub and SkkyHub are both fully compatible with each other, and with the
Skkynet ETK. Therefore you can use all of them in one fully integrated system.
Figure 3.

For example, the Cogent DataHub can be used to collect data from a number of devices
running the ETK, and then send the consolidated data to SkkyHub. That data can be
integrated with other data collected directly from the ETK, and any combination of it made
available in WebView.

http://skkynet.com/products/cloud/service-types/
http://skkynet.com/SCS/docs/index.html
http://skkynet.com/SCS/docs/index.html
http://skkynet.com/SCS/docs/index.html#scs-accountadmin.html
http://skkynet.com/SCS/docs/index.html#scs-wv-workingwith.html
http://skkynet.com/SCS/docs/index.html#scs-wv-workingwith.html

space
Data Points

space
7

© Skkynet Cloud Systems, Inc • 2233 Argentia Road • Suite 306 • Mississauga • ON • L5N 2X7 • 1.905.702.7851 • http://skkynet.com

Data Points
The data produced and consumed by the user application consists of data points. Each
point has an associated name, value, quality and timestamp. The name is the unique
identifier for a point. In C code, if a pointer to the point structure is not available it can be
looked up by name.

The value can be a 64-bit integer, a 64-bit float, or a UTF-8 encoded character string.

Quality is an indication of the reliability of the point value. These follow the OPC-DA data
quality definitions for easy integration with industrial control systems.

Timestamp is stored in a type called #MSCLOCK, which is a pair of integer values
representing the number of seconds since midnight January 1, 1970 UTC, and the number
of nanoseconds since the beginning of the second, respectively. The application can set
the timestamp if it has a valid time source, such as an NTP client or a GPS signal. If both
of these values are zero, then it indicates to SkkyHub that it should stamp this data value
with the server timestamp upon receipt. If possible, you should use a non-zero time here,
as timestamping data values at the source is more accurate than using the server time,
since it will not include a time offset due to network latency.

Communication between the server and the ETK names the point information about data
points to a server, where the more complex types, such as arrays, are represented as
strings.

See also: Data Quality Values

space
User Threads

space
8

© Skkynet Cloud Systems, Inc • 2233 Argentia Road • Suite 306 • Mississauga • ON • L5N 2X7 • 1.905.702.7851 • http://skkynet.com

User Threads
The Skkynet ETK implements a single-threaded event loop that handles multiple TCP
sockets and timers. In many cases, a developer may wish to implement his own code in
a separate thread, and to interact with the main ETK thread via cross-thread messaging.
The ETK main thread can communicate data change events to a user thread via a
message queue, which the user thread then reads. In order to do this, the developer must
implement an event loop within his thread that periodically processes queued events from
the main thread.

Generally, the event loop runs forever until it is told to stop through a flag that indicates
that it has been asked to terminate. At that point, the thread should clean up any
resources that it holds and then simply return from its thread handler function.

It is up to the thread implementer to create the event processing loop. The ETK provides
some functions that simplify this implementation, consisting of a simple test for thread
termination and a pair of macros that loop through any pending messages for this thread.
For example, a thread function might look like this:

ETK api = ETK_Init();

for (;!ETK_IsTerminating(api);)
{
 // Wait up to 10 msec for a message. You could replace this
 // with a Sleep(10) call if you need the timing for the
 // application-specific processing below.
 if (ETK_MessageWait(api, 10000) == 0)
 {
 ETK_FOREACH_MESSAGE(api, msg)
 {
 if (msg->type == ET_MSG_POINT_WRITE)
 {
 PT_ChangeRequest *cr = (PT_ChangeRequest*)msg;
 CDataHubPoint *point = cr->point;
 // Do some processing on point here, e.g., write to I/O device
 }
 }
 ETK_END_FOREACH(api, msg);
 }

 // Perform application-specific processing here, e.g., read I/O devices
}

ETK_Delete(api);

When you are working with a separate thread, you should limit your interaction to only
the multi-threaded API, as the other functions are not necessarily thread-safe. The
intention is that you configure the communication with the data point server in the main
thread, and only use your own thread to interact with the application data points.

See also: Multi-threaded API

space
Modbus Master Support

space
9

© Skkynet Cloud Systems, Inc • 2233 Argentia Road • Suite 306 • Mississauga • ON • L5N 2X7 • 1.905.702.7851 • http://skkynet.com

Modbus Master Support
The Skkynet ETK implements a Modbus/TCP master that can simultaneously connect to
any number of Modbus slave devices. Each slave device is serviced by a separate thread to
minimize the time spent during polling, even in large systems.

Since the Skkynet ETK operates on data points and Modbus operates on registers,
the Modbus master implementation includes a facility for mapping between Modbus
addresses and data points. This includes the ability to map multiple addresses to single
data points (as in wide integer or floating point numbers), and to perform a linear
transformation while both reading and writing the Modbus registers.

When a Modbus connection is initiated it enters an infinite loop that establishes a
connection to the Modbus slave and then periodically polls the slave for each configured
data value. At each polling cycle a set of Modbus commands is computed that will
minimize the number of transactions to read all of the configured addresses. This will
automatically use multi-register Modbus commands when necessary. Once the values
are read the ETK will determine whether any of the Modbus registers has changed since
the last polling cycle, and only generate a data change event if the Modbus register has
changed.

If a deadband is configured for the data point then the data change event will only occur
if the change exceeds the deadband. This can be used very effectively in systems with
limited WAN bandwidth to maintain low latency (by polling frequently) and low WAN
bandwidth usage (by only sending significant value changes). Deadbands are commonly
used when monitoring a device that produces high-frequency jitter.

If both a deadband and a transform are configured for a point, then the deadband is
computed in transformed units (engineering units) not in raw register values.

Any data point that is mapped to an output register or coil in the Modbus slave will
be automatically written to the slave when a change event occurs on that point. You
may mark an output register as read-only when creating the address mapping. In that
case, changes to the data point value will not result in writes to the Modbus slave. Input
registers are automatically considered read-only.

See also: Modbus Addressing

space
Getting Started

space
10

© Skkynet Cloud Systems, Inc • 2233 Argentia Road • Suite 306 • Mississauga • ON • L5N 2X7 • 1.905.702.7851 • http://skkynet.com

Getting Started
The Skkynet ETK is an application-level library that depends only on the ThreadX operating
system, the NetX networking layer and an Ethernet network driver. Information about
memory requirements is available in the section ThreadX Memory Usage.
Figure 4.

The Skkynet ETK is available for the Renesas Synergy embedded development platform:

http://am.renesas.com/products/embedded_systems_platform/synergy/index.jsp

To get started:

1. Install the e2 Studio development environment from the Renesas Gallery web site.
2. Follow the instructions there to create a membership and to download the following:

a. e2 Studio (the development environment based on Eclipse, including an GNU ARM
cross-compiler)

b. SSP (The Synergy Software Package, including support for a variety of hardware,
ThreadX operating system, NetX network stack, etc.)

3. Once installed, download the Skkynet ETK installer from the Renesas gallery Software
Addons section and run the installer on your computer. When asked for an installation
path, please indicate the top-level directory where you have installed e2 Studio.

Now you are ready to create a new project.

https://synergygallery.renesas.com

space
Creating a New Project

space
11

© Skkynet Cloud Systems, Inc • 2233 Argentia Road • Suite 306 • Mississauga • ON • L5N 2X7 • 1.905.702.7851 • http://skkynet.com

Creating a New Project
To create a Synergy project with the Skkynet ETK, follow these steps within e2 Studio:

1) Create a Project

1. Ensure that the Skkynet ETK is installed on your system.
2. Select File # New # Synergy Project.

a. Give your project a name.
b. Select your License file.
c. Press Next.

3. Select the target board:
a. Select the board (like S7G2 SK).
b. Press Next.

4. Select a project template:
a. Select a project that includes your BSP (like S7G2-SK BSP).
b. Press Finish.

5. Wait for the project to be created. You may get a message saying: "This kind of project
is associated with the Synergy Configuration perspective. Do you want to open this
perspective now?" Choose YES to go straight to the configuration, explained in the next
step.

2) Configure the SSP

1. Double-click configuration.xml in the project source tree.
2. Configure the RTOS:

a. Select the BSP tab at the bottom of the Synergy Configuration pane.
b. Select the Properties tab at the top of the bottom pane of the e2 Studio window

(beneath the Synergy Configuration pane).
c. Scroll to the bottom of the Properties tab and change the setting:

• RTOS being used to ThreadX
Figure 5.

space
Creating a New Project

space
12

© Skkynet Cloud Systems, Inc • 2233 Argentia Road • Suite 306 • Mississauga • ON • L5N 2X7 • 1.905.702.7851 • http://skkynet.com

3. Create a thread:
a. Select the Threads tab at the bottom of the Synergy Configuration pane.
b. Press the New button in the center of the Threads pane.
c. Press the New > button to the right of the New Thread Modules list:

• Choose Skkynet # ETK # Skkynet ETK.

Figure 6.

d. Repeat the previous step for each of these, as needed:
• SkkynetApp (optional - contains application template source)
• SkkynetModbus (if you are using Modbus)
• SkkynetAppModbus (optional - contains application template source for

Modbus)
e. Select the SkkynetETK item in the New Thread Modules list.

• Select the Properties tab at the top of the bottom pane of the e2 Studio window
• If you do not wish to use DHCP in your application, set "Use DHCP" to "No"
• If you do not wish to use DNS in your application, set "Use DNS" to "No"
• If you wish to change the size of the Skkynet ETK heap, set it here. The size of the

heap will depend on the number of data points that your application uses. You
will need at least 32K. You can find more information about memory usage here:
ThreadX Memory Usage.

f. In a similar way, press the New > button to the right of the New Thread Modules
list, and choose:
• Framework # Networking # NetX on nx (required)
• Framework # Networking # NetX Port ETHER on sf_el_nx. (required)

g. Select the g_sf_el_nx NetX Port ETHER on sf_el_nx item in the New Thread
Modules list.

h. Select the Properties tab at the top of the bottom pane of the e2 Studio window
and change the settings:
• EDMAC1 EINT to Priority 8 (any number should do)
• Channel to 1

i. If you are using the S7G2-SK board, select the Properties tab at the top of the
bottom pane of the e2 Studio window and change the settings:
• Channel 1 Phy Reset Pin to IOPORT_PORT_08_PIN_06

space
Creating a New Project

space
13

© Skkynet Cloud Systems, Inc • 2233 Argentia Road • Suite 306 • Mississauga • ON • L5N 2X7 • 1.905.702.7851 • http://skkynet.com

Figure 7.

3) Configure the Skkynet ETK

1. Select the Threads tab at the bottom of the Synergy Configuration pane.
2. Select your newly created thread from the previous step.
3. Select Skkynet ETK in the New Thread Modules list:

• Select the Properties tab at the top of the bottom pane of the e2 Studio window and
change the setting:
• Modbus Support to 0 or 1, if you are using Modbus.

4. Select the Components tab at the bottom of the Synergy Configuration pane:
• Ensure that the following components are selected:

• Express Logic # all # nx_dhcp
• Express Logic # all # nx_dns

space
Creating a New Project

space
14

© Skkynet Cloud Systems, Inc • 2233 Argentia Road • Suite 306 • Mississauga • ON • L5N 2X7 • 1.905.702.7851 • http://skkynet.com

Figure 8.

4) Generate the project content

• Press Generate Project Content in the top-right corner of the Synergy Configuration
pane.

Figure 9.

5) Configure the build environment

1. Find your project in the e2 stdio Project Explorer pane.
2. Right-click the project title and select Properties.
3. Expand C/C++ Build in the left-hand pane of the Properties dialog.
4. Select Settings within C/C++ Build.
5. Select Cross ARM C Compiler # Preprocessor in the right-hand pane (not Assembler

or Linker).
6. In the Defined Symbols section, add this symbol (starting and ending with two _

characters):
• __RENESAS_SYNERGY__=1

space
Creating a New Project

space
15

© Skkynet Cloud Systems, Inc • 2233 Argentia Road • Suite 306 • Mississauga • ON • L5N 2X7 • 1.905.702.7851 • http://skkynet.com

Figure 10.

7. Select Cross ARM C Compiler # Includes.
8. Edit the include path beginning with ${workspace_loc:/${ProjName}/C:/Program

Files (x86)/... as follows:
• Remove the string ${workspace_loc:/${ProjName}/ from the beginning of the

path, leaving the opening double-quote.
• Remove the character } from the end of the path, leaving the closing double-quote.

Figure 11.

9. Repeat the modifications to the Preprocessor and Includes for the Release
configuration, so that both Debug and Release configurations contain them.

Figure 12.

10. Press OK to close the Properties dialog.

space
Creating a New Project

space
16

© Skkynet Cloud Systems, Inc • 2233 Argentia Road • Suite 306 • Mississauga • ON • L5N 2X7 • 1.905.702.7851 • http://skkynet.com

6) Build your project

• Right-click on your project title in the Project Explorer and select Build Project. If the
Console output contains three lines similar to the following near the end, then your
build was successful:

 arm-none-eabi-size --format=berkeley "ETK_2.elf"
 text data bss dec hex filename
 136704 2336 123540 262580 401b4 ETK_2.elf

You should now have a project that implements a connection to a DataHub or SkkyHub
server. You will need to configure the IP address or domain name, TCP port and data
points for your application. If you have included Modbus/TCP support then you will
need to configure the Modbus slave IP and the mapping between I/O addresses and
point names. The sample files contain some examples of both single and multi-threaded
operation, along with simple interaction with the LEDs on the target board. Please refer to
the Template Files documentation for details.

Now you can test the sample application.

space
Testing the Sample Application

space
17

© Skkynet Cloud Systems, Inc • 2233 Argentia Road • Suite 306 • Mississauga • ON • L5N 2X7 • 1.905.702.7851 • http://skkynet.com

Testing the Sample Application
The sample application contains all of the required code to create a connection between
your board and either a Cogent DataHub ® or a SkkyHub™ server. You will need to modify
the configuration to match your application requirements. The simplest test is to install
the Cogent DataHub on a PC on your local network, and to transmit data from your
Synergy application to the DataHub. Once you are satisfied with your Synergy application
you can sign up for an account on the SkkyHub cloud service and modify the target IP
address and data domain in your application to send data to your cloud account.

1) Install and Configure Cogent DataHub

1. Download the Cogent DataHub from the Cogent DataHub home page and install it.
2. Configure the DataHub Web Server as documented. Mainly, you need to ensure that

the Act as a web server option is checked. You may also need to change the port
number if your PC is running software that uses port 80 (e.g., Skype or IIS).

2) Configure a DataHub Connection

1. Open the file src/application/config_app.c in your e2 studio project.
2. Find the function APP_InitializeConfig, which sets the values of members of a

CAppConfig. structure.

Figure 13.

3. Modify these values to match your network:
• hostname - the IP address or host name of the computer running the DataHub
• portname - the HTTP server port setting of the DataHub (normally 80)
• modbusHost - the IP address or host name of the Modbus slave device
• modbusPort - the port number of the Modbus slave device (normally 502)

4. In addition, you should modify the domain to create a data domain (essentially
a namespace) for your data. Use the default prefix, demo_ and change the string
ETK_Modbus to a name of your choice, like this: demo_Charles_at_Acme or similar.
This name may be used later for testing on a public system, and you will get the best
results if it is unique.

5. Open the file src/application/config_app.h in your e2 studio project.
• If you are not using DHCP to assign an IP address, modify the definition for

STATIC_SERVER_IP_ADDRESS to assign an IP address to this appliction.

http://www.cogentdatahub.com/
http://skkynet.com/remote-monitoring/
http://www.cogentdatahub.com
http://www.cogentdatahub.com/Docs/cdh-webconfiguration.html

space
Testing the Sample Application

space
18

© Skkynet Cloud Systems, Inc • 2233 Argentia Road • Suite 306 • Mississauga • ON • L5N 2X7 • 1.905.702.7851 • http://skkynet.com

• If you are not using DHCP, and you are using DNS, modify the definition for
STATIC_DNS_SERVER_ADDRESS to the IP address of the DNS server. The address
8.8.8.8 is Google's public DNS.

• If you are not using DHCP, and you are on a network with a router, modify the
definition for STATIC_IP_GATEWAY_ADDRESS to the address of your router.

6. Rebuild and run your Synergy application
7. Ensure that your Windows firewall settings allow an incoming connection on the

DataHub HTTP server port (portname above).
8. Start the Cogent DataHub, and click the View Data button to open the Data Browser

window.
Figure 14.

9. In the left pane, click the data domain for your application. Among the points listed,
you should see at least led1 and led2.
• The point led1 corresponds to LED 1 on your board. Depending on the board you

are using this value will affect the LED differently. For example, on the SK-S7G2 a
value of 0 will turn the light on, and non-zero will turn it off. On the DK-S7G2 a value
of 0 will turn the LED off and values of 1 through 3 will select the LED color. You can
change the value of the point by clicking on the name led1, and typing in a 1 in the
Enter a new value field above, then pressing Enter.

• The point led2 corresponds to LED 2 on your test board. Again, its behaviour
depends on the board you are using.

• Note: If you are using Modbus, you should see the default Modbus values appear in
the Data Browser window as well.

If you are able to view and interact with your data in the Data Browser window, then you
have successfully connected to the Cogent DataHub. Now you can continue, and configure
a connection to SkkyHub.

3) Configure a SkkyHub Connection

1. To connect to the SkkyHub service, open the file src/application/config_app.c in your e2
studio project.

2. Find the function APP_InitializeConfig, to set the values of the members of the
CAppConfig structure.

3. Make the following changes:
• hostname # demo.skkynet.com
• portname # 80

space
Testing the Sample Application

space
19

© Skkynet Cloud Systems, Inc • 2233 Argentia Road • Suite 306 • Mississauga • ON • L5N 2X7 • 1.905.702.7851 • http://skkynet.com

• domain # demo_MyOwnDomain (your domain name as specified previously)
• username # demo/guest
• password # guest

Note: If you already have a SkkyHub account, you can use your own user name,
password, and data domain here. Otherwise, you need to use the guest account and
demo_your_domain as described.

4. To check your data connection, open a browser and go to demo.skkynet.com.
5. Log in with the username Guest and password guest. This will open the Skkynet

WebView interface.
6. Select File # New to open a new page.
7. Add a new Text Label control by clicking the "A" button in the controls list at the bottom

of the window.
8. In Basic Properties # Input Value, select the arrow button to open the Binding entry

field.
9. Select Point, and in the entry field, type led2. This will search the domain for all points

containing the string led2.
10. Choose the string demo_yourdomainname:led2.

Figure 15.

The value of led2 should appear in the control.

http://demo.skkynet.com
http://skkynet.com/SCS/docs/index.html#re-wv-textlabel.html

space
Testing the Sample Application

space
20

© Skkynet Cloud Systems, Inc • 2233 Argentia Road • Suite 306 • Mississauga • ON • L5N 2X7 • 1.905.702.7851 • http://skkynet.com

Figure 16.

11. In the same way, add a new Text Entry Field control (a blue "T" with green plus sign) to
the page, and link it to the data point led1 in your data domain.

Figure 17.

12. Click the green Run arrow at the top of the window.

Figure 18.

This will put the page into Run mode, allowing you to change the value in the led1 text
entry field to demonstrate 2-way connectivity from SkkyHub to your device.

http://skkynet.com/SCS/docs/index.html#re-wv-textentryfield.html

space
Testing the Sample Application

space
21

© Skkynet Cloud Systems, Inc • 2233 Argentia Road • Suite 306 • Mississauga • ON • L5N 2X7 • 1.905.702.7851 • http://skkynet.com

Figure 19.

13. If you are able to see and interact with your data, then you have successfully
connected to SkkyHub.

4) Next Steps

Now that you have tested your application with the DataHub and SkkyHub, you are ready
to do any or all of the following, as explained in the relevant documentation:

• Configure more data points in config_points.c.
• Configure Modbus connections and I/O mappings in config_modbus.c.
• Configure user threads in config_threads.c.
• Configure timers in config_timers.c.
• Customize your application.
• Open a SkkyHub account. The demo account you have used for this test does not allow

you to save pages or build an application. To do that, you will need a Skkynet account.

space
Customizing Your Application

space
22

© Skkynet Cloud Systems, Inc • 2233 Argentia Road • Suite 306 • Mississauga • ON • L5N 2X7 • 1.905.702.7851 • http://skkynet.com

Customizing Your Application
Application Mainline

The Skkynet ETK provides an optional ThreadX mainline (mainline.c) that you can use to
automatically perform the following functions:

• Obtain an IP address using DHCP (this can be configured with an #include directive)
• Configure a DNS server from DHCP (this can be configured with an #include directive)
• Create a WebSocket connection to the target data server, either Cogent DataHub

running on your local network, or SkkyHub running on the cloud
• Optionally create a Modbus connection to a Modbus slave device
• Automatically connect to DataHub or SkkyHub, and monitor the connection. If the

connection fails, retry the connection indefinitely.
• Automatically connect to the Modbus slave, and monitor the connection. If the

connection fails, retry the connection indefinitely.

Template Files

If you installed the SkkynetApp component then you will have a directory in your
project called src/application that contains a number ofiles. These files provide
the application mainline (mainline.c) and a number of files where you can add your
application-specific functionality.

The application mainline is the entry point to your code during application start-up. It
is responsible for setting up the NetX Ethernet driver, acquiring an IP address via DHCP,
configuring a DNS server and starting an event loop that will periodically service any
sockets and timers that you have set up during the initialization process.

During the initialization, the mainline will make calls to functions to configure SkkyHub/
DataHub data points, initiate timers and their handlers and configure the Modbus master
parameters and Modbus I/O mappings if you have chosen to use Modbus. Examples of
these functions are included in the templates: APP_InitializeConfig, APP_ConfigurePoints,
APP_ConfigureTimers, APP_ConfigureUserThreads and APP_ConfigureModbus. With the
exception of APP_InitializeConfig, these functions are optional, and may be omitted from
your application.

ThreadX Memory Usage

Summary of memory usage for the ThreadX O/S and Renesas Synergy.
Table 1.

Macro Description

APP_HeapSize The APP_HeapSize is used to determine
the amount of memory to reserve for user
thread stacks, internal structures, inter-
thread messages and CDataHubPoint
structures. You application will consume
memory from this heap depending on
the number of connections, threads,
points and timers that are configured.
During development you can look at the
performance of the heap by examining

space
Customizing Your Application

space
23

© Skkynet Cloud Systems, Inc • 2233 Argentia Road • Suite 306 • Mississauga • ON • L5N 2X7 • 1.905.702.7851 • http://skkynet.com

the global variables ME_Total, ME_Hiwater,
ME_Nallocs, ME_Nfrees, ME_Nreallocs and
ME_Hiaddress.

Each user thread requires a stack whose
size is defined by ETK_THREAD_STACK_SIZE.

Each data point requires approximately
500 bytes. This varies with the length of the
point name.

Each CTimer requires approximately 80
bytes.

Each inter-thread message in flight requires
56 bytes, plus the length of a string if
the message contains a point change
notification for which the value is a string
type.

We need to configure the heap size with a
constant because we need to reserve heap
early in the initialization process, before
we have set the application configuration.
This means that we cannot configure the
application heap size dynamically from a
configuration file.

With Renesas Synergy, you can override the
default heap size in the properties list of the
Skkynet ETK module.

BSD_THREAD_STACK_SIZE The NetX BSD layer uses a separate thread
to handle select and poll calls. The default
stack for this thread is 1024 bytes.

DHCP_THREAD_STACK_SIZE The DHCP set-up uses a separate thread to
obtain DHCP information. The default stack
for this thread is 1024 bytes.

DNS_THREAD_STACK_SIZE The DNS set-up uses a separate thread to
configure the DNS. The default stack for this
thread is 1024 bytes.

ETK_THREAD_STACK_SIZE Each user thread, including the thread
for Modbus communication, requires its
own stack space, which is allocated from
the heap (see APP_HeapSize). This stack
size is fixed at 2048 bytes. Consequently,
you must size the heap according to the
number of threads you expect to have in
your application.

MAIN_STACK_SIZE The Skkynet ETK uses its main thread to
run an event loop that services all of the
connections to the application, and to

space
Customizing Your Application

space
24

© Skkynet Cloud Systems, Inc • 2233 Argentia Road • Suite 306 • Mississauga • ON • L5N 2X7 • 1.905.702.7851 • http://skkynet.com

service any user threads that are using the
ETK. The default stack size is 4096 bytes.

MAX_PACKETS Sets the number of packets in the NetX
packet pool

NETX_DRIVER_STACK_SIZE The NetX driver uses a separate thread to
manage IP traffic. The default stack for this
thread is 1024 bytes.

PACKET_POOL_SIZE NetX uses a fixed-size packet pool to
maintain IP packets in-flight. This is
allocated explicitly and provided when NetX
is initialized. The default size is 50 packets,
with each packet being 1624 bytes, for a
total of 80 KB.

TICK_STACK_SIZE The Skkynet ETK uses a thread to count
clock ticks to use as a time base for its
timers. The default size of the tick stack is
512 bytes.

See also: ThreadX Memory Usage

space
API

space
25

© Skkynet Cloud Systems, Inc • 2233 Argentia Road • Suite 306 • Mississauga • ON • L5N 2X7 • 1.905.702.7851 • http://skkynet.com

API

Data Quality Values

Detailed Description

This is a table of the possible data quality values, and their respective C symbols.
All data qualities are considered to be bad except for PT_QUALITY_GOOD and
PT_QUALITY_LOCAL_OVERRIDE.
Table 2.

C-Symbol Value

PT_QUALITY_BAD 0

PT_QUALITY_UNCERTAIN 0x40

PT_QUALITY_GOOD 0xc0

PT_QUALITY_CONFIG_ERROR 0x4

PT_QUALITY_NOT_CONNECTED 0x8

PT_QUALITY_DEVICE_FAILURE 0xc

PT_QUALITY_SENSOR_FAILURE 0x10

PT_QUALITY_LAST_KNOWN 0x14

PT_QUALITY_COMM_FAILURE 0x18

PT_QUALITY_OUT_OF_SERVICE 0x1c

PT_QUALITY_WAITING_FOR_INITIAL_DATA0x20

PT_QUALITY_LAST_USABLE 0x44

PT_QUALITY_SENSOR_CAL 0x50

PT_QUALITY_EGU_EXCEEDED 0x54

PT_QUALITY_SUB_NORMAL 0x58

PT_QUALITY_LOCAL_OVERRIDE 0xd8

 See also Data Points

Modbus Addressing

Detailed Description

A complete Modbus I/O mapping consists of the following pieces of information:

• ModbusConnection - The Modbus slave connection object for this point
• slaveId - The slave ID for this point. This can be zero (0) to use the default slave ID for

the modbus connection, or a number between 1 and 254 to target a specific modbus
slave.

• block - The modbus I/O block, one of:
• MB_DI - digital input
• MB_DO - digital output (coil)
• MB_AI - analog input (input register)
• MB_AO - analog output (holding register)

space
API

space
26

© Skkynet Cloud Systems, Inc • 2233 Argentia Road • Suite 306 • Mississauga • ON • L5N 2X7 • 1.905.702.7851 • http://skkynet.com

• type - The data type
• One of

• i2, i4, i8 - 2, 4 or 8-byte integer
• r4, r8 - float or double
• b - digital (1-bit)

• Integer and real types can be followed with a dot (.) and a set of flags:
• d - swap Dwords in 8-byte types
• w - swap Words in 4- and 8-byte types
• b - swap Bytes in 2-, 4- and 8-byte types
• i - swap bits in 2-, 4- and 8-byte types (not implemented)
• - - treat integer types as signed instead of unsigned
• r - read-only - do not allow output even on output types.

• svrtype - The data type to output to the DataHub or SkkyHub server. This is specified
the same as 'type' above, but may not contain a .flags suffix.

• address - The offset within the memory address range for this type, as a string. This is a
zero-based address. In some device documentation the addresses are one-based, so be
sure to subtract 1 from the address in that case.
• Integer types can be followed with a dot (.) and a bit field specifier:

• n - nth bit in the integer, from zero
• n-m - nth to mth bits inclusive in the integer, from zero

• Bit types can be specified as:
• n-m - create an integer from the bits in the range of address n to m.

• pointname - The name of the DataHub point, without a domain name
• xform - A transformation to apply to the value from the Modbus device. Can be one of:

• XFORM_TYPE_DIRECT - No transformation.
• XFORM_TYPE_LINEAR(m,b) - Linear transformation as in Y = mX + b. Note that m

cannot be zero.
• XFORM_TYPE_RANGE(mbMin,mbMax,svrMin,svrMax,clampMin,clampMax) - Range

transformation. Parameters are:
• mbMin - The minimum expected value from the Modbus device
• mbMax - The maximum expected value from the Modbus device
• svrMin - The minimum expected value from the DataHub/SkkyHub server
• svrMax - The maximum expected value from the DataHub/SkkyHub server
• clampMin - 0 for no clamp, 1 to limit values to >= mbMin when writing to the

Modbus device
• clampMax - 0 for no clamp, 1 to limit values to <= mbMax when writing to the

Modbus device
• deadband - a deadband in transformed units to apply when reading from the Modbus

device.
• A value will not be sent to the server if abs(value - previous_value) < deadband.
• A value of 0 indicates no deadband.

4- and 8-byte values are stored in two and four adjacent analog input or output values
respectively, and converted during the read and write stages. Floating point numbers are
stored in the byte representation of IEEE 4-byte floating point format, in either normal or
inverted byte order.

space
API

space
27

© Skkynet Cloud Systems, Inc • 2233 Argentia Road • Suite 306 • Mississauga • ON • L5N 2X7 • 1.905.702.7851 • http://skkynet.com

 See also Modbus Master Support

Multi-threaded API

Detailed Description

The Skkynet ETK provides a multi-threaded API that exposes a subset of the ETK's
capabilities to a user thread. The functions in this API start with the prefix "ETK_".
Functions that are not part of this API may not be thread-safe.

Classes

• struct EtkThreadStruct

Typedefs

• typedef struct EtkThreadStruct EtkThreadStruct

Functions

• void ETK_ApiInit (CTCPConnectionContainer * cc, CTCPClient * client)

• ETK ETK_Init ()

• void ETK_Delete (ETK handle)

• int ETK_EmitPoint (ETK handle, CDataHubPoint * point, PT_uVALUE * value, PT_TYPE
valueType, int32_t quality)

• int ETK_EmitRegister (ETK handle, CDataHubPoint * point)

• CDataHubPoint * ETK_LookupPoint (ETK handle, char * pointname)

• CDataHubPoint * ETK_CreatePoint (ETK handle, char * pointname, int flags)

• int ETK_SetPointNameInt (ETK handle, char * pointname, INT64 value, int32_t quality)

• int ETK_SetPointInt (ETK handle, CDataHubPoint * point, INT64 value, int32_t quality)

• int ETK_SetPointNameDouble (ETK handle, char * pointname, double value, int32_t
quality)

• int ETK_SetPointDouble (ETK handle, CDataHubPoint * point, double value, int32_t
quality)

• int ETK_SetPointNameString (ETK handle, char * pointname, char * value, int32_t
quality)

• int ETK_SetPointString (ETK handle, CDataHubPoint * point, char * value, int32_t quality)

• char * ETK_GetPointNameString (ETK handle, char * pointname)

• char * ETK_GetPointString (ETK handle, CDataHubPoint * point)

• INT64 ETK_GetPointNameInt (ETK handle, char * pointname)

space
API

space
28

© Skkynet Cloud Systems, Inc • 2233 Argentia Road • Suite 306 • Mississauga • ON • L5N 2X7 • 1.905.702.7851 • http://skkynet.com

• INT64 ETK_GetPointInt (ETK handle, CDataHubPoint * point)

• double ETK_GetPointNameDouble (ETK handle, char * pointname)

• double ETK_GetPointDouble (ETK handle, CDataHubPoint * point)

• void ETK_Free (ETK handle, void * mem)

• int ETK_MessageWait (ETK handle, int usec)

• int ETK_IsTerminating (ETK handle)

• int ETK_RegisterPointName (ETK handle, char * pointname)

• int ETK_RegisterPoint (ETK handle, CDataHubPoint * point)

• static void cbEtkMessageHandler (EtkThread * thread, ThreadMessage * msg, void *
userdata)

• int ETK_HandleMessages (ETK handle, ETK_MessageHandler handler)

Typedef Documentation

typedef struct EtkThreadStruct EtkThreadStruct

Function Documentation

void ETK_ApiInit (CTCPConnectionContainer *cc, CTCPClient *client)

Initialize the threaded API. This needs to be called once from the main thread with the
connection container and the client connection to the remote DataHub. It sets internal
globals that are subsequently provided to client threads when they call ETK_Init.

Table 3. Parameters

cc

client

ETK ETK_Init ()

Initialize the threaded API for this thread. This needs to be called when a thread starts,
before any calls the the threaded API.

Returns: A pointer to the API handle for this thread. Use this in all subsequent calls to
the ETK interface.

void ETK_Delete (ETK handle)

Delete all of the resources associated with a threaded API handle. After this call, the API
handle is invalid and further calls using it will crash your application.

Table 4. Parameters

handle

space
API

space
29

© Skkynet Cloud Systems, Inc • 2233 Argentia Road • Suite 306 • Mississauga • ON • L5N 2X7 • 1.905.702.7851 • http://skkynet.com

int ETK_EmitPoint (ETK handle, CDataHubPoint *point, PT_uVALUE *value, PT_TYPE valueType,
int32_t quality)

Asynchronously emit a data point change to the main thread. This will eventually result in
a change to the point value, but possibly not before this thread continues.

Your thread will not be able to immediately read the value of the point and expect to see
the value just set. Your thread will only know with certainty that the point value has been
set once it receives a value change notification.

If your thread is not registered for change notifications then it only knows that the value
change will eventually occur in the main thread.

If another value is set on this point before the original value has been processed by the
main thread, then the new assignment will overwrite the pending one, and the pending
assignment will never occur.

To collect value change notifications for this point, register for value changes in your
thread using ETK_RegisterPoint and then wait for changes using an event loop using
ETK_FOREACH_MESSAGE and ETK_IsTerminating.

You should not need to call this function directly. Instead, use ETK_SetPointInt,
ETK_SetPointDouble and ETK_SetPointString.

Table 5. Parameters

handle - The API handle

point - A pointer to the point being changed

value - A pointer to the value union

valueType - The type of value in the value union

quality - The quality to apply to this change

Returns: 0 if this write has been queued, 1 if an existing queued write was replaced by
this one, and -1 if the write was aborted.

int ETK_EmitRegister (ETK handle, CDataHubPoint *point)

Emit an asynchronous message to register this thread for change notifications for this
point. The thread will not receive a notification for this point's current value. It will only
receive notifications for any changes to the point after this call has been processed. It is
possible that the point may change value between the time that your thread makes this
call and the time that the main thread processes it. No notification will be sent to your
thread for such a change.

You should not need to call this function directly. Instead, use ETK_RegisterPoint.

Table 6. Parameters

handle - The handle to the ETK API structure

point - The point to register

Returns: 0 on failure, 1 on success

space
API

space
30

© Skkynet Cloud Systems, Inc • 2233 Argentia Road • Suite 306 • Mississauga • ON • L5N 2X7 • 1.905.702.7851 • http://skkynet.com

CDataHubPoint* ETK_LookupPoint (ETK handle, char *pointname)

Look up a point structure by name. This will return a pointer to the point structure. The
pointer will never be destroyed, but the information in it may change at any time in a
thread-unsafe manner. Specifically, you should not rely on the string value of the point to
be valid in your thread. To use the string value of a point you must call ETK_GetPointString,
which will make a copy of the string value in a thread-safe manner. When you are done
using the value you must free it with ETK_Free.

Table 7. Parameters

handle - The handle to the ETK API structure

pointname - The name of the point to find.

Returns: - A pointer to the point if it exists, or NULL.

CDataHubPoint* ETK_CreatePoint (ETK handle, char *pointname, int flags)

Create a new data point. If the flags include #PT_FLAG_WRITABLE then also register this
thread for change notifications for this point. See ETK_RegisterPoint for more information
on change notifications.

Table 8. Parameters

handle - The handle to the ETK API structure

pointname - The name of the point to create

flags - One of #PT_FLAG_READABLE,
#PT_FLAG_WRITABLE or
#PT_FLAG_READWRITE

Returns: A pointer to the new point on success, or NULL.

int ETK_SetPointNameInt (ETK handle, char *pointname, INT64 value, int32_t quality)

Assign an integer value to a data point. See ETK_SetPointInt for more information.

Table 9. Parameters

handle - The handle to the ETK API structure

pointname - The name of the point to set

value - The new value

quality - The new quality for this value

Returns: -1 if the value was not queued, 0 if the value was newly queued, or 1 if the
value replaces a value that was alredy queued.

int ETK_SetPointInt (ETK handle, CDataHubPoint *point, INT64 value, int32_t quality)

Assign an integer value to a data point. This will free any memory associated with the
existing value and then replace it with the provided integer value.

This function will return immediately, before the value is actually written to the point. See
ETK_EmitPoint for more information about the asynchronous behaviour of this function.

space
API

space
31

© Skkynet Cloud Systems, Inc • 2233 Argentia Road • Suite 306 • Mississauga • ON • L5N 2X7 • 1.905.702.7851 • http://skkynet.com

Table 10. Parameters

handle - The handle to the ETK API structure

point - The point to set

value - The new value

quality - The new quality for this value

Returns: -1 if the value was not queued, 0 if the value was newly queued, or 1 if the
value replaces a value that was alredy queued.

int ETK_SetPointNameDouble (ETK handle, char *pointname, double value, int32_t quality)

Assign an double-precision floating point value to a data point. See ETK_SetPointDouble
for more information.

Table 11. Parameters

handle - The handle to the ETK API structure

pointname - The name of the point to set

value - The new value

quality - The new quality for this value

Returns: -1 if the value was not queued, 0 if the value was newly queued, or 1 if the
value replaces a value that was alredy queued.

int ETK_SetPointDouble (ETK handle, CDataHubPoint *point, double value, int32_t quality)

Assign an double-precision floating point value to a data point. This will free any memory
associated with the existing value and then replace it with the provided double value.

This function will return immediately, before the value is actually written to the point. See
ETK_EmitPoint for more information about the asynchronous behaviour of this function.

Table 12. Parameters

handle - The handle to the ETK API structure

point - The point to set

value - The new value

quality - The new quality for this value

Returns: -1 if the value was not queued, 0 if the value was newly queued, or 1 if the
value replaces a value that was alredy queued.

int ETK_SetPointNameString (ETK handle, char *pointname, char *value, int32_t quality)

Assign a string value to a data point. See ETK_SetPointString for more information.

Table 13. Parameters

handle - The handle to the ETK API structure

space
API

space
32

© Skkynet Cloud Systems, Inc • 2233 Argentia Road • Suite 306 • Mississauga • ON • L5N 2X7 • 1.905.702.7851 • http://skkynet.com

pointname - The name of the point to set

value - The new value

quality - The new quality for this value

Returns: -1 if the value was not queued, 0 if the value was newly queued, or 1 if the
value replaces a value that was alredy queued.

int ETK_SetPointString (ETK handle, CDataHubPoint *point, char *value, int32_t quality)

Assign a string value to a data point. This will free any memory associated with the
existing value and then replace it with the provided string value.

This function will return immediately, before the value is actually written to the point. See
ETK_EmitPoint for more information about the asynchronous behaviour of this function.

Table 14. Parameters

handle - The handle to the ETK API structure

point - The point to set

value - The new value

quality - The new quality for this value

Returns: -1 if the value was not queued, 0 if the value was newly queued, or 1 if the
value replaces a value that was alredy queued.

char* ETK_GetPointNameString (ETK handle, char *pointname)

Retrieve a string representation of a point value. See ETK_GetPointString for more
information.

Table 15. Parameters

handle

pointname

Returns:

char* ETK_GetPointString (ETK handle, CDataHubPoint *point)

Retrieve a string representing of a point value. If the point value is an integer or a floating
point number then create a string representation of the value and return that. Floating
point numbers are formatted using sprintf directive "%.20g".

This function always allocates memory for the returned string, even if the point value is
currently a string. It is up to the caller to free this memory using ETK_Free.

Table 16. Parameters

handle - The handle to the ETK API structure

point - The point whose value to retrieve

Returns: A pointer to a newly-allocated string on success, or NULL on failure

space
API

space
33

© Skkynet Cloud Systems, Inc • 2233 Argentia Road • Suite 306 • Mississauga • ON • L5N 2X7 • 1.905.702.7851 • http://skkynet.com

INT64 ETK_GetPointNameInt (ETK handle, char *pointname)

Retrieve an integer representing of a point value. See ETK_GetPointInt for more
information.

Table 17. Parameters

handle - The handle to the ETK API structure

pointname - The name of the point whose value to
retrieve

Returns:

INT64 ETK_GetPointInt (ETK handle, CDataHubPoint *point)

Retrieve an integer representing of a point value. If the point value is a floating point
number, it is truncated and case to integer. If the value is beyond the range of an integer
then the value of this function is undefined.

If the point value is a string then this function will attempt to interpret the string as a
decimal number. If the string starts with the characters 0x then it will interpret the string
as a hexadecimal number.

If the point value cannot be interpreted as a number then this function will return 0.

Table 18. Parameters

handle - The handle to the ETK API structure

point - The point whose value to retrieve

Returns: An integer

double ETK_GetPointNameDouble (ETK handle, char *pointname)

Retrieve a floating point representing of a point value. See ETK_GetPointDouble for more
information.

Table 19. Parameters

handle - The handle to the ETK API structure

pointname - The name of the point whose value to
retrieve

Returns: A double-precision floating point number

double ETK_GetPointDouble (ETK handle, CDataHubPoint *point)

Retrieve a floating point representing of a point value. If the point value is an integer, it is
cast to a double. The result will be of the correct magnitude, but may lose precision during
the translation.

If the point value is a string then this function will attempt to interpret the string as a
floating point number. If the point value cannot be interpreted as a number then this
function will return 0.

space
API

space
34

© Skkynet Cloud Systems, Inc • 2233 Argentia Road • Suite 306 • Mississauga • ON • L5N 2X7 • 1.905.702.7851 • http://skkynet.com

Table 20. Parameters

handle - The handle to the ETK API structure

point - The point whose value to retrieve

Returns: A double-precision floating point number

void ETK_Free (ETK handle, void *mem)

Free heap memory allocated by these functions: ETK_GetPointString
ETK_GetPointNameString

Table 21. Parameters

handle - The handle to the ETK API structure

mem - The memory address to be freed

int ETK_MessageWait (ETK handle, int usec)

Wait for a message to become available on the message queue associated with this
thread. If no message is available within the specified number of microseconds, return.
If usec is less than 0, wait forever. If usec is 0 then do not wait at all, simply returning an
indication of whether a message is waiting.

Table 22. Parameters

handle - The handle to the ETK API structure

usec - The positive number of microseconds to
wait, or negative to wait forever

Returns: 0 if there is a message waiting, or -1 if the wait timed out or failed.

int ETK_IsTerminating (ETK handle)

Determine whether the application has requested for this thread to terminate. Use this
test to stop your thread's event loop.

Table 23. Parameters

handle - The handle to the ETK API structure

Returns: - non-zero if the thread has been asked to terminate, or zero otherwise

DllSym int ETK_RegisterPointName (ETK handle, char *pointname)

This function registers a point for notifications based on the point name. See
ETK_RegisterPoint for more information.

This is an asynchronous call. It will return before the registration actually occurs. A success
means that the request has been queued, not that the registration has completed.

Table 24. Parameters

handle - The handle to the ETK API structure

space
API

space
35

© Skkynet Cloud Systems, Inc • 2233 Argentia Road • Suite 306 • Mississauga • ON • L5N 2X7 • 1.905.702.7851 • http://skkynet.com

pointname - The name of the point to register

Returns: 0 on failure, 1 on success

DllSym int ETK_RegisterPoint (ETK handle, CDataHubPoint *point)

This function registers a point for notifications, telling the ETK mainline that it should send
a message to this thread whenever this point's value or quality changes. The ETK mainline
will not send a message if the timestamp of the point changes, but the value and quality
do not.

The notification will arrive at this thread via an asynchronous message that can be
processed through the thread's event loop.

This is an asynchronous call. It will return before the registration actually occurs. A success
means that the request has been queued, not that the registration has completed.

Table 25. Parameters

handle - The handle to the ETK API structure

point - The point to register

Returns: 0 on failure, 1 on success

static void cbEtkMessageHandler (EtkThread *thread, ThreadMessage *msg, void *userdata)

int ETK_HandleMessages (ETK handle, ETK_MessageHandler handler)

This is an internal function that should not be called by user code.

Table 26. Parameters

handle

handler

Returns:

ThreadX Memory Usage

Brief Description

Summary of memory usage for the ThreadX O/S and Renesas Synergy.

Detailed Description

Defines

• #define ETK_THREAD_STACK_SIZE 2048

• #define APP_HeapSize 65536

• #define TICK_STACK_SIZE 512

• #define MAIN_STACK_SIZE 4096

space
API

space
36

© Skkynet Cloud Systems, Inc • 2233 Argentia Road • Suite 306 • Mississauga • ON • L5N 2X7 • 1.905.702.7851 • http://skkynet.com

• #define MAX_PACKETS 50

• #define PACKET_POOL_SIZE ((PACKET_PAYLOAD_SIZE + sizeof(NX_PACKET)) *
MAX_PACKETS)

• #define NETX_DRIVER_STACK_SIZE 1024

• #define DNS_THREAD_STACK_SIZE 1024

• #define DHCP_THREAD_STACK_SIZE 1024

• #define BSD_THREAD_STACK_SIZE 1024

Define Documentation

#define ETK_THREAD_STACK_SIZE

Each user thread, including the thread for Modbus communication, requires its own stack
space, which is allocated from the heap (see APP_HeapSize). This stack size is fixed at 2048
bytes. Consequently, you must size the heap according to the number of threads you
expect to have in your application.

Definition at line 64 of file et_threads.c

The Documentation for this define was generated from the following file:

• et_threads.c

#define APP_HeapSize

The APP_HeapSize is used to determine the amount of memory to reserve for user
thread stacks, internal structures, inter-thread messages and CDataHubPoint structures.
You application will consume memory from this heap depending on the number of
connections, threads, points and timers that are configured. During development you
can look at the performance of the heap by examining the global variables ME_Total,
ME_Hiwater, ME_Nallocs, ME_Nfrees, ME_Nreallocs and ME_Hiaddress.

Each user thread requires a stack whose size is defined by ETK_THREAD_STACK_SIZE.

Each data point requires approximately 500 bytes. This varies with the length of the point
name.

Each CTimer requires approximately 80 bytes.

Each inter-thread message in flight requires 56 bytes, plus the length of a string if the
message contains a point change notification for which the value is a string type.

We need to configure the heap size with a constant because we need to reserve heap
early in the initialization process, before we have set the application configuration.
This means that we cannot configure the application heap size dynamically from a
configuration file.

With Renesas Synergy, you can override the default heap size in the properties list of the
Skkynet ETK module.

Definition at line 59 of file config_app.h

space
API

space
37

© Skkynet Cloud Systems, Inc • 2233 Argentia Road • Suite 306 • Mississauga • ON • L5N 2X7 • 1.905.702.7851 • http://skkynet.com

The Documentation for this define was generated from the following file:

• config_app.h

#define TICK_STACK_SIZE

The Skkynet ETK uses a thread to count clock ticks to use as a time base for its timers. The
default size of the tick stack is 512 bytes.

Definition at line 104 of file mainline.c

The Documentation for this define was generated from the following file:

• mainline.c

#define MAIN_STACK_SIZE

The Skkynet ETK uses its main thread to run an event loop that services all of the
connections to the application, and to service any user threads that are using the ETK. The
default stack size is 4096 bytes.

Definition at line 114 of file mainline.c

The Documentation for this define was generated from the following file:

• mainline.c

#define MAX_PACKETS

Sets the number of packets in the NetX packet pool

Definition at line 121 of file mainline.c

The Documentation for this define was generated from the following file:

• mainline.c

#define PACKET_POOL_SIZE

NetX uses a fixed-size packet pool to maintain IP packets in-flight. This is allocated
explicitly and provided when NetX is initialized. The default size is 50 packets, with each
packet being 1624 bytes, for a total of 80 KB.

Definition at line 133 of file mainline.c

The Documentation for this define was generated from the following file:

• mainline.c

#define NETX_DRIVER_STACK_SIZE

The NetX driver uses a separate thread to manage IP traffic. The default stack for this
thread is 1024 bytes.

Definition at line 143 of file mainline.c

The Documentation for this define was generated from the following file:

space
API

space
38

© Skkynet Cloud Systems, Inc • 2233 Argentia Road • Suite 306 • Mississauga • ON • L5N 2X7 • 1.905.702.7851 • http://skkynet.com

• mainline.c

#define DNS_THREAD_STACK_SIZE

The DNS set-up uses a separate thread to configure the DNS. The default stack for this
thread is 1024 bytes.

Definition at line 151 of file mainline.c

The Documentation for this define was generated from the following file:

• mainline.c

#define DHCP_THREAD_STACK_SIZE

The DHCP set-up uses a separate thread to obtain DHCP information. The default stack
for this thread is 1024 bytes.

Definition at line 159 of file mainline.c

The Documentation for this define was generated from the following file:

• mainline.c

#define BSD_THREAD_STACK_SIZE

The NetX BSD layer uses a separate thread to handle select and poll calls. The default
stack for this thread is 1024 bytes.

Definition at line 167 of file mainline.c

The Documentation for this define was generated from the following file:

• mainline.c

config_app.c

Brief Description

Configure application-wide settings.

Detailed Description

Configure the application parameters here. If you have permanent storage, like a USB
memory or access to the flash file system, load the configuration from there.

Functions

• void APP_InitializeConfig (CAppConfig * config)

• CDataHubPoint * APP_CreateAndSetPoint (CTCPConnectionContainer * cc, CTCPClient *
client, char * name, int flags, INT64 value)

• void APP_SetPointInt (CDataHubPoint * point, INT64 value)

• void APP_SetPointDouble (CDataHubPoint * point, double value)

space
API

space
39

© Skkynet Cloud Systems, Inc • 2233 Argentia Road • Suite 306 • Mississauga • ON • L5N 2X7 • 1.905.702.7851 • http://skkynet.com

• void APP_SetPointString (CDataHubPoint * point, char * value)

Function Documentation

void APP_InitializeConfig (CAppConfig *config)

Initialize the application configuration object. This object must be allocated before entry to
this function, and is typically created as a global static variable in the mainline.c mainline.
You can modify this structure to suit your application requirements.

In the example code the contents of this object are hard-coded. In a production system
you may prefer to store this information in persistent storage and then read it into the
CAppConfig object here.

Table 27. Parameters

config

CDataHubPoint* APP_CreateAndSetPoint (CTCPConnectionContainer *cc, CTCPClient *client,
char *name, int flags, INT64 value)

void APP_SetPointInt (CDataHubPoint *point, INT64 value)

void APP_SetPointDouble (CDataHubPoint *point, double value)

void APP_SetPointString (CDataHubPoint *point, char *value)

config_app.h

Brief Description

Define application-specific configuration.

Detailed Description

This file contains a definition of the CAppConfig structure that is passed to the application-
specific configuration functions during application start-up. You can modify the
CAppConfig strucure to suit your application requirements.

Classes

• struct CAppConfig

Typedefs

• typedef struct CAppConfig CAppConfig

Functions

• CDataHubPoint * APP_CreateAndSetPoint (CTCPConnectionContainer * cc, CTCPClient *
client, char * name, int flags, INT64 value)

• void APP_SetPointInt (CDataHubPoint * point, INT64 value)

• void APP_SetPointDouble (CDataHubPoint * point, double value)

space
API

space
40

© Skkynet Cloud Systems, Inc • 2233 Argentia Road • Suite 306 • Mississauga • ON • L5N 2X7 • 1.905.702.7851 • http://skkynet.com

• void APP_SetPointString (CDataHubPoint * point, char * value)

• void APP_ConfigureTimers (CAppConfig * config)

• void APP_ConfigurePoints (CAppConfig * config)

• void APP_ConfigureModbus (CAppConfig * config)

• void APP_ConfigureUserThreads (CAppConfig * config)

• void APP_InitializeConfig (CAppConfig * config)

Defines

• #define APP_HeapSize_ APP_HeapSize

• #define INIT_DNS 1

• #define INIT_DHCP 1

• #define INIT_GATEWAY 1

• #define STATIC_SERVER_IP_ADDRESS IP_ADDRESS(192,168,0,2)

• #define STATIC_SERVER_NETMASK 0xFFFFFF00UL

• #define STATIC_DNS_SERVER_ADDRESS IP_ADDRESS(8,8,8,8)

• #define STATIC_IP_GATEWAY_ADDRESS IP_ADDRESS(192,168,0,1)

Typedef Documentation

typedef struct CAppConfig CAppConfig

Defines an application-specific structure containing information that is required during
start-up. In the example code, this information is supplied in config_app.c. In other
instances this information might be stored as persistent configuration in flash memory.
An application developer should add or remove members in this structure to suit the
application requirements.

Function Documentation

CDataHubPoint* APP_CreateAndSetPoint (CTCPConnectionContainer *cc, CTCPClient *client,
char *name, int flags, INT64 value)

void APP_SetPointInt (CDataHubPoint *point, INT64 value)

void APP_SetPointDouble (CDataHubPoint *point, double value)

void APP_SetPointString (CDataHubPoint *point, char *value)

void APP_ConfigureTimers (CAppConfig *config)

Configure the timers that will run in this application. Here you can create CTimer instances
and supply them with tick and expiry callback functions that will run in the main ETK
thread (mainThreadEntry). In the example code we create two timers, one to produce
sample data at 10 Hz, and the other to produce a watchdog value at 1 Hz.

space
API

space
41

© Skkynet Cloud Systems, Inc • 2233 Argentia Road • Suite 306 • Mississauga • ON • L5N 2X7 • 1.905.702.7851 • http://skkynet.com

This is a good place to set up timers that will periodically read I/O registers and devices.

Table 28. Parameters

config - A pointer to the application configuration
object

void APP_ConfigurePoints (CAppConfig *config)

Configure the data points that this application will use. Here you can create data points
and supply them with change callback functions that will run in the main ETK thread
(mainThreadEntry). In the example code we also create two points for two on-board LEDs,
and a set of data points that can be randomly modified to provide a source of changing
data during testing.

Table 29. Parameters

config - A pointer to the application configuration
object

void APP_ConfigureModbus (CAppConfig *config)
Configures the Modbus connection.

This function opens a Modbus TCP connection and then configures it based on a mapping
table between Modbus I/O addresses and data point names. It then starts the connection
process, which will happen asynchronously.

In the sample code we use a static table to configure the Modbus I/O. Each entry in this
table provides a mapping between a Modbus address and a DataHub / SkkyHub data
point. The data point is identified by name, while the Modbus value is identified by its
zero-based address. The data type of the Modbus value may be different from the data
type transmitted to the DataHub. In addition, you can provide a linear transformation for
each point so your application generates and consumes data in engineering units rather
than raw transducer units. See Modbus Addressing for more information on Modbus
addressing.

Table 30. Parameters

config - The ETK application configuration object.
In this implementation the Modbus slave
address and port number are provided
here.

void APP_ConfigureUserThreads (CAppConfig *config)

Start any threads that will use the Skkynet ETK here. This is not strictly necessary, and
you can eliminate this file from your application altogether. In that case, you will need
to provide an alternate point of entry into your code, either through the the mainline or
through one of the other config_* files.

Table 31. Parameters

config - A pointer to the application configuration
object

space
API

space
42

© Skkynet Cloud Systems, Inc • 2233 Argentia Road • Suite 306 • Mississauga • ON • L5N 2X7 • 1.905.702.7851 • http://skkynet.com

void APP_InitializeConfig (CAppConfig *config)

Initialize the application configuration object. This object must be allocated before entry to
this function, and is typically created as a global static variable in the mainline.c mainline.
You can modify this structure to suit your application requirements.

In the example code the contents of this object are hard-coded. In a production system
you may prefer to store this information in persistent storage and then read it into the
CAppConfig object here.

Table 32. Parameters

config

Define Documentation

#define APP_HeapSize_

The number of bytes in the Skkynet ETK memory heap. See APP_HeapSize for more
information.

Definition at line 66 of file config_app.h

The Documentation for this define was generated from the following file:

• config_app.h

#define INIT_DNS

Allow the mainline to assign the DNS server

Definition at line 116 of file config_app.h

The Documentation for this define was generated from the following file:

• config_app.h

#define INIT_DHCP

Allow the mainline to assign the IP address using DHCP

Definition at line 122 of file config_app.h

The Documentation for this define was generated from the following file:

• config_app.h

#define INIT_GATEWAY

Allow the mainline to assign the IP gateway

Definition at line 125 of file config_app.h

The Documentation for this define was generated from the following file:

• config_app.h

space
API

space
43

© Skkynet Cloud Systems, Inc • 2233 Argentia Road • Suite 306 • Mississauga • ON • L5N 2X7 • 1.905.702.7851 • http://skkynet.com

#define STATIC_SERVER_IP_ADDRESS

The static IP address if DHCP is not enabled

Definition at line 127 of file config_app.h

The Documentation for this define was generated from the following file:

• config_app.h

#define STATIC_SERVER_NETMASK

The netmask if DHCP is not enabled

Definition at line 128 of file config_app.h

The Documentation for this define was generated from the following file:

• config_app.h

#define STATIC_DNS_SERVER_ADDRESS

The DNS server address if DHCP is not enabled

Definition at line 129 of file config_app.h

The Documentation for this define was generated from the following file:

• config_app.h

#define STATIC_IP_GATEWAY_ADDRESS

The gateway address if DHCP is not enabled

Definition at line 130 of file config_app.h

The Documentation for this define was generated from the following file:

• config_app.h

config_modbus.c

Brief Description

Configure connections and I/O mappings for Modbus slave connections.

Detailed Description

Classes

• struct ModbusPointSpec

Typedefs

• typedef struct ModbusPointSpec ModbusPointSpec

space
API

space
44

© Skkynet Cloud Systems, Inc • 2233 Argentia Road • Suite 306 • Mississauga • ON • L5N 2X7 • 1.905.702.7851 • http://skkynet.com

Variables

• static ModbusPointSpec PointSpecs

Functions

• static int mb_timer_handler (CTimer * timer, void * userdata)

• static void pointChangeHandler (CTCPConnectionContainer * cc, CTCPConnection *
writer, CDataHubPoint * point, void * data)

• void APP_ConfigureModbus (CAppConfig * config)

Typedef Documentation

typedef struct ModbusPointSpec ModbusPointSpec

Variable Documentation

ModbusPointSpec PointSpecs[]

Function Documentation

static int mb_timer_handler (CTimer *timer, void *userdata)

The ETK Modbus implementation uses a timer to poll the slave. This is the timer handler
required to perform that poll.

Table 33. Parameters

timer - A pointer to the CTimer object for this
timer.

userdata - User data provided when the timer was
created. In this case it is a pointer to the
ModbusConnection object.

Returns:

static void pointChangeHandler (CTCPConnectionContainer *cc, CTCPConnection *writer,
CDataHubPoint *point, void *data)

A point change handler to act as an example. In this case, we do not need to do any extra
processing when a point changes, as the ETK engine will handle sending any changes to
writable Modbus registers when a change event occurs. The Modbus engine will deal with
transformations between engineering and raw units.

Table 34. Parameters

cc - A pointer to the CTCPConnectionContainer
that holds this connection

writer - A pointer to the CTCPConnection object
that represents the connection that
generated this change event

space
API

space
45

© Skkynet Cloud Systems, Inc • 2233 Argentia Road • Suite 306 • Mississauga • ON • L5N 2X7 • 1.905.702.7851 • http://skkynet.com

point - The point that has changed.

data - User data that was supplied when this
change handler was configured.

void APP_ConfigureModbus (CAppConfig *config)
Configures the Modbus connection.

This function opens a Modbus TCP connection and then configures it based on a mapping
table between Modbus I/O addresses and data point names. It then starts the connection
process, which will happen asynchronously.

In the sample code we use a static table to configure the Modbus I/O. Each entry in this
table provides a mapping between a Modbus address and a DataHub / SkkyHub data
point. The data point is identified by name, while the Modbus value is identified by its
zero-based address. The data type of the Modbus value may be different from the data
type transmitted to the DataHub. In addition, you can provide a linear transformation for
each point so your application generates and consumes data in engineering units rather
than raw transducer units. See Modbus Addressing for more information on Modbus
addressing.

Table 35. Parameters

config - The ETK application configuration object.
In this implementation the Modbus slave
address and port number are provided
here.

config_points.c

Brief Description

Configure the data points that this application will process.

Detailed Description

Create data points here. We can declare a data point as either PT_FLAG_READABLE or
PT_FLAG_READWRITE. If the point is PT_FLAG_READABLE then it is marked as read-only
in the DataHub, meaning that it can only be changed by this server, and not by any client
that is consuming it. If the point is PT_FLAG_READWRITE then the DataHub will show it as
writable and a client application can change it. If a client changes a writable point then the
change will propagate back to this application and we will have an opportunity to process
the data change, for example by sending a message to the serial port. Marking a point as
writable does not automatically register it for changes. That needs to be done on a per-
connection basis.

Variables

• int enableTestData

Functions

• static void hostHandshakeHandler (CTCPConnectionContainer * cc, CTCPConnection *
writer, CDataHubPoint * point, void * data)

space
API

space
46

© Skkynet Cloud Systems, Inc • 2233 Argentia Road • Suite 306 • Mississauga • ON • L5N 2X7 • 1.905.702.7851 • http://skkynet.com

• static void ledHandler (CTCPConnectionContainer * cc, CTCPConnection * writer,
CDataHubPoint * point, void * data)

• void APP_ConfigurePoints (CAppConfig * config)

Variable Documentation

int enableTestData

Function Documentation

void hostHandshakeHandler (CTCPConnectionContainer *cc, CTCPConnection *writer,
CDataHubPoint *point, void *data)

Handle onPointChange for the host handshake. When handshake_host changes to 1,
invert handshake_client and set handshake_host back to 0.

Table 36. Parameters

cc - The CTCPConnectionContainer that
manages this data

writer - A pointer to the client object that
originated this data change

point - The data point that changed

data - User data supplied to
CDataHubPoint_SetChangeHandler

void ledHandler (CTCPConnectionContainer *cc, CTCPConnection *writer, CDataHubPoint *point,
void *data)

Handle onPointChange for the two LEDs. We are sending the LED number (0 or 1) in the
user data field. When we receive a value, we write that to the LED I/O address. If the LEDs
are 4-state (off, green, red, yellow) then write two bits from the incoming value, otherwise
write one bit.

Table 37. Parameters

cc - The CTCPConnectionContainer that
manages this data

writer - A pointer to the client object that
originated this data change

point - The data point that changed

vLedNum - User data. In this case, the LED number (0
or 1) cast to void*

void APP_ConfigurePoints (CAppConfig *config)

Configure the data points that this application will use. Here you can create data points
and supply them with change callback functions that will run in the main ETK thread
(mainThreadEntry). In the example code we also create two points for two on-board LEDs,

space
API

space
47

© Skkynet Cloud Systems, Inc • 2233 Argentia Road • Suite 306 • Mississauga • ON • L5N 2X7 • 1.905.702.7851 • http://skkynet.com

and a set of data points that can be randomly modified to provide a source of changing
data during testing.

Table 38. Parameters

config - A pointer to the application configuration
object

config_threads.c

Brief Description

Configure user threads that will interact with the Skkynet ETK.

Detailed Description

Create your ETK-enabled threads here. You can perform any processing you like in these
threads, so long as you periodically visit the ETK message queue to consume any data
point changes sent to your thread. If your thread is a pure producer of data then it does
not need to service the queue. The queue is designed to hold at most one message per
data point, so if you do not process the queue in a reasonable time then stale values for a
point will be discarded in favor of newer values. The message queue only guarantees that
it will deliver the most recent value of a point to your thread.

Variables

• int enableTestData

• static TX_THREAD testThread

Functions

• static void startAsyncTestThread (CAppConfig * config)

• void APP_ConfigureUserThreads (CAppConfig * config)

• static void test_thread_entry (ULONG threadData)

Variable Documentation

int enableTestData

TX_THREAD testThread

Function Documentation

static void startAsyncTestThread (CAppConfig *config)

void APP_ConfigureUserThreads (CAppConfig *config)

Start any threads that will use the Skkynet ETK here. This is not strictly necessary, and
you can eliminate this file from your application altogether. In that case, you will need
to provide an alternate point of entry into your code, either through the the mainline or
through one of the other config_* files.

space
API

space
48

© Skkynet Cloud Systems, Inc • 2233 Argentia Road • Suite 306 • Mississauga • ON • L5N 2X7 • 1.905.702.7851 • http://skkynet.com

Table 39. Parameters

config - A pointer to the application configuration
object

static void test_thread_entry (ULONG threadData)

config_timers.c

Brief Description

Configure single-threaded timers.

Detailed Description

Variables

• static char * TestBanner

• static int TestIndex

Functions

• static int timer_handler (CTimer * timer, void * userdata)

• static int watchdog_handler (CTimer * timer, void * userdata)

• void APP_ConfigureTimers (CAppConfig * config)

Variable Documentation

char* TestBanner[]

int TestIndex

Function Documentation

static int timer_handler (CTimer *timer, void *userdata)

static int watchdog_handler (CTimer *timer, void *userdata)

void APP_ConfigureTimers (CAppConfig *config)

Configure the timers that will run in this application. Here you can create CTimer instances
and supply them with tick and expiry callback functions that will run in the main ETK
thread (mainThreadEntry). In the example code we create two timers, one to produce
sample data at 10 Hz, and the other to produce a watchdog value at 1 Hz.

This is a good place to set up timers that will periodically read I/O registers and devices.

Table 40. Parameters

config - A pointer to the application configuration
object

space
API

space
49

© Skkynet Cloud Systems, Inc • 2233 Argentia Road • Suite 306 • Mississauga • ON • L5N 2X7 • 1.905.702.7851 • http://skkynet.com

mainline.c

Brief Description

Skkynet ETK mainline.

Detailed Description

This is the main entry point for a typical application using the Skkynet Embedded Toolkit. It
provides the following:

Assignment of IP address using DHCP:

• requires the nx_dhcp component in your application
• #define INIT_DHCP in the file config_app.h to enable

Configuration of DNS server address:

• requires the nx_dnx component in your application
• #define INIT_DNS in the file config_app.h to enable
• If INIT_DHCP is also set, then use the DNS server returned from the DHCP server.

Initiate a mainline procedure that sets up the ETK and calls your functions to define timer
handlers, data points and Modbus I/O mappings.

Variables

• static CAppConfig AppConfig

• TX_THREAD tick_thread

• TX_THREAD main_thread

• NX_PACKET_POOL pool_0

• NX_IP ip_0

• NX_DNS dns_0

• TX_THREAD dns_thread

• NX_DHCP dhcp_0

• TX_THREAD dhcp_thread

• ULONG error_counter

• static ULONG packet_pool_area

• static ULONG have_tick

• static ULONG entry_count

Functions

• VOID SYNERGY_ETHERNET_DRIVER (NX_IP_DRIVER *)

space
API

space
50

© Skkynet Cloud Systems, Inc • 2233 Argentia Road • Suite 306 • Mississauga • ON • L5N 2X7 • 1.905.702.7851 • http://skkynet.com

• static void tickThreadEntry (ULONG thread_input)

• void mainThreadEntry (ULONG thread_input)

• void * init_malloc_memory (void * first_unused_memory, int heapSize)

• INT bsd_initialize (NX_IP * default_ip, NX_PACKET_POOL * default_pool, CHAR *
bsd_thread_stack_area, ULONG bsd_thread_stack_size, UINT bsd_thread_priority)

• void dns_thread_entry (ULONG i)

• void dhcp_thread_entry (ULONG i)

• VOID hook_nx_ether_driver (NX_IP_DRIVER * driver)

• void tx_application_define_user (void * first_unused_memory)

• static void kick_timer (ULONG ptr)

• static int socket_close_timer_handler (CTimer * timer, void * userdata)

• void my_postConnectHook (CTCPClient * thisptr)

• void APP_ConfigurePoints (CAppConfig * config)

• void APP_ConfigureTimers (CAppConfig * config)

• void APP_ConfigureModbus (CAppConfig * config)

• void APP_PointChangeHandler (CAppConfig * config, CTCPConnection * writer,
CDataHubPoint * point)

• void APP_ConfigureUserThreads (CAppConfig * config)

• void APP_InitializeConfig (CAppConfig * config)

• void mainline_onPointChange (CTCPConnectionContainer * thisptr, CTCPConnection *
writer, CDataHubPoint * point)

Defines

• #define SERVER_IP_ADDRESS IP_ADDRESS(0,0,0,0) /* Set the IP address to 0 for DHCP */

• #define SERVER_NETMASK 0x0UL /* Set the netmask to 0 for DHCP */

• #define PACKET_PAYLOAD_SIZE (1536 + 32)

Variable Documentation

CAppConfig AppConfig

A global variable containing the application configuration object. This is defined in
config_app.c and config_app.h. You will need to modify config_app.c to set some
connection information, and you may add extra members in config_app.h as necessary for
your application.

space
API

space
51

© Skkynet Cloud Systems, Inc • 2233 Argentia Road • Suite 306 • Mississauga • ON • L5N 2X7 • 1.905.702.7851 • http://skkynet.com

TX_THREAD tick_thread

TX_THREAD main_thread

NX_PACKET_POOL pool_0

NX_IP ip_0

NX_DNS dns_0

TX_THREAD dns_thread

NX_DHCP dhcp_0

TX_THREAD dhcp_thread

ULONG error_counter

ULONG packet_pool_area[PACKET_POOL_SIZE/sizeof(ULONG)]

ULONG have_tick

This is a thread that just updates a global variable when a timer tick occurs. This is used to
ensure that we only increment the ETK timers when a tick happens, rather than relying on
select() to provide accurate timing.

Table 41. Parameters

ptr - ignored

ULONG entry_count

Function Documentation

VOID SYNERGY_ETHERNET_DRIVER (NX_IP_DRIVER *)

The Ethernet driver that your application uses will depend on the hardware. If there
are multiple Ethernet interfaces then you must choose which one will be used for
this application. This is set through a definition in config_app.h, and will typically be
nx_ether_driver_eth0 or eth1.

static void tickThreadEntry (ULONG thread_input)

void mainThreadEntry (ULONG thread_input)

This is the Skkynet ETK main thread function. It creates a container to hold data points,
TCP connections, Modbus connections, timers and user thread information. It then
triggers the connection process for TCP connections and enters an infinite loop where is
continuously monitors sockets for data, handles asynchronous messages coming from
user thread and manages timers.

Table 42. Parameters

thread_input - ignored

space
API

space
52

© Skkynet Cloud Systems, Inc • 2233 Argentia Road • Suite 306 • Mississauga • ON • L5N 2X7 • 1.905.702.7851 • http://skkynet.com

void* init_malloc_memory (void *first_unused_memory, int heapSize)

INT bsd_initialize (NX_IP *default_ip, NX_PACKET_POOL *default_pool, CHAR
*bsd_thread_stack_area, ULONG bsd_thread_stack_size, UINT bsd_thread_priority)

void dns_thread_entry (ULONG i)

This is the entry point for the DNS thread. The purpose of this thread is to create a DNS
structure and then exit. If we are not using DHCP then we also declare the statically
defined DNS server here.

Table 43. Parameters

i - Thread start parameter. Ignored.

void dhcp_thread_entry (ULONG i)

The purpose of this thread is to start the DHCP client and request an IP address. Loop
indefinitely until the DHCP server responds with an address. Once the DHCP server
responds, add the DNS entry from the DHCP server to the DNS control structre if we are
using the DNS component.

Table 44. Parameters

i - Thread start parameter. Ignored.

VOID hook_nx_ether_driver (NX_IP_DRIVER *driver)

void tx_application_define_user (void *first_unused_memory)

This is the entry point from the Synergy start-up code. This is the first call that we should
modify. The code that runs up to this point is auto-generated by the Synergy project
generator.

Here we set up networking and start the DNS and DHCP configuration threads, then start
the mainline thread that configures the Skkynet ETK and implements the event loop.

Table 45. Parameters

first_unused_memory - passed by the system. We can create stack
space and heap after this point.

static void kick_timer (ULONG ptr)

static int socket_close_timer_handler (CTimer *timer, void *userdata)

This is a timer callback that will close a socket when the timer fires. Its purpose is to
provide a transmission delay before dropping a socket to give the buffered data a chance
to be transmitted.

Table 46. Parameters

timer

space
API

space
53

© Skkynet Cloud Systems, Inc • 2233 Argentia Road • Suite 306 • Mississauga • ON • L5N 2X7 • 1.905.702.7851 • http://skkynet.com

userdata

Returns: Always returns -1

void my_postConnectHook (CTCPClient *thisptr)

Override the onConnect event. This event is called when an outbound connection is
successfully made. At thisptr point we may declare data points to the DataHub and
register any data points that we want to receive from it.

Table 47. Parameters

thisptr - Pointer to the TCP client structure that has
just connected to its server.

void APP_ConfigurePoints (CAppConfig *config)

Configure the data points that this application will use. Here you can create data points
and supply them with change callback functions that will run in the main ETK thread
(mainThreadEntry). In the example code we also create two points for two on-board LEDs,
and a set of data points that can be randomly modified to provide a source of changing
data during testing.

Table 48. Parameters

config - A pointer to the application configuration
object

void APP_ConfigureTimers (CAppConfig *config)

Configure the timers that will run in this application. Here you can create CTimer instances
and supply them with tick and expiry callback functions that will run in the main ETK
thread (mainThreadEntry). In the example code we create two timers, one to produce
sample data at 10 Hz, and the other to produce a watchdog value at 1 Hz.

This is a good place to set up timers that will periodically read I/O registers and devices.

Table 49. Parameters

config - A pointer to the application configuration
object

void APP_ConfigureModbus (CAppConfig *config)
Configures the Modbus connection.

This function opens a Modbus TCP connection and then configures it based on a mapping
table between Modbus I/O addresses and data point names. It then starts the connection
process, which will happen asynchronously.

In the sample code we use a static table to configure the Modbus I/O. Each entry in this
table provides a mapping between a Modbus address and a DataHub / SkkyHub data
point. The data point is identified by name, while the Modbus value is identified by its
zero-based address. The data type of the Modbus value may be different from the data
type transmitted to the DataHub. In addition, you can provide a linear transformation for

space
API

space
54

© Skkynet Cloud Systems, Inc • 2233 Argentia Road • Suite 306 • Mississauga • ON • L5N 2X7 • 1.905.702.7851 • http://skkynet.com

each point so your application generates and consumes data in engineering units rather
than raw transducer units. See Modbus Addressing for more information on Modbus
addressing.

Table 50. Parameters

config - The ETK application configuration object.
In this implementation the Modbus slave
address and port number are provided
here.

void APP_PointChangeHandler (CAppConfig *config, CTCPConnection *writer, CDataHubPoint
*point)

This function, if supplied, will be called in the mainline thread whenever a data point value
or quality changes. You can use this do perform logging or other general point handling.
Specific handlers can also be attached on a per-point basis.

This function will be called even if your own code changes the value, so be careful not to
create infinite loops where you change a point in your code, then enter the point handler
and change the point again.

Table 51. Parameters

config - A pointer to the application configuration
structure

writer - A pointer to the connection that triggered
this point change

point - The point that changed

void APP_ConfigureUserThreads (CAppConfig *config)

Start any threads that will use the Skkynet ETK here. This is not strictly necessary, and
you can eliminate this file from your application altogether. In that case, you will need
to provide an alternate point of entry into your code, either through the the mainline or
through one of the other config_* files.

Table 52. Parameters

config - A pointer to the application configuration
object

void APP_InitializeConfig (CAppConfig *config)

Initialize the application configuration object. This object must be allocated before entry to
this function, and is typically created as a global static variable in the mainline.c mainline.
You can modify this structure to suit your application requirements.

In the example code the contents of this object are hard-coded. In a production system
you may prefer to store this information in persistent storage and then read it into the
CAppConfig object here.

space
API

space
55

© Skkynet Cloud Systems, Inc • 2233 Argentia Road • Suite 306 • Mississauga • ON • L5N 2X7 • 1.905.702.7851 • http://skkynet.com

Table 53. Parameters

config

void mainline_onPointChange (CTCPConnectionContainer *thisptr, CTCPConnection *writer,
CDataHubPoint *point)

Define Documentation

#define SERVER_IP_ADDRESS

If you are using DHCP to assign an IP address to this device then the IP address and
netmask should be set to zero here. If you are not using DHCP then you need to provide
the information in config_app.h

Definition at line 53 of file mainline.c

The Documentation for this define was generated from the following file:

• mainline.c

space
Classes

space
56

© Skkynet Cloud Systems, Inc • 2233 Argentia Road • Suite 306 • Mississauga • ON • L5N 2X7 • 1.905.702.7851 • http://skkynet.com

Classes

Arg struct Reference

Public Attributes

• struct Cell * name

• struct Cell * dflt

• struct Cell * type

• int16_t flags

• int16_t _pad

Buf struct Reference

Public Attributes

• uint32_t allocated

• uint32_t len

• char * str

BufferSpec struct Reference

Classes

Public Attributes

• int address

• int addrlen

• int npoints

• uint8_t * bits

• uint16_t * words

• void * mem

• union BufferSpec::@0 @1

Bytecode struct Reference

Public Attributes

• struct Cell * code

• struct Cell * value

space
Classes

space
57

© Skkynet Cloud Systems, Inc • 2233 Argentia Road • Suite 306 • Mississauga • ON • L5N 2X7 • 1.905.702.7851 • http://skkynet.com

• struct Cell * stack

• int stackdepth

CAppConfig struct Reference

#include <config_app.h>

Public Attributes

• CTCPConnectionContainer * cc

• CTCPClient * client

• int useWebsocket

• int useSsl

• char * hostname

• char * portname

• char * domain

• char * username

• char * password

• int pwtype

• int pollUsecs

• int retrySecs

• int disconnectSecs

• MSCLOCK heartbeat

• MSCLOCK timeout

• MSCLOCK retry

• int heapBytes

• char * modbusHost

• char * modbusPort

• int modbusSlaveId

• int modbusPollMs

• ULONG macAddressLsw

• ULONG macAddressMsw

space
Classes

space
58

© Skkynet Cloud Systems, Inc • 2233 Argentia Road • Suite 306 • Mississauga • ON • L5N 2X7 • 1.905.702.7851 • http://skkynet.com

Detailed Description

Defines an application-specific structure containing information that is required during
start-up. In the example code, this information is supplied in config_app.c. In other
instances this information might be stored as persistent configuration in flash memory.
An application developer should add or remove members in this structure to suit the
application requirements.

Definition at line 77 of file config_app.h

The Documentation for this struct was generated from the following file:

• config_app.h

Member Documentation

CTCPConnectionContainer* CAppConfig::cc

Needed by many ETK API calls

Definition at line 78 of file config_app.h

The Documentation for this struct was generated from the following file:

• config_app.h

CTCPClient* CAppConfig::client

The client that connects to the DataHub or SkkyHub server

Definition at line 79 of file config_app.h

The Documentation for this struct was generated from the following file:

• config_app.h

int CAppConfig::useWebsocket

0 or 1, indicating whether to connect using WebSocket

Definition at line 80 of file config_app.h

The Documentation for this struct was generated from the following file:

• config_app.h

int CAppConfig::useSsl

0 or 1, indicating whether to use SSL (not implemented)

Definition at line 81 of file config_app.h

The Documentation for this struct was generated from the following file:

• config_app.h

space
Classes

space
59

© Skkynet Cloud Systems, Inc • 2233 Argentia Road • Suite 306 • Mississauga • ON • L5N 2X7 • 1.905.702.7851 • http://skkynet.com

char* CAppConfig::hostname

The name of the DataHub/SkkyHub server

Definition at line 82 of file config_app.h

The Documentation for this struct was generated from the following file:

• config_app.h

char* CAppConfig::portname

The port number (as a string) to connect to on the DataHub/SkkyHub server

Definition at line 83 of file config_app.h

The Documentation for this struct was generated from the following file:

• config_app.h

char* CAppConfig::domain

The data domain into which data will be stored

Definition at line 84 of file config_app.h

The Documentation for this struct was generated from the following file:

• config_app.h

char* CAppConfig::username

The user name for authentication on the server

Definition at line 85 of file config_app.h

The Documentation for this struct was generated from the following file:

• config_app.h

char* CAppConfig::password

The password for authentication on the server

Definition at line 86 of file config_app.h

The Documentation for this struct was generated from the following file:

• config_app.h

int CAppConfig::pwtype

The type of password encoding

Definition at line 87 of file config_app.h

space
Classes

space
60

© Skkynet Cloud Systems, Inc • 2233 Argentia Road • Suite 306 • Mississauga • ON • L5N 2X7 • 1.905.702.7851 • http://skkynet.com

The Documentation for this struct was generated from the following file:

• config_app.h

int CAppConfig::pollUsecs

The number of microseconds per poll. ThreadX has a 10ms tick, so this should be a
multiple of 10000

Definition at line 88 of file config_app.h

The Documentation for this struct was generated from the following file:

• config_app.h

int CAppConfig::retrySecs

The number of seconds between socket connection re-tries when connecting to the server

Definition at line 89 of file config_app.h

The Documentation for this struct was generated from the following file:

• config_app.h

int CAppConfig::disconnectSecs

The number of seconds to wait before disconnecting after a connection to the server is
made. This has the effect of periodically connecting and updating data, then disconnecting
again.

Definition at line 90 of file config_app.h

The Documentation for this struct was generated from the following file:

• config_app.h

MSCLOCK CAppConfig::heartbeat

The keep-alive heartbeat rate

Definition at line 91 of file config_app.h

The Documentation for this struct was generated from the following file:

• config_app.h

MSCLOCK CAppConfig::timeout

The keep-alive timeout. If no data or heartbeat is received from the server within this time,
disconnect the socket.

Definition at line 92 of file config_app.h

The Documentation for this struct was generated from the following file:

space
Classes

space
61

© Skkynet Cloud Systems, Inc • 2233 Argentia Road • Suite 306 • Mississauga • ON • L5N 2X7 • 1.905.702.7851 • http://skkynet.com

• config_app.h

MSCLOCK CAppConfig::retry

Internal. Use retrySecs instead.

Definition at line 93 of file config_app.h

The Documentation for this struct was generated from the following file:

• config_app.h

int CAppConfig::heapBytes

Internal. Holds the configured heap size.

Definition at line 96 of file config_app.h

The Documentation for this struct was generated from the following file:

• config_app.h

char* CAppConfig::modbusHost

The address of the Modbus slave device

Definition at line 99 of file config_app.h

The Documentation for this struct was generated from the following file:

• config_app.h

char* CAppConfig::modbusPort

The port number (as a string) for the Modbus slave device

Definition at line 100 of file config_app.h

The Documentation for this struct was generated from the following file:

• config_app.h

int CAppConfig::modbusSlaveId

The Modbus slave ID (1-254)

Definition at line 101 of file config_app.h

The Documentation for this struct was generated from the following file:

• config_app.h

int CAppConfig::modbusPollMs

The number of milliseconds between Modbus polls

space
Classes

space
62

© Skkynet Cloud Systems, Inc • 2233 Argentia Road • Suite 306 • Mississauga • ON • L5N 2X7 • 1.905.702.7851 • http://skkynet.com

Definition at line 102 of file config_app.h

The Documentation for this struct was generated from the following file:

• config_app.h

ULONG CAppConfig::macAddressLsw

The MAC address low 32 bits

Definition at line 105 of file config_app.h

The Documentation for this struct was generated from the following file:

• config_app.h

ULONG CAppConfig::macAddressMsw

The MAC address high 16 bits. The high 16 bits of this value must be zero

Definition at line 106 of file config_app.h

The Documentation for this struct was generated from the following file:

• config_app.h

CBufferedSocket struct Reference

Public Attributes

• CSocket * m_Socket

• char * m_InBuf

• datalen_t m_InBufLen

• datalen_t m_InBufMaxLen

• datalen_t m_InBufLimit

• char * m_OutBuf

• datalen_t m_OutBufDataLen

• datalen_t m_OutBufDataStart

• datalen_t m_OutBufMaxLen

• datalen_t m_OutBufLimit

• datalen_t m_GrowRate

• datalen_t m_MessageLen

• UINT32 m_WebSocketFraming

space
Classes

space
63

© Skkynet Cloud Systems, Inc • 2233 Argentia Road • Suite 306 • Mississauga • ON • L5N 2X7 • 1.905.702.7851 • http://skkynet.com

• bool m_IsIncomingWebSocketClient

• bool m_IsOutgoingWebSocketClient

• CWebSocketDecoder * m_WebSocketDecoder

• UINT8 * m_WebSocketBuffer

• bool m_WebSocketCloseSent

• BOOL m_SomethingSent

• BOOL m_SomethingReceived

• BOOL m_DiscardNextMessage

CCharBuffer struct Reference

Public Attributes

• datalen_t m_GrowSize

• datalen_t m_MaxLength

• datalen_t m_Length

• char * m_Buffer

CCommand struct Reference

Public Attributes

• char * m_Name

• int m_Minargs

• int m_Maxargs

• UT_pfCMD m_Pfunc

• char * m_Description

• int32_t m_UserI1

• int32_t m_UserI2

• void * m_UserV1

CCommandList struct Reference

Public Attributes

• CSortedPtrArray * m_Commands

space
Classes

space
64

© Skkynet Cloud Systems, Inc • 2233 Argentia Road • Suite 306 • Mississauga • ON • L5N 2X7 • 1.905.702.7851 • http://skkynet.com

CConnectionFactory struct Reference

Public Attributes

• pfCFCreate pfCreateConnection

CDataHubPoint struct Reference

#include <Point.h>

Public Attributes

• PT_stCPOINT m_Point

• int m_ReadOnlyCount

• pfPointPointChange m_OnChange

• void * m_OnChangeData

• PT_ClientBits m_ClientRegistered

• PT_ClientBits m_ClientPending

• PT_ClientBits m_ClientSyncing

Detailed Description

A data point.

Definition at line 170 of file Point.h

The Documentation for this struct was generated from the following file:

• Point.h

Cell struct Reference

Classes

Public Attributes

• unsigned long type

• unsigned long inttype

• unsigned long symmap_resolved

• unsigned long mark

• unsigned long freed

• unsigned long destroying

• Symbol sym

space
Classes

space
65

© Skkynet Cloud Systems, Inc • 2233 Argentia Road • Suite 306 • Mississauga • ON • L5N 2X7 • 1.905.702.7851 • http://skkynet.com

• EX_LONG lval

• EX_REAL rval

• Cons cons

• Buf buf

• Klass * klass

• Instance * inst

• Function * func

• Bytecode * bytecode

• Vector * vector

• Vector * hash

• File * file

• Type type

• Environment env

• void * cvoid

• union Cell::@8 v

CellList struct Reference

Public Attributes

• Cell ** cells

• Cell * memory

• int maxcells

• int firstfree

• int deferred

• char locked

• char unsafe

Cons struct Reference

Public Attributes

• struct Cell * car

• struct Cell * cdr

space
Classes

space
66

© Skkynet Cloud Systems, Inc • 2233 Argentia Road • Suite 306 • Mississauga • ON • L5N 2X7 • 1.905.702.7851 • http://skkynet.com

CSocket struct Reference

Public Attributes

• SOCKET m_RawSocket

• CSocket_pfRecv m_pfReceive

• CSocket_pfSend m_pfSend

• SSL * m_SSL

CSortedPtrArray struct Reference

Public Attributes

• void ** m_Elements

• int m_NElements

• int m_MaxElements

• int m_GrowSize

• int m_IsUnsorted

• UT_pfCOMPARE m_CmpFunc

• ET_Mutex m_Mutex

CTCPClient struct Reference

Detailed Description

A CTCPClient is a connection from the ETK application to a server. That server can be
the Skkynet Secure Cloud Service, Cogent DataHub running in MS-Windows, or Cascade
DataHub running in Linux. Its purpose is to provide access to a set of data points that
consist of a (name, value, timestamp, quality) tuple for each point. Whenever a data point
changes in the server, it is optionally transimitted to the ETK application via the CTCPClient
instance, and then retransmitted from the ETK application to other connected clients or
servers, or transmitted to connected actuators, PLCs or other hardware.

CTCPClient connections can be either plain-text or SSL, depending on the user's choice
and the availability of an SSL implementation on the embedded device.

CTCPClient connections can be via a direct socket connection, or via a WebSocket. If the
connection is via a WebSocket then the connection can also specify a forward proxy
server to use when making the connection. Proxies that require HTTP CONNECT are not
supported.

CTCPClient derives from CTCPConnection. All CTCPConnection functions will accept a
CTCPClient argument.

Definition at line 15 of file TCPClient.c

space
Classes

space
67

© Skkynet Cloud Systems, Inc • 2233 Argentia Road • Suite 306 • Mississauga • ON • L5N 2X7 • 1.905.702.7851 • http://skkynet.com

The Documentation for this struct was generated from the following file:

• TCPClient.c

CTCPConnection struct Reference

Public Attributes

• SOCKET m_Socket

• int m_Port

• CBufferedSocket * m_BufSocket

• int m_ConnType

• bool m_IsBinary

• int32_t m_Flags

• int m_Errno

• int m_SSLErrno

• CTimer * m_HeartbeatTimer

• CTimer * m_TimeoutTimer

• char * m_DomainName

• MSCLOCK m_Heartbeat

• MSCLOCK m_Timeout

• bool m_ConnectInProgress

• struct CConnectionFactory * m_ConnFactory

• CCharBuffer * m_PendingToClient

• struct CTCPConnectionContainer * m_Container

• int m_Id

• CSortedPtrArray * m_PendingOutputPoints

• CTimer * m_ConnTimer

• char * m_Hostname

• char * m_Portname

• MSCLOCK m_RetrySecs

• MSCLOCK m_DisconnectSecs

• bool m_AutoRegisterDomain

space
Classes

space
68

© Skkynet Cloud Systems, Inc • 2233 Argentia Road • Suite 306 • Mississauga • ON • L5N 2X7 • 1.905.702.7851 • http://skkynet.com

• CSortedPtrArray * m_RegisteredPoints

• char * m_Username

• char * m_Password

• void * m_Userdata

• char * m_ProxyHostname

• char * m_ProxyPortname

• pfConnAttach Attach

• pfIntHandler0 cbSocketReadHandler

• pfIntHandler0 cbSocketWriteHandler

• pfIntHandler0 cbSocketExceptionHandler

• pfVoidHandler0 cbTimeoutHandler

• pfVoidHandler0 cbReconnectHandler

• pfVoidHandler0 CloseSocket

• pfVoidHandler0 SocketLostHandler

• pfVoidHandler0 onConnect

• pfVoidHandler0 preConnectHook

• pfVoidHandler0 postConnectHook

• pfVoidHandler0 onDisconnect

• pfVoidHandler0 preDisconnectHook

• pfVoidHandler0 postDisconnectHook

• pfVoidHandler0 postConnectionFailedHook

• pfVoidHandler0 onNewData

• pfVoidHandler0 onDelete

• pfPointWrite onPointWrite

• pfPointChange onPointChange

• pfCmdConnect onCmdConnect

Detailed Description

The CTCPConnection structure is the base structure for connections that can be
represented as a file descriptor and managed using select, read, write, etc. This is
generally TCP socket in any operating system with a BSD socket implementation, as well

space
Classes

space
69

© Skkynet Cloud Systems, Inc • 2233 Argentia Road • Suite 306 • Mississauga • ON • L5N 2X7 • 1.905.702.7851 • http://skkynet.com

as a serial connection on Un*x style systems like Linux. Both client and server connections
use this structure as the basis for their implementations.

TCP socket connections must be made to the Skkynet Secure Cloud Service or to a Cogent
DataHub running elsewhere. Serial connections are normally used to communicate with
attached sensors or other equipment. Normally you should not create a CTCPConnection
directly, but instead create a CTCPClient.

Serial connections are implemented as CTCPClient, with a different constructor. To create
a serial client, call CSerialClient_New. The result will be a CTCPClient pointer that talks to
the serial port.

Definition at line 60 of file TCPConnection.h

The Documentation for this struct was generated from the following file:

• TCPConnection.h

CTCPConnectionContainer struct Reference

Public Attributes

• CSortedPtrArray * m_Connections

• CSortedPtrArray * m_Deletions

• CSortedPtrArray * m_Timers

• CSortedPtrArray * m_Points

• CCommandList * m_CommandList

• MSCLOCK m_TimerLastTime

• CTimer * m_CleanupTimer

• int m_IsTerminating

• int m_IsPreDeleted

• pfContainerPointChange onPointChange

• EtkThread * m_PseudoThread

• CTCPConnection * m_AllConnections[MAX_CLIENTS]

• ET_Mutex m_CreateMutex

Detailed Description

The CTCPConnectionContainer structure is the top-level construct for managing
connections to TCP and serial clients and timers. Data points are managed from the
connection container, and all connections in the container share the same data points.
You must create one of these during your application initialization.

Definition at line 32 of file TCPConnectionContainer.h

space
Classes

space
70

© Skkynet Cloud Systems, Inc • 2233 Argentia Road • Suite 306 • Mississauga • ON • L5N 2X7 • 1.905.702.7851 • http://skkynet.com

The Documentation for this struct was generated from the following file:

• TCPConnectionContainer.h

CTimer struct Reference

#include <Timer.h>

Public Attributes

• int m_Active

• int m_AutoDelete

• int m_Deleted

• MSCLOCK m_Delay

• MSCLOCK m_Repeat

• MSCLOCK m_ExpiryTime

• void * m_Userdata

• UT_pfTIMER m_ExpireCallback

• UT_pfTIMER m_DeleteCallback

• UT_pfTIMERTICK m_TickCallback

• struct CTCPConnectionContainer * m_TimerContainer

Detailed Description

A single-threaded timer based on the main event loop tick. You should not normally need
to examine or modify the contents of this structure.

Definition at line 52 of file Timer.h

The Documentation for this struct was generated from the following file:

• Timer.h

CWebSocketDecoder struct Reference

Public Attributes

• int m_Protocol

• UINT64 m_PayloadLength

• UINT64 m_PayloadPosition

• int m_PayloadLengthFieldSize

• UINT8 m_MaskingKey[4]

space
Classes

space
71

© Skkynet Cloud Systems, Inc • 2233 Argentia Road • Suite 306 • Mississauga • ON • L5N 2X7 • 1.905.702.7851 • http://skkynet.com

• int m_IsFinal

• int m_Opcode

• int m_IsMasked

• UINT8 m_Frame[14]

• int m_CurrentFrameBytesReceived

• int m_CurrentFrameLength

• int m_CloseReceived

• int m_ControlFrameReceived

Environment struct Reference

Public Attributes

• struct Scope ** scopes

• unsigned short nscopes

• unsigned short maxscopes

• unsigned short temporary

ETK_Api struct Reference

Public Attributes

• CTCPConnectionContainer * cc

• CTCPClient * client

• CTCPConnection * threadConnection

• EtkThread * thread

EtkThread struct Reference

Public Attributes

• MessageQueue * toThread

• MessageQueue * fromThread

• pthread_t id

• int err

• int isEnabled

• int isThreadActive

space
Classes

space
72

© Skkynet Cloud Systems, Inc • 2233 Argentia Road • Suite 306 • Mississauga • ON • L5N 2X7 • 1.905.702.7851 • http://skkynet.com

• struct EtkThreadData * data

• void * userdata

EtkThreadData struct Reference

Public Attributes

• pfThreadFunction startRoutine

• EtkThread * thread

EtkThreadStruct struct Reference

Public Attributes

• EtkThread * thread

• ThreadMessage * message

• void * userdata

• ETK_MessageHandler handler

File struct Reference

Public Attributes

• struct Cell * cname

• void * fptr

• void * lexbuf

• int32_t flags

• int32_t intdata

• int32_t linenum

• unsigned char ckey

• unsigned char cmask

• int16_t bufchar

• void * scanner

• void * scanner_state

• pfnOpen openfn

• pfnClose closefn

• pfnReopen reopenfn

space
Classes

space
73

© Skkynet Cloud Systems, Inc • 2233 Argentia Road • Suite 306 • Mississauga • ON • L5N 2X7 • 1.905.702.7851 • http://skkynet.com

• pfnFlush flushfn

• pfnAttach attachfn

• pfnPut putfn

• pfnGet getfn

• pfnUnget ungetfn

• pfnRead readfn

• pfnWrite writefn

• pfnWaiting waitingfn

• pfnSeek seekfn

• pfnTell tellfn

• pfnDestroyScanner destroyscannerfn

Function struct Reference

Public Attributes

• Lambda lambda

• char * cname

• struct Cell * lname

GCContext struct Reference

Public Attributes

• int denied

• void * heap

• int pargbase

• int pstacktop

• int eargbase

• int estacktop

Heap struct Reference

Public Attributes

• CellList ** lists

• int nlists

space
Classes

space
74

© Skkynet Cloud Systems, Inc • 2233 Argentia Road • Suite 306 • Mississauga • ON • L5N 2X7 • 1.905.702.7851 • http://skkynet.com

• int maxlists

• int lastfail

• int freecount

• int heapsize

• int lowlimit

Instance struct Reference

Public Attributes

• struct Cell * klass

• Buf rawdata

• int32_t flags

• struct Cell * vars

Klass struct Reference

Public Attributes

• struct Cell * name

• struct Cell * superclass

• struct Cell * cvars

• struct Cell * ivars

• struct Cell * localcvars

• struct Cell * localivars

• pfnClassConstructor c_constructor

• pfnClassDestructor c_destructor

Lambda struct Reference

Classes

Public Attributes

• uint8_t flags

• uint8_t minargs

• uint16_t maxargs

• Arg * args

space
Classes

space
75

© Skkynet Cloud Systems, Inc • 2233 Argentia Road • Suite 306 • Mississauga • ON • L5N 2X7 • 1.905.702.7851 • http://skkynet.com

• Arg rettype

• struct Cell * env

• EX_pfLISPFN c

• struct Cell * l

• struct Cell * b

• union Lambda::@6 code

LispInterpreter struct Reference

Public Attributes

• uint32_t gc_denied

• uint32_t debug_info

• uint32_t use_signalheap

• uint32_t use_protectedheap

• uint32_t destroying

• uint32_t breaking

• uint32_t returning

• uint32_t throwing

• uint32_t runtime_type_checking

• short cellsize

• short blocksize

• Cell * nil

• Cell * truecell

• Cell * undef

• Cell * dot

• Cell * eof

• Cell * eol

• Cell * quote

• Cell * backquote

• Cell * comma

• Cell * commasplice

space
Classes

space
76

© Skkynet Cloud Systems, Inc • 2233 Argentia Road • Suite 306 • Mississauga • ON • L5N 2X7 • 1.905.702.7851 • http://skkynet.com

• Cell * let

• Cell * progn

• Cell * ifsym

• Cell * set

• Cell * setq

• Cell * setqq

• Cell * whilesym

• Cell * localsym

• Cell * eval

• Cell * defun

• Cell * defvar

• Cell * and

• Cell * or

• Cell * constructor

• Cell * destructor

• Cell * fstdin

• Cell * fstdout

• Cell * fstderr

• Cell * andtype

• Cell * andnoeval

• Cell * andoptional

• Cell * andrest

• Cell * andconst

• Cell * andexport

• Cell * andimport

• Cell * retval

• ValueStack env_stack

• ValueStack scope_cache

• Cell * current_env

• Cell * global_env

space
Classes

space
77

© Skkynet Cloud Systems, Inc • 2233 Argentia Road • Suite 306 • Mississauga • ON • L5N 2X7 • 1.905.702.7851 • http://skkynet.com

• Cell * global_symtab

• Cell * base_types

• Cell * base_type_names

• ValueStack variable_stack

• PointerStack protect_stack

• ValueStack vector_stack

• ValueStack vector_ind_stack

• ValueStack environment_cache

• ValueStack function_stack

• ValueStack error_stack

• ValueStack try_stack

• Cell * smallints

• int threadno

• struct Heap * currentheap

• struct Heap * mainheap

• struct Heap * signalheap

• struct Heap * protectedheap

• Cell * program_code

• long Allocations

• long SymbolEvals

• long SymmapEvals

• long SymmapLookups

• long FunctionEvals

• long OtherEvals

• Cell * currentFile

• int currentLine

LispTimer struct Reference

Public Attributes

• CTimer * timer

space
Classes

space
78

© Skkynet Cloud Systems, Inc • 2233 Argentia Road • Suite 306 • Mississauga • ON • L5N 2X7 • 1.905.702.7851 • http://skkynet.com

• Cell * expire_handler

• Cell * tick_handler

MessageQueue struct Reference

Public Attributes

• ET_Mutex mutex

• ThreadMessage * head

• ThreadMessage * tail

• int isEnabled

• int count

• pfThreadMessageDestructor destructor

• ET_Semaphore semHaveMessage

ModbusConnection struct Reference

Public Attributes

• modbus_t * modbus

• ModbusIoMap pointmaps[N_POINT_MAPS]

• void * userdata

• CModbusClient * client

• int isAsync

• EtkThread * thread

• CSortedPtrArray * messageTypes

• LispInterpreter * li

• int slaveid

• char * server

• char * port

ModbusDataType struct Reference

Public Attributes

• char baseType

• uint8_t length

space
Classes

space
79

© Skkynet Cloud Systems, Inc • 2233 Argentia Road • Suite 306 • Mississauga • ON • L5N 2X7 • 1.905.702.7851 • http://skkynet.com

• uint16_t flags

ModbusDataValue struct Reference

Classes

Public Attributes

• ModbusDataType type

• int8_t i1

• int16_t i2

• int32_t i4

• INT64 i8

• uint8_t ui1

• uint16_t ui2

• uint32_t ui4

• UINT64 ui8

• FLOAT r4

• DOUBLE r8

• uint8_t bytes[8]

• uint16_t words[4]

• uint32_t dwords[2]

• union ModbusDataValue::@2 value

ModbusIoMap struct Reference

Public Attributes

• int pointType

• CSortedPtrArray * pointrefs

• pfnModbusIoMapReader reader

• pfnModbusIoMapWriter writer

ModbusMessage struct Reference

Public Attributes

• ThreadMessage tm

space
Classes

space
80

© Skkynet Cloud Systems, Inc • 2233 Argentia Road • Suite 306 • Mississauga • ON • L5N 2X7 • 1.905.702.7851 • http://skkynet.com

• int result

• BufferSpec buf1

• BufferSpec buf2

• int bufferId

• int pointOffset

• Cell * script

• int replied

• int slaveid

ModbusMessageType struct Reference

Public Attributes

• int type

• pfSentMessageHandler sentHandler

• pfReplyMessageHandler replyHandler

ModbusPointRef struct Reference

Public Attributes

• uint8_t slaveid

• uint8_t blocktype

• uint16_t address

• int16_t isWriting

• int16_t isReading

• int16_t isInitialized

• int16_t isWaiting

• int16_t forceReadOnly

• ModbusDataValue lastValue

• ModbusDataValue waitingValue

• uint8_t bitstart

• uint8_t bitlength

• uint16_t arraylen

space
Classes

space
81

© Skkynet Cloud Systems, Inc • 2233 Argentia Road • Suite 306 • Mississauga • ON • L5N 2X7 • 1.905.702.7851 • http://skkynet.com

• ModbusDataType dataType

• ModbusDataType xformDataType

• ModbusTransform xform

• DOUBLE lastReadValue

• DOUBLE deadband

• CDataHubPoint * point

ModbusPointSpec struct Reference

Public Attributes

• int block

• char * modbusType

• char * remoteType

• int iaddress

• char * caddress

• char * pointName

• DOUBLE deadband

• pfPointPointChange changeHandler

• int xformType

• DOUBLE xformMultMbMin

• DOUBLE xformAddMbMax

• DOUBLE xformRemoteMin

• DOUBLE xformRemoteMax

• int xformClampMin

• int xformClampMax

ModbusTransform struct Reference

Classes

Public Attributes

• char type

• DOUBLE mult

space
Classes

space
82

© Skkynet Cloud Systems, Inc • 2233 Argentia Road • Suite 306 • Mississauga • ON • L5N 2X7 • 1.905.702.7851 • http://skkynet.com

• DOUBLE add

• struct ModbusTransform::@3::@4 linear

• DOUBLE mbmin

• DOUBLE mbmax

• DOUBLE localmin

• DOUBLE localmax

• uint32_t flags

• struct ModbusTransform::@3::@5 range

• union ModbusTransform::@3 u

PointerStack struct Reference

Public Attributes

• Cell *** cells

• int size

• int max

• int top

• int base

• int growrate

PrintContext struct Reference

Public Attributes

• Cell * file

• int32_t english

PT_ChangeRequest struct Reference

Public Attributes

• ThreadMessage tm

• CDataHubPoint * point

• PT_uVALUE value

• PT_TYPE valueType

• int quality

space
Classes

space
83

© Skkynet Cloud Systems, Inc • 2233 Argentia Road • Suite 306 • Mississauga • ON • L5N 2X7 • 1.905.702.7851 • http://skkynet.com

• MSCLOCK timestamp

• struct CTCPConnection * remoteConnection

PT_stCPOINT struct Reference

Public Attributes

• POINT_COMMON

• void * userdata

PT_uVALUE union Reference

Public Attributes

• ptreal r

• INT64 i

• char * s

• void * v

Scope struct Reference

Public Attributes

• Arg * argrefs

• int maxargs

• int nargs

StackPosition struct Reference

Public Attributes

• int top

• int base

StringStream struct Reference

Public Attributes

• char * buf

• unsigned int end

• unsigned int nextread

• unsigned int nextwrite

space
Classes

space
84

© Skkynet Cloud Systems, Inc • 2233 Argentia Road • Suite 306 • Mississauga • ON • L5N 2X7 • 1.905.702.7851 • http://skkynet.com

• unsigned int allocated

• unsigned int highwrite

Symbol struct Reference

Public Attributes

• Buf name

SymbolMap struct Reference

Public Attributes

• struct Cell * symref

ThreadMessage struct Reference

Public Attributes

• struct ThreadMessage * next

• struct CTCPConnection * writer

• int id

• int type

• int err

• int flags

• void * payload

TryState struct Reference

Public Attributes

• uint32_t destroying

• uint32_t breaking

• uint32_t returning

• uint32_t throwing

• StackPosition env_stack_pos

• StackPosition function_stack_pos

• StackPosition variable_stack_pos

• StackPosition protect_stack_pos

• Cell * current_env

space
Classes

space
85

© Skkynet Cloud Systems, Inc • 2233 Argentia Road • Suite 306 • Mississauga • ON • L5N 2X7 • 1.905.702.7851 • http://skkynet.com

Type struct Reference

Classes

Public Attributes

• uint32_t flags

• int32_t simple_type

• struct Cell * complex_type

• union Type::@7 t

UT_stCMD struct Reference

Public Attributes

• char * name

• int minargs

• int maxargs

• UT_pfCMD pfunc

• char * description

• int32_t user_i1

• int32_t user_i2

• void * user_v1

ValueStack struct Reference

Public Attributes

• Cell ** cells

• int size

• int max

• int top

• int base

• int growrate

Vector struct Reference

Public Attributes

• int length

space
Classes

space
86

© Skkynet Cloud Systems, Inc • 2233 Argentia Road • Suite 306 • Mississauga • ON • L5N 2X7 • 1.905.702.7851 • http://skkynet.com

• int maxlength

• unsigned short growsize

• unsigned short indexed

• unsigned short isDictionary

• struct Cell ** values

• int * idx

WriteContext struct Reference

Public Attributes

• Cell * file

• Cell ** refarray

• int arrsize

• int arrused

• short curcol

• short width

• short indent

• short pretty

• short english

• short notrace

• short depth

• short maxdepth

	Skkynet Embedded Toolkit for Renesas Synergy
	Table of Contents
	Overview
	Skkynet ETK Architecture
	DataHub and SkkyHub
	Using Cogent DataHub
	Using SkkyHub
	Using Them Together

	Data Points
	User Threads
	Modbus Master Support
	Getting Started
	Creating a New Project
	1) Create a Project
	2) Configure the SSP
	3) Configure the Skkynet ETK
	4) Generate the project content
	5) Configure the build environment
	6) Build your project

	Testing the Sample Application
	1) Install and Configure Cogent DataHub
	2) Configure a DataHub Connection
	3) Configure a SkkyHub Connection
	4) Next Steps

	Customizing Your Application
	Application Mainline
	Template Files
	ThreadX Memory Usage

	API
	Data Quality Values
	Modbus Addressing
	Multi-threaded API
	Typedef Documentation
	typedef struct EtkThreadStruct EtkThreadStruct

	Function Documentation
	void ETK_ApiInit (CTCPConnectionContainer *cc, CTCPClient *client)
	ETK ETK_Init ()
	void ETK_Delete (ETK handle)
	int ETK_EmitPoint (ETK handle, CDataHubPoint *point, PT_uVALUE *value, PT_TYPE valueType, int32_t quality)
	int ETK_EmitRegister (ETK handle, CDataHubPoint *point)
	CDataHubPoint* ETK_LookupPoint (ETK handle, char *pointname)
	CDataHubPoint* ETK_CreatePoint (ETK handle, char *pointname, int flags)
	int ETK_SetPointNameInt (ETK handle, char *pointname, INT64 value, int32_t quality)
	int ETK_SetPointInt (ETK handle, CDataHubPoint *point, INT64 value, int32_t quality)
	int ETK_SetPointNameDouble (ETK handle, char *pointname, double value, int32_t quality)
	int ETK_SetPointDouble (ETK handle, CDataHubPoint *point, double value, int32_t quality)
	int ETK_SetPointNameString (ETK handle, char *pointname, char *value, int32_t quality)
	int ETK_SetPointString (ETK handle, CDataHubPoint *point, char *value, int32_t quality)
	char* ETK_GetPointNameString (ETK handle, char *pointname)
	char* ETK_GetPointString (ETK handle, CDataHubPoint *point)
	INT64 ETK_GetPointNameInt (ETK handle, char *pointname)
	INT64 ETK_GetPointInt (ETK handle, CDataHubPoint *point)
	double ETK_GetPointNameDouble (ETK handle, char *pointname)
	double ETK_GetPointDouble (ETK handle, CDataHubPoint *point)
	void ETK_Free (ETK handle, void *mem)
	int ETK_MessageWait (ETK handle, int usec)
	int ETK_IsTerminating (ETK handle)
	DllSym int ETK_RegisterPointName (ETK handle, char *pointname)
	DllSym int ETK_RegisterPoint (ETK handle, CDataHubPoint *point)
	static void cbEtkMessageHandler (EtkThread *thread, ThreadMessage *msg, void *userdata)
	int ETK_HandleMessages (ETK handle, ETK_MessageHandler handler)

	ThreadX Memory Usage
	Define Documentation
	#define ETK_THREAD_STACK_SIZE
	#define APP_HeapSize
	#define TICK_STACK_SIZE
	#define MAIN_STACK_SIZE
	#define MAX_PACKETS
	#define PACKET_POOL_SIZE
	#define NETX_DRIVER_STACK_SIZE
	#define DNS_THREAD_STACK_SIZE
	#define DHCP_THREAD_STACK_SIZE
	#define BSD_THREAD_STACK_SIZE

	config_app.c
	Function Documentation
	void APP_InitializeConfig (CAppConfig *config)
	CDataHubPoint* APP_CreateAndSetPoint (CTCPConnectionContainer *cc, CTCPClient *client, char *name, int flags, INT64 value)
	void APP_SetPointInt (CDataHubPoint *point, INT64 value)
	void APP_SetPointDouble (CDataHubPoint *point, double value)
	void APP_SetPointString (CDataHubPoint *point, char *value)

	config_app.h
	Typedef Documentation
	typedef struct CAppConfig CAppConfig

	Function Documentation
	CDataHubPoint* APP_CreateAndSetPoint (CTCPConnectionContainer *cc, CTCPClient *client, char *name, int flags, INT64 value)
	void APP_SetPointInt (CDataHubPoint *point, INT64 value)
	void APP_SetPointDouble (CDataHubPoint *point, double value)
	void APP_SetPointString (CDataHubPoint *point, char *value)
	void APP_ConfigureTimers (CAppConfig *config)
	void APP_ConfigurePoints (CAppConfig *config)
	void APP_ConfigureModbus (CAppConfig *config)
	void APP_ConfigureUserThreads (CAppConfig *config)
	void APP_InitializeConfig (CAppConfig *config)

	Define Documentation
	#define APP_HeapSize_
	#define INIT_DNS
	#define INIT_DHCP
	#define INIT_GATEWAY
	#define STATIC_SERVER_IP_ADDRESS
	#define STATIC_SERVER_NETMASK
	#define STATIC_DNS_SERVER_ADDRESS
	#define STATIC_IP_GATEWAY_ADDRESS

	config_modbus.c
	Typedef Documentation
	typedef struct ModbusPointSpec ModbusPointSpec

	Variable Documentation
	ModbusPointSpec PointSpecs[]

	Function Documentation
	static int mb_timer_handler (CTimer *timer, void *userdata)
	static void pointChangeHandler (CTCPConnectionContainer *cc, CTCPConnection *writer, CDataHubPoint *point, void *data)
	void APP_ConfigureModbus (CAppConfig *config)

	config_points.c
	Variable Documentation
	int enableTestData

	Function Documentation
	void hostHandshakeHandler (CTCPConnectionContainer *cc, CTCPConnection *writer, CDataHubPoint *point, void *data)
	void ledHandler (CTCPConnectionContainer *cc, CTCPConnection *writer, CDataHubPoint *point, void *data)
	void APP_ConfigurePoints (CAppConfig *config)

	config_threads.c
	Variable Documentation
	int enableTestData
	TX_THREAD testThread

	Function Documentation
	static void startAsyncTestThread (CAppConfig *config)
	void APP_ConfigureUserThreads (CAppConfig *config)
	static void test_thread_entry (ULONG threadData)

	config_timers.c
	Variable Documentation
	char* TestBanner[]
	int TestIndex

	Function Documentation
	static int timer_handler (CTimer *timer, void *userdata)
	static int watchdog_handler (CTimer *timer, void *userdata)
	void APP_ConfigureTimers (CAppConfig *config)

	mainline.c
	Variable Documentation
	CAppConfig AppConfig
	TX_THREAD tick_thread
	TX_THREAD main_thread
	NX_PACKET_POOL pool_0
	NX_IP ip_0
	NX_DNS dns_0
	TX_THREAD dns_thread
	NX_DHCP dhcp_0
	TX_THREAD dhcp_thread
	ULONG error_counter
	ULONG packet_pool_area[PACKET_POOL_SIZE/sizeof(ULONG)]
	ULONG have_tick
	ULONG entry_count

	Function Documentation
	VOID SYNERGY_ETHERNET_DRIVER (NX_IP_DRIVER *)
	static void tickThreadEntry (ULONG thread_input)
	void mainThreadEntry (ULONG thread_input)
	void* init_malloc_memory (void *first_unused_memory, int heapSize)
	INT bsd_initialize (NX_IP *default_ip, NX_PACKET_POOL *default_pool, CHAR *bsd_thread_stack_area, ULONG bsd_thread_stack_size, UINT bsd_thread_priority)
	void dns_thread_entry (ULONG i)
	void dhcp_thread_entry (ULONG i)
	VOID hook_nx_ether_driver (NX_IP_DRIVER *driver)
	void tx_application_define_user (void *first_unused_memory)
	static void kick_timer (ULONG ptr)
	static int socket_close_timer_handler (CTimer *timer, void *userdata)
	void my_postConnectHook (CTCPClient *thisptr)
	void APP_ConfigurePoints (CAppConfig *config)
	void APP_ConfigureTimers (CAppConfig *config)
	void APP_ConfigureModbus (CAppConfig *config)
	void APP_PointChangeHandler (CAppConfig *config, CTCPConnection *writer, CDataHubPoint *point)
	void APP_ConfigureUserThreads (CAppConfig *config)
	void APP_InitializeConfig (CAppConfig *config)
	void mainline_onPointChange (CTCPConnectionContainer *thisptr, CTCPConnection *writer, CDataHubPoint *point)

	Define Documentation
	#define SERVER_IP_ADDRESS

	Classes
	Arg struct Reference
	Buf struct Reference
	BufferSpec struct Reference
	Bytecode struct Reference
	CAppConfig struct Reference
	CBufferedSocket struct Reference
	CCharBuffer struct Reference
	CCommand struct Reference
	CCommandList struct Reference
	CConnectionFactory struct Reference
	CDataHubPoint struct Reference
	Cell struct Reference
	CellList struct Reference
	Cons struct Reference
	CSocket struct Reference
	CSortedPtrArray struct Reference
	CTCPClient struct Reference
	CTCPConnection struct Reference
	CTCPConnectionContainer struct Reference
	CTimer struct Reference
	CWebSocketDecoder struct Reference
	Environment struct Reference
	ETK_Api struct Reference
	EtkThread struct Reference
	EtkThreadData struct Reference
	EtkThreadStruct struct Reference
	File struct Reference
	Function struct Reference
	GCContext struct Reference
	Heap struct Reference
	Instance struct Reference
	Klass struct Reference
	Lambda struct Reference
	LispInterpreter struct Reference
	LispTimer struct Reference
	MessageQueue struct Reference
	ModbusConnection struct Reference
	ModbusDataType struct Reference
	ModbusDataValue struct Reference
	ModbusIoMap struct Reference
	ModbusMessage struct Reference
	ModbusMessageType struct Reference
	ModbusPointRef struct Reference
	ModbusPointSpec struct Reference
	ModbusTransform struct Reference
	PointerStack struct Reference
	PrintContext struct Reference
	PT_ChangeRequest struct Reference
	PT_stCPOINT struct Reference
	PT_uVALUE union Reference
	Scope struct Reference
	StackPosition struct Reference
	StringStream struct Reference
	Symbol struct Reference
	SymbolMap struct Reference
	ThreadMessage struct Reference
	TryState struct Reference
	Type struct Reference
	UT_stCMD struct Reference
	ValueStack struct Reference
	Vector struct Reference
	WriteContext struct Reference

