LENESAS

-
»
@
ﬁ\.
»
<
)
S
-
O

Renesas Synergy'" Software Package
(SSP) V2.6.1

User’'s Manual

Renesas Synergy™ Platform

All information contained in these materials, including products and
product specifications, represents information on the product at the
time of publication and is subject to change by Renesas Electronics
Corp. without notice. Please review the latest information published
by Renesas Electronics Corp. through various means, including the

Renesas Electronics Corp. website (http://www.renesas.com).

Renesas Electronics Revision 1.61 Jun.08.2024
Www.renesas.com

Table of Contents

Chapter 1 Renesas Synergy™ Software Package Introduction -o oo 26
1.1 Introduction to the SSP User's Manual it e e e e e e 26
1.2 Subjects Covered inthis Manual i e 27

Chapter 2 SSP OVEIVIEBW .« . . v e ettt 29
2.0 OSSP OVeIVIBW & v it i it e e e e e 29

2. L INtrOdUCHON |, L L L L L e e e e e e e 30
2L L L PUIPOSE e e e e e e 30
2L 2 OV IV e e e 30
2L B Ease Of US| e 30
2004 Scalability e e 30

212 SSP ArChItECIUIE |, | L L Lt e e e 30
2.1.2.1 Renesas Synergy Software Package (SSP) Architecture o, 30
2022 8SP ModUIes e 33
2028 8P StaCKS | L 34
2024 S8 INterfaces | L e 35
2.1.2.5Build Time Configuration e e 45
2126 Interface EXIENSIONS L e e e e e 45
2127 SSPPredefined Layers e e e e e 46
2128 SSPFile SUUCIUIE e e e 46
2,129 SSP Connecting LAYETS e e e e e e 48
2.1.2.10 SSP Architecture INPractice L e e e e 49
21.211Using SSPModules | 51
21232 Coding Style | e e 53

213 BSP ArChItECIUIE |, | . L i e 54
2131WhatDoesthe BSP DO? e e 54
2.1.32BSPRelated Terminology | | L e e 55
2.1.33BSPDirectory SIUCIUIE L e e e 56
2134 Configuring the BSP e 57
2.1.3.5BSP Configuration Settings L e e e e 57
2.1.3.6 BSP Configuration Files e e e e e 58
2.13.7BSPPIn Configuration e e 59
2.1.3.8BSP Clock Configuration e e e 59
2139 System INterrUDtS | e e e e 60
21310 Group INterrUptS | e e e e e 60
2.1.311 Custom BSP Board sUPPOIt | e e e e e e 64
21312 BSP APLIUNCHONS 64

2. LA KeY FatUIES | e e e 66
2141 Azure RTOS ThreadX® RTOS | it it it e e e e e 66
2.1.4.2 Azure RTOS GUIXT™ e e e 66
2143 Azure RTOS USBX™ e e e 67
2144 AZure RTOS FIRX® e e e 67
2045 Azure RTOS Nt ™ e e 67
2.1.4.6 Application Frameworks e e e e e 67
2.1.4.7 Security Cryptographic (SCE) Library | e e 68
2148 CMSISDSP LIbrary e e e 68
2.1.49 CMSIS Neural Network Library e e 69
2.1.410 AzureRTOS NetX DUO™ e e e e e e 69
2.1.4.11 Azure RTOS NetX™ Applications (IPv4 Networking Services) e 69
2.1.4.12 Azure RTOS NetX Duo™ Applications (IPv4/v6 Networking Services) 0 s, 70
2.1.413 Azure RTOS NetX SECUIE | i e et e e e e e e e 70

2,145 Memory SUPPOML e e e e e e e 71
2.1.4.16 Human Machine Interface (HMI) e e 71
2.1.4.17 Hardware Abstract Layer (HAL) Driver Modules | . L 71
21418 GPIOand Key INEITUDES L e e 72
Chapter 3 Starting Development 73
3.1e2studio ISDE USer GUIAE e e e e e e s s 73
3.1.1Usingthe @2 studio ISDE | | | e e e 73
3.1.2Whatisthe €2 studio ISDE? | | | | .. . e 73
3.1.3e2studio ISDE PrereqUISItes |ttt e 75
3.1.310btaining aSynergy Kit e 75
3L32PCReqUIMENtS L e e 75
3.133Installing e2 studio and the SSP e 75
3134 ChoosingaToolchain e e e 75
3.1.3.5 Adding the IAR Embedded Workbench for Renesas Synergy Compilerinto e2 studio 76
3.4 Whatis @ ProjeCt? | | e e 76
315 Creating @ PrOjBCt | . . . L . e e 78
3151 CreatingaNew Project | e e e e e e 78
3.1.5.2 Selecting a Board and Toolchain 79
3.1.5.3 Selecting a Project Template | e e e 80
3.1.6 Configuring @ Project e 82
3.1.6.1 Configuring the BSP with the ISDE | 82
3.1.6.2Configuring Clocks e 83
3163 Configuring Pins 84
3.1.7 Adding Threads and Drivers | | e e e e 87
3.1.7.1 Adding and Configuring HAL DIIVETS e 88
3.1.7.2 Adding Drivers to a Thread and Configuring the Drivers 90
3.17.3Configuring TAreads e e 93
3.L7.4 Configuring INtEITUDLS | e e e e e e 94
3.1.8 Configuring the SSP Messaging Framework | i e e 95
3181AddinganBvent Class e 96
3182 Adding an BVent e e 97
3.1.8.3 Configuring the Messaging Subscriber List | e 97
3.1.8.4 Generating Files for the Messaging Framework e e 99
3.1.9 Reviewing and Adding COMPONENES | .,ttt it ettt et et et et e e e 99
3.1.10 Writing the Application | e e e e 100
3.1.10.1 RTOS-independent Applications | L e e e 100
3.1.10.2 ThreadX Applications e e e e e e e 101
3.1.11 Debugging the ProjeCt |t e e 102
3.1.12 Using TraceX with @ Synergy ProjeCt . ,ttt e et e e e e 103
3.1.13 Modifying Toolchain Settings 106
3.1.14 e2studio ISDE Usage NOteS | | | it it e e e e e 106
3.1.14.1Including ThreadX SOUICES | e e e 106
3.1.14.2 Using Synergy Developer ASSIStance | L L e e e e e 107
3.2 Tutorial: Your First Synergy Project - BIinKy e e 110
320 Tutorial BIiNKY | 110
3.2.2What Does BIinKy DO? | |, . . e e e 110

B2 3 PrereqUISIEES | . . . L o i e e e 111

3.2.4 Create a New Project for BIinky L. . 111
3.2.4.1 Details about the Blinky Configuration 113
3.2.4.2 Configuring the Blinky Clocks 113
3.24.3 Configuring the Blinky Pins e 113
3.2.4.4 Configuring the Parameters for Blinky Components | L 113
3.245Whereis main()? L 113

3.2.5Build the BIiNKy ProjeCt | e e e e 114
3.2.6 Debug the BIINKY Project , i e e e e e e 115
3.2.6.1Debug prerequUISites e e e e e 115
3.2.8.2 DEbUG SIS | e e e e 115
3.2.6.3 Details about the Debug Process . e e e 116
3.27 Runthe BIINKY PrOJECt | | e e 117

3.3 Tutorial: Using HAL Drivers - Programming the WDTt i e e e e e e 117

B3 L APPIICAtioON WDT L L e e e 117
3.3.2 Creating a WDT Application Using the Synergy SSP and ISDE 0 o s, 117
3321 Usingthe SSPandthe e2 studio ISDE || e 117
3.3.2.2The WDT Application | e e e e 118
3.3.23WDT Application flow | e e 119
3.3.3 Creating the Project with the ISDE | 120
3.3.4 Configuring the Project with the ISDE | | e e e e e e e e 122
B34 L B Tab e e 123
3342 Clocks T e e e 123
BB A B PINS Tab e e 124
B344Threads Tab e e e e 124
3.3.4.5 Components Tab e e e e e 126
3.3.5WDT Generated Project Files | e e e 127
335 1WDT hal datah e e e 128
335 ZWDT hal data.c | L e e e e 129
B3 B DT MaIN e e e e e 130
B35 AWDT hal entry.C e e e e 130
3.3.6 Building and Testing the Project 132
3.4 IAR Embedded Workbench for RENESAS ittt e 133
3.4.1 Using IAR Embedded Workbench for Synergy 133
3.4.2Whatis IAR EW o1 SYnergy? | . . L . e 134
BAZIAREWKeY FeatUres | . . . L. e 134
3.4.4 What is Synergy Standalone Configurator (SSC)? 134
3.4.510nstalling the TOOIS | L . L e e 135
3.4.6 Creating a Renesas Synergy Project using IAR EW for Synergy and SSC v i i i 136
Chapter 4 Module OVEIVIBWS et 141
A L Framework Layer o e e 142
4.1.1 ADC Periodic Framework e 143
4.1.1.1 ADC Periodic Framework Module Introduction 143
4.1.1.2 ADC Periodic Framework Module APIs Overview | e 144
4.1.1.3 ADC Periodic Framework Module Operational Overview 145
4.1.1.4 Including the ADC Periodic Framework Module inan Application . . 147
4.1.1.5 Configuring the ADC Periodic Framework Module L 148
4.1.1.6 Using the ADC Periodic Framework Module inan Application 159
4.1.2 Audio Playback Framework 160
4.1.2.1 Audio Playback Framework Introduction e 160
4.1.2.2 Audio Playback Framework Module APIs Overview L 161
4.1.2.3 Audio Playback Framework Module Operational Overview o, 163
4.1.2.4 Including the Audio Playback Framework Module in an Application | 165
4.1.2.5 Configuring the Audio Playback Framework Module | . 166
4.1.2.6 Using the Audio Playback Framework Module in an Application 181
4.1.3 Audio Playback Hardware Framework Shared on sf_audio_playback_hw dac , 182
4.1.3.1 Audio Playback DAC Framework Introduction | 182
4.1.3.2 Audio Playback DAC Framework Module APIs Overview 183
4.1.3.3 Audio Playback DAC Framework Module Operational OVerview 184
4.1.3.4 Including the Audio Playback DAC Framework Module inan Application 187
4.1.3.5 Configuring the Audio Playback DAC Framework Module . . 188

4.1.4 Audio Playback Hardware Framework Shared on sf_audio_playback_hw_i2s 197
4.1.4.1 Audio Playback 12S Framework Introduction e 197
4.1.4.2 Audio Playback I2S Framework Module APIS OVeIrvIeW 198
4.1.4.3 Audio Playback I2S Framework Module Operational Overview 200
4.1.4.4 Including the Audio Playback 12S Framework Module in an Application | 202
4.1.4.5 Configuring the Audio Playback 12S Framework Module . 203
4.1.4.6 Using the Audio Playback I2S Framework Module in an Application 211

4.1.5 Audio Record ADC Framework e 212
4.1.5.1 Audio Record ADC Framework Module Introduction 212
4.1.5.2 Audio Record ADC Framework Module APIS OVervIeW 213
4.1.5.3 Audio Record ADC Framework Module Operational Overview 214
4.1.5.4 Including the Audio Record ADC Framework Module in an Application 215
4.1.5.5 Configuring the Audio Record ADC Framework Module . . . o, 216
4.1.5.6 Using the Audio Record ADC Framework Module in an Application 226

4.1.6 Audio Record 12S Framework e e 227
4.1.6.1 Audio Record 12S Framework Introduction e 227
4.1.6.2 Audio Record 12S Framework Module APIS OVerVIeW 228
4.1.6.3 Audio Record 12S Framework Module Operational OVerview 229
4.1.6.4 Including the Audio Record 12S Framework Module in an Application . . 230
4.1.6.5 Configuring the Audio Record 12S Framework Module 231
4.1.6.6 Using the Audio Record 12S Framework Module in an Application . 238

4.1.7 Block Media Framework on sf_block_media_Ix_nor 239
4.1.7.1 Block Media Framework Module Introduction e 239
4.1.7.2 Block Media Framework Module APIs Overview L e 240
4.1.7.3 Block Media Framework Module Operational OVerview . . . 242
4.1.7.4 Including the Block Media Framework Module in an Application . . 243
4.1.7.5 Configuring the Block Media Framework Module . L 244
4.1.7.6 Using the Block Media Framework Module inan Application . . . 246

4.1.8 Block Media Framework on sf_block_media_gspi e 248
4.1.8.1 Block Media QSPI Framework Module Introduction . 248
4.1.8.2 Block Media QSPI Framework Module APIS OVeIVIEW 249
4.1.8.3 Block Media QSPI Framework Module Operational Overview 250
4.1.8.4 Including the Block Media QSPI Framework Module in an Application 251
4.1.8.5 Configuring the Block Media QSPI Framework Module | ... 252
4.1.8.6 Using the Block Media QSPI Framework Module inan Application 253

4.1.9 Block Media Framework on sf_block_media_ram 254
4.1.9.1 Block Media RAM Framework Module Introduction . 254
4.1.9.2 Block Media RAM Framework Module APIs Overview 255
4.1.9.3 Block Media RAM Framework Module Operational OVerview 256
4.1.9.4 Including the Block Media RAM Framework Module in an Application . . 257
4.1.9.5 Configuring the Block Media RAM Framework Module 258
4.1.9.6 Using the Block Media RAM Framework Module in an Application . 259

4.1.10 Block Media Framework on sf_block_media_sdmmc 260
4.1.10.1 Block Media SDMMC Framework Module Introduction . 260
4.1.10.2 Block Media SDMMC Framework Module APIs Overview 261
4.1.10.3 Block Media SDMMC Framework Module Operational Overview 262
4.1.10.4 Including the Block Media SDMMC Framework Module in an Application 263
4.1.10.5 Configuring the Block Media SDMMC Framework Module 264
4.1.10.6 Using the Block Media SDMMC Framework Module in an Application . . . 269

AL11BLE Framework . . o o e 271
4.1.11.1 BLE Framework Introduction e 271
4.1.11.2 BLE Framework Module APIs OVerview | e 273
4.1.11.3 BLE Framework Module Operational Overview . . e 278
4.1.11.4 Including the BLE Framework Module inan Application . . 292

4.1.11.6 Using the BLE Framework Module in an Application . . . 297
4.1.12 Cellular Framework | . . . L L e e 298
4.1.12.1 Cellular Framework Introduction e 298
4.1.12.2 Cellular Framework Module APIs Overview e 300
4.1.12.3 Cellular Framework Module Operational OVerview 305
4.1.12.4 Including the Cellular Framework Module in an Application . 314
4.1.12.5 Configuring the Cellular Framework Module | e 316
4.1.12.6 Using the Cellular Framework Module in an Application . 323
4.1.13 Telnet Communications Framework on sf_comms_telnet 324
4.1.13.1 Telnet Communications Framework Introduction 324
4.1.13.2 Telnet Communications Framework Module APIs Overview 325
4.1.13.3 Telnet Communications Framework Module Operational Overview 327
4.1.13.4 Including the Telnet Communications Framework Module in an Application 327
4.1.13.5 Configuring the Telnet Communications Framework Module o, 329
4.1.13.6 Using the Telnet Communications Framework Module in an Application . . . 335
4.1.14 Communications Framework on sf_el_Ux_Comms_v2 336
4.1.14.1 Communications Framework on USBX v2 Module Introduction 336
4.1.14.2 Communications Framework on USBX v2 Module APIs Overview 337
4.1.14.3 Communications Framework on USBX v2 Module Operational Overview 339
4.1.14.4 Including the Communications Framework on USBX v2 Module in an Application 339
4.1.14.5 Configuring the Communications Framework v2 on USBX Module 340
4.1.14.6 Using the Communications Framework on USBX v2 Module in an Application 351
4.1.15 Console Framework L . e 352
4.1.15.1 Console Framework Introduction e e e 352
4.1.15.2 Console Framework Module APIS Overview | 353
4.1.15.3 Console Framework Module Operational Overview | e 355
4.1.15.4 Including the Console Framework Module inan Application | . . . 357
4.1.15.5 Configuring the Console Framework Module L 359
4.1.15.6 Using the Console Framework Module inan Application . 360
4.1.16 Crypto Framework L e 361
4.1.16.1 Crypto Framework Introduction e e 361
4.1.16.2 Crypto Framework Module APIs Overview e e 362
4.1.16.3 Crypto Framework Module Operational Overview | e 367
4.1.16.4 Including the Crypto Framework Module in an Application 379
4.1.16.5 Configuring the Crypto Framework Module e 380
4.1.16.6 Using the Crypto Framework Module in an Application . . . 384
4.1.17 Capacitive Touch V2 Framework e 389
4.1.17.1 Capacitive Touch v2 Module Introduction 389
4.1.17.2 Capacitive Touch v2 Module Features | e 389
4.1.17.3 Capacitive Touch v2 Module Configuration e 389
4.1.17.4 Capacitive Touch v2 Module Usage Notes | . . e 390
4.1.17.5 Capacitive Touch v2 Module Examples | e 391
4.1.18 External IRQ Framework |, e 393
4.1.18.1 External IRQ Framework Module Introduction | L 393
4.1.18.2 External IRQ Framework Module APIs Overview L 394
4.1.18.3 External IRQ Framework Module Operational Overview . . 395
4.1.18.4 Including the External IRQ Framework Module in an Application . 395
4.1.18.5 Configuring the External IRQ Framework Module | . . . L 396
4.1.18.6 Using the External IRQ Framework Module in an Application . 398
AL1912C Framework . . o L e e e e e 399
4.1.19.112C Framework Introduction | e 399
4.1.19.212C Framework Module APIS OVeIVIeW e 400
4.1.19.3 12C Framework Module Operational Overview L e 402
4.1.19.4 Including the I2C Framework Module inan Application . 404

4.1.19.6 Using the 12C Framework Module in an Application o 415
4.1.20 JPEG Decode Framework e 423
4.1.20.1 JPEG Decode Framework Module Introduction | e 423
4.1.20.2 JPEG Decode Framework Module APIs Overview e 424
4.1.20.3 JPEG Decode Framework Module Operational Overview . 426
4.1.20.4 Including the JPEG Decode Framework Module in an Application | L 427
4.1.20.5 Configuring the JPEG Decode Framework Module L 428
4.1.20.6 Using the JPEG Decode Framework Module inan Application . . . 431
4.1.21 Memory Framework on sf_memory_gspi_NOr e e 432
4.1.21.1 Memory Framework Module Introduction e 432
4.1.21.2 Memory Framework Module APIs Overview | e e e 433
4.1.21.3 Memory Framework Module Operational Overview L 434
4.1.21.4 Including the Memory Framework Module in an Application . 435
4.1.21.5 Configuring the Memory Framework Module e 436
4.1.21.6 Using the Memory Framework Module in an Application . 437
4.1.22 Messaging Framework 438
4.1.22.1 Messaging Framework Module Introduction | 439
4.1.22.2 Messaging Framework Module APIs Overview 440
4.1.22.3 Messaging Framework Module Operational OVerview 441
4.1.22.4 Including the Messaging Framework Module in an Application 451
4.1.22.5 Configuring the Messaging Framework Module 452
4.1.22.6 Using the Messaging Framework Module in an Application . . 457
4.1.23 Power Profiles V2 Framework 459
4.1.23.1 Power Profiles V2 Framework Introduction e 459
4.1.23.2 Power Profiles V2 Framework Module APIS OVervIeW . o, 460
4.1.23.3 Power Profiles V2 Framework Module Operational OVerview . . 462
4.1.23.4 Including the Power Profiles V2 Framework Module in an Application . . . 470
4.1.23.5 Configuring the Power Profiles V2 Framework Module . 471
4.1.23.6 Using the Power Profiles V2 Framework Module in an Application . . 479
4124 SPIFrameWO K . o L ot e e e e e e 480
4.1.24.1 SPIFramework Introduction e 481
4.1.24.2 SPI Framework Module APIs Overview | e 481
4.1.24.3 SPI Framework Module Operational Overview e 483
4.1.24.4 Including the SPI Framework Module in an Application . 485
4.1.24.5 Configuring the SPI Framework Module | e 486
4.1.24.6 Using the SPI Framework Module in an Application 496
4.1.25 Thread Monitor Framework e 505
4.1.25.1 Thread Monitor Framework Module Introduction 506
4.1.25.2 Thread Monitor Framework Module APIs Overview | e 506
4.1.25.3 Thread Monitor Framework Module Operational Overview 508
4.1.25.4 Including the Thread Monitor Framework Module in an Application 510
4.1.25.5 Configuring the Thread Monitor Framework Module | . . 511
4.1.25.6 Using the Thread Monitor Framework Module inan Application 515
4.1.26 Touch Panel V2 Framework e e 516
4.1.26.1 Touch Panel V2 Framework Introduction e 516
4.1.26.2 Touch Panel V2 Framework Module APIS OVEIVIEW 517
4.1.26.3 Touch Panel V2 Framework Module Operational Overview 519
4.1.26.4 Including the Touch Panel V2 Framework Module in an Application 522
4.1.26.5 Configuring the Touch Panel V2 Framework Module . o, 523
4.1.26.6 Using the Touch Panel V2 Framework Module in an Application . . . 536
4.1.27 UART Communications Framework e 537
4.1.27.1 UART Communications Framework Module Introduction . 537
4.1.27.2 UART Communications Framework Module APIS OVeIVIEW . . 538
4.1.27.3 UART Communications Framework Module Operational Overview . 540

4.1.27.4 Including the UART Communications Framework Module in an Application

4.1.27.5 Configuring the UART Communications Framework Module . 541
4.1.27.6 Using the UART Communications Framework Module in an Application 548
AL28WI-FI Framework | o e 550
4.1.28.1 Wi-Fi Framework Introduction e 550
4.1.28.2 Wi-Fi Framework Module APIs Overview e 552
4.1.28.3 Wi-Fi Framework Module Operational Overview . 558
4.1.28.4 Including the Wi-Fi Framework Module inan Application . 562
4.1.28.5 Configuring the Wi-Fi Framework Module . e 563
4.1.28.6 Using the Wi-Fi Framework Module inan Application 574
4.1.29 Wi-Fi QCA4010 Frameworkot ittt e et e e e 578
4.1.29.1 Wi-Fi QCA4010 Framework Introduction e e e 578
4.1.29.2 SF WIFI QCA4010 Framework APIs OVeIvIeW . e e 579
4.1.29.3 SF_WIFI_QCA4010 Framework Module Operational Overview 583
4.1.29.4 Including the SF_WIFI_QCA4010 Framework in an Application . . . 585
4.1.29.5 Configuring the Wi-Fi QCA4010 Framework | e 586
4.1.29.6 Using the Wi-Fi QCA4010 Framework Module inan Application | 592
N I I T 592
4.2.1 Analog Connection Driver onr_analog_CONNECt |,ttt it it et et et e e 594
4.2.1.1 Analog Connection HAL Medule Introduction | e 594
4.2.1.2 Analog Connection HAL Module APIs Overview e 595
4.2.1.3 Analog Connection HAL Module Operational OVerview 5906
4.2.1.4 Including the Analog Connection HAL Module in an Application . . . 599
4.2.1.5 Configuring the Analog Connection HAL Module | . . e 600
4.2.1.6 Using the Analog Connection HAL Module in an Application . . . 603
4.2.2 Comparator Driver onr_acmphs | e 603
4.2.2.1 ACMPHS HAL Module INtroduction | L e e 603
4.2.22 ACMPHS HAL Module APIS Overview e 605
4.2.2.3 ACMPHS HAL Module Operational Overview e e 606
4.2.2.4 Including the ACMPHS HAL Module inan Application 607
4.2.2.5 Configuring the ACMPHS HAL Module | e e 607
4.2.2.6 Using the ACMPHS HAL Module in an Application . . e 609
4.2.3 Comparator Driver onr_acmplp o e e e e e 610
4.2.3.1 ACMPLP HAL Module Introduction e e 610
4.2.3.2 ACMPLP HAL Module ARIs Overview e e e 612
4.2.3.3 ACMPLP HAL Module Operational Overview | . e e e 613
4.2.3.4Including the ACMPLP HAL Module inan Application . . 614
4.2.3.5 Configuring the ACMPLP HAL Module | e 614
4.2.3.6 Using the ACMPLP HAL Module inan Application . . 621
A2A4ADC DIIVEI | L e e e 622
4.2.4.1 ADC HAL Module Introduction e 622
4.2.4.2 ADC HAL Module APIS OVEIVIEW | e e e e 625
4.2.4.3 ADC HAL Module Operational Overview e e 626
4.2.4.4 Including the ADC HAL Module inan Application e 629
4.2.4.5 Configuring the ADC HAL Module e 629
4.2.4.6 Using the ADC HAL Module inan Application 0 e 637
4.2, 5 TIMer DIiVer ON At | | L L . e e e e e e 639
4.25.1 AGT HAL Module Introduction e e 639
4.25.2 AGT HAL Module APIS OVerview e e e 641
4.2.5.3 AGT HAL Module Operational OVeIVIEW | e e 642
4.2.5.4 Including the AGT HAL Module in an Application . 646
4.2.5.5 Configuring the AGT HAL Module e 647
4.2.5.6 Using the AGT HAL Module inan Application e 650

4.2.6 AGT Input Capture DriVEr ONT_agtttt e et et et e e e e e e 651
4.2.6.1 Input Capture HAL Module Introduction

4.2.6.3 Input Capture HAL Module Operational Overview e e 654
4.2.6.4 Including the Input Capture HAL Module inan Application . . 656
4.2.6.5 Configuring the Input Capture HAL Module | e 657
4.2.6.6 Using the Input Capture HAL Module in an Application | L 660
4.2.7 Clock Accurate CIrCUIt DIIVEr | . . L e e et e e e e e e e e e 660
4.2.7.1 CAC HAL Module Introduction e e e e 660
4.2.7.2 CAC HAL Module APIS OVeIVIEW | e e e e e 663
4.2.7.3 CAC HAL Module Operational Overview e e e e e 664
4.2.7.4 Including the CAC HAL Module inan Application e 666
4.2.7.5 Configuring the CAC HAL Module | e 667
4.2.7.6 Using the CAC HAL Module in an Application e e 670
4.2.8 CAN DIIVEI e e 671
4.2.8.1 CAN HAL Module Introduction e e e e 671
4.2.8.2 CAN HAL Module APIS OVEIVIEW | e e e e e 675
4.2.8.3 CAN HAL Module Operational Overview e e 676
4.2.8.4 Including the CAN HAL Module in an Application e 678
4.2.85 Configuring the CAN HAL Module | e e e 679
4.2.8.6 Using the CAN HAL Module in an Application e 684
4.2.9 CGC DIIVEI | L L e e e 685
4.2.9.1 CGC HAL Module Introduction e e 686
4292 CGC HAL Module APIsS Overview e e e e e 688
4.2.9.3 CGC HAL Module Operational Overview e e 691
4.2.9.4 Including the CGC HAL Module in an Application = 696
4.2.9.5 Configuring the CGC HAL Module e 697
4.2.9.6 Using the CGC Module inan Application e 702
4200 CTSU V2 DIIVEI | L it e e e e e e e e e e 703
4.2.10.1 CTSU V2 HAL Module Introduction e e e 703
4.2.10.2 CTSU v2 HAL Module Configuration e e e 704
42103 CTSUVZHAL Module Usage NOteS | it it it et e e e e 705
42104 CTSUVZHAL Module Examples | e e e 706
42,01 CRC DIIVer | L L e e 709
4.2.11.1 CRCHAL Module Introduction e e e 709
42112 CRCHAL Module APIs Overview e e e e 711
4.2.11.3 CRC HAL Module Operational Overview e e e e 712
4.2.11.4 Including the CRC HAL Module in an Application = e e 713
4.2.11.5 Configuring the CRC HAL Module | e e 714
4.2.11.6 Using the CRC HAL Module in an Application | e e 715
A2 L2 DA DIV | L . e e e e 717
4.2.12.1 DACHAL Module Introduction L e e e e 718
4.2.12.2 DACHAL Module APIS OVeIVIEW e e e e 719
4.2.12.3 DAC HAL Module Operational OVerview . e e e e e 720
4.2.12.4 Including the DAC HAL Module in an Application = e 721
4.2.125 Configuring the DAC HAL Module | e 722
4.2.12.6 Using the DAC HAL Module inan Application | e 724
4213 DACB DIIVEr | | e e 725
42131 DACBHAL Module Introduction L e e e 725
4.2.13.2DACBHAL Module APIs Overview e e e 727
4.2.13.3 DACB HAL Module Operational Overview . e e 728
4.2.13.4 Including the DAC8 HAL Module in an Application L 729
4.2.13.5 Configuring the DAC8 HAL Module e e e 730
4.2.13.6 Using the DAC8 HAL Module in an Application 732
4.2 04 Display DIiVeT | e e e e e e e 733
4.2.14.1 GLCDC HAL Module Introduction | e e e 733
4.2.14.2 GLCDC HAL Module APIS OVerVIeW it it e e e e e e 736

4.2.14.4 Including the GLCDC HAL Module in an Application o, 744
4.2.14.5 Configuring the GLCDC HAL Module e e e 745
4.2.14.6 Using the GLCDC HAL Module inan Application . e 758
4.2.15 Data Operation CirCUit DIVET | | . L .t i it e et et e e e e e e e 759
4.2.15.1 DOC HAL Module Introduction e e e e e 760
4.2.15.2 DOC HAL Module APIS OVEIVIEW | i e e e e e e 761
4.2.15.3 DOC HAL Module Operational OVerview i e e e e 762
4.2.15.4 Including the DOC HAL Module inan Application = e 763
4.2.155 Configuring the DOC HAL Module | e 764
4.2.15.6 Using the DOC HAL Module in an Application | e e 765
4.2.16 Transfer Driver on1_dmac | | e e 766
4.2.16.1 DMAC HAL Module Introduction | e e e e 766
4.2.16.2 DMAC HAL Module APIS Overview e e e e 768
4.2.16.3 DMAC HAL Module Operational OVerview e e e e 769
4.2.16.4 Including the DMAC HAL Module in an Application 771
4.2.16.5 Configuring the DMAC HAL Module | e e e 772
4.2.16.6 Using the DMAC HAL Module in an Application | e 773
4.2.17 Transfer Driver on 1_dtC | . . e e e e e 774
4.2.17.1 DTC HAL Module Introduction | e e e 774
4.2.17.2DTC HAL Module APIS OVerview e e e e e 776
4.2.17.3 DTC HAL Module Operational Overview e e e 778
4.2.174 Including the DTC HAL Module in an Application e 779
4.2.17.5 Configuring the DTC HAL Module e e e e e e 780
4.2.17.6 Using the DTC HAL Module in an Application | . . e 782
A2 L8 ELC DIV | L L e e e e e e e 783
4.2.18.1 ELC HAL Module Introduction | e e e e e e e 783
4.2.18.2 ELC HAL Module APIS OVeIVIEW e e e e 785
4.2.18.3 ELC HAL Module Operational OVerview | i e e e e 786
4.2.18.4 Including the ELC HAL Module inan Application = e 788
4.2.185 Configuring the ELC HAL Module | e e 789
4.2.18.6 Using the ELC HAL Module in an Application e e 789
4219 External IRQ DriVer | | L e e 790
4.2.19.1 External IRQ HAL Module Introduction e e e 790
4.2.19.2 External IRQ HAL Module APIs Overview | e e e e e 792
4.2.19.3 External IRQ HAL Module Operational Overview . e 793
4.2.19.4 Including the External IRQ HAL Module in an Application 794
4.2.19.5 Configuring the External IRQ HAL Module 795
4.2.19.6 Using the External IRQ HAL Module in an Application | . e 797
A2 20 Flash DIIVEr | e e e e 798
4.2.20.1 Flash HAL Module Introduction e e 798
4.2.20.2 Flash HAL Module APIS OVervVIeW | e e e e 801
4.2.20.3 Flash HAL Module Operational Overview . i e e e e 803
4.2.20.4 Including the Flash HAL Module in an Application = e 806
4.2.205 Configuring the Flash HAL Module e 806
4.2.20.6 Using the Flash HAL Module in an Application e e 809
A2 2L ML DIIVEr e e e 810
42211 FMIHAL Module Introduction e e e e 810
42212 FMIHAL Module APIS OVeIVIEW e e e 811
4.2.21.3 FMI HAL Module Operational OVerview e e e e 812
4.2.21.4 Including the FMI HAL Module inan Application | L e e 813
4.2.21.5 Configuring the FMI HAL Module e e 814
4.2.21.6 Using the FMI HAL Module inan Application e e e 815
4.2.22 Timer DriVer ON F_gPt | L L L L e e e e e 816

4.2.22.1 GPT HAL Module Introduction 816

4.2.22.3 GPT HAL Module Operational OVerview 820
4.2.22.4 Including the GPT HAL Module in an Application . 823
4.2.22.5 Configuring the GPT HAL Module e 824
4.2.22.6 Using the GPT HAL Module inan Application | e 827
4.2.2312C SCIDIIVET | L L et e e 827
4.2.23.112C SCIHAL Module Introduction e 827
4.2.23.212C SCIHAL Module APIs OVerview e e 829
4.2.23.312C SCI HAL Module Operational Overview | . e e 831
4.2.23.4 Including the I2C SCI HAL Module inan Application 832
4.2.23.5 Configuring the I2C SCIHAL Module e 833
4.2.23.6 Using the 12C SCI HAL Module in an Application e 838
4.2.2412C MaSter DIIVEI | L . L e e 839
4.2.24.112C Master HAL Module Introduction 839
4.2.24.212C Master HAL Module APIS OVEIVIEW | 842
4.2.24.3 12C Master HAL Module Operational Overview | e 843
4.2.24.4 Including the I2C Master HAL Module in an Application . . 844
4.2.24.5 Configuring the 12C Master HAL Module e 845
4.2.24.6 Using the I2C Master HAL Module in an Application | . 850
4.2.2512C Slave DIIVEr | . L L L e 851
4.2.25.112C Slave HAL Module Introduction e e 851
4.2.25.212C Slave HAL Module ARIs Overview e e 854
4.2.25.3 12C Slave HAL Module Operational Overview | e 855
4.2.25.4 Including the 12C Slave HAL Module in an Application . . 856
4.2.25.5 Configuring the I2C Slave HAL Module | e 857
4.2.25.6 Using the 12C Slave HAL Module in an Application . 859
4226 128 DIIVEI | e 861
4.2.26.1 12S HAL Module Introduction e 861
4.2.26.212S HAL Module APIS OVeIVIEW | e 863
4.2.26.3 12S HAL Module Operational OVerview e e e 865
4.2.26.4 Including the 12S HAL Module in an Application L 865
4.2.26.5 Configuring the I2S HAL Module 866
4.2.26.6 Using the 12S HAL Module in an Application e 874
4.2.27 GPT Input Capture on r_gpt DIVEr e e e e 875
4.2.27.1 GPT Input Capture HAL Module Introduction e 876
4.2.27.2 GPT Input Capture HAL Module APIs Overview | e e e 878
4.2.27.3 GPT Input Capture HAL Module Operational Overview 879
4.2.27.4 Including the GPT Input Capture HAL Module in an Application 881
4.2.27.5 Configuring the GPT Input Capture HAL Module 882
4.2.27.6 Using the GPT Input Capture HAL Module inan Application . 885
422810 POt DIIVET | L L et e e 886
4.2.28.11/0 PORT HAL Module Introduction e 886
4.2.28.21/0 PORT HAL Module APIs Overview e 888
4.2.28.3 /0 PORT HAL Module Operational OVerview | . it et et et e 890
4.2.28.4 Including the I/O PORT HAL Module inan Application . . 891
4.2.28.5 Configuring the /O PORT HAL Module | i e et e e 892
4.2.28.6 Using the I/O PORT HAL Module in an Application e 893
4.2.29 Watchdog Driver On r_iwat | L L e e e e 894
4.2.29.1 Independent Watchdog Timer HAL Module Introduction 894
4.2.29.2 Independent Watchdog Timer HAL Module APIS OVerview 897
4.2.29.3 Independent Watchdog Timer HAL Module Operational Overview 898
4.2.29.4 Including the Independent Watchdog Timer HAL Module in an Application 902
4.2.29.5 Configuring the Independent Watchdog Timer HAL Module | . . . 903
4.2.29.6 Using the Independent Watchdog Timer HAL Module in an Application 904
4.2.30 JPEG Decode DIIVEr |, . . L . e 906

4.2.30.2 JPEG Decode HAL Module APIs Overview 909

4.2.30.3 JPEG Decode HAL Module Operational Overview . e 911
4.2.30.4 Including the JPEG Decode HAL Module in an Application . 912
4.2.30.5 Configuring the JPEG Decode HAL Module | . e 913
4.2.30.6 Using the JPEG Decode HAL Module in an Application 915
4.2.3LJIPEG Encode DIIVEr | L L e e 916
4.2.31.1 JPEG Encode HAL Module Introduction | e 916
4.2.31.2 JPEG Encode HAL Module APIS OVerview e e 918
4.2.31.3 JPEG Encode HAL Module Operational Overview | 919
4.2.31.4 Including the JPEG Encode HAL Module inan Application 920
4.2.31.5 Configuring the JPEG Encode HAL Module | e 921
4.2.31.6 Using the JPEG Encode HAL Module inan Application 924
4.2.32Key MatriXx DIIVET | L e 925
4.2.32.1 Key Matrix HAL Module Introduction 925
4.2.32.2 Key Matrix HAL Module APIS OVerview e 927
4.2.32.3 Key Matrix HAL Module Operational Overview e 928
4.2.32.4 Including the Key Matrix HAL Module inan Application . . 929
4.2.32.5 Configuring the Key Matrix HAL Module | 930
4.2.32.6 Using the Key Matrix HAL Module inan Application 932
4.2.33 Low Power Modes Driver ONT_IDMV2 . . . L L L e e e e 933
4.2.33.1 LPM V2 HAL Module Introduction | e e 933
4.2.33.2LPM V2 HAL Module ARIs Overview e e 936
4.2.33.3 LPM V2 HAL Module Operational Overview | e e 937
4.2.33.4 Including the LPM V2 HAL Module inan Application . . 941
4.2.335 Configuring the LPM V2 HAL Module | e 942
4.2.33.6 Using the LPM V2 HAL Module inan Application | e 947
4.2.34 Low Voltage Detection DIIVEr ettt e 948
4.2.34.1 LVD HAL Module Introduction e 948
4.2.34.2 LVD HAL Module APIS OVeIVIEW e 950
4.2.34.3 LVD HAL Module Operational Overview | e 951
4.2.34.4 Including the LVD HAL Medule inan Application 952
4.2.34.5 Configuring the LVD HAL Module | e e 953
4.2.34.6 Using the LVD HAL Module inan Application e 955
4235 0PAMP DIIVET | L L e 956
4.2.35.1 OPAMP HAL Module Introduction | e e e 956
4.2.35.2 OPAMP HAL Module APIs Overview e e e 958
4.2.35.3 OPAMP HAL Module Operational OVBIVIEW | | | e it et e 959
4.2.35.4 Including the OPAMP HAL Module in an Application . . . 961
4.2.35.5 Configuring the OPAMP HAL Module | e 961
4.2.35.6 Using the OPAMP HAL Module in an Application . e 964
4236 PDCDIIVEI | | e e e 965
4.2.36.1 PDC HAL Module Introduction 965
4.2.36.2 PDC HAL Module ARIS Overview e e e 968
4.2.36.3 PDC HAL Module Operational Overview e e e 969
4.2.36.4 Including the PDC HAL Module inan Application e 970
4.2.36.5 Configuring the PDC HAL Module | e e 971
4.2.36.6 Using the PDC HAL Module inan Application | e e 975
4237 PTP DIIVEI ON 1D | L L L L e et et e e e e e e e e 976
4.2.37.1 Precision Time Protocol HAL Module Introduction . . 976
4.2.37.2 Precision Time Protocol HAL Module APIS OVEIVIEW . o 978
4.2.37.3 Precision Time Protocol HAL Module Operational OVerview | 981
4.2.37.4 Including the Precision Time Protocol HAL Module in an Application . . 083
4.2.37.5 Configuring the Precision Time Protocol HAL Module | . 984

4.2.38 PTPEDMAC Driver onr_ptpedmaC ittt e e 988
4.2.38.1 PTPEDMAC HAL Module Introduction 988
4.2.38.2 PTPEDMAC HAL Module APIS OVerview | et et et e e e 989
4.2.38.3 PTPEDMAC HAL Module Operational OVerview | it et et e i et et e 990
4.2.38.4 Including the PTPEDMAC HAL Module in an Application . 991
4.2.38.5 Configuring the PTPEDMAC HAL Module | e et et et e 992
4.2.38.6 Using the PTPEDMAC HAL Module in an Application . . 993

4239 QSPIDIIVEr L L 994
4.2.39.1 QSPIHAL Module Introduction e e 994
4.2.39.2 QSPIHAL Module APIs Overview | e e 997
4.2.39.3 QSPI HAL Module Operational Overview e e e 998
4.2.39.4 Including the QSPI HAL Module in an Application | e 1002
4.2.39.5 Configuring the QSPIHAL Module | e 1003
4.2.39.6 Using the QSPI HAL Module in an Application e 1005

4240 RTC DIIVEN | L o e e et e e e e e e e e 1006
4.2.40.1 RTC HAL Module Introduction | e e 1006
4.2.40.2 RTC HAL Module APIS OVeIview it et et et et e e e 1008
4.2.40.3 RTC HAL Module Operational Overview . e e 1010
4.2.40.4 Including the RTC HAL Module in an Application e 1011
4.2.40.5 Configuring the RTC HAL Module | e e e e e 1012
4.2.40.6 Using the RTC HAL Module in an Application . . . e 1013

4,241 SCE Cryplo DIVer | L e e e 1017
4.241.1 SCE HAL Module Introduction | e 1017
4.2.41.2 SCEHAL Module APIS OVerview e e 1020
4.2.41.3 SCE HAL Module Operational OVervIeW | i e 1028
4.2.41.4 Including the SCE HAL Module in an Application L 1034
4.2.41.5 Configuring the SCE HAL Module | 1035
4.2.41.6 Using the SCE HAL Module inan Application | e 1038

4.242 SDADC DIV | L o e e e e e 1042
4.2.42.1 SDADC HAL Module Introduction e 1042
4.2.42.2 SDADC HAL Module APIS OVerview e e 1044
4.2.42.3 SDADC HAL Module Operational Overview e 1046
4.2.42.4 Including the SDADC HAL Module inan Application o, 1047
4.2.42.5 Configuring the SDADC HAL Module e 1048
4.2.42.6 Using the SDADC HAL Module in an Application e 1050

4.2.43 SDIMMC Driver and SDIO DIiVEr | . . L . . . e e e 1051
4.2.43.1 SDMMC HAL Module Introduction | e e 1051
4.2.43.2 SDMMC HAL Module APIS OVerVIEW e e 1054
4.2.43.3 SDMMC HAL Module Operational OVerview . i e 1056
4.2.43.4 Including the SDMMC HAL Module in an Application e 1058
4.2.43.5 Configuring the SDMMC HAL Module | e 1059
4.2.43.6 Using the SDMMC HALModule in an Application 1063

4.2445egment LCD DIIVEI | L L L L L i e e e e 1065
4.2.44.1 SLCDC HAL Module Introduction e e 1065
4.2.44.2 SLCDC HAL Module APIS OVerview e 1068
4.2.44.3 SLCDC HAL Module Operational Overview . e 1069
4.2.44 4 Including the SLCDC HAL Module in an Application | . . 1070
4.2.44.5 Configuring the SLCDC HAL Module e 1071
4.2.44.6 Using the SLCDC HAL Module inan Application . e 1074

4245 SCISPIDIIVEN | L L L e e e e 1075
4.2.45.1 SCI SPIHAL Module Introduction 1075
4.2.45.2 SCI SPIHAL Module APIs Overview e e 1077
4.2.45.3 SCI SPI HAL Module Operational Overview | e et e e 1079
4.2.45.4 Including the SCI SPI HAL Module in an Application . . o, 1080

4.2.45.5 Configuring the SCI SPI HAL Module

4.2.45.6 Using the SCI SPI HAL Module inan Application . . e 1086
4246 SPIDIIVEr | 1087
4.2.46.1 RSPIHAL Module Introduction 1087
4.2.46.2 RSPIHAL Module APIS OVeIview | e e e 1091
4.2.46.3 RSPI HAL Module Operational Overview e 1093
4.2.46.4 Including the RSPI HAL Module inan Application e 1095
4.2.46.5 Configuring the RSPIHAL Module e 1096
4.2.46.6 Using the SPIHAL Module in an Application e 1102
A2A4TUART DIIVET | o e e e e 1103
4.2.47.1 UART HAL Module Introduction e e 1103
4.2.47.2 UART HAL Module APIs Overview e e e 1106
4.2.47.3 UART HAL Module Operational Overview | e e 1108
4.2.47.4 Including the UART HAL Module in an Application e 1111
4.2.47.5 Configuring the UART HAL Module | e e 1112
4.2.47.6 Using the UART HAL Module inan Application e 1119
4.2 48 WatChdog DIiVer | | L e 1120
4.2.48.1 Watchdog Timer HAL Module Introduction 1120
4.2.48.2 Watchdog Timer HAL Module APIs Overview | e 1122
4.2.48.3 Watchdog Timer HAL Module Operational OVerview . o, 1124
4.2.48.4 Including the Watchdog Timer HAL Module in an Application . . o, 1128
4.2.48.5 Configuring the Watchdog Timer HAL Module | 1129
4.2.48.6 Using the Watchdog Timer HAL Module inan Application o, 1131
4.3 Azure RTOS MOodUIES . . . oo e e e e e e e e 1132
4.3.1ThreadX OVEIVIEW | . . L L L e e e 1135
4.3.1.1 Azure RTOS ThreadX Module Introduction | e 1135
4.3.1.2 Azure RTOS ThreadX Module Operational Overview | . . it ei e, 1136
4.3.1.3 Using the Azure RTOS ThreadX Module in an Application . . o, 1138
4.3.2FileXonBlock Media 1139
4.3.2.1 FileX On Block Media Framework Module Introduction = . . o, 1139
4.3.2.2 FileX On Block Media Framework Module APIs Overview o, 1140
4.3.2.3 FileX On Block Media Framework Module Operational OVerview s, 1141
4.3.2.4 Including the FileX On Block Media Framework Module in an Application, 1142
4.3.2.5 Configuring the FileX On Block Media Framework Module o, 1145
4.3.2.6 Using the FileX on Block Media Framework Module in an Application, 1150
A3 3 FleX SOUICE | L e 1151
4.3.3.1 FileX Source Component Module Introduction e 1152
4.3.3.2 When to Include the FileX Source Component | e 1152
4.3.3.3 Adding the FileX Source Component | e 1152
4.3.3.4 Changing the FileX Source Component Properties | e 1153
433 B X SOUICe e e e e e 1153
4.3.3.6 FileX Fault Tolerant Module e 1156
4.3.3.7 ADOUL eXFAT SUPPOTL e e e 1157

A 3.4 GUIX POt 1157
4.3.4.1 GUIX Synergy Port Framework Introduction e 1157
4.3.4.2 GUIX Synergy Port Framework Module APIs Overview o, 1158
4.3.4.3 GUIX Synergy Port Framework Module Operational Overview o, 1160
4.3.4.4 Including the GUIX Synergy Port Framework Module in an Application . . ., 1164
4.3.4.5 Configuring the GUIX Synergy Port Framework Module 1165
4.3.4.6 Using the GUIX Synergy Port Framework Module in an Application . . o, 1182
435 GUIX SOUICE | L L 1183
4.3.5.1 GUIX GX_SRC Framework Introduction e 1183
4.3.5.2 GUIX GX_SRC Framework Components OVerview | . e 1184
4.3.5.3 GUIX GX_SRC Framework Module Operational OVerview o, 1185
4.3.5.4 Including the GUIX GX_SRC Framework Module in an Application 1201

4.3.5.6 Using the GUIX GX_SRC Framework Module in an Application o, 1206
4.3.6 LevelX Port Framework on sf_el_IX_nor 1207
4.3.6.1 Port LevelX Framework Module Introduction e 1207
4.3.6.2 Port LevelX Framework Module APIs Overview e 1208
4.3.6.3 Port LevelX Framework Module Operational OVerview . . o, 1209
4.3.6.4 Including the Port LevelX Framework Module in an Application . . o, 1210
4.3.6.5 Configuring the Port LevelX Framework Module e 1211
4.3.6.6 Using the Port LevelX Framework Module in an Application . o, 1213
437 NetX Port Bther | o 1214
4.3.7.1 NetX Port Ether Module Introduction e 1214
4.3.7.2 NetX Port Ether Module APIs Overview e 1215
4.3.7.3 NetX Port Ether Module Operational Overview | e 1215
4.3.7.4 Including the NetX Port Ether Module in an Application . . . 1218
4.3.7.5 Configuring the NetX Port Ether Module | e 1220
4.3.7.6 Using the NetX Port Ether Module inan Application . . e 1221
4.3 8 NetX Port Using PP P | | 1223
4.3.8.1 NetX Port Using PPP Module Introduction | e 1224
4.3.8.2 NetX Port Using PPP Module APIS OVerview | e 1224
4.3.8.3 NetX Port Using PPP Module Operational OVerview o, 1226
4.3.8.4 Including the NetX Port Using PPP Module in an Application . . o, 1226
4.3.8.5 Configuring the NetX Port Using PPP Module | . . . e 1227
4.3.8.6 Using the NetX Port Using PPP Module in an Application . o, 1236
4.3.9 NetX/NetX DUO SOUICE . . L . Lttt e e e e e e e e e 1237
4.3.9.1 NetX and NetX Duo Source Module Introduction e 1237
4.3.9.2 NetX and NetX Duo Source Module APIS Overview . e 1237
4.3.9.3 NetX and NetX Duo Source Module Operational OVerview o, 1237
4.3.9.4 Including the NetX and NetX Duo Source Module inan Application, 1237
4.3.9.5 Configuring the NetX and NetX Duo Source Module | 1239
4.3.10 Azure RTOS NetX OVEIVIBW | . . L . o L oottt e e e e e e e 1250
4.3.10.1 Azure RTOS NetX Interface | e e 1250
4.3.11 Azure RTOS NetX DUO OVEIVIEBW |, | . . . L . Lttt e e e et e e et e e 1252
4.3.11.1Azure RTOS NetX Duo Interface . e e e 1252
4.3.11.2 Azure RTOS NetX Duo Protocol Modules | e 1252
4.3.11.3 Azure RTOS NetX Duo Limitations e 1253
4.3.11.4 Azure RTOS NetX Duo Supported Devices e 1253
4.3.12 NetXINetX DUO AUO 1P | e e e 1253
4.3.12.1 NetX/NetX Duo Auto IP Introduction | e 1253
4.3.12.2 NetX/NetX Duo Auto IP Module APIs Overview e 1254
4.3.12.3 NetX/NetX Duo Auto IP Module Operational Overview o, 1256
4.3.12.4 Including the NetX/NetX Duo Auto IP Module inan Application . . . o, 1257

4.3.12.6 Using the NetX/NetX Duo Auto IP Module inan Application | o, 1263
4.3.13 NetX/NetX DUO BSD SUPPOIt L it et e e e e e 1264
4.3.13.1 NetX/NetX Duo BSD Support Introduction | e 1264
4.3.13.2 NetX/NetX Duo BSD Support Module APIs Overview | . e 1266
4.3.13.3 NetX/NetX Duo BSD Support Module Operational Overview . o, 1269
4.3.13.4 Including the NetX/NetX Duo BSD Support Module in an Application, 1277
4.3.13.5 Configuring the NetX/NetX Duo BSD Support Module | . . . o, 1279
4.3.13.6 Using the NetX/NetX Duo BSD Support Module in an Application 1283
4.3.14 NetX/NetX Duo DHCP ClIent e e e e e e e 1288
4.3.14.1 NetX/NetX Duo DHCP Client INroduction |00 1288
4.3.14.2 Netx/NetX Duo DHCP Client Module APIs Overview 1289
4.3.14.3 NetX/NetX Duo DHCP Client Module Operational OVerview | s, 1292
4.3.14.4 Including the NetX/NetX Duo DHCP Client Module in an Application s, 1294

4.3.14.5 Configuring the NetX/NetX Duo DHCP Client Module

4.3.14.6 Using the NetX/NetX Duo DHCP Client Module in an Application, 1301
4.3.15 NetX/NetX DUO DHCP SeIVET | . L e et 1302
4.3.15.1 NetX/NetX Duo DHCP Server Introduction | e 1302
4.3.15.2 NetX/NetX Duo DHCP Server Module APIs Overview | 1303
4.3.15.3 NetX/NetX Duo DHCP Server Module Operational Overview o, 1305
4.3.15.4 Including the NetX/NetX Duo DHCP Server Module in an Application, 1306
4.3.15.5 Configuring the NetX/NetX Duo DHCP Server Module . . o, 1308
4.3.15.6 Using the NetX/NetX Duo DHCP Server Module in an Application s, 1313
4.3.16 NetX DUO DHCPVE Clent | e e e e e e e e 1314
4.3.16.1 NetX Duo DHCP IPv6 Client Introduction e 1314
4.3.16.2 NetX Duo DHCP IPv6 Client Module APIs Overview o, 1315
4.3.16.3 NetX Duo DHCP IPv6 Client Module Operational Overview s, 1319
4.3.16.4 Including the NetX Duo DHCP IPv6 Client Module in an Application 1322
4.3.16.5 Configuring the NetX Duo DHCP IPv6 Client Module 1324
4.3.16.6 Using the NetX Duo DHCP IPv6 Client Module in an Application s, 1328
4.3.17 NetX DUO DHCPVE SEIVET | | . L . et e e e 1330
4.3.17.1 NetX Duo DHCP IPv6 Server Introduction | e 1330
4.3.17.2 NetX Duo DHCP IPv6 Server Module APIS OVeIVIEW o, 1332
4.3.17.3 NetX Duo DHCP IPv6 Server Module Operational Overview . . o, 1334
4.3.17.4 Including the NetX Duo DHCP IPv6 Server Module in an Application 1336
4.3.17.5 Configuring the NetX Duo DHCP IPv6 Server Module | . o, 1338
4.3.17.6 Using the NetX Duo DHCP IPv6 Server Module inan Application | o, 1343
4.3.18 NetX/NetX DUo DNS Client | i e e e e e 1344
4.3.18.1 NetX/NetX Duo DNS Client Introduction 1345
4.3.18.2 NetX/NetX Duo DNS Client Module APIS OVervIeW 1346
4.3.18.3 NetX/NetX Duo DNS Client Module Operational Overview . . . 1350
4.3.18.4 Including the NetX/NetX Duo DNS Client Module in an Application = o, 1354
4.3.18.5 Configuring the NetX/NetX Duo DNS Client Module | 1357
4.3.18.6 Using the NetX/NetX Duo DNS Client Module in an Application | s, 1361
4.3.19 NetX/NetX Duo FTP Client e e e e 1362
4.3.19.1 NetX/NetX Duo FTP Client Introduction e 1363
4.3.19.2 NetX/NetX Duo FTP Client Module APIS OVervIEW o, 1364
4.3.19.3 NetX/NetX Duo FTP Client Module Operational Overview o, 1366
4.3.19.4 Including the NetX/NetX Duo FTP Client Module in an Application s, 1370
4.3.19.5 Configuring the NetxX/NetX Duo FTP Client Module | i, 1371
4.3.19.6 Using the NetX/NetX Duo FTP Client Module inan Application s, 1376
4.3.20 NetX/NetX DUO FTP SeIVEr . L 1377
4.3.20.1 NetX/NetX Duo FTP Server Introduction e 1377
4.3.20.2 NetX/NetX Duo FTP Server Module APIs Overview | e, 1378
4.3.20.3 NetX/NetX Duo FTP Server Module Operational Overview o, 1379
4.3.20.4 Including the NetX/NetX Duo FTP Server Module in an Application 1383
4.3.20.5 Configuring the NetX/NetX Duo FTP Server Module . o, 1384
4.3.20.6 Using the NetX/NetX Duo FTP Server Module in an Application | s, 1390
4.3.21 NetXINetX DU HTTP Client | | e et e e e e e e e e 1391
4.3.21.1 NetX/NetX Duo HTTP Client Introduction i e 1391
4.3.21.2 NetX/NetX Duo HTTP Client Module APIs Overview oo, 1392
4.3.21.3 NetX/NetX Duo HTTP Client Module Operational Overview o, 1394
4.3.21.4 Including the NetX/NetX Duo HTTP Client Module in an Application i 1396
4.3.21.5 Configuring the NetX/NetX Duo HTTP Client Module . . 1397
4.3.21.6 Using the NetX/NetX Duo HTTP Client Module in an Application s 1402
4.3.22 NetXINetX DUO HTTP SeIVEr | L e e e e 1403
4.3.22.1 NetX/NetX Duo HTTP Server Introduction | i e 1403
4.3.22.2 NetX/NetX Duo HTTP Server Module APIS OVeIVIEW o, 1404
4.3.22.3 NetX/NetX Duo HTTP Server Module Operational Overview . . oo, 1407

4.3.22.4 Including the NetX/NetX Duo HTTP Server Module in an Application

4.3.22.5 Configuring the NetX/NetX Duo HTTP Server Module s, 1412
4.3.22.6 Using the NetX/NetX Duo HTTP Server Module in an Application s, 1418
4.3.23 NetX Duo HTTP Client (HTTPS/HTTPS 1.1) e e e e e e 1419
4.3.23.1 NetX Duo Web HTTP/HTTPs Client Introduction . . e 1419
4.3.23.2 NetX Duo Web HTTP/HTTPs Client Module APIs Overview oo 1421
4.3.23.3 NetX Duo Web HTTP/HTTPs Client Module Operational OVerview s, 1425
4.3.23.4 Including the NetX Duo Web HTTP/HTTPs Client Module in an Application i ... 1429
4.3.23.5 Configuring the NetX Duo Web HTTP/HTTPs Client Module oo, 1431
4.3.23.6 Using the NetX Duo Web HTTP/HTTPs Client Module in an Application i . 1435
4.3.24 NetX/NetX Duo HTTP/HTTPS Web Server Framework e e e e e e e e e e 1437
4.3.24.1 NetX Duo Web HTTP/HTTPs Server Introduction | i 1437
4.3.24.2 NetX Duo Web HTTP/HTTPs Server Module APIS OVEIVIEW s, 1439
4.3.24.3 NetX Duo Web HTTP/HTTPs Server Module Operational Overview . . o, 1444
4.3.24.4 Including the NetX Duo Web HTTP/HTTPs Server Module in an Application 1451
4.3.24.5 Configuring the NetX Duo Web HTTP/HTTPs Server Module o, 1453
4.3.24.6 Using the NetX Duo Web HTTP/HTTPs Server Module in an Application i . 1459
4.3.25 NetXINetX DUO SMTP Client | | . L . e st e e e e e 1460
4.3.25.1 NetX/NetX Duo SMTP Client Itroduction o 1460
4.3.25.2 NetX/NetX Duo SMTP Client Module APIS OVeIVIEW o, 1461
4.3.25.3 NetX/NetX Duo SMTP Client Module Operational Overview o, 1462
4.3.25.4 Including the NetX/NetX Duo SMTP Client Module in an Application s, 1465
4.3.25.5 Configuring the NetX/NetX Duo SMTP Client Module o, 1466
4.3.25.6 Using the NetX/NetX Duo SMTP Client Module in an Application . . o, 1471
4.3.26 NetX/NetX DUo SNMP AGENt | . . L L e e 1472

4.3.26.1 NetX/NetX Duo SNMP Agent Introduction | 1472

4.3.26.2 NetX/NetX Duo SNMP Agent Module APIS OVeIVIeW 1473
4.3.26.3 NetX/NetX Duo SNMP Agent Module Operational Overview . . o, 1482
4.3.26.4 Including the NetX/NetX Duo SNMP Agent Module in an Application 1483
4.3.26.5 Configuring the NetX/NetX Duo SNMP Agent Module | . . o, 1484
4.3.26.6 Using the NetX/NetX Duo SNMP Agent Module in an Application o, 1490
4.3.27 NetXINetX DU SNTP Client | | e e e e e e e e 1492
4.3.27.1 NetX/NetX Duo SNTP Client Introduction e 1492
4.3.27.2 NetX/NetX Duo SNTP Client Module APIS OVerview o, 1493
4.3.27.3 NetX/NetX Duo SNTP Client Module Operational Overview o, 1495
4.3.27.4 Including the NetX/NetX Duo SNTP Client Module in an Application . . ., 1497
4.3.27.5 Configuring the NetX/NetX Duo SNTP Client Module 1498
4.3.27.6 Using the NetX/NetX Duo SNTP Client Module in an Application o, 1504
4.3.28 NetX/NetX DUO POP3 Client e e e e e 1505
4.3.28.1 NetX/NetX Duo POP3 Client Introduction | e e 1505
4.3.28.2 NetX/NetX Duo POP3 Client Module APIS OVerview . o, 1507
4.3.28.3 NetX/NetX Duo POP3 Client Module Operational Overview . . o, 1508
4.3.28.4 Including the NetX/NetX Duo POP3 Client Module in an Application s, 1512
4.3.28.5 Configuring the NetX/NetX Duo POP3 Client Module | o, 1513
4.3.28.6 Using the NetX/NetX Duo POP3 Client Module in an Application s, 1518
4.3.29 NetX/NetX Duo Telnet Client e 1519
4.3.29.1 NetX and NetX Duo Telnet Client Introduction | . e 1519
4.3.29.2 NetX and NetX Duo Telnet Client Module APIs Overview o, 1521
4.3.29.3 NetX and NetX Duo Telnet Client Module Operational Overview o, 1523
4.3.29.4 Including the NetX and NetX Duo Telnet Client Module in an Application 1523
4.3.29.5 Configuring the NetX and NetX Duo Telnet Client Module o, 1525
4.3.29.6 Using the NetX and NetX Duo Telnet Client Module in an Application, 1529
4.3.30 NetX/NetX DUo Telnet Server e e 1530
4.3.30.1 NetX and NetX Duo Telnet Server Introduction | | . .. e 1531
4.3.30.2 NetX and NetX Duo Telnet Server Module APIS OVervIeW . o, 1532

4.3.30.5 Configuring the NetX and NetX Duo Telnet Server Module . . o, 1537
4.3.30.6 Using the NetX and NetX Duo Telnet Server Module in an Application, 1542
4.3 31 NetX/NetX DUo TETP ClIeNt | . . . L L e e e e e e e e 1543
4.3.31.1 NetX/NetX Duo TFTP Client Introduction | ettt e e e 1544
4.3.31.2 NetX/NetX Duo TFTP Client Module APIS OVerview o, 1545
4.3.31.3 NetX/NetX Duo TFTP Client Module Operational OVerview oo, 1546
4.3.31.4 Including the NetX/NetX Duo TFTP Client Module in an Application | s, 1547
4.3.31.5 Configuring the NetX/NetX Duo TFTP Client Module . . . s, 1549
4.3.31.6 Using the NetX/NetX Duo TFTP Client Module in an Application o, 1553
4.3.32 NetXINetX DUO TFTP SeIVer | | . . . it it e et e e e e e 1554
4.3.32.1 NetX and NetX Duo TFTP Server Introduction e 1554
4.3.32.2 NetX and NetX Duo TFTP Server Module APIs Overview o, 1555
4.3.32.3 NetX and NetX Duo TFTP Server Module Operational Overview s, 1556
4.3.32.4 Including the NetX and NetX Duo TFTP Server Module in an Application 1558
4.3.32.5 Configuring the NetX and NetX Duo TFTP Server Module | o, 1560
4.3.32.6 Using the NetX and NetX Duo TFTP Server Module in an Application 1565
4.3.33NetX DUo MQTT ClIeNt | . . L . L e e e e 1566
4.3.33.1 NetX Duo MQTT Client Introduction | e 1566
4.3.33.2 NetX Duo MQTT Client Module APIs Overview it 1567
4.3.33.3 NetX Duo MQTT Client Module Operational Overview o, 1569
4.3.33.4 Including the NetX Duo MQTT Client Module in an Application o, 1576
4.3.33.5 Configuring the NetX Duo MQTT Client Module et 1577
4.3.33.6 Using the NetX Duo MQTT Client Module in an Application o, 1585
4.3 34 NetX DUO NAT | 1586
4.3.34.1 NetX Duo NAT INrodUuCtion | e it e e e e e e 1586
4.3.34.2 NetX Duo NAT Module APIs Overview 1587
4.3.34.3 NetX Duo NAT Module Operational Overview | . . ittt et 1589
4.3.34.4 Including the NetX Duo NAT Module inan Application . o, 1593
4.3.34.5 Configuring the NetX Duo NAT Module e 1594
4.3.34.6 Using the NetX Duo NAT Module in an Application e 1599
4.3.35 NetX DUO TLS SESSION | . . L . L Lt e e e e e 1600
4.3.35.1 NetX Duo TLS Session Introduction | e 1600
4.3.35.2 NetX Duo TLS Session Module APIs Overview e 1602
4.3.35.3 NetX Duo TLS Session Module Operational Overview 1608
4.3.35.4 Including the NetX Duo TLS Session Module in an Application o, 1611
4.3.35.5 Configuring the NetX Duo TLS SessionModule | e 1613
4.3.35.6 Using the NetX Duo TLS Session Module in an Application | o, 1619
4.3.36 NetX DUO DTLS SeSSION | . . . L . e 1620
4.3.36.1 NetX Duo DTLS Session Introduction | e e 1620
4.3.36.2 NetX Duo DTLS Session Module APIs Overview e 1622
4.3.36.3 NetX Duo DTLS Session Module Operational OVerview . . . o, 1626
4.3.36.4 Including the NetX Duo DTLS Session Module in an Application 1627
4.3.36.5 Configuring the NetX Duo DTLS SessionModule | 1628
4.3.36.6 Using the NetX Duo DTLS Session Module in an Application . . o, 1633
4.3.37 NetX DUO MDNS/DNS-SD | | e e e e e 1635
4.3.37.1 NetX Duo mDNS/DNS-SD Introduction e e 1635
4.3.37.2 NetX Duo mDNS/DNS-SD Module APIs Overview 1636
4.3.37.3 NetX Duo mDNS/DNS-SD Module Operational OVerview . . . 1640
4.3.37.4 Including the NetX Duo mDNS/DNS-SD Module inan Application | 1642
4.3.37.5 Configuring the NetX Duo mDNS/DNS-SD Module | e 1643
4.3.37.6 Using the NetX Duo mDNS/DNS-SD Module in an Application . . o, 1650
4.3.38 Azure RTOS USBX OVEIVIEW L ot e et e e e 1651
4.3.38.1 Azure RTOS USBX Interface OVeIview | e e e 1651

4.3.38.6 Azure RTOS USBX Special Linker Sections | e 1664
4.3.38.7 Azure RTOS USBX Memory Requirements | . . ettt 1664
4.3.38.8 Azure RTOS USBX LIMIAtioNs | it et et et et e e e e 1664
4339 USBX SOUICE | L . oL ittt ettt e e e e e e 1665
4.3.39.1 USBX Source Component Module Introduction e 1665
4.3.39.2 When to Include the USBX Source Component e 1665
4.3.39.3 Adding the USBX Source Component | e 1665
4.3.39.4 Changing the USBX Source Component Properties . . e 1666
4.3.39.5 USBX Source Component OVerview e e e 1666
A B A0 USBX POt | L L e 1669
4.3.40.1 USBX Synergy Port Framework Introduction | e e 1669
4.3.40.2 USBX Synergy Port Framework Module APIS OVeIvVIEW . . o, 1670
4.3.40.3 USBX Synergy Port Framework Module Operational Overview o, 1670
4.3.40.4 Including the USBX Synergy Port Framework Module in an Application |, 1671
4.3.40.5 Configuring the USBX Synergy Port Framework Module o, 1673
4.3.40.6 Using the USBX Synergy Port Framework Module in an Application, 1679
4.3.41 USBX Device Class CDC-ACM | . L L L e 1680
4.3.41.1 USBX Device Class CDC-ACM Module Introduction o, 1680
4.3.41.2 USBX Device Class CDC-ACM Module APIS OVervIeW o, 1680
4.3.41.3 USBX Device Class CDC-ACM Module Operational Overview . o, 1681
4.3.41.4 Including the USBX Device Class CDC-ACM Module inan Application | i 1682
4.3.41.5 Configuring the USBX Device Class CDC-ACM Module | . . . 1683
4.3.41.6 Using the USBX Device Class CDC-ACM Module inan Application | s 1693
4.342USBXDevice Class HID | 1694
4.3.42.1 USBX Device Class HID Module Introduction e 1694
4.3.42.2 USBX Device Class HID Module APIs Overview | e 1695
4.3.42.3 USBX Device Class HID Module Operational Overview o, 1696
4.3.42.4 Including the USBX Device Class HID Module in an Application | 1698
4.3.42.5 Configuring the USBX Device Class HID Module 1699
4.3.42.6 Using the USBX Device Class HID Module inan Application o, 1710
4.3.43 USBX Device Class Mass StOrage it vttt it e e e 1711
4.3.43.1 USBX Device Class Mass Storage Introduction L 1711
4.3.43.2 USBX Device Class Mass Storage Module APIS OVervVIeW o, 1712
4.3.43.3 USBX Device Class Mass Storage Module Operational Overview . o, 1712
4.3.43.4 Including the USBX Device Class Mass Storage Module in an Application, 1713
4.3.43.5 Configuring the USBX Device Class Mass Storage Module o, 1714
4.3.43.6 Using the USBX Device Class Mass Storage Module in an Application | 1725
4.3.44 USBX Host Class CDC-ACM | . . . L e e e e e e 1725
4.3.44.1 USBX Host Class CDC-ACM Module Introduction | . e 1726
4.3.44.2 USBX Host Class CDC-ACM Module APIS OVEIVIEW s, 1726
4.3.44.3 USBX Host Class CDC-ACM Module Operational Overview s, 1727
4.3.44.4 Including the USBX Host Class CDC-ACM Module in an Application s, 1729
4.3.44.5 Configuring the USBX Host Class CDC-ACM Module |y 1730
4.3.44.6 Using the USBX Host Class CDC-ACM Module in an Application = . . o, 1735
4345 USBX Host Class HID | | e e 1736
4.3.45.1 USBX Host Class HID Module Introduction e 1736
4.3.45.2 USBX Host Class HID Module APIs Overview | e e 1737
4.3.45.3 USBX Host Class HID Module Operational Overview o, 1739
4.3.45.4 Including the USBX Host Class HID Module inan Application o, 1741
4.3.45.5 Configuring the USBX Host Class HID Module e 1742

4.3.46.1 USBX Host Class Hub Module Introduction e 1749
4.3.46.2 USBX Host Class Hub Module APIs Overview . e 1750
4.3.46.3 USBX Host Class Hub Module Operational Overview o, 1750
4.3.46.4 Including the USBX Host Class Hub Module inan Application o, 1752
4.3.46.5 Configuring the USBX Host Class Hub Module 1753
4.3.46.6 Using the USBX Host Class Hub Module inan Application o, 1758
4.3.47TUSBX Host Class Printer e 1758
4.3.47.1 USBX Host Class Printer Module Introduction | e 1759
4.3.47.2 USBX Host Class Printer Module APIs Overview e 1759
4.3.47.3 USBX Host Class Printer Module Operational Overview | 1760
4.3.47.4 Including the USBX Host Class Printer Module in an Application 1762
4.3.47.5 Configuring the USBX Host Class Printer Module | e 1762
4.3.47.6 Using the USBX Host Class Printer Module in an Application . . . o, 1767
4.3.48 USBX Host Class Mass StOraget ittt et et et ettt e 1768
4.3.48.1 USBX Host Class Mass Storage Module Introduction . . . o, 1768
4.3.48.2 USBX Host Class Mass Storage Module APIS OVervIiew . o, 1769
4.3.48.3 USBX Host Class Mass Storage Module Operational OVerview s, 1769
4.3.48.4 Including the USBX Host Class Mass Storage Module in an Application, 1771
4.3.48.5 Configuring the USBX Host Class Mass Storage Module o, 1772
4.3.48.6 Using the USBX Host Class Mass Storage Module in an Application o, 1780
4.3.49 USBX HOSt Class VIBO e 1781
4.3.49.1 USBX Host Class Video Module Introduction e 1781
4.3.49.2 USBX Host Class Video Module APIs Overview | e 1782
4.3.49.3 USBX Host Class Video Module Operational Overview o, 1782
4.3.49.4 Including the USBX Host Class Video Module inan Application |, 1785
4.3.49.5 Configuring the USBX Host Class Video Module 1786
4.3.49.6 Using the USBX Host Class Video Module in an Application . . . o, 1789
Chapter 5 APIREfErenCe oo 1792
5.1 Renesas Synergy Software Package Reference i i 1792
B L L Shared | L 1792
5.1.1.1Common Ermor Codes | e e e e 1793
5.1.2Framework INterfaces L 1797
5.1.2.1 ADC Periodic Framework Interface | e 1803
5.1.2.2 Audio Framework Interface | e e 1810
5.1.2.3 Audio Playback Framework Interface | e 1823
5.1.2.4 Audio Recording Framework Interface L 1831
5.1.2.5 SF BLE Framework Interface | e e 1839
5.1.2.6 SF BLE On-Board Profile Framework Interface || ... 1912
5.1.2.7 SF BLE Alert Notification Profile Framework Interface o, 1932
5.1.2.8 SF BLE Battery Service Profile Framework Interface . . o, 1940
5.1.2.9 SF BLE Blood Pressure Profile Framework Interface | o, 1941
5.1.2.10 SF BLE Current Time Service Profile Framework Interface o, 1944
5.1.2.11 SF BLE Find Me Profile Framework Interface | e 1949
5.1.2.12 SF BLE HID Over GATT Profile Framework Interface o, 1950
5.1.2.13 SF BLE Heart Rate Profile Framework Interface . . o, 1957
5.1.2.14 SF BLE Health Thermometer Profile Framework Interface 1961
5.1.2.15 SF BLE Immediate Alert Profile Framework Interface L, 1965
5.1.2.16 SF BLE Next DST Change Service Profile Framework Interface o, 1968
5.1.2.17 SF BLE Phone Alert Status Profile Framework Interface . . . o, 1969
5.1.2.18 SF BLE Proximity Profile Framework Interface L 1974
5.1.2.19 SF BLE Reference Time Update Service Profile Framework Interface 1975
5.1.2.20 SF BLE Scan Parameters Service Profile Framework Interface | L, 1977
5.1.2.21 SF BLE Time Information Profile Framework Interface o, 1979

5.1.2.23 SF CELLULAR Framework Interface 1988

5.1.2.24 SF CELLULAR NSAL Framework Interface | 2021
5.1.2.25 SF Socket CELLULAR Framework Interface | . e 2026
5.1.2.26 Communications Framework Interface e 2050
5.1.2.27 Console Framework Interface e 2058
5.1.2.28 SSP Crypto Framework Common Module Interface | 2071
5.1.2.29 SSP Crypto Cipher Framework Interface | e 2082
5.1.2.30 SSP Crypto HASH Framework Interface | e 2094
5.1.2.31 SSP Crypto Key Framework Interface | e 2104
5.1.2.32 SSP Crypto Key Installation Framework Interface | e 2111
5.1.2.33 SSP Crypto Signature Framework Interface e 2120
5.1.2.34 SSP Crypto TRNG Framework Interface e 2133
51235 GUIXINtErface | e e 2138
5.1.2.36 External IRQ Framework Interface | L e 2146
51237 12C Framework e e e 2152
5.1.2.38 JPEG Decode Framework Interface | e e 2162
S.L2.39Memoryinterface L e e 2171
5.1.2.40 Messaging Framework Interface e 2180
5.1.2.41 Power Profiles V2 Framework Interface | L e 2195
5.1.2.42 SF Socket WIFI Framework Interface e 2205
5.1.243 SPIFramework Interface e 2229
5.1.2.44 Thread Monitor Framework Interface e 2239
5.1.2.45 CTSU V2 Framework Interface e e 2248
5.1.246 TouchchipInterface | 2258
5.1.2.47 Touch Panel Framework Interface | . e 2263
5.1.2.48 SF WIFI Framework Interface | | e e e 2274
5.1.249 SEWIFINSAL INterface | | e e 2301
5.1.2.50 SF WIFI On-Chip Stack Interface e 2303
5.1.2.51 SF WIFI QCA4010 Framework Interface | e 2311
5.1.2.52 SF WIFI QCA4010 On-Chip Interface | e e e 2331
5.1.2.53 SF Socket WIFI Framework Interface e 2341
5.1.2.54 SEWIFINSAL 0N NetX e e 2351
5.1.2.55 BLE Framework Interface on RL78GID | | | e 2352
5.1.2.56 Cellular Framework Example using Quectel CATM1 APl . 2383
5.1.2.57 BSD Socket over Quectel CATM1 on-chip stack APl 2393
5.1.2.58 Cellular Framework Example using RYZOIACATML APL o, 2407
5.1.2.59 SF CELLULAR Common Interface | e e 2418
5.1.2.60 BSD Socket over RYZO14CATM1 on-chip stack APl e 2437
5. L3 Framework Layer | | . . L e e 2452
5.1.3.1 ADC periodic Framework e e e 2457
5132 Audio Framework e 2465
5.1.3.3 DAC Audio Playback Framework e 2475
5.1.3.4 128 Audio Playback Framework e 2482
5.1.3.5 ADC Audio recording Framework | e 2488
5.1.3.6 128 Audio recording Framework e 2494
5.1.37BLOCK_MEDIA_LEVELX NOR e e e e e 2502
5138 BLOCK MEDIA Q8P e 2510
5139 BLOCK MEDIA RAM e 2518
5.1.3.10 BLOCK_MEDIA_SDMMC | e 2522
5.1.3.11 Cellular NSAL Implementation on NetX e e 2528
5.1.3.12 Telnet Communication Framework on sf_comms_telnet . o, 2531
5.1.3.13 Console Framework | e e 2541
5.1.3.14 SSP Crypto Common Framework | e e 2549
5.1.3.15 SSP Crypto Cipher Framework 2556

5.1.3.17 SSP Crypto Key Framework e e e 2594
5.1.3.18 SSP Crypto Key Installation Framework | e 2620
5.1.3.19 SSP Crypto Signature Framework | L 2624
5.1.320 SSP Crypto TRNG Framework e e e 2647
S.L32L EX IO Framework | e e e 2650
5.1.3.22 GUIX SYnergy POrt e e e 2665
58 23 Bl X NOR e 2673
5.1.3.24 USB Communication Framework V2. e 2685
5.1.3.25 External IRQ Framework e 2690
5.13.26 12C Framework e e e 2694
51327 JPEG Framework e e e e 2702
5.1.3.28 Memory framework e e 2716
5.1.3.29 Messaging Framework e 2725
5.1.3.30 Power Profiles Framework V2 e e 2733
S.L33LSPIFIamework e e 2738
5.1.3.32 Thread Monitor Framework L e e 2748
51333 CTSUVZ Framework L e e 2757
5.1.3.34 Touch Panel V2 Framework | e 2765
5.1.3.35 UART Framework INStanCe | e e 2773
5.1.3.36 NetX Synergy Port e e 2782
5.1.3.37 NetX Synergy Port PHY Driver e 2799
5.1.3.38 BLE Framework on RL78GLID | L e 2802
5.1.3.39 BLE On-Board Profile Framework on RL78G1D || 2823
5.1.3.40 Cellular Framework Example using Quectel CATM1 2824
5.1.3.41 BSD Socket over Quectel CATMLon-chipstack | . . e 2827
5.1.3.42 Cellular Framework Example using RYZO14 CATML | . it e e 2827
5.1.3.43 BSD Socket over RYZO14CATML on-chipstack | e 2828
5.1.3.44 Touch Panel Framework Example for FTSX06 . e 2828
5.1.3.45 Touch Panel Framework Example for SX8654 | ... 2830
5.1.3.46 WiFi Framework on GT202 | L 2832
5.1.3.47 WiFiOn Chip Stack on GT202 | | e e e 2843
5.1.3.48 BSD Socket on GT202 L e e 2844
5.1.3.49 WiFi Framework on QCA4010 | | L e 2845
5.1.3.50 WiFi On Chip Stack on QCA4010 | | 2855
5.1.3.51 Socketon QCAA010 e e e e 2862
51352 USBX Framework e e 2872
5.1.3.53 2D Drawing Engine Support Framework e e 2959
S.LAHALINEACES | L . 2976
S.LALADCINtIACe e e 2980
5.1.42 Analog Connect INterface | | e e 3004
SLABCACINtEIACE L e 3008
S.LAACANINtETACE L e e e e 3020
5145 CBCINterface L e 3038
5.1.4.6 COMPARATOR INterface | e 3058
547 CRCINteIaCe L e e 3069
S.L48CryptoInterface e e 3077
S.LA9CTSUVZINErface | e e e e e 3172
S.LAL0DACINteraCe | L e e e 3184
5.1.4.11 Display Interface L e e 3191
5.1A412DOCINEITACE | e e e e e 3217
5.1.4.13 events and peripheral definitions 3226
5.1414 External IRQINterface | e e e 3231
S.LALSFlashInterface L e 3241
SLALBEMIINterface L e e e 3258

5.1.4.18 12S Interface 3277

51419 Input Capture Interface 3292
BLA20 WO POMLINEMACE | 3305
5.1.421JPEG Decode INefaCe | 3332
51422 PEG Encode Iterface 3347
51423 Key Mattix INterface 3359
5.1.4.24 Low Power Modes V2 Interface 3367
5.1.4.25 Low Voltage Detection Interface = 3371
SLA260PAMPINEMACE | 3383
SLA2TPDCINEIACE | 3392
51428 PTPAver Iterface 3402
5.1.420 PTPEDMAC driver Interface . 3431
51430 Quad SPIFlash Inferface . 3438
SLALRTCINEMACE | 3446
1432 SDIMMCIterface | 3464
LA433SLCDCIMENACe | 3482
BLABASPIINGIACE 3496
SLABSTIMEr INMACe 3508
51436 Transfer IMerface 3522
SLASTUARTINENACE | 3541
SLAZBWDTINEIACE | 3554

BB HALLAYET | . o o oo e e e e e e e e e e 3568
5.15.1 High-Speed Analog COMPArator ... 3573
5.1.5.2Low Power Analog Comparator | 3578
BLEBADC 3583
LS AGT 3599
SASEAGTINDUECAPIUIE | 3609
5156 Analog CONMECHONS . 3620
5T CAC | 3623
58 CAN 3633
BLSICEC | 3642
SLSA0CRE | 3659
SLSILCTSUVZ 3665
SLSAZDAC | 3679
SLSAIDACE | 3685
SLSIADMAC | 3692
BASASDOC | 3703
BLSAEDTC | 3710
BASATELC | 3724
5.15.18 High-performance FIash | 3727
SASAOLOWPOWEr FIBSN 3744
BLS20FMI 3758
BLS2LGLEDC | | 3758
SL522GPT | 3777
5.1.5.23GPTInput Capture e e 3789
BLS201CU | 3798
SA52510PORT | 3804
LS 26 DT 3813
SA527IPEG CODEC | | 3819
BA528IPEGENCODE | | 3830
BAS20KeY INMUDES | 3838
SAS0LPMV2SI2A 3844
SASLLPMV2SI28 3855
BAS2ZLPMV2SIIA | 3866

5.1.5.33 LPMV2 S3A1 3877

5 LS BA P MY 2 SBAS e e 3889
5B 35 P 2 SBAB L e e e 3902
5836 LMY 2 ST e 3914

5 LB 37 LMY 2 SO e e e e 3927
5B 38 LPMY 2 SO e e 3948

5 LB 3 LPMY 2 S5l e e 3968
5.LBA0LPMY2 S7G2 e e 3987
BB AL L D e 4005
5.1.5.42 Operational Amplifier (OPAMP) 4013

B LB A8 P | L e 4025

B B A PP e 4033

5. 1845 PTPEDMAC | e 4057

5 B8 QP e e 4063
S B AT I e e e 4073

5 BB IIC Slave e e e 4085
5B A0 Pl e e 4093

5 LB 80 R e e 4114
51551 8imple 12C on SCI e 4125
5.15.52 Simple SPION SCI e e e e 4136

5. LB BB UART 0N Sl e e 4146
5.1.5.54 Sigma Delta ADC (SDADC) | | | | e e 4158
5555 SDMMC | e e 4180
51556 SLC D e e 4193
R 4200

5 S OB DT e e e e 4209
51559 SCE ModUle | e e e e 4217
5.2 Board SUPPOIt PaCKagE v oot vt e e 4468
5.2.1 SUppOrted MCUS | | . L. . e e e e 4468
5 2 L a2 e 4470

5 2 2 028 L e 4513

5 2 B LA e 4556

5 2 A AL e 4601

5 2 5 S8 e 4647

5 2 B SBAG | L e 4693
52 L T ST e e 4739
5.2 8 OO e 4786
52 0 DS L e 4833
52 0 0D e e 4881
O 4929
5.22Common BSP CoUe | e e 4979
5.2.2.1 Common BSP LED Code and TYPES | . .. e 4983
5.2.2.2 Compiler SUPPOTt | e e e e e 4985
5.22.3Software Delay | | | L e e e e 4985
5,224 Emor Checking | | L e e e 4987
5.2.2.5 Module specific feature overrides | L 4987
5.2.2.6 Grouped Interrupt SUPROIt L e 5009
5.2.2.7 Interrupt Initialization L 5018
5228 AtOMIC LOCKING | L e 5019
5.2.2.9 Register Protection e e e 5022
52200 BSP _MCU _SBRK e e 5024
Chapter 6 StruCtUre INAEX « . . vt 5026
6.1 Data SITUCIUIES . o v v v v e e e e e e e 5026
6.1.1 d1_device_synergy Struct REfErence . , i it i e e e 5048
6.1.2 NX_DES Struct Reference e e e 5048

6.1.3 NX_IPV6_HEADER Struct Reference ittt e e e e 5049
6.1.4 NX_MD?5 Struct Reference
6.1.5 NX_SECURE_TLS PHASH_SCE Struct Reference
6.1.6 NX_SECURE_TLS_PRF_1_SCE Struct Referencettt 5050

6.1.7 NX_SECURE_TLS_PRF_SHA 256_SCE Struct REferenCe , o o v oo e, 5050
6.1.8 NX_SHAL Struct REference | | ittt e e e e e e 5050
6.1.9 RBLE_GATT_CHAR_128 LIST Struct Reference i i 5051

6.1.10 RBLE_GATT_CHAR_DESC_128_LIST Struct Reference , e 5052

6.1.11 RBLE_GATT_CHAR_DESC_LIST Struct Reference i 5053
6.1.12 RBLE_GATT_CHAR_LIST Struct Reference e 5053
6.1.13 RBLE_GATT_DESIRED_TYPE Struct REference e 5055

6.1.14 RBLE_GATT_DISC_CHAR_DESC_REQ Struct Reference 5055

6.1.15 RBLE_GATT_DISC_CHAR_REQ Struct Reference ,t 5056
6.1.16 RBLE_GATT_DISC_SVC_REQ Struct Reference ittt i 5058
6.1.17 RBLE_GATT_EVENT Struct Reference , ittt e e e e 5059

6.1.18 RBLE_GATT_EXE_WR_CHAR_REQ Struct Reference , , , ., i 5060

6.1.19 RBLE_GATT_INCL_128_LIST Struct Reference i i 5061
6.1.20 RBLE_GATT_INCL_LIST Struct Reference | i i i 5062
6.1.21 RBLE_GATT_INDICATE_REQ Struct Reference i 5063

6.1.22 RBLE_GATT_INFO_DATA Struct Reference , i e 5064

6.1.23 RBLE_GATT_NOTIFY_REQ Struct Reference , , ., it it it et e e e 5065
6.1.24 RBLE_GATT_QUERY_RESULT Struct Reference ittt e e e 5066
6.1.25 RBLE_GATT_READ_CHAR_REQ Struct Reference , ittt e e e 5066
6.1.26 RBLE_GATT_RELIABLE_WRITE Struct Reference e 5068
6.1.27 RBLE_GATT_SET_DATA Struct Reference , , i i i e e e e 5069
6.1.28 RBLE_GATT_SET_PERM Struct Reference , ittt e e i 5070
6.1.29 RBLE_GATT_SVC_128_LIST Struct Reference , ,ttt it i e e 5071
6.1.30 RBLE_GATT_SVC_LIST Struct Referencet e e et e e e 5072
6.1.31 RBLE_GATT_SVC_RANGE_LIST Struct Reference i 5073
6.1.32 RBLE_GATT_UUID_TYPE Struct Reference , i i 5074

6.1.33 RBLE_GATT_WRITE_CHAR_REQ Struct Reference 5075

6.1.34 RBLE_GATT_WRITE_RELIABLE_REQ Struct REfErenCe o o v e, 5077
6.1.35 RBLE_GATT_WRITE_RESP Struct Reference e 5078
6.1.36 sdmmc_priv_csd_reg_ext_t Struct Reference e 5079

6.1.37 sdmmc_priv_csd_reg_t Struct Reference e 5079

6.1.38 sf_cellular_circular_queue_cfg_t Struct Reference , , i 5080
6.1.39 sf_cellular_comms_extend_cfg_t Struct Reference ., , 5080
6.1.40 sf_cellular_extended_cfg_t Struct Reference , , it 5081

6.1.41 sf_cellular_instance_cfg_t Struct Reference , it 5082

6.1.42 sf_cellular_gctlcatml_socket_cfg_t Struct Reference | v i e 5083
6.1.43 sf_cellular_socket_info_t Struct Reference , 5084
6.1.44 ssp_pack_version_tUnion Reference e e 5086
6.1.45 ssp_version_t Union RETEIENCE |, | i i it e e 5088
6.2 Data StrUCtUIre INABX o v it e e e e e e e e e e e e e e e 5089
B.3DataFields 5104
6.3 LAIDataFIelds | | e 5104
6.3 2 FUNCHONS | | e e 5150

6.3.3 Variables 5151

Synergy Software Package User’s Manual

Renesas Synergy™ Software Package Introduction

Chapter 1 Renesas Synergy™
Software Package Introduction

1.1 Introduction to the SSP User's Manual

This manual describes how to use the Renesas Synergy Software Package for writing applications for
the Synergy microcontroller series. In the figure below, the APl Reference components of the SSP
User's Manual are indicated in blue. Additional components such as the description of the e2 studio
ISDE and tutorials and example applications are included in this manual to guide you through the
steps of programming with the SSP.

R11UMO0161EU0161 Revision 1.61 RENESANS Page 26 /5,198
Jun.08.2024

Synergy Software Package User’s Manual

Renesas Synergy™ Software Package Introduction > Introduction to the SSP User's Manual

Renesas Synergy Gallery '
User applications

Synergy Software
Package
(SSP)

Synergy MCU '

Modules

e2
studio
ISDE

Framework Interfaces '
ThreadX
RTOS Framework (ThreadX-aware

drivers)

Middleware
HAL Interfaces '

HAL Drivers

Board Support Package (BSP)

Board MCU
Configuration Configuration

Figure 1: Synergy Software Package (SSP) Documentation

1.2 Subjects Covered in this Manual

To learn about the SSP architecture and about board and chip-level support included in the SSP see:

R11UMO161EU0161 Revision 1.61 RENESAS Page 27 /5,198
Jun.08.2024

Synergy Software Package User’s Manual

Renesas Synergy™ Software Package Introduction > Subjects Covered in this Manual

e SSP Architecture
e BSP Architecture

For programming with the SSP and an introduction to the e2 studio ISDE see:
e2 studio ISDE User Guide
For introductory tutorials and application examples see:

e Tutorial Blinky
e Application WDT

For Module Overviews describing the SSP Modules, see:

e Framework Layer
e HAL Layer

The API reference documentation of the following SSP components is included in this document:

e Framework Interfaces for Interfaces to the ThreadX-aware Framework Modules

e Framework Layer for ThreadX-aware Framework Driver Modules

e HAL Interfaces for Interfaces to the Hardware Abstraction Layer (HAL) Modules

e HAL Layer for the RTOS-independent HAL driver Modules

e Board Support Package for the Board Support Package (BSP) which includes board-specific
and microcontroller-specific configuration modules

R11UMO0161EU0161 Revision 1.61 RENESANS Page 28 /5,198
Jun.08.2024

Synergy Software Package

SSP Overview

User’s Manual

Chapter 2 SSP Overview

2.1 SSP Overview

% Synergy Software Package (SSP)

Application Programming Interface (API)
- P) .
ThreadX Application Middleware Fu_nctlo_nal
RTOS Framework Libraries
Fully Preemptive Audio Wi-Fi Filex™ USBX™ GUIX™ NetX™ and NetX Duo™ ;"‘gpﬂ"lﬁb""d
Scheduler ;ESS ':g IErCacry
i i . RSA, ECC,
—— || console BLE FAT 12/16/32 (;gsrggfsé‘sz Run Time Library il >NTP SHA1/256, ARCA,
\ntfr-progessgﬂd Cellular Formats HID, Hub) Image Processing TFTP NAT 3TDES, MD5, TRNG
nter-threa .
Communication JPEG C;&?WB;;?:&'H SDSC, SOHC, Host Stack Widget Library Telnet TCP CMSIS DSP Library
eMMC Support | oot Controller || Event Processing PPP IPvaivG
Memory Touch Panel ADC Software Safety
Management “— || simultaneous Device Classes Canvas Processing SMTP ubpP Library
Capacitive ~ Dread Media Support || (Storage, CDC,
Touch Monitor PP HID, UVC) Rotation, Scaling POP3 ICMP Signature Generation
Interrupt B —— i - and Verification
P Power Fault tolerant, Device Stack Blend, Anti-alias TLS MQTT
Management Cryptographic __ Profile Journal-Based Wrapped Key
External Device Controller SDSC, SDHC, DNS ARP Generation
* eMMC Support
X-Ware Interrupt LevelX Flash Isochronous PP DHCP RARP Key Installation
Execution Profiling Interface Wear Leveling Transfer _ Keylnstallation
Mass Storage HTTP/1.1 SNMP Public Key Encryption
SPI, 12C, (SDMMC, USB, BSD Socket —
UART QSPI, RAM) HTTPS Ubr‘gfr € Private Key Decryption
Picokemel™ any
Architecture . .
Hardware Abstraction Layer (HAL) Drivers
Event-Chaining™
Technology UART SPI ADC12/14/16 Code Flash Data Flash QsPI SDHI CRC
USBHS 12¢ Sigma Delta ADC CAN GPIO RTC JPEG Codec PDC
Preemption-
Threshold™ USBFS SS1 DACS8 Timer Watchdog Timer DMA Controller AGT 16-BitTimer GPT 32-BitTimer
Scheduling
Ethernet MAC Factory MCU DAC 12 Independent 2D Drawing Low Voltage Low Power Segment LCD
Controller Information Watchdog Tmr Engine Detection Maodes Controller
Clock Functional Data Tranfer Capacitive Touch Event Link Interrupt Contral Security and Graphics LCD
Management Safety Controller Sensing Unit Controller Unit Encryption Controller
Analog OPAMP
Comparators
Board Support Package (BSP)

Learn how to develop applications with the Synergy Software Package (SSP) using the SSP's module-
based architecture and the functional software layers. Integrate SSP applications with multiple
boards and Synergy devices using the Board Support Package (BSP).

R11UMO0161EU0161 Revision 1.61

LENESAS
Jun.08.2024 ’1

Page 29 /5,198

Synergy Software Package User’s Manual

SSP Overview > SSP Overview

The following pages describe the fundamental SSP architecture:

e SSP Architecture
e BSP Architecture

2.1.1 Introduction
2.1.1.1 Purpose

The Renesas Synergy™ Software Package (SSP), part of the Renesas Synergy™ Platform, is a
complete integrated software package designed to provide easy to use, scalable, high quality
software for embedded system design. Using the Synergy Software Platform will reduce time to
market by providing a completely integrated and qualified embedded software platform comprising
of an industry leading, completely optimized and hardened Real-time Operating System (RTOS),
middleware, communication stacks, function libraries, application framework and hardware
abstracted low-level device drivers.

2.1.1.2 Overview
The SSP is divided into four main layers:

e Framework Interfaces The Framework Library connects to Synergy hardware peripherals
through common Interfaces, which abstract the hardware into functional use cases. The
Interface layer is a group of header files with definitions of functions and parameters, so it
consumes no code space.

e Framework Layer The Framework layer consists of RTOS integrated drivers and valuable
application code.

e HAL Interfaces HAL layer Interfaces connect to RTOS-independent HAL-level drivers.

e HAL Layer The HAL layer drivers with hardware registers implement Interfaces.

2.1.1.3 Ease of Use

The SSP provides uniform and intuitive APIs that are well documented. Each module is supported
with detailed user documentation and software datasheet including code size and execution time for
each function.

2.1.1.4 Scalability

Users have the choice to integrate with the platform capabilities using either the Framework
Interface or HAL layer, depending on which best meets the needs of the application. To further scale

each module, build time options such as parameter checking may be compiled out for smaller, more
efficient code.

2.1.2 SSP Architecture

2.1.2.1 Renesas Synergy Software Package (SSP) Architecture

This section describes the Renesas Synergy Software Package (SSP) architecture and how to use the
SSP Application Programming Interface (API).

Introduction to the SSP

As microcontrollers increase in complexity, so does the breadth of knowledge required to make them

R11UMO0161EU0161 Revision 1.61 RENESANAS Page 30/5,198
Jun.08.2024

Synergy Software Package User’s Manual

SSP Overview > SSP Overview > SSP Architecture > Renesas Synergy Software Package (SSP) Architecture

operate in the desired way. The SSP provides an innovative approach to embedded software for loT
applications. With the SSP, you have a new and extremely powerful software interface from the
ground up, making coding fast and providing you with a robust development processes. With this
software, you can create differentiated application code instead of spending months developing
baseline code to interface at the hardware level.

SSP Terms

Term Description Reference

Module Modules can be peripheral SSP Modules
drivers, purely software, or
anything in between. Each
Module consists of a folder with
source code, documentation,
and anything else that the
customer needs to use the code
effectively. Modules are
independent units, but they
may depend on other Modules.
Example SSP Modules are the
UART driver (UART Interface),
Audio Playback Framework,
which relies on timer, DMA, and
DAC drivers (Audio Framework
Interface), or the Messaging
Framework (Messaging
Framework Interface).
Applications can be built by
combining multiple modules to
provide the user with the
features they need.

BSP Short for Board Support BSP Architecture
Package. In the SSP the BSP
provides just enough
foundation to allow other SSP
modules to work together
without issue.

R11UMO0161EU0161 Revision 1.61 RENESANAS Page 31/5,198
Jun.08.2024

Synergy Software Package

SSP Overview > SSP Overview > SSP Architecture > Renesas Synergy Software Package (SSP) Architecture

User’s Manual

Callback Function

This term refers to a function
that is called when an event
occurs. For example, the bus
error interrupt handler is
implemented in the r_bsp. The
user will likely want to know
when a bus error occurs. To
alert the user, a callback
function can be supplied to the
r_bsp. When a bus error occurs
the r_bsp will jump to the
provided callback function and
the user can handle the error.
Interrupt callback functions
should be kept short and be
handled carefully because when
they are called the MCU will still
be inside of an interrupt and
therefore will be delaying any
pending interrupts.

Instances

Interface See SSP Interfaces section: SSP | SSP Interfaces
Interfaces. All interfaces in the
SSP are listed here: Framework
Interfaces and HAL Interfaces

Instance See SSP Instances section: SSP | SSP Instances

Module Instance

Single and independent
configuration of a Module.

designed such that Modules
work together to form a Stack.
Starting with the uppermost
Module and going to the
bottommost dependency forms
a specific Stack.

Application Code that is owned and An example for a simple
maintained by the user. application is included as
Application code may be based | tutorial in this manual: ref
off sample application code application-wdt
provided by Renesas, but is the
responsibility of the user.

Driver A Driver is a specific kind of -
Module that directly modifies
registers on the MCU.

Stacks The SSP architecture is SSP Stacks

R11UMO0161EU0161 Revision 1.61
Jun.08.2024

RLENESAS

Page 32/5,198

Synergy Software Package User’s Manual

SSP Overview > SSP Overview > SSP Architecture > Renesas Synergy Software Package (SSP) Architecture

Layer/Level Stacks are made of multiple ref ssp-predefined-layers
layers of Modules. A Layer can
consist of one or multiple
Modules depending on the
requirements of the next Layer
up. Layer and Level are used
interchangeably.

2.1.2.2 SSP Modules

Modules are the core building block of SSP. Modules can do many different things, but all Modules
share the basic concept of providing functionality upwards and requiring functionality from below.

A

Provides

Requires

v

Figure 2: Modules

The amount of functionality provided by a Module is not limited though there are usually points
where separation makes sense. If too much functionality is provided, then reuse of the Module can
become difficult in the future. If not enough functionality is provided, then unnecessary complexity
and overhead may be added in order to make the Modules work as expected.

The simplest SSP application consists of one Module with the user application on top.

Application

SSP Layer 0

Figure 3: Module with application

For simplicity, ignore the Board Support Package (BSP) for now because it is a requirement of any

R11UMO0161EU0161 Revision 1.61 .QEN ESANANAS Page 33/5,198
Jun.08.2024

Synergy Software Package User’s Manual

SSP Overview > SSP Overview > SSP Architecture > SSP Modules

SSP project. In the picture above, the BSP is located underneath the bottom layer, SSP Layer 0.

2.1.2.3 SSP Stacks

When modules are layered atop one another, an SSP stack is formed. The stacking process is
performed by matching what one module provides with what another module requires. For example,
the Audio Playback Framework Module requires a Transfer Interface, which can be fulfilled by the
Data Transfer Controller (DTC) Driver Module. Instead of including the DTC code in the Audio
Playback Module, we split these into two modules. This allows for reuse of the underlying modules,
which has many benefits.

Application

Provides: Audio Playback Provides: UART Provides: SD/MMC

Audio Playback UART Driver SD Card Driver

Requires: Transfer Requires: Transfer Requires: Transfer

Provides:lTra nsfer

Figure 4: Stacks - Audio playback

By continuing to add layers to the Stack using SSP Modules, you can interface with the Synergy
hardware at a high level.

R11UMO0161EU0161 Revision 1.61 .QEN ESANANAS Page 34 /5,198
Jun.08.2024

Synergy Software Package User’s Manual

SSP Overview > SSP Overview > SSP Architecture > SSP Stacks

Application

SSP Layer 2 SSP Layer 2

SSP Layer 1 SSP Layer 1

SSP Layer 1

SSP Layer O

SSP Layer O

Figure 5: Stacks

The ability to stack modules has great benefit because it ensures the flexibility of the architecture
as a whole. If modules are directly dependent upon other modules, then issues arise when
application features must work across different user designs. To ensure that modules are reusable
the modules must be capable of being swapped out for other modules that provide the same
features. The SSP architecture provides this flexibility to swap modules in and out through the use of
SSP Interfaces.

2.1.2.4 SSP Interfaces

At the architecture level, Interfaces are the way that Modules provide common features. This
commonality allows Modules that adhere to the same Interface to be used interchangeably.
Interfaces can be thought of as a contract between two Modules. The Modules agree to work
together using the information that was agreed upon in the contract.

On Synergy hardware there is occasionally an overlap of features between different peripherals. For
example, 12C communications can be achieved through use of the IIC peripheral or the SCI
peripheral in its Simple I12C mode. There is a difference in the level of features provided by both
peripherals. In I2C mode the SCI peripheral will only support a subset of the features of the full-
featured IIC.

Interfaces aim to provide support for the common features that most users would expect. This
means that some of the advanced features of a peripheral, such as the IIC, might not be available in

R11UMO0161EU0161 Revision 1.61 .QEN ESANANAS Page 35/5,198
Jun.08.2024

Synergy Software Package User’s Manual

SSP Overview > SSP Overview > SSP Architecture > SSP Interfaces

the Interface. In most cases these features are still available through Interface Extensions.

In design, Interfaces are implemented as header files. All Interface header filenames end with
' api.h'. The following sections detail what makes up an Interface.

SSP Interface Enumerations

Whenever possible, Interfaces use typed enumerations for function parameters and structure
members.

typedef enun e_i2c_addr _node

{
| 2C ADDR MODE 7BIT = 1, // Use 7-bit addressing node

| 2C_ADDR_MODE_10BIT // Use 10-bit addressing node

} i2c_addr_node_t;

Enumerations remove any uncertainty when deciding what values are available for a parameter. Also
note that enumeration options follow a strict naming convention where the name of the type is
prefixed on the available options. Combining the naming convention with the autocomplete feature
available in e? studio provides the benefits of rapid coding while maintaining highly readable code.

SSP Interface Data Structures

At a minimum, all SSP Interfaces include three data structures: a control structure, a configuration
structure, and an instance structure.

The control structure is used as a unique identifier for using the module. If SSP modules were only
peripheral drivers then this control structure might be replaced with a channel number. All function
calls for that module would then take a channel number so that the code could determine which
peripheral channel to operate on. SSP modules are not restricted to device drivers and therefore the
control structure is used. The user allocates storage for a control structure and then sends a pointer
to it into the open() call for a Module. At this point, the Module initializes the structure as needed.
You must then send in a pointer to the control structure for all subsequent module calls. The
contents of the control structure are used by the module and must not be altered. Reading data from
a control structure should also be avoided as the data structure is not guaranteed to remain the
same between SSP releases. In general, you should treat control structures like a black box.

The contents of a control structure are specific to an instance. This means that two instances of the
same interface will have two completely different control structure types. The control structures that

exist in an interface are named <interface>_ctrl_t. Below is an example of the interface control
structure for 12C:

typedef void i2c ctrl _t;

Since all interface control structures are of type void, they cannot be allocated. Instead, these types

R11UMO0161EU0161 Revision 1.61 RENESANAS Page 36 /5,198
Jun.08.2024

Synergy Software Package User’s Manual

SSP Overview > SSP Overview > SSP Architecture > SSP Interfaces

are placeholders for instance control structures. Instance control structures are defined in instance
header files and are named <instance>_instance_ctrl_t. Below are examples of 12C Instance
control structures for the IIC (r_riic) and SCI (r_sci_i2c) peripherals:

/[* riic Instance control structure to be used with |12C Interface. */
typedef struct st _riic_instance ctrl
{

i2c_cfg_t info; // Information describing |2C device

uint32_t open; // Flag to determine if the device is open

void * p_reg; // Base register for this channel

} riic_instance ctrl t;
/* sci _i2c Instance control structure to be used with |2C Interface. */
typedef struct st _sci _i2c_instance ctrl
{
i2c_cfg_t info; // Information describing |2C device
uint32 t open; // Flag to deternine if the device is open
void * p_reg; // Base register for this channel
/* More nenbers specific to sci_i2c Instance. */

} sci_i2c_instance ctrl t;

When using an interface, the instance control structure should be allocated and used in place of the
interface control structure. Using the example above, if the SCI-12C Instance was being used then
you would allocate a structure of type sci_i2c_instance_ctrl_t and use it wherever i2c_ctrl tis
referenced in the Interface. The ISDE will take care of allocating the correct control structure for you.

Dynamic memory allocation through use of the malloc() and free() functions are not used in SSP
modules.

The configuration structure is used for the initial configuration of a module during the open() call.
The structure consists of members such as: channel, interrupt priority, bitrate, and operating mode.
The structure is used purely for input into the module. This structure does not have to be unigque and
could be discarded by you after initialization, if desired.

typedef struct st _i2c cfg
{

/* Ceneric configuration */

R11UMO0161EU0161 Revision 1.61 RENESANAS Page 37 /5,198
Jun.08.2024

Synergy Software Package User’s Manual

SSP Overview > SSP Overview > SSP Architecture > SSP Interfaces

R11UMO0161EU0161 Revision 1.61 Page 38/5,198
Jun.08.2024

Synergy Software Package User’s Manual

SSP Overview > SSP Overview > SSP Architecture > SSP Interfaces

} i2c_cfg_t;

Above is an example configuration structure for the 12C Interface. The last three structure members
(p_callback, p_context, and p_extend) are common to almost all module configurations.

The p_callback and p_context members are described in the SSP Interface Callback Functions
section.

The p_extend member is used for extending the current Interface for a specific Instance. Interfaces
are designed to support the most common features. There are cases where an Instance of an
Interface requires extra information to properly configure itself. There are also cases where the extra
information is not required, but users might need it to adjust the module for their specific
application. When this is the case, the user can provide the underlying Instance with more
configuration information by passing it through the p_extend member. The information that is
passed through this member is defined by the underlying Instance, and therefore the user must
adhere to its structure. If invalid information is passed to the underlying driver, then the Instance is
not able to successfully use the data and proper operation cannot be guaranteed. Refer to the
Interface Extensions section for more information.

It is also important that configuration structures only have members that apply to the current
Interface. If multiple layers in the same stack define the same configuration parameters then it
becomes difficult to know where to modify the option. For example, the baud rate for a UART is only
be defined at the Driver layer. Any layers that use the UART Interface rely on the baud rate being
provided at the Driver layer and do not offer it in their own configuration structures.

SSP Interface Callback Functions

Callback functions allow Modules to asynchronously alert the user application when an event has
occurred. An example for an event is when a byte has been received over a UART channel. Callbacks
are required to allow user application code to react to interrupts. SSP Modules define and handle the
interrupts for Synergy MCU peripherals. If the user tries to define the interrupt service routine at the
same time as a SSP Module, then the code does not build. Therefore SSP Modules allow the user
application to respond to interrupts by registering a function to be called when an interrupt occurs.

Callback functions must be defined in the user application. They always return void and take a
structure for their one parameter. The structure typedef is provided in the Interface for the Module
and is named * _callback _args_t*. The contents of the structure may vary depending on the
Interface, but two members are common: event and p_context.

The event member is used by the application to determine why the callback was called. Using the
UART example again, the callback could have been triggered because a byte was received, all bytes
had been transmitted, or a framing error has occurred. The event member is an enumeration
provided by the Interface.

The p_context member is used for providing user-specified data to the callback function. In many
cases a callback function is shared between multiple channels or Module Instances. When the
callback occurs, the code handling the callback needs context information so that it can figure out
which Module Instance the callback is for. For example, if the callback wanted to make a SSP API call
in the callback, then at a minimum the callback must use the control structure. To make this easy,
the user can provide a pointer to the control structure as the p_context. When the callback occurs,

R11UMO0161EU0161 Revision 1.61 RENESANAS Page 39 /5,198
Jun.08.2024

Synergy Software Package

SSP Overview > SSP Overview > SSP Architecture > SSP Interfaces

User’s Manual

the control structure is available as it will be passed in the callback structure.

Callback functions are called from within an interrupt service routine. For this reason callback
functions should be kept as short as possible so they do not affect the real time performance of the
user's system. An example skeleton function for the Flash Interface callback is shown below.

When a Module is not directly used in the user application (it is not the top layer of the stack) then

R11UMO161EU0161 Revision 1.61 RENESAS Page 40 /5,198
Jun.08.2024

Synergy Software Package User’s Manual

SSP Overview > SSP Overview > SSP Architecture > SSP Interfaces

its callback function will be handled by the Module above. If there is a Console Interface Module that
requires a UART Interface Module then the Console Module will control and use the UART's callback
function. In this case the user does not need to create a callback function for the UART Module in
their application code.

SSP Interface API Structure
All Interfaces include an API structure which contains function pointers for all the supported Interface

functions. An example structure, with the comments removed, for the Digital to Analog Convert
(DAC) is shown below.

typedef struct st _dac_api

{
ssp_err_t (* open)(dac_ctrl _t * p_ctrl, dac_cfg t const * const p_cfg);
ssp_err_t (* close)(dac_ctrl _t * p ctrl);
ssp_err_t (* wite)(dac_ctrl _t * p_ctrl, dac_size t * p_val ue);
ssp_err_t (* start)(dac_ctrl_t * p_ctrl);
ssp_err_t (* stop)(dac_ctrl _t * p_ctrl);
ssp_err_t (* versionGet)(ssp_version_t * p_version);

} dac_api _t;

The API structure is what allows for Modules to easily be swapped in and out for other Modules that
are Instances of the same Interface. Let's look at an example application using the DAC Interface
above.

Synergy MCUs have an internal DAC peripheral. If the DAC API structure in the DAC Interface were
not used, then the application could make calls directly into the module. In the example below the
application is making calls to the R_DAC_Write function which is provided in the r_dac module.

Application

r_dac
R_DAC_Write()

Figure 6: DAC Write example

Now let's assume that the user needs more DAC channels than are available on the MCU by adding a

R11UMO0161EU0161 Revision 1.61 .QENESAS Page 41/5,198
Jun.08.2024

Synergy Software Package

User’s Manual
SSP Overview > SSP Overview > SSP Architecture > SSP Interfaces

new external DAC module named r_dac_external. The external DAC uses I12C for communications.

The application must now distinguish between the two modules, which adds complexity and further
dependencies to the application.

Application

Ye s—

r dac
R_DAC_Write()

r dac_external
R_DACEXT Write()

Figure 7: DAC Write with two write modules

The use of Interfaces and the API structure allows for the use of an abstracted DAC. This means that
no extra logic is needed and the application no longer depends upon certain hard-coded Modules.

Instead the application now depends on the DAC Interface API which can be implemented by any
number of Modules.

R11UMO161EU0161 Revision 1.61 RENESAS Page 42 /5,198
Jun.08.2024

Synergy Software Package User’s Manual

SSP Overview > SSP Overview > SSP Architecture > SSP Interfaces

Application

Internal DAC External DAC1 External DAC 2

Figure 8: DAC Interface

Functions inside of the API structures follow common names. Most Modules will have a pair of open()
and close functions. The open() function must be called before any of the other functions. The only
exception is the versionGet() function which is not dependent upon any user provided information.

Other functions that will commonly be found are read(), write(), get(), and set(). Function names are
designed to be a noun followed by a verb. Example names include:

read(), write(), writeRead()

statusGet()

calendarAlarmSet(), calendarAlarmGet()
accessWindowSet(), accessWindowClear()

SSP Interface Version Information

All Interfaces supply a versionGet() function. This function fills in a structure of type ssp_version_t.
This structure is made up of two versions: one for the Interface (the API) and one for the underlying
Instance that is currently being used.

/* Commpn version structure */

typedef union st _ssp version

{
/* Version id */
uint32 t version_id;
R11UMO0161EU0161 Revision 1.61 RENESANAS Page 43 /5,198

Jun.08.2024

Synergy Software Package

SSP Overview > SSP Overview > SSP Architecture > SSP Interfaces

/* Code version paraneters */

struct

{

uint8 t code version_major; // Code nmmjor version
uint8 t code version_mnor; // Code m nor version
uint8_ t api_version_major; // APl major version
uint8 t api_version_mnor; // APl mnor version

I 5

} ssp_version_t;

The API version ideally never changes, and only rarely if it does. A change to the APl may require
users to go back and modify their code. The code version, the version of the current Instance, may
be updated more frequently. Bug fixes, enhancements, and additional features may all bump the
code version. Changes to the code version will only require changes to the user code if the user code
is using extended features provided by the Instance.

SSP Instances

While Interfaces dictate the features that are provided, Instances actually implement those features.
Each Instance is tied to a specific Interface. Instances use the enumerations, data structures, and API
prototypes from the Interface. This allows for an application that uses an Interface to swap out the
Instance when needed.

On Synergy MCUs some peripherals will have a one-to-one mapping between the Interface and
Instance, while others will have a one-to-many. In the example below the IIC and SPI peripherals map
to only one Interface each while the SCI peripheral implements three Interfaces.

R11UMO0161EU0161 Revision 1.61 RENESANAS Page 44 /5,198
Jun.08.2024

User’s Manual

Synergy Software Package User’s Manual

SSP Overview > SSP Overview > SSP Architecture > SSP Interfaces

Interface: UART

Interface: 12C :
r_uart_api.h :

!
|
r_i2c_api.h :

Peripheral:RIIC Peripheral: SC Peripheral: SCl

Module: r _riic Module:r sci_i2c Module:r sci_uart

Interface: SPI
r spi_api.h

Peripheral: SC Peripheral: RSPI

Module:r_sci_spi Module:r_rspi

Figure 9: Instances

SSP Instances API Structure

Each Instance includes a constant global structure with its functions that implement the Interface's
API. The name of this structure is standardized as g__on_. Examples include g_spi_on_spi,
g_transfer_on_dtc, and g_adc_on_adc. This structure is available to be used through an extern in the
instances header file (r_spi.h, r_dtc.h, and r_adc.h respectively).

2.1.2.5 Build Time Configuration

All modules have a build-time configuration header file. Most configuration options are supplied at
run time. Some options that are rarely used, or apply to all instances of a module, may be moved to
build time. The advantage of using a build-time configuration option is to potentially reduce code
size reduction by removing an unused feature. Performance enhancements are also possible. All
modules have at least one build time option, which is whether to enable or disable parameter
checking for the module. SSP modules check function arguments for validity when possible. You may
want to disable this feature when your testing has concluded to save code space and to speed up
execution.

2.1.2.6 Interface Extensions

In some cases, Instances require more information than is provided in the Interface. This situation
can occur in the following two cases:

R11UMO0161EU0161 Revision 1.61 .QEN ESANANAS Page 45/5,198
Jun.08.2024

Synergy Software Package User’s Manual

SSP Overview > SSP Overview > SSP Architecture > Interface Extensions

e An Instance offers extra features that are not common to most Instances of the Interface.

¢ An Interface must be very generic out of necessity. As an Interface becomes more generic,
the number of possible Instances increases. A prime example of this is the Block Media
Interface.

typedef struct st _sf bl ock nedia cfg

{

ui nt32_t bl ock_size; // Block size in bytes
void * p_extend; // Instance dependent configuration

} sf _block nedia cfg t;

The configuration structure for the Block Media Interface is intentionally sparse. This allows for
nearly endless Instances. Possible Instances include SD card, SPI Flash, SDRAM, USB, and many
more. Different configuration information is needed for each Instance. This is accomplished by
supplying the information through the p_extend parameter. While the configuration data provided in
the p_extend is not the same between Instances, the API calls thereafter will be. This means that the
change is only required in one place.

Use of Interface extensions is not always necessary. Some Instances do not offer an extension since
all functionality is provided in the Interface. In many cases the p_extend member can be set to NULL.
If NULL is provided and the Instance does offer an extension then the Instance will take this to mean
that the default options should be used. The documentation for each Instance indicates whether an
Interface extension is provided and whether its use is mandatory or optional.

2.1.2.7 SSP Predefined Layers

The SSP comes with two predefined layers: the Driver layer and the Framework layer. The layers are
easily identifiable because the modules reside in different folders and have different prefixes. Driver
layer modules are located in the ssp/src/driver folder, while Framework level modules are located in
the ssp/src/framework folder. Modules in the Driver layer start with an r_ prefix, while Framework
level modules start with a sf_ prefix.

The core difference in the functionality between the layers is that Driver layer modules are restricted
to being peripheral drivers that are RTOS aware, but do not use any RTOS objects or make any RTOS
API calls. This means that Driver layer modules can be used in applications with, or without, an
RTOS.

Framework layer modules are free to use RTOS objects such as semaphores, mutexes, or event
flags. Framework modules may also create their own when needed. Framework layer modules that
need to access hardware typically do so through a Driver layer Interface. Exceptions can be granted
in special cases where multiple peripherals need to be used together in a way that would not be
practical through multiple individual Interfaces.

2.1.2.8 SSP File Structure

The high-level file structure of the SSP is shown below.

R11UMO0161EU0161 Revision 1.61 RENESANAS Page 46 / 5,198
Jun.08.2024

Synergy Software Package User’s Manual

SSP Overview > SSP Overview > SSP Architecture > SSP File Structure

ssp
+---inc

\| +---bsp

\'| \| +---cnsis

\'| +---driver

\'| \| +---api

\| \| \\---instances

\'| \\---framework

\'| +---api
\| +---e€l
\| +---instances

V| \\---tes
---src
+---bsp
\| +---cnBis
\'| \\---ntu
+---driver
\| \\---r_nodul e
\\---framework
\\---sf nodul e
synergy cfg
+---ssp_cfg
+---bsp
+---driver

\\---franework

Directly underneath the base ssp folder the folders are split into the source and include folders.
Include folders are kept separate from the source for easy browsing and easy setup of include paths.
The same set of folders are located in the ssp/inc and ssp/src folders: bsp, driver, and framework.

Apart from the BSP, the SSP's two predefined layers, Driver and Framework, are present. Driver layer
modules are located in the ssp/src/driver folder and Framework layer modules are located in
ssp/src/framework. Under the include tree, the Driver and Framework layer folders contain two
folders each: api and instances. The api folder contains the Interface header files for that layer. The
instances folder contains the Instance header files for that layer. Both layers are flat internally which
limits the number of include paths required for a project.

R11UMO0161EU0161 Revision 1.61 RENESANAS Page 47 /5,198
Jun.08.2024

Synergy Software Package User’s Manual

SSP Overview > SSP Overview > SSP Architecture > SSP File Structure

The ssp_cfg folder is where configuration header files are stored for each module. Its layout is the
same as the ssp folder where the BSP, Driver, and Framework layers have separate flat directories.
See the Build Time Configuration section for information on what is provided in these header files.

2.1.2.9 SSP Connecting Layers

SSP modules are meant to be both reusable and stackable. It is important to remember that modules
are not dependent upon other modules, but upon other Interfaces. The user is then free to fulfill the
Interface using the Instance that best fits their needs.

Interface: X
SSP Layer 2
Dependency: Y

Interface: Y
SSP Layer 1

Dependency: Z

Interface: Z
SSP Layer 0
Dependency: None

Figure 10: Connecting layers

In the image above Interface Y is a dependency of Interface X and has its own dependency on
Interface Z. Interface X only has a dependency on Interface Y. Interface X has no knowledge of

Interface Z. This is a requirement for ensuring that layers can easily be swapped out. This is shown in
the diagram below:

R11UMO0161EU0161 Revision 1.61 .QEN ESANANAS Page 48 /5,198
Jun.08.2024

Synergy Software Package

SSP Overview > SSP Overview > SSP Architecture > SSP Connecting Layers

FileX Dependency:
FileX 1/0

Interface: FileX I/O
sf_el_fx
Dependency: Block Media

Interface: Block Media Interface: Block Media

sf_block_media_sdmmc sf_block_media_spi_flash
Dependency: SDMMC Dependency: SPI Flash

Interface: SDMMC Interface: Block Media
r_sdmmc sf_spi_flash
Dependency: None Dependency: SPI

Interface: SPI
r_rspi
Dependency: None

Figure 11: Connecting layers with the FileX interface

In this example we are using the Azure RTOS. FileX file system on two storage mediums: SDMMC and
SPI Flash. The SPI Flash Interface takes care of the SPI flash protocol but requires a SPI Interface for
actual SPI bus communications. The SDMMC Interface takes care of the protocol and the bus
communications meaning that it does not have any dependencies.

2.1.2.10 SSP Architecture In Practice

Each layer in the SSP Stack is responsible for calling the API functions of its dependencies. This can
also be described by saying that users are only responsible for calling the API functions at the layer
at which they are interfacing. Using the FileX example above, the user is only responsible for calling
FileX functions in the application code. Internally, FileX then calls FileX 1/0, which in turn calls a Block
Media Interface Module. The Block Media Interface can call multiple drivers. At a minimum an upper
layer Module calls the open() function of the Interface it depends upon.

To write an application using a Module, you must determine the following:

1) Determine which open() function to call. Dependencies are based upon Interfaces which
means that a Module must have some way of discerning which Instance to call.

2) Determine the configuration parameters. The Module also needs to know what
configuration information to pass down. In some cases the Module requires certain
configuration parameters to be set. If this is the case then the module sets these
configuration structure members itself before passing on the rest of the structure. The rest
of the configuration structure members must be provided outside of the Module.

R11UMO0161EU0161 Revision 1.61 .QEN ESANANAS Page 49/5,198
Jun.08.2024

User’s Manual

Synergy Software Package User’s Manual

SSP Overview > SSP Overview > SSP Architecture > SSP Architecture In Practice

3) Provide a control structure which is Module Instance specific and therefore can be
allocated by the upper layer module.

Putting this all together means that to interact with a Module Instance, the following is needed:

e A pointer to the Instance's API structure
* A pointer to the Module Instance's configuration structure
* A pointer to the Module Instance's control structure

This information is sufficient to use any module. Notice that the API structure is the only structure
that is Instance specific; not Module Instance specific. This is because the API structure will not vary
between multiple uses of the same Instance. If SPI is being used on SCI channels 0 and 2 then both
Module Instances will use the same API structure while the configuration and control structures will
vary.

To make Module Instances easier to use, all of these pieces are encapsulated in instance structures

found in each Interface. These structures have a standardized name of <interface>_instance_t. An
example from the WDT interface is shown below.

typedef struct st_wdt_instance

{
wdt _ctrl _t * p_ctrl; // Pointer to the control structure for this instance
wdt _cfg t const * p_cfg; // Pointer to the configuration structure for this
i nstance

wdt _api _t const * p_api; // Pointer to the APl structure for this instance

} wdt _instance_t;

Upper layer modules that have a dependency on an Interface can then use the instance structure to
hold everything needed to interact with an Instance of that Interface. Continuing with the WDT
example above, below is the Thread Monitor Framework Interface configuration structure. The
Thread Monitor Interface is dependent upon the WDT Interface.

typedef struct st _sf thread_nonitor_watchdog type

{
wdt _instance t * p_lower Ivl _wdt; // Pointer to | ower |evel watchdog instance
bool profiling node enabl ed; // Enables or disables profiling node
U NT priority; // Priority of thread nonitor thread

} sf _thread_nonitor_cfg t;

R11UMO0161EU0161 Revision 1.61 RENESANAS Page 50/ 5,198
Jun.08.2024

Synergy Software Package User’s Manual

SSP Overview > SSP Overview > SSP Architecture > SSP Architecture In Practice

The Thread Monitor module has everything it needs to work with the WDT Interface in the
p_lower Ivl _wdt structure member.

In some cases module dependencies are not be defined in the Interface, but instead in the Instance.
An example is the Block Media Interface could be implemented on SDMCC, SPI Flash, or many other
Instances (also see API Reference section). Because of the wide range of implementations, the
instance structure for a particular Interface cannot be used directly in the Block Media Interface's
configuration structure. The Block Media Interface's configuration structure is shown again below.

typedef struct st _sf bl ock nedia cfg
{
uint32 t block size; // Block size in bytes
void * p_extend; // Instance dependent configuration

} sf_block nedia cfg t;

Notice there are Instance structure pointers provided. The reason for this, as previously mentioned,
is that the Block Media Interface is too generic to enforce a dependency upon a particular Interface.
When a Module is an Instance of a generic Interface, such as Block Media, and it has dependencies
on other Modules, the module puts the lower-layer pointers in an extension structure that is
referenced through the Interface's p_extend configuration member. This is required to allow Module
stacking while not forcing Interfaces to expand and have many optional configuration members.

typedef struct st _block nedia on_sdmt_cfg

{
sdmmt_i nstance_t const * const p_lower |vl _sdmt; // Pointer to SDVMMC i nstance
structure

} sf_block nedia on_sdnmt_cfg_t;

2.1.2.11 Using SSP Modules
This section will give general information on how to use a SSP module.
Pick an Interface

Start by picking an Interface for the functionality that is required. For example, for UART
communications use the UART Interface.

Find a suitable Instance of the Interface

After picking an Interface, choose a suitable Instance. The list of known Instances of an Interface is

R11UMO0161EU0161 Revision 1.61 RENESANAS Page 51 /5,198
Jun.08.2024

Synergy Software Package User’s Manual

SSP Overview > SSP Overview > SSP Architecture > Using SSP Modules

listed in the documentation comments for an Interface. Include the header file of the selected
Instance in the source file of the application that uses the Instance.

Allocate control and configuration structures

The e? studio ISDE provides a graphical user interface for setting the parameters of the Interface and
Instance configuration structures. The ISDE also automatically includes those structures, once they
are configured in the GUI, in application-specific header files that you can include into your
application code.

To see how the ISDE handles the configuration, see Configuring a Project in the ISDE User’s Guide:
Using the e2 studio ISDE

The configuration and control structure types follow standard names of <interface>_ ctrl t and
<interface> cfg t respectively. The ISDE allocates storage for both structures in the application
specific header files, which the ISDE creates. Use the ISDE Properties view to set the values for the
members of the configuration structure as needed. Many members will be typed enumerations in
which case the enumeration can be referenced for available options.

If the Interface has a callback function option, then you first need to declare and define the function
in their source code. The return value is always of type void and the parameter to the function is a
typed structure of name <interface>_callback args_t. Once the function has been defined, assign its
name to the p_callback member of the configuration structure. If any context information is required
in the callback, then the user can provide a pointer to the p_context member. You can assign
callback function names through the ISDE Properties window for the selected Module.

Refer to the Instance documentation to see if an Interface extension is provided. If so, then it will be
found in the Instance's header file and named <interface>_on__cfg_t. It may have several members
just like the Interface's configuration structure. When you select a driver with a specific Instance, you
can select any parameter in the configuration structure of the instance in the ISDE property.

Interact using Interface’s Instance Structure

Once the instance structure has been defined, you can interact with the Instance as needed. Below is
code that builds up an instance structure for the UART Interface as implemented on SCI. Please note
that when using e? studio for Synergy, the following code is automatically generated for the user.
/* Include the header file of the Instance. */
#include "r_sci_uart.h" // This will in turn include the r_uart_api.h Interface
/* Allocate control structure. */
uart _ctrl _t ny uart _ctrl;
/* Setup extended UART configuration on SCI. */
uart_on_sci _cfg_t ny_uart_extended cfg =
{
/* Set extended configuration nenbers... */
I
/* Configure standard UART Interface. */

uart_cfg t ny uart_cfg =

R11UMO0161EU0161 Revision 1.61 RENESANAS Page 52 /5,198
Jun.08.2024

Synergy Software Package User’s Manual

SSP Overview > SSP Overview > SSP Architecture > Using SSP Modules

Now that the instance structure is ready, you can interact with the UART Interface. In e? studio, the
name of the instance structure is the *Name* that you provide when configuring the Module Instance
in the ISDE Properties window.

2.1.2.12 Coding Style
C99 Use

SSP uses the ISO/IEC 9899:1999 (C99) C programming language standard. Specific features
introduced in C99 that are used include standard integer types (stdint.h), booleans (stdbool.h),
designated initializers, and the ability to intermingle declarations and code.

R11UMO161EU0161 Revision 1.61 RENESAS Page 53 /5,198
Jun.08.2024

Synergy Software Package User’s Manual

SSP Overview > SSP Overview > SSP Architecture > Coding Style

Use of const in APl parameters

The const qualifier is used with APl parameters whenever possible. An example case is shown below:

ssp_err_t (* open)(flash _ctrl _t * const p_ctrl, flash cfg t const * const p_cfg);

While not fool-proof by any means, this does provide some extra checking inside the SSP code to
ensure that arguments that should not be altered are treated as such.

Weak Symbols

Weak symbols are used occasionally in and with SSP. They are used to ensure that a project builds
even when you have not defined an optional function.

2.1.3 BSP Architecture

This section describes the BSP or Board Support Package. For the APl Reference see Board Support
Package. The BSP is board specific and as a result also MCU specific.

2.1.3.1 What Does the BSP Do?

The BSP is responsible for getting the MCU from reset to the user's application (that is, the main()
function). Before reaching the user's application the BSP sets up the stacks, heap, clocks, interrupts,
and C runtime environment. The BSP also configures and sets up the port I/O pins and performs any
board specific initializations.

R11UMO0161EU0161 Revision 1.61 RENESANAS Page 54 /5,198
Jun.08.2024

Synergy Software Package

SSP Overview > SSP Overview > BSP Architecture > What Does the BSP Do?

User’s Manual

ResaiHandler(}

MSP &= sef automatcally
from value at address
O ODDOD00D

!

[Calls Systeming) I

!

[Jump o maini) I

User Application

-

If supported by MCU and enabled n
cnmpller

2 Thesa operations willvary depending on
settings n bap_ctg.h

These operations will vary degending on
settings n bsp_pin_cfg.h

2.1.3.2 BSP Related Terminology

Systemin)

Initialize FPL

!

Warmn Start - Pre C runtime
Initializ ation ook

!

Configure group mierrupts
{=ystem exceptions)

.

Configure Sysiem Clocks
Call CGC Module 2

Set CMSIS systern clock
variable

'

Initialize Pins
Call 10 Por Module 3

Initialize Cnuntime data

:

Wamm Star - Post C
runtime mitialzaton hook

!

Initialize ELC events for
NVIC frigners

!

Initialize registar protection
bsp_register_pratect_open()

!

Call any BSP board
specific code

Figure 12: BSP flow

» Saf ¢lock dividers and
multipliers

* Slop unused clocks

= Wadt for clock stabilization

« Transitian o Selected clock

« Zerooul uninitialzed data
arseas

= Copy mitlalzed RAM data
from ROK 1o RAKM

Term

Meaning

system_xxxx.c or startup_xxxx.c

The ‘xxxx” refers to the MCU type. For example,
system_S7G2.c when referencing the S7G2 MCU.

BSP

Short for Board Support Package. BSP’s usually
have source files related to a specific board.

R11UMO0161EU0161 Revision 1.61
Jun.08.2024

LLENESAS

Page 55/5,198

Synergy Software Package

SSP Overview > SSP Overview > BSP Architecture > BSP Related Terminology

Callback Function This term refers to a function that is called when

an event occurs. For example, the NMI interrupt
handler is implemented in the BSP. The user will
likely want to know when an NMI system
exception occurs. To alert the user, a callback
function can be configured for the group
interrupts (a group of exceptions all of which are
tied to the NMI). When an NMI occurs the BSP
will jump to the provided callback function and
the user can handle the error. Interrupt callback
functions should be kept short and be handled
carefully because when they are called the MCU
will still be inside of an interrupt and therefore
will be delaying any pending interrupts.

2.1.3.3 BSP Directory Structure

The BSP is organized into folders containing MCU, board specific and CMSIS information.

Synergy is CMSIS-compliant and based on the CMSIS-Core. This requires that we follow CMSIS
requirements and naming standards.

Standardized definitions for processor peripherals

NVIC (Nested Vector Interrupt Controller)

Systick (System Tick Timer)

MPU (Memory Protection Unit)

Standardized access functions to access processor features
NVIC_SetPriority()

NVIC EnablelRQ

Standardized function names for system exception handlers
Reset Handler()

SysTick _Handler()

Standardized functions for system initialization.
Systemlnit() - defined in system_S7G2.c for S7G2 MCUs
Standardized software variables for clock speed information
SystemCoreClock

The BSP directory structure is shown below:

R11UMO0161EU0161 Revision 1.61 RENESANAS Page 56 / 5,198

Jun.08.2024

User’s Manual

Synergy Software Package User’s Manual

SSP Overview > SSP Overview > BSP Architecture > BSP Directory Structure

Device

RENESAS

Figure 13: BSP directory structure

2.1.3.4 Configuring the BSP

The BSP is heavily data driven with most features and functionality being configured based on the
content from configuration files. Configuration files represent the settings specified by the user and
are generated by the ISDE when the Generate Project Content button is clicked.

2.1.3.5 BSP Configuration Settings

The table below describes each of the configurable BSP settings. Many of these settings are MCU
specific and there are differences between the settings available for each of the supported MCUs.

Table: BSP Configuration options

BSP Property Description

Part number MCU part number

ram_size_bytes Available RAM in this MCU package

rom_size_bytes Available ROM in this MCU package

data_flash_size_bytes Available Data Flash in this MCU package

package_style Style of package (ie. BGA)

package_pins Number of pins in this MCU package
R11UMO0161EU0161 Revision 1.61 RLENESAS Page 57 /5,198

Jun.08.2024

Synergy Software Package

SSP Overview > SSP Overview > BSP Architecture > BSP Configuration Settings

User’s Manual

series

MCU part series

Main stack size (bytes)

Size of the Main Stack. Must be > 0.

Process stack size (bytes)

Size of the Process Stack. Use of this stack is
optional. If 0, then PSP use is disabled

Heap size (bytes)

Size of the heap in bytes. If 0, the heap is
disabled.

OFSO0 register settings: IWDT Start Mode, IWDT
Timeout Period, IWDT Dedicated Clock
Frequency Divisor, IWDT Window End Position,
IWDT Window Start Position, IWDT Reset
Interrupt Request Select, IWDT Stop Control,
WDT Start Mode Select , WDT Timeout Period,
WDT Clock Frequency Division Ratio, WDT
Window End Position, WDT Window Start
Position, WDT Reset Interrupt Request, WDT
Stop Control

The option-setting memory determines the state
of the MCU after a reset. It is allocated to the
configuration setting area and the program flash
area of the flash memory. See the MCU user
manual for details.

OFS1 register settings: Voltage Detection 0
Circuit Start, Voltage Detection 0 Level, HOCO
Oscillation Enable. S3 MPU has MPU
configuration settings.

See the MCU user manual for details.

MPU - Enable or disable PC Region 0

Start block address for access window protection

MPU - PCO Start, MPU - PCO End, MPU - Enable or
disable PC Region 1, MPU - PC1 Start, MPU - PC1
End, MPU - Enable or disable Memory Region O,
MPU -Memory Region 0 Start, MPU - Memory
Region 0 End, MPU - Enable or disable Memory
Region 1, MPU - Memory Region 1 Start, MPU -
Memory Region 1 End, MPU - Enable or disable
Memory Region 2, MPU - Memory Region 2 Start,
MPU - Memory Region 2 End, MPU - Enable or
disable Memory Region 3, MPU - Memory Region
3 Start, MPU - Memory Region 3 End

Secure MPU ROM register settings. See user
manual for details.

ID code 1, ID code 2, ID code 3, ID code 4

Sets the ID Code for boot mode and debugger
access protection.

MCU Vcc (mV)

Some Modules (e.g. LVD) need to know the
voltage supplied to the MCU. This information is
obtained from here.

Parameter checking

Defines whether the global setting for parameter
checking is enabled or disabled. Local modules
will take this value by default but can be locally
overridden.

Assert Failures

Defines what happens when an assertion failure
occurs.

Error Log

Defines whether or not errors are logged to
ssp_error_log.

R11UMO0161EU0161 Revision 1.61
Jun.08.2024

RLENESAS

Page 58 /5,198

Synergy Software Package User’s Manual

SSP Overview > SSP Overview > BSP Architecture > BSP Configuration Files

2.1.3.6 BSP Configuration Files

Configuration files are used by the BSP to set up ROM registers, clocks, interrupts, ELC events and
initial pin configurations. These configuration files can be found in ssp_cfg\bsp.

Bsp_cfg.h

This configuration file contains the values for BSP system settings. These are the settings that can
be modified from the ISDE BSP properties tab. They include ROM register settings, stack and heap
size, parameter checking and control of error logging.

Some registers are located in ROM and therefore must be set at compile-time. These include
some option-setting memory (OFS) registers as well as certain memory protection registers.

Option-setting memory determines the state of the MCU after a reset. For example, the IWDT can

be configured and enabled, voltage detection can be enabled, and HOCO oscillation can be

enabled. When these registers are set the operations are completed before the MCU’s reset vector is
fetched and execution begins.

Some Synergy MCUs include a Memory Protection Unit (MPU). The MPU is a programmable

device that can be used to define memory access permissions (i.e. privileged access only or full
access) and memory attributes (for example, bufferable, cacheable) for different memory regions.
The MPU can support up to eight programmable memory regions, each with their own programmable
starting addresses, sizes and settings.

The ISDE configures these memory areas by setting values for the provided MPU settings. You
must be careful when setting these registers. Incorrect settings can prevent access to required
memory areas or prevent access to the MCU entirely.

2.1.3.7 BSP Pin Configuration

You can configure the pins used in your application through the ISDE pin configurator. See
Configuring Pins.

Bsp_pin_cfg.h

This configuration file contains an array of pin configurations. During start-up, and before main()

is executed, the BSP iterates over this array and initializes the MCU's port pins based on the settings
in the array. Initially, before any pin configuration by the user, the ISDE Pins tab displays the initial
reference configuration defined for the selected board type (see Configuring Pins). Once the user
modifies the pin configuration and clicks Generate Project, a new bsp pin_cfg.h file is generated
containing the new pin configuration. The BSP always uses the bsp_pin_cfg.h file from ssp_cfg\bsp as
the source for its pin configuration information, but the pin information generated by clicking
Generate Project is written to a bsp_pin_cfg.h file in the hidden folder ssp_cfg\bsp\.out.

In this way, the user can manually edit the bsp_pin_cfg.h in ssp_cfg\bsp without the fear of the file
being overwritten by the project generation, while the Pin Configuration information generated by
the ISDE also remains available for view or merging with the user’s config file.

2.1.3.8 BSP Clock Configuration

All system clocks are set up during BSP initialization based on the settings in bsp_clock cfg.h. These
settings are derived from clock configuration information provided from the ISDE Clocks tab setting.

e Clock configuration is performed prior to initializing the C runtime environment to speed up

R11UMO0161EU0161 Revision 1.61 RENESANAS Page 59 /5,198
Jun.08.2024

Synergy Software Package

SSP Overview > SSP Overview > BSP Architecture > BSP Clock Configuration

the startup process, as it is possible to start up on a relatively slow (for example, 32 kHz)
clock.
e The BSP implements the required delays to allow the selected clock to stabilize.

Bsp_clock_cfg.h

This configuration file represents the values for system clock settings. These are the settings that
can be modified from the ISDE **Clocks** tab. See: Configuring Clocks

2.1.3.9 System Interrupts

As Synergy MCU’s are based on the Cortex-M ARM architecture, the NVIC Nested Vectored Interrupt
Controller (NVIC) handles exceptions and interrupt configuration, prioritization and interrupt
masking. In the ARM architecture, the NVIC handles exceptions. Some exceptions are known as
System Exceptions. System exceptions are statically located at the top of the vector table and
occupy vector numbers 1 to 15. Vector zero is reserved for the MSP Main Stack Pointer (MSP). The
remaining 15 system exceptions are shown below:

e Reset

e NMI

e Cortex-M4 Hard Fault Handler
e Cortex-M4 MPU Fault Handler
e Cortex-M4 Bus Fault Handler
e Cortex-M4 Usage Fault Handler
e Reserved

e Reserved

e Reserved

e Reserved

e Cortex-M4 SVCall Handler

e Cortex-M4 Debug Monitor Handler
e Reserved

e Cortex-M4 PendSV Handler

e Cortex-M4 SysTick Handler

NMI and Hard Fault exceptions are enabled out of reset and have fixed priorities. Other exceptions
have configurable priorities and some can be disabled.

2.1.3.10 Group Interrupts

Group interrupt is the term used to describe the 12 sources that can trigger the Non-Maskable
Interrupt (NMI). When an NMI occurs the NMI Handler examines the NMISR (status register) to
determine the source of the interrupt. NMI interrupts take precedence over all interrupts, are usable
only as CPU interrupts, and cannot activate the Synergy peripherals Data Transfer Controller (DTC)
or Direct Memory Access Controller (DMAC).

Possible group interrupt sources include:

e [WDT Underflow/Refresh Error
WDT Underflow/Refresh Error
Voltage-Monitoring 1 Interrupt
Voltage-Monitoring 2 Interrupt
VBATT monitor Interrupt
Oscillation Stop is detected

R11UMO0161EU0161 Revision 1.61 RENESANAS Page 60 /5,198

Jun.08.2024

User’s Manual

Synergy Software Package User’s Manual

SSP Overview > SSP Overview > BSP Architecture > Group Interrupts

e NMI pin

e RAM Parity Error

e RAM ECC Error

e MPU Bus Slave Error
e MPU Bus Master Error
e MPU Stack Error

A user may enable notification for one or more group interrupts by registering a callback using the
BSP API function R_BSP_GrouplrgWrite. When an NMI interrupt occurs, the NMI handler checks to see
if there is a callback registered for the cause of the interrupt and if so calls the registered callback
function.

As mentioned earlier, the first 16 slots in the vector table are already accounted for by the system
exceptions. Beginning with slot 16 are user configurable interrupts. These may be external, or
peripheral generated interrupts.

The size of the NVIC interrupt table varies across Synergy MCU types (shown below).

S$7G2 S3A7 S$124
([initial stack ptr ([Initial stack ptr Initial stack ptr
Reset Reset Reset
Exceptions NMI Exceptions NMI Exceptions NMI
215 -15 -15
< Hard Fault : < Hard Fault : < Hard Fault
1 1 1
U SysTick L SysTick S SysTick
(] IRQ0 (] IRQ0 (] IRQO
NVIC NVIC
NVIC IRQ 1 interrupts IRQ1 interrupts IRQ 1
interrupts 0 < 0 <
0 < -
. 31
) 63 _ IRQ 31
95 IRQ 63 ~
Q IRQ 95

Figure 14: NVIC Interrupt vector table

Although the number of available slots for the NVIC interrupt vector table may seem small, the BSP
defines up to 512 events that are capable of generating an interrupt. By using Event Mapping, the
BSP maps user enabled events to NVIC interrupts. For an S7G2 MCU, only 96 of these events may be
active at any one time, but the user has flexibility by choosing which events generate the active
event.

The diagram below shows the interrupt vector table for the S7G2:

R11UMO0161EU0161 Revision 1.61
Jun.08.2024

RLENESAS Page 61 /5,198

Synergy Software Package User’s Manual

SSP Overview > SSP Overview > BSP Architecture > Group Interrupts

S7G2 NVIC
interrupt vector
table
Defined BSP events (T Initial stack ptr
Reset
7| Portoirg NI
Enabled BSP events < Hard Fault
Port 1 IRQ
SysTick
e A Icu IELSRO
0 RTC_ALM IELSR1 NVIC
. = IELSRn interrupts
. registers 3 0
. <
511 SCI0_RXI o .
. ’ 95
S0 e IELSR95
JPEG JDTI
Enabled BSP events

Figure 15: NVIC Interrupt vector table

By allowing the user to select only the events they are interested in as interrupt sources, we are
able to provide an interrupt service routine that is fast and event specific.

For example, on other microcontrollers a standard NVIC interrupt vector table might contain a single
vector entry for the SCIO (Serial Communications Interface) peripheral. The interrupt service routine
for this would have to check a status register for the 'real' source of the interrupt. In the Synergy

implementation there is a vector entry for each of the SCI0O events that we are interested in. The
difference between a standard NVIC table and the Synergy S7G2 NVIC table is shown below:

S7G2 NVIC Interrupt Vector Standard NVIC Interrupt Vector
Table Table

95

Sclo TEI Interrupt handler

Figure 16: NVIC Interrupt vector table example

R11UMO0161EU0161 Revision 1.61 .QEN ESANANAS Page 62 /5,198
Jun.08.2024

Synergy Software Package User’s Manual

SSP Overview > SSP Overview > BSP Architecture > Group Interrupts

Configuration of interrupts is handled by the ISDE. Selecting an interrupt to be used by a module will
generate the code necessary to allocate its entry in the vector table, as well as link it to the proper
ICU ELC event.

When an interrupt occurs one of the very first operations must be to call R_BSP_IrgStatusClear() with
the interrupt number corresponding to the NVIC interrupt slot that was assigned by the BSP. R_BSP_
IrgStatusClear() clears the interrupt status flag (IR) for the given interrupt. When an interrupt is
triggered the IR bit is set. If it is not cleared in the ISR then the interrupt will trigger again
immediately.

Entries that have been assigned a priority (i.e. BSP_IRQ_CFG_ICU_IRQO) in our example, have their
corresponding ‘weak handler’ address placed in the next available vector slot. All of the possible
interrupt sources are iterated over in this manner. Defined interrupts are entered into the vector
table.

BSP Interrupt Configuration File

Bsp_irg_cfg.h is a legacy file that is no longer used and will be removed in the future. Interrupt
configuration is now completely handled by the ISDE.

Vector table entries

System exceptions such as the HardFault_Handler, are defined as weak references. This allows the
user to override the default handler for a particular exception and define their own handler.

All other entries in the vector table are generated by the ISDE using a macro which defines the
vector and a corresponding vector information structure to generate an entries in ROM table linker
sections (.vector.* for vectors and .vector_info.* for vector information).

Note that in CMSIS system_xxxx.c, there is also a weak definition (and a function body) for the Warm
Start callback function R_BSP_WarmStart(). Because this function is defined in the same file as the
weak declaration, it will be called as the ‘default’ implementation. The function may be overridden
by you by copying the body into your application and modifying it as necessary. The linker identifies
this as the ‘strong’ reference and uses it.

Warm start callbacks

As the BSP is in the process of bringing up the board out of reset, there are two points where the
user can request a callback. These are defined as the 'Pre C' and 'Post C' warm start callbacks.

As described above, this function is already weakly defined as R_BSP_WarmStart(), so it is a simple
matter of redefining the function or copying the existing body from CMSIS system_xxxx.c into the
application code to get a callback. R_BSP_Warmstart() takes an event parameter which describes the
type of warm start callback being made.

/* Different warmstart entry locations in the BSP. */

typedef enunm e _bsp warm start event

{
BSP_WARM START PRE C = 0, // Called al nost inmediately after reset.
R11UMO0161EU0161 Revision 1.61 RLENESAS Page 63 /5,198

Jun.08.2024

Synergy Software Package User’s Manual

SSP Overview > SSP Overview > BSP Architecture > Group Interrupts

/* No C runtine environment, clocks, or IRQG. */
BSP_WARM START POST C // Called after clocks and C runtine environnment have been
set up.

} bsp warmstart_event t;

This function is not enabled/disabled and is always called for both events as part of the BSP startup.
Therefore it needs a function body, which will not be called if the user is overriding it. The function
body is located in system_xxxx. To use this function just copy this function into your own code and
modify it to meet your needs.

Pre C Warm start callback

This callback occurs almost immediately after reset and at this point no C runtime environment,
clocks, or IRQs have been setup.

Why would you be interested in a 'Pre C' warm start callback?
Below are a few examples.
e Execution of safety code (i.e. destructive memory tests) as part of the startup process.
e Examination of global memory as part of a crash dump investigation.
* Preventing re-initialization of an already running RTC.
Post C Warm start callback
This callback occurs after clocks and the C runtime environment have been setup.
Why would you be interested in a 'Post C' warm start callback?
Below are a few examples.
e Run tests that require that clocks have been setup.
e ADC diagnostics.
* ROM/External memory system checks.
2.1.3.11 Custom BSP Board support
Creating a Custom BSP for your own board is not supported in this version of the SSP. For
information on creating a Custom BSP with earlier versions, see application note R11ANOO71EU,
Creating a Custom Board Support Package for SSP v1.2.0 or Later.
2.1.3.12 BSP API functions

The BSP provides public functions, available to any project using the BSP, that allow access to
functionality that is common across BSP supported MCUs and boards.

e R BSP SoftwareLocklnit: The BSP provides API functions to implement atomic locking.
These locks can be used to protect critical areas of code as an RTOS semaphore or mutex
normally would. This function simply initializes a defined lock structure to
BSP_LOCK UNLOCKED

e R BSP_SoftwareLock: Attempts to acquire the lock that has been sent in. The Load-

R11UMO0161EU0161 Revision 1.61 RENESANAS Page 64 /5,198
Jun.08.2024

Synergy Software Package User’s Manual

SSP Overview > SSP Overview > BSP Architecture > BSP API functions

Exclusive and Store-Exclusive instructions are being used to perform an exclusive read-
modify-write on the input lock. This process is:
o Use a load-exclusive (LDREXB) to read the value of the lock.
o If the lock is available, then modify the lock value so it is reserved. If not
available, then issue CLREX.
o Use a store-exclusive to attempt to write the new value back to memory.
o Test the returned status bit to see if the write was performed or not.

e R_BSP_SoftwareUnlock: Releases the hold on an existing software lock.

e R_BSP_HardwareLock: Hardware locks are similar to Software locks. In fact, the BSP
Software lock functions are called by the Hardware lock functions. Hardware locks are
specific to a particular peripheral, the list of available hardware locks being defined in
bsp_hw_locks.h. Hardware locks can be used to prevent multiple threads from trying to use
a peripheral that is already in use by a process or thread. For example, when the Flash API
open() function is called, it takes the Flash Hardware lock and keeps it until the Flash API
close is called.

e R BSP HardwareUnlock: Releases the hold on an existing hardware lock. In the Flash
example above, the Flash API close function would call this function.

e R BSP_GrouplrgWrite: Registers a callback function for one of supported group interrupts.
As described earlier, there are 12 of these and they are all mapped to the NMI exception.
When an NMI occurs, the NMI_Handler looks at the NMISR (status register) to determine the
source of the interrupt. If a callback function has been registered for this group interrupt, it
will be called. If NULL is passed for the callback argument, then any previously registered
callbacks are unregistered.

* R BSP _IrgStatusClear: Clears the interrupt status flag (IR) for a given interrupt. When an
interrupt is triggered the IR bit is set. If it is not cleared in the ISR, then the interrupt will
trigger again immediately.

e R BSP SoftwareDelay: Implements a blocking software delay. A delay can be specified in
microseconds, milliseconds, or seconds. The delay is implemented based on the system
clock rate.

e R BSP VersionGet: Returns the version of the BSP.

e R BSP_LedsGet(): Returns information about the LEDs on the board.

e R_BSP_ModuleStop(): Specifies modules whose stop bit should be set.

e R_BSP_ModuleStart(): Specifies modules whose stop bit should be cleared.

e R_BSP_CacheOff(): Turns off the ROM cache, and return it's prior state.

e R BSP_CacheSet(): Sets the cache state to a specific state (on or off).

*» R BSP RegisterProtectEnable: Enables register protection. Registers that are protected
cannot be written to. Register protection is enabled by using the Protect Register (PRCR)
and the MPC's Write-Protect Register (PWPR). The registers that may be protected are
grouped together into one of three groups.

o BSP_REG PROTECT CGC - registers related to the clock generation circuit.

o BSP_REG_PROTECT _OM_LPC BATT - registers related to operating modes, low
power consumption, and battery backup function.

o BSP_REG_PROTECT _LVD - registers related to LVD (Low Voltage Detection)

The BSP register protection functions utilize reference counters to ensure that an application which
has specified a certain register and subsequently calls another function does not have its register
protection settings inadvertently modified.

e Each time RegisterProtectDisable() is called, the respective reference counter is
incremented.

e Each time RegisterProtectEnable() is called, the respective reference counter is
decremented.

Both functions will only modify the protection state if their reference counter is zero.

R11UMO0161EU0161 Revision 1.61 RENESANAS Page 65 /5,198
Jun.08.2024

Synergy Software Package

SSP Overview > SSP Overview > BSP Architecture > BSP API functions

User’s Manual

As the example below shows, without reference counters, MODULE2 would re-protect the registers

that MODULE 1 had un-protected, preventing MODULE1 from writing them.

#1 - R_MODULEL Open()

[#2 - R_BSP_RegislerProtectDisable()] = Duiz T
[s wnie 10 unprotected regisiors | [s - r_8sP_Regsierrrowapisabien |
[#4 - R_MODULEZ_Open() JZ l 6 - White 1o unprotected registers

i
l #7 - R_BSP _n-glslmpm-nsn-u-n J
J

Figure 17: Register protection

e R BSP RegisterProtectDisable: Disables register protection. Registers that are not protected
can be written to. Register protection is disabled by using the Protect Register (PRCR) and
the MPC's Write-Protect Register (PWPR). The register groupings described above still apply.

2.1.4 Key Features

This section describes the key features

2.1.4.1 Azure RTOS ThreadX® RTOS

Multithreaded, deeply embedded, real-time systems
Small, fast Picokernel™ architecture

Multitasking capabilities

Preemptive and cooperative scheduling

Flexible thread priority support (32-1024 priority levels)
Small memory footprint and fast response times
Optimized interrupt handling

Stack Pointer Overflow Monitor

2.1.4.2 Azure RTOS GUIX™

Supports 2D Graphics Acceleration in Hardware
Unlimited objects (screens, windows, widgets)
Dynamic object creation/deletion

Alpha blending and anti-aliasing at higher color depths
Canvas blending

Dithering support

Complete windowing support, including viewports and Z-order maintenance

Multiple canvases and physical displays

Window blending and fading

Screen transitions, sprites, and dynamic animations
Touchscreen and virtual keyboards

Multilingual support with UTF8 string encoding
Automatic size scaling

R11UMO0161EU0161 Revision 1.61 RENESAS

Jun.08.2024

Page 66 /5,198

Synergy Software Package

SSP Overview > SSP Overview > Key Features > Azure RTOS GUIX™

User’s Manual

8-bit Color Lookup Table (CLUT) support

Touch Rotation

Radial Progress Bar

Endian Neutral

Monochrome through 32-bit true-color with alpha graphics formats
Skinning and Themes

Bitmap compression

GUIX Studio desktop tool and Win32 simulation

Integrated with hardware JPEG/MJPEG decoder

2.1.4.3 Azure RTOS USBX™

e USB 2.0 Full Speed and High-Speed support

* Device class: MSC, HID, CDC-ACM

e Host class: MSC, HID, CDC-ACM, UVC, HUB, Printer, Video
e Supports fast DMA and isochronous transfers

2.1.4.4 Azure RTOS FileX®

MS-DOS compatible file system integrated with ThreadX
FAT12-, 16-, 32-bit support

exFAT

Fault-tolerant file system (uses journaling)

Multiple media instances

LevelX Flash block media driver

LevelX support for NOR Flash on QSPI

2.1.4.5 Azure RTOS NetX™

¢ Integrated with wired (Ethernet) and wireless (WiFi, Cellular) networking interfaces for

Synergy

IPv4 compliant TCP/IP Protocol Stack

Integrated with ThreadX

Zero-copy API

UDP Fast Path Technology

BSD-compatible socket layer

RFC 791 Internet Protocol (IP)

RFC 826 Address Resolution Protocol (ARP)

RFC 903 Reverse Address Resolution Protocol (RARP)
RFC 792 Internet Control Message Protocol (ICMP)
RFC 3376 Internet Group Management Protocol (IGMP)
RFC 768 User Datagram Protocol (UDP)

RFC 793 Transmission Control Protocol (TCP)

RFC 1112 Host Extensions for IP Multicasting

2.1.4.6 Application Frameworks

ADC Periodic framework

Audio Playback framework

Audio Playback HW DAC framework

Audio Playback HW I2S framework

Audio Record framework

Audio Recording HW ADC framework

Block Media Interface for SD Multi Media Card
Block Media LevelX NOR framework

R11UMO0161EU0161 Revision 1.61 RENESAS
Jun.08.2024

Page 67 /5,198

Synergy Software Package User’s Manual

SSP Overview > SSP Overview > Key Features > Application Frameworks

Block Media QSPI framework

Block Media RAM framework

Block Media SDMMC framework

Bluetooth Low Energy (BLE) framework

Deprecated - Capacitive Touch Sensing Unit framework
Capacitive Touch Sensing Unit framework Version 2
Deprecated - Capacitive Touch Sensing Unit Button framework
Deprecated - Capacitive Touch Sensing Unit Slider framework
Cellular framework

Communications framework on NetX
Communications framework on NetX Telnet
Deprecated - Communications framework on USBX
Communications Framework on USBX version2
Console framework

External Interrupt framework

I12C framework

Inter-Thread Messaging framework

JPEG Decode framework

Memory framework

Port LevelX framework

Periodic Sampling ADC framework

Power Profile Version 2 framework

SPI Framework

Synergy FileX® Port Block Media Interface framework
Synergy GUIX™ Interface framework

Synergy NetX™ Port framework

Synergy USBX™ Port framework

Thread Monitor framework

Deprecated - Touch Panel framework

Touch Panel Version 2 framework

UART framework

Wi-Fi Framework

2.1.4.7 Security Cryptographic (SCE) Library

e True RNG (TRNG)

e SHA1, SHA224/SHA256

e ECC P-192, P-224, P-256 and P-384 curves. Includes APIs for scalar multiplication, key
generation, ECDSA signature generation, and ECDSA signature verification operations
AES 128, 192, and 256-bits ECB, CBC, CTR, GCM, XTS

3DES, 192-bit key, ECB, CBC, CTR

ARC4

RSA up to 2048-bit keys

DLP, DSA up to 2048-bit keys

Encryption/Decryption

Key Generation (plaintext and wrapped keys) and Installation.

Signature Generation and Verification

MD5

2.1.4.8 CMSIS DSP Library

e Basic math functions
e Fast math functions
e Complex math functions
e Filters
R11UMO0161EU0161 Revision 1.61 RLENESAS Page 68 /5,198

Jun.08.2024

Synergy Software Package User’s Manual

SSP Overview > SSP Overview > Key Features > CMSIS DSP Library

Convolution

Matrix functions
Transforms

Motor control functions
Statistical functions
Support functions
Interpolation functions
Bayes functions
Controller functions
Distance functions
Quaternion functions
SVM functions

Detailed CMSIS library details can be found on
Github: https://github.com/ARM-software/CMSIS 5/releases/tag/5.8.0

2.1.4.9 CMSIS Neural Network Library

Convolution functions
Activation functions
Fully-connected Layer functions
Pooling functions

Softmax functions

Basic math functions
Concatenation functions

NN Support functions

Reshape Functions

SVD Functions

Detailed CMSIS library details can be found on
Github: https://github.com/ARM-software/CMSIS 5/releases/tag/5.8.0

2.1.4.10 AzureRTOS NetX Duo™

e |Pv4 and IPv6 compliant TCP/IP Protocol Stack

* Integrated with ThreadX

* Integrated with wired (Ethernet) and wireless (WiFi, Cellular) networking interfaces for
Synergy

Zero-copy API

UDP Fast Path Technology

BSD-compatible socket layer

RFC 2460 IPv6 Specification

RFC 4861 Neighbor Discovery for IPv6

RFC 4862 IPv6 Stateless Address

RFC 1981 Path MTU Discovery for IPv6

RFC 4443 ICMPv6

RFC 791 Internet Protocol (IP)

RFC 826 Address Resolution Protocol (ARP)

RFC 903 Reverse Address Resolution Protocol (RARP)
RFC 792 Internet Control Message Protocol (ICMP)
RFC 3376 Internet Group Management Protocol (IGMP)
RFC 768 User Datagram Protocol (UDP)

RFC 793 Transmission Control Protocol (TCP)

RFC 1112 Host Extensions for IP Multicasting

RFC 1661 - The Point-to-Point Protocol (PPP)

R11UMO0161EU0161 Revision 1.61 RENESANAS Page 69 /5,198
Jun.08.2024

https://github.com/ARM-software/CMSIS_5/releases/tag/5.8.0
https://github.com/ARM-software/CMSIS_5/releases/tag/5.8.0

Synergy Software Package User’s Manual

SSP Overview > SSP Overview > Key Features > Azure RTOS NetX™ Applications (IPv4 Networking Services)

2.1.4.11 Azure RTOS NetX™ Applications (IPv4 Networking Services)

DHCP Client and Server

DNS Client

HTTP 1.0 Client and Webserver
HTTP 1.1 Client

FTP Client and Server

TFTP Client and Server

Telnet Client and Server

Auto IP

NAT

SMTP Client

POP3 Client and Server

SNMP Agent

SNTP Client

PPP (Not currently supported by Synergy Configuration tool)

2.1.4.12 Azure RTOS NetX Duo™ Applications (IPv4/v6 Networking Services)

DHCP Client and Server

DNS Client

HTTP 1.0 Client and Webserver
HTTP 1.1 Client

HTTPS Client and Server

FTP Client and Server

TFTP Client and Server

Telnet Client and Server

Auto IP

NAT

SMTP Client

POP3 Client and Server

SNMP Agent

SNTP Client

MDNS/DNS-SD

PPP (Not currently supported by Synergy Configuration tool)

2.1.4.13 Azure RTOS NetX Secure

e TLS v1.2 (RFC 5246) and v1.3 (RFC 8446)

e DTLS v1.2 (RFC 6347)

e RFC 5280 Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List
(CRL) Profile

e RFC 5280 X.509 PKI Certificates (v3)

e Supports X.509 extensions for Key Usage and Extended Key Usage

e RFC 3268 Advanced Encryption Standard (AES) Cipher suites for Transport Layer Security
(TLS)

e RFC 3447 Public-Key Cryptography Standards (PKCS) #1: RSA Cryptography Specifications
Version 2.1

e RFC 2104 HMAC: Keyed-Hashing for Message Authentication

e RFC 6234 US Secure Hash Algorithms (SHA and SHA-based HMAC and HKDF)

e RFC 8422 Elliptic Curve Cryptography (ECC) Cipher Suites for Transport Layer Security (TLS)
Versions 1.2 and Earlier

e RFC 4279 Pre-Shared Key Cipher suites for TLS

e Supports TLS extensions for:

o Secure Renegotiation Indication

R11UMO0161EU0161 Revision 1.61 RENESANAS Page 70 /5,198
Jun.08.2024

Synergy Software Package

SSP Overview > SSP Overview > Key Features > Azure RTOS NetX Secure

User’s Manual

o Server Name Indication
o Signature Algorithms
e Subject Alternative Name
e Integrated with hardware accelerated Cryptographic library on Synergy

2.1.4.14 Azure RTOS MQTT client for NetX Duo

e Compliant with OASIS MQTT Version 3.1.1

* Provides option to enable/disable TLS for secure communications using NetX Secure in SSP
e Supports QoS and provides the ability to choose the levels that can be selected while

publishing the message
e Supports multiple Instances of MQTT Client Per Device

2.1.4.15 Memory Support

e Flash programming support via JTAG
e Code and Data Flash drivers
e External memory bus support

2.1.4.16 Human Machine Interface (HMI)

e Graphics LCD controller driver
e Segment LCD controller driver
e Capacitive Touch Sensing Unit (CTSU)

2.1.4.17 Hardware Abstract Layer (HAL) Driver Modules

Analog Comparator High-Speed (ACMPHS)
Analog Comparator Low Power (ACMPLP)

Analog Connect Module (ACM)

Analog to Digital Converter (ADC) (12-bit, 14-bit)
Asynchronous General Purpose Timer (AGT)
AGT Input Capture (AGT Input Capture)
Capacitive Touch Sensing Unit (CTSU)

Clock Frequency Accuracy Measurement (CAC)
Clock Generation Circuit (CGC)

Controller Area Network Interface (CAN)

Cyclic Redundancy Check calculator (CRC)

Data Operation Circuit (DOC)

Data Transfer Controller (DTC)

Digital to Analog converter (DAC)

Digital to Analog converter 8-bit (DACS8)

Direct Memory Access Controller (DMAC)

Event Link Controller (ELC)

Flash Memory-High Performance (FLASH_HP)
Flash Memory-Low Power (FLASH_LP)

General Purpose 1/0O Port (GPIO / IOPORT)
General Purpose Timer (GPT)

General PWM Timer with Input Capture (GPT_INPUT_CAPTURE)
Graphics LCD Controller (GLCD)

IEEE 1588 Precision Time Protocol (PTP)

121C (RIIC)

Independent Watchdog Timer (IWDT)

Interrupt Controller Unit (ICU)

JPEG Codec (JPEG_COMMON, JPEG_ENCODE, JPEG_DECODE)

R11UMO0161EU0161 Revision 1.61 RENESAS
Jun.08.2024

Page 71/5,198

Synergy Software Package

SSP Overview > SSP Overview > Key Features > Hardware Abstract Layer (HAL) Driver Modules

User’s Manual

Keyboard Interrupt Interface (KINT)
Deprecated - Low Power Mode (LPM)

Low Power Mode Version 2 (LPMv?2)

Low Voltage Detection (LVD)

Parallel Data Capture Unit (PDC)

Quad SPI (QSPI)

Real Time clock (RTC)

SD Multi Media Card (SDMMC)

Segment LCD (SLCD)

Serial Communication Interface 12C (SCI_I12C)
Serial Communication Interface SPI (SCI_SPI)
Serial Communication Interface UART (SCI_UART)
Sigma-Delta ADC (SDADC)

Serial Peripheral Interface (SPI)

Serial Sound Interface (SSI)

Watchdog Timer (WDT)

2.1.4.18 GPIO and Key Interrupts

GPIO module
Key Interrupts module

R11UMO0161EU0161 Revision 1.61 RENESAS

Jun.08.2024

Page 72/5,198

Synergy Software Package User’s Manual

Starting Development

Chapter 3 Starting Development

To start development with the Renesas Synergy Software Package (SSP), download and install e2
studio, obtain a target Synergy development or evaluation board, and run through the tutorials in
this chapter. The e2 studio ISDE user guide and the tutorials include step-by-step instructions for
getting started with a simple application. To get started with the SSP, refer to these pages:

e e2 studio ISDE User Guide

e Tutorial: Your First Synergy Project - Blinky

e Tutorial: Using HAL Drivers - Programming the WDT
¢ |AR Embedded Workbench for Renesas

e What is Synergy Standalone Configurator (SSC)?

3.1 e2 studio ISDE User Guide

3.1.1 Using the e2 studio ISDE

This section describes how to use the Renesas e? studio Integrated Solutions Development
Environment (ISDE) to develop applications with the Renesas Synergy Software Package (SSP). The
architecture of the SSP directly determines how you use the e? studio ISDE to develop a Synergy
application. See the following documents for details on the SSP architecture included in this manual:

e SSP Architecture
e BSP Architecture

For simple example projects generated and built with e? studio, see:

e Tutorial: Using HAL Drivers - Programming the WDT
e Tutorial: Your First Synergy Project - Blinky

All User Guides in this manual show how to configure a driver and develop an application using the
e? studio ISDE. See:

e HAL Layer for HAL layer user guides
e Framework Layer for Framework layer user guides

3.1.2 What is the e2 studio ISDE?

The Renesas e? studio ISDE, or Integrated Solution Development Environment, is a development tool
encompassing code development, build, and debug. The ISDE is based on the open-source Eclipse
IDE and the associated C/C++ Development Tooling (CDT). Specifically for Synergy MCUs, the ISDE
provides a Graphical User Interface (GUI) with numerous wizards for configuring and auto-generating

R11UMO0161EU0161 Revision 1.61 RENESANS Page 73 /5,198
Jun.08.2024

Synergy Software Package User’s Manual

Starting Development > e2 studio ISDE User Guide > What is the e2 studio ISDE?

code using the Synergy Software Package (SSP). The ISDE also incorporates a smart manual so that
driver and device documentation is available in the form of tooltips right in the code.

e’ studio

2022-10

Starting & studio (E BUILTON
—
Figure 18: e2 studio Splash Screen

Note
The €” studio screens shown in this manual are examples. Some details may differ between different releases of the
€’ studio ISDE and the SSP.

The e? studio ISDE and the Synergy Project Configurator have been developed to make it as easy as
possible to quickly select the SSP modules required for a particular application, include them in a
project, and configure them. The ISDE provides a graphical user interface to configure all elements of
the SSP for the Synergy MCU applications. In addition to HAL and Framework modules, the ISDE can
add and configure RTOS threads, semaphores, mutexes, event flags, and queues. This makes adding
RTOS support to an application very straightforward. Once a project has been generated, you can go
back and reconfigure any of the modules and settings if required. The ISDE generates the complete
and correct configuration code from the selections in the configuration views, so you can focus on
writing the application code.

The elements of the SSP are shown in the Project Explorer view of the e? studio ISDE. All SSP
configuration structures and parameters are mapped to XML files. The XML files enable the ISDE to
present a visual list of configurable options that you can select from. In addition to generating code
to configure the modules, the XML also provides dependency information for modules.

When you add an SSP module to your project, the e? studio ISDE checks the dependencies of this
module and adds all necessary drivers and framework modules to create the appropriate stack. If
there is a dependency that requires you to make a choice, this module is highlighted in the Stack
window and the ISDE guides your selection by showing the available options.

R11UMO0161EU0161 Revision 1.61 RENESANS Page 74 /5,198
Jun.08.2024

Synergy Software Package User’s Manual

Starting Development > e2 studio ISDE User Guide > What is the e2 studio ISDE?

Threads Configuration _ s
Generate Project Content

Threads 4| New Thread 3| Remove [MNew Thread Stacks 4| New Stack >
v & HAL/Common
] g_ioport 10 Port Driver on r_ioport P g_sf_audio_playbackD Audio Playback Framework on sf_audio_playback
42 g_fmi FMI Driver on r_fmi
42 g_cge CGC Driver on r_cge @
42 g_elc ELC Driver on r_elc =
~ g Mew Thread T
@ g_sf_audio_playback0 Audio Playback Framewark on s ¥ g_sf_audio_playback_commonl Audio Playback Framework Shared on sf_audio_playback
®
; A
47 g_sf_messaged g{— g_sf_audio_playback_hw{ Audio Playback Hardware Framework Shared on
Messaging sf_audio_playback_hw_dac
< > Framework on
@ sf_message @
New Thread Objects 4| New Object > T 3 T
4 g_transferD Transfer % Add Timer Driver % Add DAC Driver
9 N L]
Driver on r_dtc ELC
SOFTWARE EVENT O
Mew » < Timer Driver on r_agt
& Timer Driver on r_gpt

Figure 19: ISDE Dependency Checking

Errors are flagged next to the Driver name in the HAL/Common Modules or New Thread Modules
pane. You can also review errors in the Problems window.

3.1.3 e2 studio ISDE Prerequisites
3.1.3.1 Obtaining a Synergy Kit
To develop applications with the SSP, start with one of the Renesas Synergy Kits. The Renesas
Synergy Kits are designed to seamlessly integrate with the e? studio ISDE. Several types of kits are
available:

e Development Kit (DK)

e Starter Kit (SK)

e Product Example (PE)

e Target Board (TB)

Ordering information, Quick Start Guides, User Manuals, and other related documents for all Synergy
Kits are available at http://renesassynergy.com.

3.1.3.2 PC Requirements
To use the e? studio ISDE, ensure that your PC meets the following minimum requirements:

e Windows 7 with Intel i5 or i7, or AMD A10-7850K or FX

e Memory: 8 GB DDR3 or DDR4 DRAM (16 GB DDR4/2400 MHz RAM is preferred)

e Minimum 250 GB hard disk
3.1.3.3 Installing e2 studio and the SSP
Detailed installation instructions and installers for the e studio ISDE and the SSP are available on the
Renesas Synergy Gallery website https://synergygallery.renesas.com. Review the release notes for
e? studio to ensure that the e? studio version supports the selected SSP version.

3.1.3.4 Choosing a Toolchain

The e? studio ISDE can work with several toolchains and toolchain versions such as the GNU ARM

R11UMO0161EU0161 Revision 1.61 RENESANAS Page 75 /5,198
Jun.08.2024

http://renesassynergy.com
https://synergygallery.renesas.com

Synergy Software Package User’s Manual

Starting Development > e2 studio ISDE User Guide > e2 studio ISDE Prerequisites > Choosing a Toolchain

compiler and the IAR toolchain. A version of the GNU ARM compiler is included in the e? studio
installer and has been verified to run with the SSP version.

To use the IAR toolchain for ARM, install IAR Embedded Workbench for Renesas Synergy (EWSYN) (a
license from IAR is required). Before starting a Synergy project with IAR, also install the IAR
Embedded Workbench for ARM Eclipse plugin (using the IAR Embedded Workbench plugin manager
in the 'Help' menu).

3.1.3.5 Adding the IAR Embedded Workbench for Renesas Synergy Compiler into e2
studio

The IAR Embedded Workbench for Renesas Synergy compiler (IAR compiler) can now be used from
within 2 studio. This allows the developer to have the advantages provided by the IAR compiler
without the need to also use the IAR EW for Renesas Synergy ISDE. The installation process involves
installing IAR EW for Renesas Synergy, installing e? studio, and installing the associated IAR plugins
for e? studio. The process is described in the application note found with this search:
https://www.renesas.com/eu/en/document/apn/installing-iar-compiler-e2-studio-application-note

The application note also includes a description of how to migrate a project that originally used e
studio and GCC. It also includes a description of how to migrate a project from IAR 7.x to IAR 8.x so it
will be successfully opened when using e? studio.

3.1.4 What is a Project?

In e? studio, all SSP applications are organized in Synergy projects. Setting up a Synergy project
involves:

1. Creating the project
2. Configuring the project

The e? studio ISDE has many project wizards and configuration windows specifically for Synergy
projects. You can create a new Synergy Project with the Synergy Project Generator or edit the
configuration of an existing project in the Synergy Project Editor.

When you launch e? studio and select a workspace, all projects previously saved in the selected
workspace are loaded and displayed in the Project Explorer view. Each project has an associated
configuration file named configuration.xml which is located in the project’s root directory.

& ProjectExplorer X 55 Y 8 £ O
~ =% blinky_dks7g2 [Debug]
[Includes
(2 src
(£ synergy
(= seript
= synergy_cfg
x| blinky_dks7g2 Debug.launch
=| R7FS7G27H2AD1CBD.pincfg
5| 57G2-DK.pincfg
(7) Developer Assistance

Figure 20: e2 studio Project Configuration File

Double-click on the configuration.xml file to open the Synergy Project Editor and view or modify all
configuration settings associated with this project. To edit the project configuration, make sure that
the Synergy Configuration perspective is selected in the upper right hand corner of the e? studio
window.

R11UMO0161EU0161 Revision 1.61 RENESANAS Page 76 / 5,198
Jun.08.2024

https://www.renesas.com/eu/en/document/apn/installing-iar-compiler-e2-studio-application-note

Synergy Software Package

Starting Development > e2 studio ISDE User Guide > What is a Project?

User’s Manual

Note

B | HR C/C++ {5 Synergy Canfiguration

Figure 21: e2 studio Synergy Configuration Perspective

Whenever the Synergy project configuration (that is, the configuration.xml file) is saved, a verbose Synergy Project
Report file (synergy_cfg.txt) with all the project settingsis generated. The format is such that differences can be
easily viewed using a textual difference tool. The generated file islocated in the project root directory.

115 Project Explorer >

~ [z blinky_dks7g2 [Debug]
[Includes
= sre
(2 synergy
(= script
(== synergy_cfg

LED

configurationxml

$762-DK.pincfg

) i) [§

() Developer Assistance
1 MyProject

blinky_dks7g2 Debug.launch
RTFS7G27H2A0TCBD.pincfg

=) synergy_cfg.ixt ee—

= B | [E synergy_cfget X
bynergy Configuration
Board "57G2 DK"
R7F57G27H2AB1CED
part_number: R7FS7G27H2A@1CBD
rom_size_bytes: 4194384
ram_size_bytes: 65536@
data_flash_size_bytes: 65536
package_style: BGA
package_pins: 224

=
¥

==y

5762
series: 7

5762 Family
OFS@ register settings: Select fields below

IWDT Start Mode: IWDT is Disabled
IWDT Timeout Period: 2048 cycles
IWDT Dedicated Clock Frequency Divisor: 128
IWDT Window End Position: @% (no window end position)
IWDT Window Start Position: 1@8% (no window start position)
IWDT Reset Interrupt Request Select: Reset is enabled

o
PUMFEFOODR YOS WRNE W0~ WN

WDT Timeout Period: 16384 cycles

WDT Clock Frequency Division Ratio: 128

WDT Window End Position: ¥ (no window end position)

WDT Window Start Position: 188¥ (no window start position)

WDT Reset Interrupt Request: Reset

WDT Stop Control: Stop counting when entering Sleep mode
OFS1 register settings: Select fields below

Voltage Detection @ Level: 2.88 V

WL LR R R R R R R R R R

WRE®8@do 0

Figure 22: Synergy Project Report

HOCO Oscillation Enable: HOCO oscillation is disabled after reset

IWDT Stop Control: Stop counting when in Sleep, Sngoze mode, or Software Standby
WDT Start Mode Select: Stop WDT after a reset (register-start mode)

Voltage Detection @ Circuit Start: Voltage monitor @ reset is disabled after reset

The Synergy Project Editor has a number of tabs. The configuration steps and options for individual
tabs are discussed in the following sections.

Note

Which tabs are available with the Synergy Project Editor depends on the €” studio version.

R11UMO0161EU0161 Revision 1.61

Jun.08.2024

RLENESAS

Page 77 /5,198

Synergy Software Package User’s Manual

Starting Development > e2 studio ISDE User Guide > What is a Project?

15} [blinky_dks7g2] Synergy Configuration < = 0

Summar
¥ Generate Project Content

Project Summary Renesas Synergyw
Board: 57G2 DK
Device: RTFS7TG2TH2A01CBD
Toolchain: GCC ARM Embedded S7G2
Toolchain Version: 10.3.1.20210824
SSP Version: 230
Selected software components
S55P Common Code v2.3.0
Clock Generation Circuit: Provides=[CGC] v23.0
Event Link Controller: Provides=[ELC] v2.3.0
Factory MCU Information Module: Provides=[FMI] v23.0
/0 Port: Provides=[10 Port] v2.3.0
S57G2_DK Board Support Files v2.3.0
Simple application that blinks an LED. No RTOS included v2.3.0
Board support package for RTFS7G27TH2A01CBD v2.3.0
Board support package for S7G2 v23.0
Board support package for STG2 v2.3.0

J;enmz @ @
mergy
Youl D st support i =

Summary | BSP | Clocks | Pins | Threads | Messaging | Components

Figure 23: e2 studio Project Editor

3.1.5 Creating a Project

This section includes step-by-step instructions for creating a Synergy Project. Once you have created
the project, you can easily configure the hardware (clocks, pins, interrupts) and the parameters of all
modules that are part of your application.

To create a new Synergy Project with the Synergy Project Generator, select the project name, select
the hardware for your application, select the toolchain and choose from preconfigured clock, pin, and
MCU related settings by selecting a project template.

3.1.5.1 Creating a New Project

For Synergy applications, always generate a new project as a Synergy Project in the following way:

1. Click on File > New > Synergy C/C++ Project

File Edit Mavigate Search Project RenesasViews Run Window Help

New Alt+Shift+N > Renesas C/C++ Project >
Open File... |~ Synergy C/C++ Project |
(., Open Projects from File System... 9 Project...
Recent Files > o Exemple..
se Edi w
Close Editor Crl+ 9 Other. CtrleN
oo P

Figure 24: New Synergy Project

Then click on the type of template for the type of project you are creating.

R11UMO0161EU0161 Revision 1.61 RENESANS Page 78 /5,198
Jun.08.2024

Synergy Software Package

Starting Development > e2 studio ISDE User Guide > Creating a Project > Creating a New Project

User’s Manual

Templates for New Synergy C/C++ Project

R Synergy C E ble Project 2

CCes qenesas A C Evscutable Project for Renesas Synergy.

Renesas Synergy C Library Project
aenesas A C Library Project for Renesas Synergy.

Renesas Synergy C Project Using Synergy Library
aenesas Creotes @ C application project which uses an
existing Synergy library project

Renesas Synergy C++ Executable Project
aenesas A C++ Executable Project for Renesas Synergy.

Renesas Synergy C++ Library Project
aenesas A C++ Library Project for Renesas Synergy.

< >

@ < Back Next > Finish Cancel

Figure 25: New Project Templates

2. Select a project name and location.

3. Click Next.

€2 studio - Project Configuration (Synergy C Executable Project) p—

Specify the new project details. |

Project Toolchains

Project name ‘ blinky_dks7g2] GNU ARM Embedded

Use default location
Location: | C\Users\a513710%\e2_studio\synergy\blinky_dks7g:| |Browse...

Choose file systern: | default

@ < Back Finish Cancel

Figure 26: Synergy Project Generator (Screen 1)

3.1.5.2 Selecting a Board and Toolchain

In the next Project Configuration window select the hardware and software environment:

1. Select the SSP version.

2. Select the Board for your application. You can select an existing Synergy Kit or select

Custom User Board for any of the Synergy devices with your own BSP definition.

R11UMO0161EU0161 Revision 1.61
Jun.08.2024

LLENESAS

Page 79/5,198

Synergy Software Package

Starting Development > e2 studio ISDE User Guide > Creating a Project > Selecting a Board and Toolchain

User’s Manual

Note

To develop your own BSP, see the following Application Note: "Creating a Custom Board Support
Package" at http://renesassynergy.com.

3. Select the Toolchain version.
4., Select the Debugger. The J-Link ARM Debugger is preselected.

5. Click Next.

@2 studio - Project Configuration (Synergy C Executable Project)

e
Select the board support that you require.
Device Selection
SSP wersion: | 2.3.0 v Board Details
Board: 57G2 DK ~
Device: RTFSTGZ7THZADTCED
Select Tools Available Tools
Taolchain: GNU ARM Embedded ~ GNU ARM Embedded
Toolchain version: | 10.3.1.20210824 ~ 10:3.1.20210824
w Debuggers
Debugger J-Link ARM ~ J-Link ARM
~ RIOS
Express Logic ThreadX
~ Smart Manual
10 Registers Supported
Software Manual Supported
@ <Back Finish Cancel

Figure 27: Synergy Project Generator (Screen 2)

3.1.5.3 Selecting a Project Template

Note

In the next window, select a project template from the list of available templates and click Finish.

If you want to devel op your own application, select a basic template for your board, such as S/G2-DK BSP. You
can add RTOS support at any time while you configure the modules for your project.

R11UMO0161EU0161 Revision 1.61
Jun.08.2024

RLENESAS

Page 80/5,198

http://renesassynergy.com

Synergy Software Package

Starting Development > e2 studio ISDE User Guide > Creating a Project > Selecting a Project Template

User’s Manual

By default, this screen shows the templates that are included in your current SSP pack.

€3 Mo project template has been selected.

e2 studio - Project Configuration (Synergy C Executable Project)

Project Template Selection

[Renesas.Synergy.2.3.0.pack]

O “| Blinky
Q Blinky project.
[Renesas.Synergy.2.3.0.pack]

O *| Blinky with ThreadX
g Threaded version of Blinky project.
[Renesas.5ynergy.2.3.0.pack]

Code Generation Settings
Use Synergy Code Formatter

o “ BSP
g Base Board Support Package for the chosen Synergy family.

Mext >

Finish Cancel

Figure 28: Synergy Project Generator (Screen 3)

When the project is created, the ISDE displays a summary of the current project configuration in the
Synergy Project Editor.

8t [blinky_dks7g2] Synergy Configuration >

= O

Summary

Project Summary

Board: S57G2 DK

Device: R7FSTG2TH2A01CBD
Toolchain: GCC ARM Embedded
Toolchain Version: 10.3.1.20210824

SSP Version: 230

Threads Summary

Property Value
Priority Blinky Thread 1

Selected software components

SSP Commen Code

Clock Generation Circuit: Provides=[CGC]

Event Link Controller: Provides=[ELC]

Factory MCU Information Module: Provides=[FMI]

IO Port: Provides=[10 Port]

Express Logic ThreadX: Provides=[ThreadX]

Simple application that blinks an LED. ThreadX RTOS included
S57G2_DK Board Support Files

Board support package for RTFSTG27H2A01CBD

Board support package for S7G2

Renesas
Symergy @ @
Ylm Tuhg GJHQ'Y'/

v2.3.0
v2.3.0
v23.0
v2.3.0
v23.0
v2.3.0
v23.0
v2.3.0
v2.3.0
v2.3.0

Generate Project Content

Renesas Synergy™ »

Summaryl BSP | Clocks‘ Pins‘ Threadsl Massaging‘ Componentsl

Figure 29: Synergy Project Editor and Available Editor Tabs

R11UMO0161EU0161 Revision 1.61

Jun.08.2024

LLENESAS

Page 81/5,198

Synergy Software Package User’s Manual

Starting Development > e2 studio ISDE User Guide > Creating a Project > Selecting a Project Template

On the bottom of the Synergy Project Editor view, you can find the tabs for configuring multiple
aspects of your project:

e With the BSP tab, you can change board specific parameters from the initial project
selection.

e With the Clocks tab, you can configure the MCU clock settings for your project.

e With the Pins tab, you can configure the electrical characteristics and functions of each port
pin.

e With the Threads tab, you can add SSP modules and drivers for RTOS and non-RTOS
applications and configure the drivers. For each module or driver selected in this tab, the
Properties window provides access to the configuration parameters, interrupt priorities, and
pin selections.

* With the Messaging tab, you can configure the Messaging Framework for ThreadX-based
projects. The Messaging tab is included in e? studio version 5.0 and higher.

e The Components tab provides an overview of the selected modules. You can also add
drivers for specific SSP releases and application sample code here.

3.1.6 Configuring a Project
A project has two levels of configuration.

e The BSP, Clocks, and Pins tabs determine the initial configuration of the MCU after reset and
before any user code is executed. By selecting a project template during project creation,
the ISDE configures default values as appropriate for the selected board. You can change
those default values as needed.

e The Threads allows you to add SSP modules to the project and set the configuration
parameters of the module as needed by the application. Because the Messaging Framework
is an integral part of many ThreadX-based applications, you can configure the Messaging
Framework for each thread requiring messaging in the Messaging tab (for e? studio versions
5.0 and higher).

3.1.6.1 Configuring the BSP with the ISDE

The BSP tab shows the currently selected board (if any) and device. The Properties view is located
in the lower left of the Project Configurations view as shown below.

Note
If the Properties view is not visible, click Window > Show View > Properties in the top menu bar.
R11UMO0161EU0161 Revision 1.61 RLENESAS Page 82 /5,198

Jun.08.2024

Synergy Software Package User’s Manual

Starting Development > e2 studio ISDE User Guide > Configuring a Project > Configuring the BSP with the ISDE

]

Generate Project Content

Board Support Package Configuration
7 Restore Defaults

Device Selection

S5P version: |2.3.0 ~ Board Details
Board: S7G2 DK ~| | g2y
Device: R7FS7G2TH2AD1CBD
SummaCIﬂ{k; Pins | Threads | Messaging | Components
[T Properties < |[£] Problems| @ Smart Browser i = 0
5§7G2 DK
A
Settings Property Value
v R7FSTGZTHZADCED
part_number R7FS7TG2THZA0TCBD
rom_size_bytes 4194304
ram_size_bytes 633360
data_flash_size_bytes £3336
package_style BGA
package_pins 224
v 5762
series 7
v 57G2 Family
OFS0 register settings Select fields below
IWDT Start Mode IWDT is Disabled
IWDT Timeout Period 2048 cycles
IWDT Dedicated Clock Frequency Diviso 128
IWDT Window End Position 0% (ne window end position]
IWDT Window Start Position 100% (no window start position)
IWDT Reset Interrupt Request Select Reset is enabled
IWDT Step Centrol Stop counting when in Sleep, Snooze mode, or Software Standby
'WOT Start Mode Select Stop WOT after a reset (register-start mode)
'WDT Timeout Period 16384 cycles
'WDT Clock Frequency Division Ratio 128
'WOT Window End Position 0% (ne window end position]
'WDT Window Start Position 100% (no window start position) e
< >

Figure 30: ISDE BSP Tab

The Properties view shows the configurable options available for the BSP. These can be changed as
required. The BSP is the SSP layer above the MCU hardware. The ISDE checks the entry fields to flag
invalid entries. For example, only valid numeric values can be entered for the stack size.

When you press the Generate Project Content button, the BSP configuration contents are written
to

synergy cfg/ssp_cfg/bsp/bsp_cfg.h
This file is created if it does not already exist.

Warning
Do not edit this file as it is overwritten whenever the Generate Project Content button is

pressed.
3.1.6.2 Configuring Clocks

The Clocks tab presents a graphical view of the MCU's clock tree, allowing the various clock dividers
and sources to be modified. If a clock setting is invalid, the offending clock value is highlighted in
red. It is still possible to generate code with this setting, but correct operation cannot be guaranteed.
In the figure below, the USB clock UCLK divider has been changed so the resulting clock frequency is
60 MHz instead of the required 48 MHz. This parameter is colored red.

R11UMO0161EU0161 Revision 1.61 RENESANAS Page 83 /5,198
Jun.08.2024

Synergy Software Package User’s Manual

Starting Development > e2 studio ISDE User Guide > Configuring a Project > Configuring Clocks

Clocks Configuration
g Generate Project Content

F Restore Defaults

XTAL 24MHz |- & ICLK Diw /1 <

PLL Src: XTAL v |= PcLKA Div /2 -

PLL Div /2 v |= PCLKB Div 14 v

PLL Mul x20.¢0 v > PCLKC Div /4 <

[USBMCLK 24MHz | | [PLL24oMbe ! Clock Sre: PLL ¢ PCLKD Div /2 -
HOCO 20MHz v SDCLKout On v

o o
o
\> FCLK Div /4 <

Summary ESPms Threads | Messaging | Components

Figure 31: ISDE Clocks Tab

When you press the Generate Project Content button, the clock configuration contents are
written to:

synergy_cfg/ssp_cfg/bsp/bsp_clock_cfg.h
This file will be created if it does not already exist.

Warning
Do not edit this file as it is overwritten whenever the Generate Project Content button is
pressed.

3.1.6.3 Configuring Pins

The Pins tab provides flexible configuration of the MCU’s pins. As many pins are able to provide
multiple functions, they can be configured on a peripheral basis. For example, selecting a serial
channel via the SCI peripheral offers multiple options for the location of the receive and transmit pins
for that module and channel. Once a pin is configured, it is shown as green in the Package view.

Note
If the Package view window is not open in the ISDE, select Window > Show View > Pin Configurator > Package
from the top menu bar to open it.

The Pins tab simplifies the configuration of large packages with highly multiplexed pins by
highlighting errors and presenting the options for each pin or for each peripheral. If you selected a
project template for a specific board such as the DK-S7G2, some peripherals connected on the board
are preselected.

R11UMO0161EU0161 Revision 1.61 RENESANAS Page 84 /5,198
Jun.08.2024

Synergy Software Package

Starting Development > e2 studio ISDE User Guide > Configuring a Project > Configuring Pins

User’s Manual

8 *[blinky_dks7g2] Synergy Configuration ><

Pins Configuration

Select pin configuration

57G2-DK.pincfg w Generate data: | g_bsp_pin_cfg

Pin Selection Pin Configuration

type filter text

Analog: ANALOG ~

= 8
Generate Project Content

Pins Tutoriel & v &),

me: 5CI8
AHEIOQ:D_AC When using Simple |2C mode, ensure port pins output type is n-ch
Connectivity:CAP open drain,
+ Connectivity:ETH When switching between 12C and other modes, first disable.
Connectivity:IIC
~ w Connectivity:5Cl Selection: Mixed i
scio Mode: Simple SPI v
sCI1
SCI2 it
SCI3 + Ipea i
SCl4
SCI5 ¥ |PBOS ~
SCIE
scir v [Pe03 -
v SClg v |PBOZ i
sClg
Connectivity:5P! Mone
Connectivity:551 Mone
+ Connectivity:USB
Graphics:GLCDC ¥
< > < >
Summary | BSP | Clocks |Pins| Threads | Messaging Components
[T Properties [£] Problems| @ Smart Browser [= [&; Pin Conflicts 3 ||E Console
0 itemns
Description
Properties are not available.

Figure 32: ISDE Pins Tab

{51 Package

H
3%
o

Em

B
=4
g

IR NS

B

ay sy 3%
5 9

]

= = =e
i e

ey g

=4 3¢

T2 NCCUSHISS

o
g
2
&
z
H

8

"
3 ('Pe07 =

z
=
E
B

v
Peoe | veo [wvocuf ez

Z
by
z
&

g

A
BRE
B

g

2y =4
) i

=4

=<
i

i

oz ||

2

| B &8 A
<
i

-3

Connection status:
e

Module

SlE e e

3

RTFSTG2 Tk BD - 224BGA (Top View)

[Jwien

Pin

ring

e

Location

>

¥ § =0

Resource

The pin configurator includes a built-in conflict checker, so if the same pin is allocated to another
peripheral or I/O function the pin will be shown as red in the package view and also with white cross
in a red square in the Pin Selection pane and Pin Configuration pane in the main Pins tab. The
Pin Conflicts view provides a list of conflicts, so conflicts can be quickly identified and fixed.

In the example shown below, port P105 is already used by the External Memory peripheral, and the
attempt to connect this port to the Serial Communications Interface (SCI) results in a dangling
connection error. To fix this error, select another port from the pin drop-down list or disable the
External Memory peripheral in the Pin Selection pane on the left side of the tab.

R11UMO0161EU0161 Revision 1.61
Jun.08.2024

RLENESAS

Page 85/5,198

Synergy Software Package

Starting Development > e2 studio ISDE User Guide > Configuring a Project > Configuring Pins

User’s Manual

& *[blinky_dks7g2] Synergy Configuration <

= O

Pins Configuration

Generate Project Content

& Package X = 0

CUCRIE R R

1 31 3 . a s
. .
Select pin configuration Pins Tutcna\& - El " Fo2 ||Pams | VsS | uss
o [ios [¥ass [[¥aon [vee | vee
S$7G2-DK.pincfg &7 Generate data: | g_bsp_pin_cfg
<% v v . .
Fin1 |[Faen |[Frez |Faoe |Face
2 5 3 3 3 o |vee [vss [|ees [Vaos [[Face
Pin Selection Pin Configuration
© [Bean [Vone [[Buss || uee | poss
|typef\\tertaxt o 7 _v_Iv_ v
F (et ((Perz (|Pers (| Peoe (|Psoo
» v Ports ~ Module name: sCig < [pan | s | pase | o [ens
v B Peripherals Usage: When using Simple 12C mode, ensure port pins output type is n-ch
» Analog:ACMP open drain. H voiE || vss || vee | paos | eac
> Analog:ADC When switching between 12C and other modes, first disable. 2 | o || e || s |[pacs | pac
> Analog:ANALOG
> Analog:DAC Pin Group Selection: Mixed ~ K ‘{5:5 ‘;sm fﬁm ‘ﬁm ren7
> Connectivity.CAN Operation Mode: Simple SPI b < %o (oo | eco oo | eoce
» v Connectivity: ETHERC =
» Connectivity:IC Input/Qutput ™ | ss | vee [|Paos f eeot ||Psos
v e COI;;IEOCtIVItyJSU THD: = w [V [[Bues || ¥ice [Voo [[¥emm
scn RAD: > » [Feos |oon | Voo | oo | Vo
sciz SCK: o & [Furo [¥ao: || race [¥eo | Fo
sci T 2 3 a3 s
5Ci4 CTS: =
SCIs RTFST!
SClg DA Nene - Connertion status:
sci sCL MNone ~ = [y
8 SCi8
sCig
> Connectivity:5PI
> Connectivity: 551
» v Connectivitv:USB e < >
Summary|BSP |C\oc|fs { (<] Pinsl Thraads| Messagmg| Components < >
=

iS5 Properties “_:_ Problems|q;- Smart Brow;er|

Properties are not available,

Figure 33: ISDE Pin Configurator

&; Pin Conflicts > | B Console

v § T8

1 error, 0 warnings, 0 others
~
Description

@ Dangling connection

Module Pin
sCig TXD

The pin configurator also shows a package view and the selected electrical or functional

characteristics of each pin.

Connection Status

Drive Capacity

Output Type

Figure 34: ISDE Pin Configurator

=
&1 Package EECRIE B S|
1 2 3 a4 5 & 7 8 5 m u 1 1 1
[v [v [v
* Paz || Pae || vss || vss || pecs || pers [ccodi vio |vows || pece || ez [vccusus
Vv m Irq
& |Pue | Proe || Pae || wee || vee |fPmz | perz | paco || vio || vs | peo || Paoe |vssussust
2 o s s e [@ | s
© |Pras | Pran | Praz | Pans | Pane || Pao || Pas || Pace || Peot || vas | Pmis | Paos || paor | Pe
[v [v [v [v [v [v [v [v [v [v
o |vee || ves [Pz |(Faos |(Paoe |(Faor |(Faoe | pexo |[Peos | e |Paoe | Pazs |[Pazz (P4 Pull Up
[v [v [v [v [v [v
& |Pen | Pes | Pras | Pras | pes | pois | poce | poce | poco | Paiz | Pas | prx | proe | s | vss |E
vV~ ~ =
F [Pe4 [[Pesz |(Pees || Pete || Poo || Peos || poor (IRese (| Psze (|Prao |l Praz ||\ Ivccusussrstiusatst ©
v Vv [vs
& |pezz (| pazs (| pazs ((Peoe | Pasz || Pae || ace || Pezs || Pass (| Pras (|Peo7 (1) o JlsersiPussugvsus ©
[v [v [v [v
|vour | ves | vee ([pace || pazo || pace || pass || pezs |(Peco |(Peos |[Pece | vee [fwoc P ([Pazz | W
) vV M 11,
3 |par7 || pace || pacs | pane || paca || pace || paco | Pz | Pace | Pros || Pec2 || Pees || vss fecout|xom |2
[v [v [v [v [v [v [v [v [v [v [v]
« | pens pecz || Peor || pecr || pece || Peoe || Peoe || Pszs || Paos || Pz |(Pec |[Pece [veaTT(vowo | €
[v [v [v [v [v
v |Peoz || Pecc || eco || Peo || e || ez || vec || vss || poor || poce || vss || vec || Pros || Pros || Pror | &
[v [v [v [v [v
| vss | v |Puos || peot | Peos || pece || peoe || pos || oz || oo || oot || pece || Pacs | Proe || P | M
[v [v [v [v [v [v
[Pz [Pz |(Pros |(Pene |[Penz |[peor |[pezo (vReFL svesn [pozs ([Pooe |[Pooz |[paoe |[Pacz |[Pacs |
[v [v [v v 0 REFL v [v
® |Paon |[Peco |[Pexo || pece |Peca || psne | vee |4 ¥R pooe || poon |Peor | pezz (P | e |#
V[V[R
= |Puoo (|Peoe (| pecz ((Psoo (s lveez || vss |vmern| "o || Pooe (| poos | poce || pecs || pszz |l pszz | =
T 2 3 & s & 7 =8 5 ®m u 1 13 1 15
RTFSTG2TxxxxxxBD - 224BGA (Top View)
Mode:
Damlus moge Dhszﬂd D:nq mote D:rpi mode
Duupu mode (Initisl Euupu miote (Initizl LDPmprml ot

R11UMO0161EU0161 Revision 1.61
Jun.08.2024

LLENESAS

Page 86 /5,198

Synergy Software Package User’s Manual

Starting Development > e2 studio ISDE User Guide > Configuring a Project > Configuring Pins

When you press the Generate Project Content button, the pin configuration contents are written
to:

synergy cfg/ssp_cfg/bsp/bsp_pin_cfg.h
This file will be created if it does not already exist.

Warning
Do not edit this file as it is overwritten whenever the Generate Project Content button is
pressed.

To make it easy to share pinning information for your project, the ISDE exports your pin
configuration settings to a csv format and copies the csv file to synergy _cfg/ssp_cfg/bsp/pincfg <
MCU package>.csv.

3.1.7 Adding Threads and Drivers

Every ThreadX-based Synergy Project includes at least one RTOS Thread and a stack of SSP modules
running in that thread. The Threads tab is a graphical user interface which helps you to add the
right modules to a thread and configure the properties of both the threads and the modules
associated with each thread. Once you have configured the thread, the ISDE automatically generates
the code reflecting your configuration choices.

For any driver or, more generally, any module that you add to a thread, the ISDE automatically
resolves all dependencies with other modules and creates the appropriate stack. This stack is
displayed in the Threads pane, which the ISDE populates with the selected modules and module
options for the selected thread. If there is more than one module that can fulfill a dependency
requirement, the ISDE prompts you to choose a module from a dropdown menu.

For example, when you add the Audio Playback Framework to a thread, you also must pick either the
DAC or the I12S framework for playback:

~

Threads Configuration _ R
Generate Project Content

Threads % New Thread 3] Remove | New Thread Stacks 4| New Stack =

v &% HAL/Common
42 g_elc ELC Driver on r_elc @ g_sf audio_playbackd Audio Playback Framework
- - on sf_audio_playback

42 g_cge CGC Driver on r_cge

42 g_ioport I/0 Port Driver on r_joport @

42 g_fmi FMI Driver on r_fmi ry
~ g Mew Thread I

@ g_sf_audio_playback0 Audio Playback Frame: @® g_sf_audio_playback_commenl Audic Playback
Framework Shared on sf_audio_playback

@
a
I I
< > 4 g_sf_messagell 5 Add Audio Playback
Messaging Hardware
New Thread Objects 4| New Object Framework on
L3 >
- e et @ o message New » @ Audio Playback Hardware Framework Shared on sf_audio_playback_hw_dac
=

& Audio Playback Hardware Framework Shared on sf_audio_playback_hw_i2s

Summary | BSP | Clocks Pins | @ Threads | Messaging | Components

Figure 35: ISDE Project Configurator - Overview

The default view of the Threads tab includes a Common Thread called HAL/Common. This thread
includes the drivers for 1/O control (IOPORT), clock generation circuit (CGC), and the event link

controller (ELC). The default stack is shown in the HAL/Common Stacks pane. The default modules
added to the HAL/Common thread are special in that the SSP only requires a single instance of each,

R11UMO0161EU0161 Revision 1.61 RENESANAS Page 87 /5,198
Jun.08.2024

Synergy Software Package User’s Manual

Starting Development > e2 studio ISDE User Guide > Adding Threads and Drivers

which the ISDE then includes in every user-defined thread by default.

In applications that do not use an RTOS or run outside of the RTOS, the HAL/Common thread
becomes the default location where you can add additional drivers to your application.

For a detailed description on how to add and configure modules and threads, see the following
sections:

e Adding and Configuring HAL Drivers
e Adding Drivers to a Thread and Configuring the Drivers

Once you have added a module either to HAL/Common or to a new thread, you can access the
driver’s configuration options in the Properties view. If you added thread objects, you can access
the objects configuration options in the Properties view in the same way.
You can find details about how to configure threads here: Configuring Threads
Note
Driver and module selections and configuration options are defined in the SSP pack and can therefore change
when the SSP version changes.

3.1.7.1 Adding and Configuring HAL Drivers

For applications that run outside or without the RTOS, you can add additional HAL drivers to your
application using the HAL/Common thread. To add drivers, follow these steps:

1. Click on the HAL/Common icon in the Threads pane. The Modules pane changes to
HAL/Common Stacks.

Threads Configuration

o
Click here to add Generate Project Content
new modules.
Threads =] New Thread = HAL/Common Stacks %] MNew Stack >

)
— :E‘HA:_{S:mE mtoﬁnm.e, Thelc 4% g_elc ELC Driver on 4% g_cge CGC Driver on 4% g_ioport /0 Port 4% g_fmi FMI Driver on
42 g_cge CGC Driver on rele r_cge Driver on r_ioport r_fmi
k) g_ioport 17O Port Driver g @ @ @ @
& g_fmi FMI Driver on r_fmi

HAL/Common Objects

Summary | BSP | Clocks PinMassaging Components
Figure 36: ISDE Project Configurator - Adding Drivers

2. Click New Stack to see a drop-down list of HAL level drivers available in the SSP.

3. Select a driver from the menu New Stack > Driver. In addition, you can select a subset of
Framework modules for RTOS independent applications. All other modules can only be
added to a thread when ThreadX is present.

R11UMO0161EU0161 Revision 1.61 RENESANAS Page 88 /5,198
Jun.08.2024

Synergy Software Package

Starting Development > e2 studio ISDE User Guide > Adding Threads and Drivers > Adding and Configuring HAL Drivers

User’s Manual

Threads Configuration

Threads &) Mew Thread = HAL/Common Stacks

~ & HAL/Comman

Generate Project Content

&) Mew Stack

£ g_cge CGC Driver on r_cge
42 g_fmi FMI Driver on r_frmi
¥ g elc ELC Driveron r_elc ®© @

42 g_ioport /0 Port Driver on r_ioport

HAL/Common Objects

<

Summary | BSP | Clacks | Pins | Threads | Messaging| Components

Driver > Analag
4 g.cgc CGC Driveron | | 42 g_fmi FMI Driver on 49 g elcELCD Framework N Conncetivy
- i rele X-Ware > Crypto
@ 4 Search... Graphics
e Input
Monitering
Power
Storage
Systern
Timers

Transfer

Figure 37: Select a Driver

>
>
>
>
>
>
>

> < Flash Driver on r_flash_hp
> 4 QSPI Driver on QSPI
> 4 SD/MMC Driver on r_sdmmc

.

The ISDE creates the stack for the selected driver and alerts you when the driver needs
additional resources that must be enabled. In the case below, you can configure the

interrupt in the Properties view.

Threads Configuration

Threads 4] New Thread = | HAL/Common Stacks &) New Stack >

Generate Project Content

) Remove

~ ¢ HAL/Common
¥ g_cge CGC Driver on r_cge
42 g_fmi FMI Driver on r_fmi
47 g_elc ELC Driver on r_elc [6) @)

42 g_elc ELC Driveron 42 g ioport 1/0 Port
relc Driver on r_ioport

@ g_flashO Flash Driver
on r_flash_hp

A stack element with a bar of this color indicates 'g_flash0 Flash Driver on r_flash_hp' is a Synergy module instance.

42 g_ioport 1/O Port Driver on r_ioport

This instance may be referenced by ene other Synergy module instance only.

@ g_flashO Flash Driver on r_flash_hp

< >

HAL/Common Objects

<

Summary | 85P | Clocks |Pins | @ Threads | Messaging| Components

[T Properties % |2l Problems| @ Smart Browser 3§
g_flashO Flash Driver on r_flash_hp
0 items

Settings Property Value
APIInfq | ¥ Commen

Parameter Checking Default (BSP)

Code Flash Programming Enable Disabled

~ Module g_flash0 Flash Driver on r_flash_hp

Name q flashd

Data Flash Background Operation Enabled

Callback NULL

Flash Ready Interrupt Priority Disabled

Flash Error Interrupt Priority Disabled

Figure 38: Dependency Checking on the Threads Tab

Description

Error: Interrupts must be enabled if BGO is enabled.

= B || PinConflicts x| = O

7 8

4. Select the driver module in the HAL/Common Modules pane and configure the driver

properties in the Properties view.

The ISDE adds the following files when you click the Generate Project Content button:

e The selected driver module and its files to the synergy/ssp directory.
e The main() function and configuration structures and header files for your application as

shown in the table below.

R11UMO0161EU0161 Revision 1.61
Jun.08.2024

RLENESAS

Page 89/5,198

Synergy Software Package

Starting Development > e2 studio ISDE User Guide > Adding Threads and Drivers > Adding and Configuring HAL Drivers

User’s Manual

File Contents Overwritten by Generate
Project Content?
src/synergy_gen/main.c Contains main() calling Yes
generated and user code. When
called, the BSP already has
initialized the MCU.
src/synergy_gen/hal_data.c Configuration structures for HAL | Yes
Driver only modules.
src/synergy_gen/hal_data.h Header file for HAL driver only | Yes
modules.
src/hal_entry.c User entry point for HAL Driver |No
only code. Add your code here.

The configuration header files for all included modules are created or overwritten in this folder:

synergy_cfg/ssp_cfg/driver

3.1.7.2 Adding Drivers to a Thread and Configuring the Drivers

For an application that uses the ThreadX RTOS, you can add one or more threads, and for each
thread at least one module that runs in the thread. You can select modules from either the Driver or
Framework dropdown menu. To add modules to a thread, follow these steps:

1. In the Threads pane, click New Thread to add a Thread.

Threads Configuration

Threads

| 4| New Thread |5U Remove = MNew Thread Stacks

v & HAL/Common
42 g_cge CGC Driver on r_cge
42 g_fmi FMI Driver on r_fmi
42 g_elc ELC Driver on r_elc

48
g

<

£ l/0 Port Driver on r_ioport

| L)) pasting here from the clipboard.

New Thread Objects

4| Mew Object >

Summary | BSP | Clocks | Pins | Threads | Messaging | Components

=) Properties [£! Problems @ Smart Browser

New Thread

Property
~ Thread
Symbol
MName
Stack size (bytes)
Priority
Auto start

Settings

B4

Value

new threadd
1024

]

Enabled

Time slicing interval (ticks) 1

Figure 39: Adding a new RTOS Thread on the Threads Tab

Enter the name of your
Thread here. Example:
My Thread

o

Generate Project Content

&) New Stack >

Add Synergy stacks to the selected thread by using the ‘New Stack > toolbar button (above), or by

Module

2. In the Properties view, click on the Name and Symbol entries and enter a distinctive
name and symbol for the new thread.

R11UMO0161EU0161 Revision 1.61
Jun.08.2024

RLENESAS

Page 90/5,198

Synergy Software Package User’s Manual

Starting Development > e2 studio ISDE User Guide > Adding Threads and Drivers > Adding Drivers to a Thread and Configuring the Drivers

Note
The ISDE updates the name of the thread stacks pane to My Thread Stacks.
3. In the My Thread Stacks pane, click on New to see a list of modules and drivers. Both

Framework-level Modules and HAL-level drivers can be added here.
My Thread Stacks

Add Synergy stacks to the selected thread by using the 'New Stack >' toolbar buttor

Driver > |

| cipboard. Framework > Analog >
- 4+ Audio Playback Framework Shared on sf_audio_playback Audio »
I+ Audio Playback Framework on sf_audio_playback Connectivity >

4 Audio Playback Hardware Framework Shared on sf_audio_playback_hw_dac Crypto 3

4 Audio Playback Hardware Framework Shared on sf_audio_playback_hw_i2s File System »

4 Audio Record ADC Framework on sf_audio_record_adc Graphics »

4 Audio Record 125 Framework on sf_audio_record_i2s Input 3

LevelX >

Memory »

Networking >

Services »

Figure 40: Adding Modules and Drivers to a Thread

4. Select a module or driver from the list.
5. If the module or driver indicates a dependency, select the missing resources.

My Thread Stacks 4| Mew Stack >

& g_sf_audio_playback Audio Playback Framework
on sf_audio_playback

@

-
I

ﬂbu g_sf_audio_playback_comrmon0 Audio Playback
Framewaork Shared on sf_audio_playback

@

[I
42 g_sf_messagel 5 Add Audio Playback
Messaging Hardware
Framework on
@ sf_message

Mew s 4 Audio Playback Hardware Framework Shared on sf_audio_playback_hw_dac
3 & Audio Playback Hardware Framework Shared on sf_audio_playback_hw_i2s

Figure 41: Identifying Module or Driver Dependencies on the Threads Tab

6. Click on the added driver and configure the driver as required by the application by
updating the configuration parameters in the Properties view. To see the selected module
or driver and be able to edit its properties, make sure the Thread containing the driver is
highlighted in the Threads pane.

R11UMO0161EU0161 Revision 1.61 RENESANAS Page 91 /5,198
Jun.08.2024

Synergy Software Package User’s Manual

Starting Development > e2 studio ISDE User Guide > Adding Threads and Drivers > Adding Drivers to a Thread and Configuring the Drivers

Threads &) New Thread 52 Remove [5] | My Thread Stacks &) New Stack >) Remave
v & HAL/Common A
4 g_cge CGC Driver on r_cge @
4% g_fmi FMI Driver on r_fmi
4 g_elc ELC Driver onr_glc T - T
4 g_ioport I/0 Port Driver on r_ioport 49 g_sf_messagel @ g_sf_audio_playback_hw0 Audio Playback Hardware Framework Shared on
~ g My Thread Messaging sf_audio_playback_hw_i2s
@ 9_sf_audio_playbackl Audio Playback Framework on sf_audio Framework on
@ sf_message @
Y
I
E’ﬂj g_i2s0 [25 Driver on r_ssi
< >
X ® A stack element with a bar of this color indicates 'g_i2s0 125 Driver on r_ssi' is a Synergy module instance,
My Thread Objects 4] New Object > L This instance may be referenced by one other Synergy module instance only.
£ g Error: Requires Transmit Interrupt (TXI) enabled or Receive Interrupt (RXI) enabled
- = TP
SOFTWARE EVENT O SOFTWARE EVENTO
@
v
Summary | BSP | Clocks | Pins | @ Threads | Messaging | Components
[Properties ¢ |[Z] Problems @ Smart Browser 4 § = O ||[&s Pin Conflicts = g
P]
: : : 0it
g_i2s0 125 Driver on r_ssi fems =
. = - Description Module Pin Location Re
Settings Data Bits 168!6
Word Length 16 Bits
ABLnfoy W5 Continue Mode Disabled
Audio Clock External
Mame of (25 callback function to be de (51 NULL
Transmit Interrupt Pricrity Disabled
Receive Interrupt Priority Disabled
Idle/Error Interrupt Priority Priority 12

Figure 42: Configuring Module or Driver Properties

7. If needed, add another thread by clicking New in the Threads pane.

When you press the Generate Project Content button for the example above, the ISDE creates the
files as shown in the following table:

File Contents Overwritten by Generate
Project Content?

src/synergy_gen/main.c Contains main() calling Yes
generated and user code. When
called the BSP will have
initialized the MCU.

src/synergy_gen/my_thread.c Generated thread “my_thread” |Yes
and configuration structures for
modules added to this thread.

src/synergy_gen/my_thread.h Header file for thread Yes
“my_thread”

src/synergy_gen/hal_data.c Configuration structures for HAL | Yes
Driver only modules.

src/synergy_gen/hal_data.h Header file for HAL Driver only |Yes
modules.

src/hal_entry.c User entry point for HAL Driver | No
only code. Add your code here.

src/my_thread_entry.c User entry point for thread No
“my_thread”. Add your code
here.

R11UMO0161EU0161 Revision 1.61 :{ENESAS Page 92 /5,198

Jun.08.2024

Synergy Software Package User’s Manual

Starting Development > e2 studio ISDE User Guide > Adding Threads and Drivers > Adding Drivers to a Thread and Configuring the Drivers

The configuration header files for all included modules and drivers are created or overwritten in the
following folders:

synergy cfg/ssp_cfg/driver
synergy cfg/ssp_cfg/framework
3.1.7.3 Configuring Threads

If the application uses the ThreadX RTOS, the Threads tab can be used to simplify the creation of
ThreadX threads, semaphores, mutexes, and event flags.

The components of each thread can be configured from the Properties view as shown below.

[Properties < | [2 Problems @ Smart Browser

My Thread

Settings Property Value
w Thread
Symbol new_thread(
Mame My Thread
Stack size (bytes) 1024
Priority 1

Auto start Enabled
Time slicing interval (ticks) 1

Figure 43: ISDE Thread Properties

The Properties view contains settings common for all Threads (Common) and settings for this
particular thread (Thread).

For this thread instance, the thread’s name and properties (such as priority level or stack size) can
be easily configured. The ISDE checks that the entries in the property field are valid. For example,
the ISDE ensures that the field Priority, which requires an integer value, only contains numeric
values between 0 and 9.

To add ThreadX resources to a Thread, select a thread and click on New Object in the Thread
Objects pane. The pane takes on the name of the selected thread, in this case My Thread Objects.

R11UMO0161EU0161 Revision 1.61 RENESANAS Page 93 /5,198
Jun.08.2024

Synergy Software Package User’s Manual

Starting Development > e2 studio ISDE User Guide > Adding Threads and Drivers > Configuring Threads

Threads Configuration
9 Generate Project Co

Threads 4] New Thread -] Remove [My Thread Stacks 4] New Stack »
~ gt HAL/Common
4 q_cqc CGC Driver on r_cge & g_sf_audio_playback0 Audic Playback Framework on sf_audio_playback
42 g_fmi FMI Driver on r_fmi
47 g_elc ELC Driver on r_elc @
42 g_joport |/0 Port Driver on r_ioport =
~ & My Thread I
da i i 4% g_sf_audio_playback_common0 Audio Playback Framework Shared on sf_audio_playback
4 g_sf_audio_playbackd Audio Playback Framework on f_g 9 playl y playl
Click to add new \‘
Thread Objects to I - T
My Thread. 4 g_sf_audio_playback_hw0 Audia Playback Hardware Framework Shared on
sf_audio_playback_hw_i2s
< Framewaork on
@ sf_message @
My Thread Objects | 4] New Obin-+ | 5 B T
& | Event Flags P .
& g_i2s0 125 Driver on r_ssi
& g_new_event_flags0 Event Flags ® Mutex
@ g_new_queuel Queue s G
@ g_new_queue] Queue HELS €3]
@® Semaphore Y
[[[
| 4% g_transferD Transfer | | 4% g_transfer! Transfer | | & Add Timer Driver |

Summary | BSP | Clocks |Pins | Threads | Messaging | Components

[Praperties > |[2] Problems| @ Smart Browser r# & = O | [%4Pin Conflicts 7 §
Dit
g_new_queuel Queue fems =
Description Module Pin Locat
Settings Property Value
| Name New Queue |
Symbol g_new_queuel
Message Size (Words) 1
Queue Size (Bytes) 20

Figure 44: Configuring Thread Object Properties

Make sure to give each thread object a unique name and symbol by updating the Name and
Symbol entries in the Properties view.

3.1.7.4 Configuring Interrupts

You can use the Properties view in the Threads tab to enable interrupts by setting the interrupt
priority. Select the thread in the Threads pane to view and edit its properties.

R11UMO0161EU0161 Revision 1.61 RENESANS Page 94 /5,198
Jun.08.2024

Synergy Software Package

User’s Manual

Starting Development > e2 studio ISDE User Guide > Adding Threads and Drivers > Configuring Interrupts

Threads Configuration

Threads 4| Mew Thread

#-| Remove [

N !':3' HAL/Common

¥ g_cgc CGC Driver on r_cge

4 g_fmi FMI Driver en r_fmi

42 g_elc ELC Driver on r_elc

4 g_ioport |/0 Port Driver on r_ioport
~ g My Thread

<

E.ﬂ— g_sf_audio_playbackl Audio Playback Framework on sf_g

2>

My Thread Objects &) New Object > 5] Remove

® g_new_event_flags0 Event Flags
@ g_new_queuel Queue
@ g_new_queuel Queue

Summary BSP | Clocks |Pins | €3 Threads| Messaging Compenents

[T Properties < |[£] Problems| @ Smart Browser

g_i2s0 125 Driver on r_ssi

— ‘Word Length
Settings ‘W5 Continue Mode
APl Info Audio Clock

16 Bits
Disabled
External

Name of 125 callback function to | (51 NULL

Transmit Interrupt Priority Disabled
Receive Interrupt Priority Disabled
Idle/Error Interrupt Pricrity Priority 12

0

Generate Project Content

My Thread Stacks 4| Mew Stack > | Remove

4 g_sf_audio_playback0 Audic Playback Framework on sf_audio_playback

@

Y
I

42 g_sf_audio_playback_commen0 Audio Playback Framework Shared on sf_audio_playback

@
A
[[
-7 g_sf_messagel b g_sf_audio_playback_hw0 Audic Playback Hardware Framework Shared on
Messaging sf_audio_playback_hw_i2s
Framework on
@ sf_message @
Y

é{% g_i2s0 125 Driver on r_ssi

@
=1 A stack element with a bar of this color indicates 'g_i2s0 125 Driver on r_ssi' is a Synergy module instance.
— | Thisinstance may be referenced by one other Synergy module instance only.
@ Error: Requires Transmit Interrupt (TXI) enabled or Receive Interrupt (RXI) enabled I
SOFTWARE EVENTO SOFTWARE EVENTO
@ @

r# § = B | [%Pin Conflics % N
Ditems
Description Module Pin Location

Figure 45: Configuring Interrupt on the Threads Tab

3.1.8 Configuring the SSP Messaging Framework

The Messaging Framework extends the ThreadX messaging queue functionality and is one of the
most important SSP modules. It provides the mechanism for threads to communicate with each other
through exchanging messages. The Messaging Framework allows threads to send (publish) or listen
to (pend on) messages when preconfigured or user-configured Events happen. Any thread can
publish a message with an attached Event Class that all threads subscribing to this Event class can
listen to and act upon. The list of Threads that can listen to a specific Event Class is called the

Subscriber List for that Event Class.

To use the Messaging Framework, you first must add one Messaging Framework instance in the
Threads tab. You may add the Messaging Framework to any thread which is not the HAL/Common
thread. All threads in your project can use this instance to communicate with each other. Some
modules like the Audio Playback Framework require the Messaging Framework and add it
automatically to the stack as shown below for the Audio Playback Framework. If your project includes
a thread with such a module, you do not need to add another instance of the Messaging Framework
even if you add more threads to your application. All threads can share one instance of the

Messaging framework.

R11UMO0161EU0161 Revision 1.61
Jun.08.2024

RLENESAS Page 95/5,198

Synergy Software Package User’s Manual

Starting Development > e2 studio ISDE User Guide > Configuring the SSP Messaging Framework

Threads & 5 My audio thread Stacks &
My audio thread -
ii g_sf_audio_playback Audio Playback Framen g_sf_audio_playbackl Audio Playback Framework on sf_audio_playback
My thread
= I
g_sf_audio_playback_commonl Audio Playback Framework Shared on sf_audio_p|
] n 3
I
My audio thread Objects & g_sf_messagel g_sf_audio_playback_hw Audio Playback Hardware Fran
Messaging Shared on sf_audio_playback_hw_dac
Framework on
sf_message
I I
g_dac0 DAC Driver Add Timer Driver Add Trg
onr_dac

4 1 +

Figure 46: Adding the Messaging Module to a Thread

Once you have added a Messaging Framework instance in the Threads tab, you can use the
Messaging tab to define your own event classes and events and determine which threads can listen
to which event class. The SSP contains a predefined event class and events for the Audio Playback
Framework module. If you have added the Audio Playback Framework module, the predefined event
class and events appear in the Messaging tab as well, as shown below.

Messaging Configuration

Event Classes 4| New Event Class...

@ Audio Playback

Events 4] New Event...

@ Audio Playback Start

@ Audio Playback Stop

@® Audio Playback Pause
@ Audio Playback Resume
@ Unused

@ New Data

Summary | BSP | Clocks | Pins | Threads | Messaging | Components

Figure 47: Audio Playback Framework Predefined Event Class

3.1.8.1 Adding an Event Class
To add your own user-defined Event Class to the messaging system, follow these steps:

1. In the Messaging tab, select the Event Classes Pane, and click the add button.
2. Enter a unique name for your event class.

3. Click OK.

R11UMO0161EU0161 Revision 1.61 RENESANS Page 96 / 5,198
Jun.08.2024

Synergy Software Package

Starting Development > e2 studio ISDE User Guide > Configuring the SSP Messaging Framework > Adding an Event Class

User’s Manual

Note

User-defined Event Classes are marked with a golden sguare on the upper right of the Event Classicon.

Messaging Configuration

Event Classes

4| New Event Class... 3] Fernove

Audio Playback Subscribers

3 Audio Playback

Events

New Event Class

Enter new messaging event class details

@ Audio Playback Start

@ Audio Playback Stop

@® Audio Playback Pause
@ Audio Playback Resume
@ Unused

@ New Data

|
Name: | My event clasg] I

Symbol: | SF_MESSAGE_EVENT_CLASS MY_EVENT CLASS
Payload: | my_event_class_payload

Payload header: | my_event_class_api.h

Payload type: | my_event_class_payload_t

Cancel

Summary | BSP |C\oclfs ‘ Pins ‘ThreadslMessaging] Components |

Figure 48: Messaging - Add an Event Class

3.1.8.2 Adding an Event

To add your own user-defined Event to the messaging system, follow these steps:

1. In the Messaging tab, select the Event Pane, and click the add button.
2. Enter a unique name for your event class.

3. Click OK.

Note

User-defined Events are marked with a golden square on the upper right of the Eventsicon.

Messaging Configuration

Event Classes

4| New Event Class... 3| Remove

My event class Subscribers

® Audio Playback
(] My event class

Events

New Event

Enter a new messaging event name and symbol

@ Audio Playback Start

@ Audio Playback Stop

@® Audio Playback Pause
@ Audio Playback Resume
@ Unused

@ New Data

Name: | My event]

Symbol: | SF_MESSAGE_EVENT_MY_EVENT

Cancel

Summary | BSP |C\5cks ‘ Pins ‘Thread;lMe;saging] Component;l

Figure 49: Messaging - Add an Event

3.1.8.3 Configuring the Messaging Subscriber List

R11UMO0161EU0161 Revision 1.61

Jun.08.2024

LLENESAS

Page 97 /5,198

Synergy Software Package User’s Manual

Starting Development > e2 studio ISDE User Guide > Configuring the SSP Messaging Framework > Configuring the Messaging Subscriber List

In the Subscriber List, you select the threads that are listening to messages from the message
publisher. The connection between the publishing thread and the listening thread is established
through the Event Class. Therefore you define a subscriber list for each of the Event Classes in your
project. All threads in the Subscriber List then can listen and act upon messages belonging to the
selected Event Class.

To following assumes that you have two threads defined in the Threads tab, one of which uses the
Audio Playback Framework:

Threads 4| Mew Thread #| Remove [

~v @it HAL/Common
4 g_cgec CGC Driver on r_cge
4% g_fmi FMI Driver on r_fmi
4 g_elc ELC Driveron r_elc
47 g ioport |/O Port Driver on r_ioport

v & My audio thread
g_sf_audio_playbackD Audio Playback Framework on sf_g
i My thread

< >

Figure 50: Messaging - Example Threads

To configure the Subscriber List for an Event Class, follow these steps:
1. In the Messaging tab, select the Event Classes in the Event Classes Pane.
The Subscriber List pane takes its name from the selected Event Class.
2. Click the Add Icon.
The New Subscriber Dialog box opens.

3. Select the Thread to add to the Subscriber List from the Thread dropdown menu.

4. Fill out the instance range by selecting Start and End.

If you only have one instance of an Event Class, keep the Start and End values at their
default value (0). See the Messaging Framework User Guide for selecting an instance range
if you have more than one Event Class instance. Multiple Event Class instances can be
useful in an application that uses the same Event Class multiple times for example for audio
streaming on multiple channels.

5. Repeat steps 3 and 4 for each thread that you want to add to the Subscriber List for the
selected Event Class.

R11UMO0161EU0161 Revision 1.61 RENESANAS Page 98 /5,198
Jun.08.2024

Synergy Software Package User’s Manual

Starting Development > e2 studio ISDE User Guide > Configuring the SSP Messaging Framework > Configuring the Messaging Subscriber List

Messaging Configuration
ging g Generate Project Content

Event Classes 4| New Event Class... Audio Playback Subscribers | 4| New Subscriber... |

© Audio Playback | Thread Start End
& My event class

New Subscriber

Select a new subscriber thread and instance range

Events

Thread: |Mythread \/‘
@ Audio Playback Start H ead

@ Audio Playback Stop Ha

@ Audio Playback Pause End:

@ Audio Playback Resume
@ Unused

@ New Data

Summary |BSP | Clocks |Pins | Threads Messaging | Components

Figure 51: Messaging - Configuring the Subscriber List

3.1.8.4 Generating Files for the Messaging Framework

The ISDE generates the following files for the configured Messaging Framework when you click the
Generate Project button:

File Contents Overwritten by Generate
Project Content?
synergy cfg/ssp_cfg/framework/ | Contains the event class and Yes
sf message_port.h event enumerations

synergy_cfg/ssp_cfg/framework/ | Contains pointers to the event |Yes

sf message_payloads.h class payloads.
synergy cfg/ssp_cfg/framework/ | Compiler options for the Yes
sf message_payloads.h Messaging Framework

3.1.9 Reviewing and Adding Components

The Components tab enables the individual modules required by the application to be included or
excluded. Modules common to all Synergy projects are preselected (for example: BSP > BSP > Board-
specific BSP and HAL Drivers > all > r_cgc). All modules that are necessary for the modules selected
in the Threads tab are included automatically. You can include or exclude additional modules by
ticking the box next to the required component.

R11UMO0161EU0161 Revision 1.61 RENESANS Page 99 /5,198
Jun.08.2024

Synergy Software Package User’s Manual

Starting Development > e2 studio ISDE User Guide > Reviewing and Adding Components

Component Wersion Description Wariant
~ % BSP
w @ Board
custom 230 CUSTOM Board Support Files
5124_dk 230 5124 DK Board Support Files
5128_dk 230 5128 DK Board Support Files
slja_tb 230 51JA_TB Board Support Files
s3al_tb 230 S3A1_TB Board Support Files
s3a3_tb 230 S3A3_TB Board Support Files
s3af_tb 230 S3A6_TB Board Support Files
s3a7_dk 230 S3A7 DK Board Support Files
s5d3_th 230 5503 _TB Board Support Files
s5d5_th 230 5505_TB Board Support Files
s5d9_pk 230 55D9_PK Board Support Files
V| s7g2_dk 230 57G2_DK Board Support Files

s7g2_pe_hmil 230 57G2_PE_HMI1 Board Support Files
s7g2_sk 230 57G2_SK Board Support Files

v s124

v s128

¢ slja b

Summary | BSP | Clocks | Pins | Threads Messagmg
Figure 52: Components Tab

Components at the HAL and Framework layers are available as are components from Azure RTOS
such as the RTOS ThreadX, file system FileX, TCP/IP networking NetX. In addition, you can select
documentation to be added to a project or include complete projects.

While the components tab selects modules for a project, you must configure the modules themselves
in the other tabs. Pressing the Generate Project Content button copies the .c and .h files for each
component for a Pack file into the following folders:

synergy/ssp/inc/bsp

synergy/ssp/inc/driver

synergy/ssp/inc/framework

synergy/ssp/src/bsp

synergy/ssp/src/driver

synergy/ssp/src/framework

The ISDE also creates configuration files in the synergy_cfg/ssp_cfg folder with configuration options
included from the remaining Threads tabs.

3.1.10 Writing the Application

Once you have added Modules and drivers and set their configuration parameters in the Threads tab,
you can add the application code that calls the Modules and drivers.

Note
To check your configuration, build the project once without errors before adding any of your own application code.

3.1.10.1 RTOS-independent Applications
To write application code:
1. Add all drivers and modules in the Threads tab and resolve all dependencies flagged by

the ISDE such as missing interrupts or drivers.
2. Configure the drivers in the Properties view.

R11UMO0161EU0161 Revision 1.61 RENESANAS Page 100/5,198
Jun.08.2024

Synergy Software Package User’s Manual

Starting Development > e2 studio ISDE User Guide > Writing the Application > RTOS-independent Applications

3. In the Project Configuration view, press the Generate Project Content button.
4. In the Project Explorer view, double-click on the src/hal_entry.c file to edit the source file.

I Project Explorer 0% Y 8 = 08
+ 1% MyProject [Debug]
[Includes
v [src
w = synergy_gen
|c] common_data.c
common_data.h
|c] hal_data.c
hal_data.h
|.c] main.c
|c] pin_data.c
l€] hal_entry.c
(2 synergy
= script
(= synergy_cfg
i} configuration.xml
X MyProject Debug.launch
=| RTFS1JATE3A01CFM.pincfg
=| TB_S1JA.pincfg
(?) Developer Assistance

Figure 53: hal_entry.c

Note

All configuration structures necessary for the driver to be called in the application are initialized in
src/synergy_gen/hal_data.c.

Do not modify the filesin the directory src/synergy_gen. These files are overwritten every time you push
the Generate Project Content button.
5. Add your application code here:

58 [MyProject] Synergy Configuration Lgl hal_entry.c X
2

/* HAL-only entry function */
#include "hal data.h”
= woid hal_entry(void)

{

= 5 I r* : add your own code here */ I

}

Figure 54: Adding User Code to hal_entry.c

6. Build the project without errors by clicking on Project > Build Project.

The following tutorial shows how execute the steps above and add application code: Tutorial: Using
HAL Drivers - Programming the WDT

The WDT example is a HAL level application which does not use an RTOS. The user guides for each
module also include basic application code that you can add to hal_entry.c.

3.1.10.2 ThreadX Applications
To write RTOS-aware application code using ThreadX, follow these steps:

1. Add a thread using the Threads tab.

2. Provide a unique name for the thread in the Properties view for this thread.

3. Configure all drivers and resources for this thread and resolve all dependencies flagged by
the ISDE such as missing interrupts or drivers.

4. Configure the thread objects.

5. Provide unique names for each thread object in the Properties view for each object.

6. Add more threads if needed and repeat steps 1 to 5.

7. In the Synergy Project Editor, press the Generate Project Content button.

8. In the Project Explorer view, double-click on the src/my_thread_1_entry.c file to edit the
source file.

R11UMO0161EU0161 Revision 1.61 RLENESAS Page 101 /5,198

Jun.08.2024

Synergy Software Package User’s Manual

Starting Development > e2 studio ISDE User Guide > Writing the Application > ThreadX Applications

75 Project Explorer 3 E% 7Y 8§ =0
v S blinky._dksTg2
[Includes
v [src

[synergy_gen
€] commeon_data.c
common_data.h
l€| hal data.c
hal_data.h
£ main.c
|.€] message_data.c
€] new_threadl.c
new_thread0.h
€] new_threadl.c
new_thread1.h
l.g] pin_data.c
\.g| hal_entry.c
|.£] new_thread0_entry.c
|.£] new_thread_entry.c
[synergy
(= script
(= synergy_cfg
%| blinky_dks7g2 Debug.launch
45k configurationxml
=| R7FS7G27TH2ADTCBD. pincfg
=| 57G2-DK.pincfg
=| synergy_cfg.ixt
(7) Developer Assistance

Figure 55: ISDE Generated Files for an RTOS Application

Note
All configuration structures necessary for the driver to be called in the application are initialized in
synergy_gen/my_thread 1.c and my thread 2.c
Do not modify the filesin the directory src/synergy _gen. These files are overwritten every time you push
the Generate Project Content button.
9. Add your application code here:
5} [blinky_dks7g2] Synergy Canfiguration

Minclude "new_threadl.h”

/* My thread entry function */
= void new_threadl_entry(void)

1
/ ; add your own code here I
= while (1)
i

¥
1

tx_thread_sleep (1);

S—
N R - T T e

o
[S

Figure 56: Adding User Code to my _thread 1.entry
10. Repeat steps 1 to 9 for the next thread.
11. Build your project without errors by clicking on Project > Build Project.
3.1.11 Debugging the Project

Once your project builds without errors, you can use the Debugger to download your application to
the board and execute it.

To debug an application follow these steps:

1. click Run > Debug Configurations.

R11UMO0161EU0161 Revision 1.61 RENESANAS Page 102 /5,198
Jun.08.2024

Synergy Software Package User’s Manual

Starting Development > e2 studio ISDE User Guide > Debugging the Project

Window Help

Renesas Debug Tools >
@, Run Ctrl+F11
4% Debug F11

Run History >
Q RunAs >

Run Configurations...

Debug History >

45 Debug As >
I Debug Configurations... I
@ External Tools >

Figure 57: Invoking the Debug Configurations Dialog

2. In the Debug Configurations view, click on your project listed as MyProject Debug.

Create, ge, and run fig!
CEeERX BT~ Name: | MyProject Debug
|t~,fpef\\tertaxt | %5 Debugger | > Startup | 1 Source |] Common
[T C/C++ Application T
[T] C/C++ Remote Application
(=" EASE Script |N|34’mJ'Ect Browse...
[E] GDB Hardware Debugging C/C++ Application:
[£] GDB Open0OCD Debugging | Debug/MyProject.lf

[c7] GDB Simulator Debugging (RHA50)
[Java Applet Variables... Search Project... Browse...
[T] Java Application
g Launch Group

Build (if required) before launching

T Remote Java Application Build Configuration: | Use Active ~
w [c7] Renesas GDB Hardware Debuggin
[MyProject Debug Beng (O Enable auto build () Disable auto build
[c T Renesas Simulator Debugging (RX, RL78) (® Use warkspace settings Configure Workspace Settings...

Revert Apply
Filter matched 13 of 15 items -

Figure 58: Debug Configuration

3. Connect the board to your PC via either a standalone Segger J-Link debugger or a Segger J-
Link On-Board (included on all Synergy DKs and SKs) and click Debug.

Note
For details on using J-Link and connecting the board to the PC, see the Quick Sart Guide included in the Synergy
Kit.

3.1.12 Using TraceX with a Synergy Project

Precondition
Before you can use TraceX with your Synergy Project, you must download the TraceX
executable file from the Microsoft Store.

TraceX™ is a host-based analysis tool that provides a graphical view of real-time system events.
TraceX collects data on the target device and displays the data for inspection and analysis. A TraceX
version for Synergy devices is available for downloading from the Microsoft Store.

To use TraceX, do the following:

R11UMO0161EU0161 Revision 1.61 RENESANS Page 103/5,198
Jun.08.2024

Synergy Software Package User’s Manual

Starting Development > e2 studio ISDE User Guide > Using TraceX with a Synergy Project

1. In e2 studio, add the ThreadX source code to your project by going to the Threads tab,
clicking the New Stack button in the Stacks pane, and selecting X-Ware > ThreadX >
ThreadX Source.

] New 5=

Driver »

T‘ F Framework ¥ m

X-Ware > ThreadX 5 b ThreadX Source
G 4" Search... 6

Figure 59: Add TraceX to your Source

2. Enable TraceX in the Properties Window of the Thread using the Threads tab. Keep the
default name for the TraceX buffer as g_tx_trace buffer.

S| Properties = |'_ Problems Q Smart Browser

ThreadX Source
Settings Property Value
w Common
Error Checking Enabled (default)
Timer Ticks Per Second

Max Priorities
Minimum Stack

Timer Thread Stack Size
Timer Thread Priority

Trace Time Mask
Mo FileX Pointer Disabled (default)
Timer Process In ISR Enabled (default)
Reactivate Inline Disabled (default)
Stack Filling Enabled (default)
Stack Checking Disabled (default)
Preemption Threshold Disabled (default)
Redundant Clearing Enabled (default)
Mo Timer Disabled (default)
Motify Callbacks Disabled (default)
Inline Thread Resume Suspend Disabled (default)
Mot Interruptable Disabled (default)
I Event Trace Enabled I
Trace Buffer Name g_tx_trace_buffer
Memory section for Trace Buffer bss
Trace Buffer Size 65536

Trace Buffer Number of Registries 30
<

Figure 60: ISDE TraceX Configuration

3. Set the path to the TraceX application in Window > Preferences > Renesas > TraceX

type filter text Traoex = - E

Java Specify options for TraceX Debugging
Language Servers

Library Hover [[] Use TraceX installed from Microsoft Store
mcu | TraceX Command or Path: | |
Qomph
Remote Development
w Renesas

Breakpoints

Device add-ins Suppc
FsSP

Launch Settings
Logging

My Renesas
Renesas QF

Renesas Toolchain Mi
Smart Browser
Smart Demo

Smart Manual
Support Folders

Synergy Configuratio
Tracealyzer
TraceX
Run/Deb
¢ un/Debug 5 v Restore Defaults Apply

@' \Q‘ £ @ Cancel
Figure 61: ISDE TraceX Path

4. Build your project (Project > Build All).

R11UMO0161EU0161 Revision 1.61 RENESANS Page 104 /5,198
Jun.08.2024

Synergy Software Package User’s Manual

Starting Development > e2 studio ISDE User Guide > Using TraceX with a Synergy Project

5. Connect your Synergy target board.
6. Start a debug session (Run > Debug)
7. In Run > Renesas Debug Tools > TraceX, select Launch TraceX Debugging.

Run Window Help

Renesas Debug Tools > Renesas Device Partition Manager I BiR | @~ %~ q-
i Instruction Stepping Mode E TraceX » E Launch TraceX Debugging...
3. Moveto Line (C/C++) [Bh Tracealyzer > | [i) Update TraceX Data

Figure 62: ISDE TraceX Launch

8. In the TraceX Debugging window, set Buffer Start Address to &g_tx_trace_buffer.

In the TraceX Debugging window, set Buffer Size (bytes) to the buffer size selected in the
Properties Window in step 2. The default is 65536.

TraceX Debugging @

Buffer Start Address: | &g te_trace buffer \/|

Buffer Size (bytes): ~ |

Use TraceX installed from Microsoft Store

TraceX Command or Path: | tracex

Update Existing File

@ Cancel
Figure 63: ISDE TraceX Debug

9. Click OK.
10. Run your code (Run > Resume) to collect TraceX data.
11. Suspend execution of your code (Run > Suspend).
12. Observe the collected data in TraceX.

File View Options Help
WO dEIEwR 7O MAA O fx PPP [o

Sequential View | Time View
Context Summary

Event Summary

Event ID

‘ Interrupt
| Initialize/ldle
| Blinky Thread (0x20000328) [Pricrity: 1]

Figure 64: TraceX Collected Data

13. To collect further TraceX data:
o Resume execution of your code
o Suspend execution of your code
o Click Run > TraceX and select Update TraceX Data.

You can find more information on using TraceX on the Renesas TraceX webpage

R11UMO0161EU0161 Revision 1.61 .QENESAS Page 105/ 5,198
Jun.08.2024

https://www.renesas.com/synergy/tracex
https://www.renesas.com/synergy/tracex
https://www.renesas.com/synergy/tracex
https://www.renesas.com/synergy/tracex
https://www.renesas.com/synergy/tracex

Synergy Software Package

Starting Development > e2 studio ISDE User Guide > Using TraceX with a Synergy Project

https://www.renesas.com/synergy/tracex.
3.1.13 Modifying Toolchain Settings

There are instances where it may be necessary to make changes to the toolchain being used (for
example, to change optimization level of the compiler or add a library to the linker). Such
modifications can be made from within the ISDE through the menu Project > Renesas C/C++
Project Settings when the project is selected. The following screenshot shows the settings dialog
for the GNU ARM toolchain. This dialog will look slightly different depending upon the toolchain being
used.

] settings v -3
Resource
Builders

~ C/C++ Build Configuration: Debug [Active] | | Manage Configurations...

Build Variables
Environment

Logging B Tool Settings B Toolchain & Build Steps Build Artifact Binary Parsers 3 Error Parsers
Settings
Tool Chain Editor [Target Processor Arm family (-mcpu) | cortex-m23 ~
C/C++ G I 5 Optimization
N;IICL:+ ener g Warnings Architecture (-march) | Tecolchain default ~
Project Matures (% Debugging Instruction set Thumb (-mthumb) w
GMU Arm Cross A: bl
Project References v® 0 T ross Assemier [Thumb interwork (-mthumb-interwork)
Renesas QF (2 Preprocessor
Run/Debug Settings 22 Includes Endianness Toolchain default ~
B W,
Task Tags ¢ amings Float ABI Toolchain default v
Validation (2 Miscellaneous
~ B GMNU Arm Cross C Compiler FPU Type Toolchain default ~
(%% Preprocessor : 8
3 Includes Unaligned access Toolchain default ~
(% Optimization [J TrustZone (-mcmse)

Warnings
(# Miscellaneous
~ 3 GNU Arm Cross C Linker Toolchain default
General
(22 Libraries
(# Miscellaneous Toolchain default
~ BB GMU Arm Cross Create Flash Image
General
~ B GMU Arm Cross Print Size Small (-mcmodel=small)
General

Generic (-mcpu=generic)

Toolchain default

Enabled (+simd)

Strict align (-mstrict-align)

Other target flags ‘

Restore Defaults Apply
@ Apply and Close Cancel

Figure 65: ISDE Project Toolchain Settings

The scope for the settings is project scope which means that the settings are valid only for the
project being modified.

The settings for the linker which control the location of the various memory sections are contained in

a script file specific for the device being used. This script file is included in the project when it is
created and is found in the script folder (for example, /script/S7G2.1d).

3.1.14 e2 studio ISDE Usage Notes
3.1.14.1 Including ThreadX sources

You can use the Theads tab to include ThreadX source code in your project as follows:

R11UMO0161EU0161 Revision 1.61 RENESANS Page 106 /5,198
Jun.08.2024

User’s Manual

https://www.renesas.com/synergy/tracex
https://www.renesas.com/synergy/tracex
https://www.renesas.com/synergy/tracex
https://www.renesas.com/synergy/tracex
https://www.renesas.com/synergy/tracex
https://www.renesas.com/synergy/tracex
https://www.renesas.com/synergy/tracex

Synergy Software Package User’s Manual

Starting Development > e2 studio ISDE User Guide > e2 studio ISDE Usage Notes > Including ThreadX sources

1. Click on the HAL/Common icon in the Threads pane. The Modules pane changes to
HAL/Common Modules.

2. Select New Stack > X-Ware > ThreadX > ThreadX Source.

3. Check the Properties window to configure the TheadX RTOS properties.

4. Click Generate Project.

The e? studio ISDE extracts the ThreadX source code into the following directory:
synergy/ssp/src/framework/el/tx

Note
Extracting the ThreadX sources increases the compile time for your project.

3.1.14.2 Using Synergy Developer Assistance

This section describes a new feature, “Synergy Developer Assistance” included in e? studio.
Developer Assistance Node

A new node Developer Assistance is now available in the project explorer. When expanded, the
Developer Assistance tree shows you the threads and module stacks and their respective API
information of the saved Synergy configuration.

The Developer Assistance node is available regardless of whether the Synergy Configuration Editor is
open. This allows a user to easily consult the Developer Assistance for a project’s stack modules
while application code is being written. It assists by providing code templates and an autocompletion
tool.

Configure Threads

Create a new project. In the Synergy configurator thread’s tab create a thread and add a new stack.

For example, Framework Device on sf_i2c:

Threads Configuration

@

Threads | New Thread | Remove [— New Thread Stacks | New Stack >
v g HAL/Common
& g_fmi FMI Driver on r_fmi & g_sf_i2c_deviceD 12C Framework Device on sf_i2c
7 g_elc ELC Driver on r_elc
7 g_ioport I/O Port Driver on r_ioport @
7 g_cge CGC Driver on r_cgc ry

w & Blinky Thread I
42 ThreadX Source 48 g_sf_i2c_busD 12C Framework Shared Bus on sf_i2c
w & New Thread
b g_sf_i2c_devicel I2C Framework De| ®

Y
[

a4 g_i2cl 12C Master Driver on r_sci_i2c

< s ©)

%] New Object > & g_transfer) Transfer & g_transfer] Transfer
Driver on r_dte SCI0 Driver on r_dte SCI0
™ RXl

New Thread Objects

Project Explorer View

Once the project is saved, expand the Developer Assistance node. Notice that the node is updated

R11UMO0161EU0161 Revision 1.61 RENESANAS Page 107 /5,198
Jun.08.2024

Synergy Software Package

Starting Development > e2 studio ISDE User Guide > e2 studio ISDE Usage Notes > Using Synergy Developer Assistance

User’s Manual

with the new thread New Thread Information. Clicking on the module instance under the thread will
expand all the child nodes and show the API information of the modules.

w (7) Developer Assistance

& HAL/Common

@ Blinky Thread

~ @& New Thread

~ @ g sf i2c_deviced 12C Framework Device on sf_i2c

Properties View

v

v

v

v

v

v

v

v

v

v

@ ssp_err_t (*open) (sf_iZc_ctrl_t *p_ctrl, sf_i2c_cfg_t const *const p_cfg)

= Call open()

@ ssp_err_t (*read) (sf_i2c_ctrl_t *const p_ctrl, uint8_t *const p_dest, uint32_t const bytes, bool const restart, uint32_t const timeout)
B2 Call read()

@ ssp_err_t (*write) (sf_i2c_ctrl_t *const p_ctrl, uint8_t *const p_src, uint32_t const bytes, bool const restart, uint32_t const timeout)
i Call write()

@ ssp_err_t (*reset) (sf_i2c_ctrl_t *const p_ctrl, uint32_t const timeout)
B Call reset()

@ ssp_err_t (*close) (sf_iZc_ctrl_t *const p_ctrl)
= Call close()

@ ssp_err_t (*lock) (sf_i2c_ctrl_t *const p_ctrl)
= Call lock()

@ ssp_err_t (funlock) (sf_i2c_ctrl_t *const p_ctrl)
= Call unlock()
@ ssp_err_t (*version) (ssp_version_t *const p_version)
= Call version()
@ ssp_err_t (lockWait) (sf_i2c_ctrl_t *const p_ctrl, uint32_t const timeout)
B2 Call lockWait()
48 g_sf_i2c_busD 12C Framework Shared Bus on sf_i2c
~ @ g.i2c012C Master Driver on r_sci_i2c
w @ ssp_err_t ("open) (i2c_ctrl_t *const p_ctrl, i2c_cfg_t const *const p_cfg)
B2 Call open()
w @ ssp_err_t (*close) (i2c_ctrl_t *const p_ctrl)
B2 Call close)
~w @ ssp_err_t (*read) (i2c_ctrl_t *const p_ctrl, uint8_t *const p_dest, uint32_t const bytes, bool const restart)
= Call read()
w @ ssp_err_t (“write) (i2c_ctrl_t *const p_ctrl, uint8_t *const p_src, uint32_t const bytes, bool const restart)
B2 Call write()
w @ ssp_err_t (*reset) (i2c_ctrl t *const p_ctrl)
= Call reset()

Selecting the module instance in the thread tab or in the project explorer will show the module and
module API information in the API info tab of properties view.

Tip: If the Properties view is not present in the current e? studio perspective, you can open it by
selecting Window -> Show View -> Properties

R11UMO0161EU0161 Revision 1.61
Jun.08.2024

RLENESAS

Page 108 /5,198

Synergy Software Package

Starting Developm:

ent > e2 studio ISDE User Guide > e2 studio ISDE Usage Notes > Using Synergy Developer Assistance

User’s Manual

K]

APl Info

MyProject Debug,jlink
MyProject Debug.launch
R7FS1ATE3A0TCFM.pincfg
synergy_cfg.bet
TB_51)A.pincfg

w (7) Developer Assistance
2% HAL/Common
% Blinky Thread
~ 4 New Thread
~ 4 g_sf_i2c_deviceD 12C Framework Device on sf_i2c
w @ ssp_err_t (*open) (sf_i2c_ctrl_t *p_ctrl, sf_iZc_cfg_t const *const p_cfg)
B2 Call open()
w @ ssp_err_t (*read) (sf_i2c_ctrl_t *const p_ctrl, uint®_t *const p_dest, uint32_t const bytes, bool const re:
B2 Call read()
w @ ssp_err_t (*write) (sf_i2c_ctrl_t *const p_ctrl, uintd_t *const p_src, uint32_t const bytes, bool const res
B2 Call write()
w @ ssp_err_t (*reset) (sf_iZc_ctrl_t *const p_ctr, uint32_t const timeout)
B2 Call reset()
< che bt wrem e A 5
iS| Properties > \'_ Problems Q Smart Browser

g_sf i2c_device0 12C Framework Device on sf_i2c

- S e un o

* RIC

Resource APl

@ ssp_err_t (*open) (sf_i2c_ctrl_t *p_ctrl, sf_i2c_cfg_t const *const p_cfg)
Open a designated 12C device on a bus.

Implemented as

» SF_I2C_Open()

Parameters

5 Project Explorer X = 5 % § = B || MyProject] Synergy Configuration X
(= synergy_cfg) .
% configuration.xml Threads Configuration

4| Mew Thread 5| Remove
Threads - 2

New Thread Stacks

Generatt

& New Stack >

~ !‘?f% HAL/Common
4% g_fmi FMI Driver on r_fmi
47 g_elc ELC Driver onr_elc
4% g_ioport IO Port Driver onr_
& g_cgc CGC Driver on r_cge
w Blinky Thread
4% ThreadX Source
kg >

4 g_sf_i2c_deviceD |2C Framework Device on sf_i2c

@

ry

New Thread '] Mew Object >

Objects

48 g_sf_i2c_busD 12C Framework Shared Bus on sf_i2c

@

& g_i2c0 12C Master Driver on r_sci_i2c

@

Summary | BSP | Clocks | Pins | Threads | Messaging | Components

p_ctrl; Control handle for [2C framework driver context for a device (Value returns from this function), This value must be cleared by user,

» p_cfg:12C configuration includes [2C bus and low level configuration

@ ssp_err_t (*read) (sf_i2c_ctrl_t *const p_ctrl, uint8_t *const p_dest, wint32_t const bytes, bool const restart, wint32_t const timeout)

Receive data from [2C device.
Implemented as
* SF_T2C_Read()

Parameters

p_ctrl: Pointer to previously opened I12C SF control structure.

p_dest: Pointer to location to store read data.
bytes ;: Number of bytes to read.

restart : Indicates whether the restart condition should be issued after reading.

‘timeout : ThreadX timeout. Options include TX_NO_WAIT (0x00000000), TX_WAIT_FOREVER (0xFFFFFFFF), and timeout value (0x00000001 through 0xFFFFFFFE] in ThreadX tick counts.

Selecting the code template node shows the preview of the function in the Properties view

v MNew Thread

k2 Call open()
B2 Call read()
B2 Call write()

B2 Call reset()

<
iS| Properties IL Problems Q Smart Browser

Call read()

Preview
Resource

status = <not yet known>
instance = g_sf i2c devicel
p_dest = <not yet known>
bytes = <not yet known>
restart = <not yet known>
timeout = <not yet known>

Drag and drop to source File

~ & g_sf_i2c_devicel 12C Framework Device on sf_i2c
v @ ssp_er_t ("open) (sfLi2c_ctrl_t "p_ctrl, sf_i2c_cfg_t const *const p_cfg)

v @ ssp_em_t ("reset) (sf_i2c_ctrl_t "const p_ctrl, uint32_t const timeout)

v @ ssp_er_t ("read) (sf_i2c_ctrl_t "const p_ctrl, uint8_t *const p_dest, uint32_t const bytes, bool const re:

v @ ssp_er_t ("write) (sf_i2c_ctrl_t *const p_ctrl, uint8_t *const p_src, uint32_t const bytes, bool const res

status = instance.p_api->read(instance.p_ctrl, p dest, bytes, restart, timeout);

R11UMO0161EU0161 Revision 1.61
Jun.08.2024

RLENESAS

Page 109 /5,198

Synergy Software Package User’s Manual

Starting Development > e2 studio ISDE User Guide > e2 studio ISDE Usage Notes > Using Synergy Developer Assistance

The API function code templates or callbacks can be dragged and dropped to the source file. This will
autofill the parameters and return type of the function

v (%) Developer Assistance
& HAL/Common
@ Blinky Thread
v i@ Mew Thread

~ & g_sf_i2c_devicel 12C Framework Device on sf_i2c

/ : add your own code here */
while (1)

tx_thread_sleep (1);
¥

v @ ssp_em_t ("open) (sf_i2c_ctrl_t *p_ctrl, sf_i2c_cfg_t const *con mp- statys = g_sT_i2c_deviceB.p_api->open(g_sf iZc_device®.p_ctrl, g_sf_i2c_deviceB.p_cfg);
=2 Call open()

v @ ssp_er_t ("read) (sf_i2c_ctrl_t "const p_ctrl, uint8_t *const p_c }
B2 Call read()

v @ ssp_er_t ("write) (sf_i2c_ctrl_t *const p_ctrl, uint8_t *const p_:
B Call writel)

v @ ssp_em_t ("reset) (sf_i2c_ctrl_t “const p_ctrl, uint32_t const tin
B Call reset()

v @ ssp_er_t ("close) (sf_i2c_ctrl_t "const p_ctrl)
B Call close()

v @ ssp_er_t ("lock) (sf_i2c_ctrl_t "const p_ctrl)

Please also refer to Help-> Help Contents -> Synergy Contents -> Synergy Developer
Assistance page in e’ studio for any further information.

3.2 Tutorial: Your First Synergy Project - Blinky

3.2.1 Tutorial Blinky
The goal of this tutorial is to quickly get acquainted with the Synergy Platform by moving through

the steps of creating a simple application using e2 studio and running that application on a Synergy
board.

3.2.2 What Does Blinky Do?

The application used in this tutorial is Blinky, traditionally the first program run in a new embedded
development environment.

Blinky is the “Hello World” of microcontrollers. If the LED blinks you know that:

The toolchain is setup correctly and builds a working executable image for your chip.

e The debugger has installed with working drivers and is properly connected to the board.
The board is powered up and its jumper and switch settings are probably correct.

e The microcontroller is alive, the clocks are running, and the memory is initialized.

The Blinky example application used in this tutorial is designed to run the same way on all boards
offered by Renesas that hold the Synergy microcontroller. The code in Blinky is completely board
independent. It does the work by calling into the BSP (board support package) for the particular
board it is running on. This works because:

e Every board has at least one LED connected to a GPIO pin.
e That one LED is always labeled LED1 on the silk screen.
e Every BSP supports an API that returns a list of LEDs on a board, and their port and pin

R11UMO0161EU0161 Revision 1.61 RENESANAS Page 110/5,198
Jun.08.2024

Synergy Software Package User’s Manual

Starting Development > Tutorial: Your First Synergy Project - Blinky > What Does Blinky Do?

assignments.
3.2.3 Prerequisites

To follow this tutorial, you need:

Windows based PC

e? studio

Synergy Software Package
A Synergy board kit

3.2.4 Create a New Project for Blinky

The creation and configuration of a Synergy project is the first step in the creation of an application.
The base SSP pack includes a pre-written Blinky example application that is simple and works on all
Renesas Synergy boards.

Note
The € studio screens shown in this manual are examples. Some details may differ between different releases of the
€” studio 1SDE and the SSP.
Follow these steps to create a Synergy project:
1. In e2 studio ISDE, click File > New > Synergy C/C++ Project, select Renesas Synergy

C Executable Project, and click Next.
2. Assign a name to this new project. Blinky is a good name to use for this tutorial.

3. Click Next. The Project Configuration window shows your selection.

@2 studio - Project Config ion (Synergy CE ble Project) —

Specify the new project details.

Project Toolchains

Project name | Blinky| GMNU ARM Embedded

Use default location

C:\Users\a5137109\e2_studio\synergy\Blinky Browse...
default

@ <Back Finish Cancel

Figure 66: e2 studio ISDE Project Configuration Window (Part 1)

R11UMO0161EU0161 Revision 1.61 RENESANS Page 111/5,198
Jun.08.2024

Synergy Software Package

Starting Development > Tutorial: Your First Synergy Project - Blinky > Create a New Project for Blinky

User’s Manual

4. Select the board support package by selecting the name of your board from the Device
Selection drop-down list and click Next.

e2 studio - Project Config| ion (Synergy CE: ble Project) —

Select the board support that you require.

Device Selection

S5P version: |2.3.0 Ecanilelals

Board: SUATB ~

Device: R7FS1UATA3ADTCFM
Select Tools Available Tools
Toolchain: GNU ARM Embedded ~ GMU ARM Embedded
Toolchain version: | 10.3.1.20210824 - 10.3.1.20210824

~ Debuggers

Debugger: J-Link ARM ~ J-Link ARM

~ RTOS
Express Logic ThreadX

~ Smart Manual
10 Registers Supported
Software Manual Supported

@ <Back Finish Cancel

Figure 67: e2 studio ISDE Project Configuration Window (Part 2)

5. Select the Blinky template for your board and click Finish.

2 studio - Project C

Select the type of project you wish to create.

figuration (Synergy C E: ble Project) p—

Project Template Selection

o BSP
Q Base Board Support Package for the chosen Synergy family.
[Renesas.Synergy.2.3.0.pack]
® " Blinky
Q Blinky project.

[Renesas.Synergy.2.3.0.pack]

o " Blinky with ThreadX
Q Threaded version of Blinky project.
[Renesas.Synergy.2.3.0.pack]

Code Generation Settings
Use Synergy Code Formatter

@ <Back Next > Cancel

Figure 68: e2 studio ISDE Project Configuration Window (Part 3)

Once the project has been created, the name of the project will show up in the Project
Explorer window of the ISDE. Now press the Generate Project Content button in the top
right corner of the Project Configuration window to generate your board specific files.

R11UMO0161EU0161 Revision 1.61

Jun.08.2024

LLENESAS

Page 112 /5,198

Synergy Software Package User’s Manual

Starting Development > Tutorial: Your First Synergy Project - Blinky > Create a New Project for Blinky

8 [Blinky] Synergy Configuration >

Summary

Project Summary Renesas Synergy™ A

Board: S1JATB

Device: R7TFS1JAT83A01CFM

Toolchain: GCC ARM Embedded 81
Toolchain Version: 10.3.1.20210824

SSP Version: 230

Selected software components

S1JA_TB Board Support Files v23.0
S5P Common Code v2.3.0
Clock Generation Circuit: Provides=[CGC] v2.3.0
Event Link Controller: Provides=[ELC] v2.3.0
Factory MCU Information Module: Provides=[FMI] v2.3.0
/0 Port: Provides=[IO Port] v23.0 ¥
Board support package for RTFS1JATE3A01CFM v2.3.0

Figure 69: e2 studio ISDE Project Configuration Tab

Your new project is now created, configured, and ready to build.
3.2.4.1 Details about the Blinky Configuration

The Generate Project Content button creates configuration header files, copies source files from
templates, and generally configures the project based on the state of the Project Configuration
screen.

For example, if you check a box next to a module in the Components tab and press the Generate
Project Content button all the files necessary for the inclusion of that module into the project will
be copied or created. If that same check box is then unchecked those files will be deleted.

3.2.4.2 Configuring the Blinky Clocks

By selecting the Blinky template, the clocks are configured by the ISDE for the Blinky application.
The ISDE clock configuration tab (see Configuring Clocks) shows the Blinky clock configuration. The
Blinky clock configuration is stored in the BSP clock configuration file (see BSP Clock Configuration).

3.2.4.3 Configuring the Blinky Pins

By selecting the Blinky template, the GPIO pins used to toggle the LED1 are configured by the ISDE
for the Blinky application. The ISDE pin configuration tab shows the pin configuration for the Blinky
application (see Configuring Pins). The Blinky pin configuration is stored in the BSP configuration file
(see BSP Pin Configuration).

3.2.4.4 Configuring the Parameters for Blinky Components

The Blinky project automatically selects the following HAL components in the ISDE Component:
* r cgc
° r elc
e r fmi

e r_ioport

To see the configuration parameters for any of the components, check the Properties tab in the HAL
window for the respective driver (see Adding and Configuring HAL Drivers).

3.2.4.5 Where is main()?

R11UMO0161EU0161 Revision 1.61 RENESANAS Page 113/5,198
Jun.08.2024

Synergy Software Package

Starting Development > Tutorial: Your First Synergy Project - Blinky > Create a New Project for Blinky > Where is main()?

User’s Manual

The main function is located in < project >/src/synergy_gen/main.c. It is one of the files that are
generated during the project creation stage and only contains a call to hal_entry(). For more
information on generated files Adding and Configuring HAL Drivers .

3.2.4.6 Blinky Example Code

The blinky application is stored in the hal_entry.c file. This file is generated by the ISDE when you
select the Blinky Project template and is located in the project's src/ folder.

The application performs the following steps:

1. Get the LED information for the selected board by calling the BSP HAL function

R _BSP_LedsGet().
. Define the output level HIGH for the GPIO pins controlling the LEDs for the selected board.

N

3. Get the selected system clock speed and scale down the clock, so the LED toggling can be

observed.

4. Toggle the LED by writing to the GPIO pin with
g_ioport.p_api->pinWite()

3.2.5 Build the Blinky Project

Highlight your new project in the Project Explorer window and build it.

There are three ways to build a project:

a. Click on Project in the menu bar and select Build Project.

b. Click on the hammer icon.

c. Right-click on the project and select Build Project.

(=5 Blinky [Debug]

File Edit Navigate SearchRenesasV\Ews Run
II L] .Hl t5- Debug

[c7 Blinky Det

- - - v‘=f
-

rer X 0% Y ! = O ||&Ei

Sum

Pr¢

Bo:
De
Tot

a. Project->Build Project

b. Click

c. Right-click->Build Project

Figure 70: e2 studio ISDE Project Explorer Window

Once the build is complete a message is displayed in the build Console window that displays the
final image file name and section sizes in that image.

R11UMO0161EU0161 Revision 1.61
Jun.08.2024

RLENESAS

Page 114 /5,198

Synergy Software Package User’s Manual

Starting Development > Tutorial: Your First Synergy Project - Blinky > Build the Blinky Project

[%2 Pin Conflicts| B Console X R|&ﬁ*§,| H &b =N @lda'ﬁ'n =}
CDT Build Censole [Blinky]

s e e e e

Building file: ../synergy/ssp/src/bsp/mcu/all/bsp_delay.c s

Building file: ../synergy/ssp/src/bsp/mcu/all/bsp_irqg.c
Building file: ../synergy/ssp/src/bsp/mcu/all/bsp locking.c
Building file: ../synergy/ssp/src/bsp/mcu/all/bsp register protection.c
Building file: ../synergy/ssp/src/bsp/mcu/all/bsp_shrk.c
Building file: ../synergy/ssp/src/bsp/cmsis/Device/RENESAS/S1IA/Source/startup S1JA.c
Building file: ../synergy/ssp/src/bsp/cmsis/Device/RENESAS/S1IA/Source/system S1JA.c
Building file: ../synergy/board/slja_tb/bsp_init.c
Building file: ../synergy/board/slja_tb/bsp leds.c
Building file: ../src/synergy_gen/common_data.c
Building file: ../src/synergy_gen/hal_data.c
Building file: ../src/synergy_gen/main.c
Building file: ../src/synergy_gen/pin_data.c
Building file: ../src/hal_entry.c
Building target: Blinky.elf
arm-none-eabi-objcopy -0 srec "Blinky.elf" "Blinky.srec”
arm-none-eabi-size --format=berkeley "Blinky.elf™
text data bss dec hex filename
196@8 176 8544 28320 6ea@ Blinky.elf

18:28:14 Build Finished. @ errors, @ warnings. (tock 6s.2@8ms)

Figure 71: e2 studio ISDE Project Build Console

3.2.6 Debug the Blinky Project
3.2.6.1 Debug prerequisites

To debug the project on a board, you need:
e The board to be connected to the ISDE
e The debugger to be configured to talk to the board

* The application to be programmed to the microcontroller

Applications run from the internal flash of your microcontroller. To run or debug the application, the
application must first be programmed to the microcontroller’s flash. There are two ways to do this:

e |JTAG debugger
e Built-in boot-loader via UART or USB

Some boards have an on-board JTAG debugger and others require an external JTAG debugger
connected to a header on the board.

Refer to your board’s user manual to learn how to connect the JTAG debugger to your ISDE.
3.2.6.2 Debug steps
To debug the Blinky application, follow these steps:

1. Configure the debugger for your project by clicking Run > Debugger Configurations ...

File Edit MNavigate Search_ Project Renesas!
& || % || ® | G5 Debug

Figure 72: e2 studio ISDE Debug Icon

... or by selecting the drop-down menu next to the bug icon and selecting Debugger
Configurations ...

R11UMO0161EU0161 Revision 1.61 RENESANAS Page 115/5,198
Jun.08.2024

Synergy Software Package

Starting Development > Tutorial: Your First Synergy Project - Blinky > Debug the Blinky Project > Debug steps

User’s Manual

Create, fi

ge, and run

(| B Y~

Ouﬁ’ @

‘ type filter text

[£] C/C++ Application

[E] C/C++ Remote Application
= EASE Script

[£] GDB Hardware Debugging

[£] GDB OpenOCD Debugging

[E7] GDB Simulator Debugging (RHA50)
Java Applet

Java Application

Configure launcl

- Press the 'New

- Press the 'New

- Pressthe 'l

[

| - Pressthe '|

3 - Pressthe |
T -

7 - Pressthe |

- Select launch ¢

R Launch Group
[T Remote Java Application - Select launch ¢
« [t Rengsas GDB Hardware Debugging .

(& Blinky Debug

[c7] Renesas Simulator Debugging (RX, RL78)
Edit or view an &

Filter matched 13 of 13 items

@

Figure 73: e2 studio ISDE Debugger Configurations Window

2. Select your debugger configuration in the window. If it is not visible then it must be created
by clicking the New icon in the top left corner of the window. Once selected, the Debug
Configuration window displays the Debug configuration for your Blinky project.

Create, ge, and run fig ﬁ“
CE@aEX| BV~ Name: | Blinky Debug |
| type filter text ‘ =3 Debuggar‘ "3 Startup‘ By Sourcel [C] Common

[€] C/C++ Application P

[€] C/C++ Remote Application

=/ EASE Script | Blinky Browse...

[£] GDB Hardware Debugging C/C++ Application:

[£] GDB QpanOCD Debugglng | Debug/Blinky.clf

[E¥] GDB Simulator Debugging (RHE50)

Java Applet Variables... Search Project... Browse...

Java Application Build (if required) before launching

R Launch Group

T Remote Java Application Build Configuration: | Use Active ~
~ [c7] Renesas GDB Hardware Debugging . ’

& Blinky Debug () Enable auto build () Disable auto build
[Renesas Simulator Debugging (RX, RL78) (®) Use workspace settings Configure Workspace Settings...
Revert Appl

Filter matched 13 of 15 items o ilie/
@

Figure 74: e2 studio ISDE Debugger Configurations Window with Blinky Project

3. Press Debug to begin debugging the application.

3.2.6.3 Details about the Debug Process

In debug mode, the ISDE executes the following tasks:

1. Downloading the application image to the microcontroller and programming the image to

the internal flash memory.

2. Setting a breakpoint at main().
3. Setting the stack pointer register to the stack.
4. Loading the program counter register with the address of the reset vector.

R11UMO0161EU0161 Revision 1.61
Jun.08.2024

LLENESAS

Page 116 /5,198

Synergy Software Package

Starting Development > Tutorial: Your First Synergy Project - Blinky > Debug the Blinky Project > Details about the Debug Process

User’s Manual

5. Displaying the startup code where the program counter points to.

Program Counter

=% [Blinky] SynergyConfiguration Le] startup S1JA.c X

/* Initialize system using BSP. */
SystemInit();

/* Call user application. */
main();

while (1)

/* Infinite Loop. */

Figure 75: e2 studio ISDE Debugger Memory Window

3.2.7 Run the Blinky Project
While in Debug mode, click Run > Resume or click on the Play icon twice.

‘uD

Figure 76: e2 studio ISDE Debugger Play Icon

The LED on the board marked LED1 should now be blinking.

3.3 Tutorial: Using HAL Drivers - Programming the WDT

3.3.1 Application WDT

This application uses the WDT Interface implemented by the WDT HAL Driver WDT. This document
describes how to use the ISDE and SSP to create an application for the Synergy MCU Watchdog

Timer (WDT) peripheral. This application makes use of the following SSP modules:

e Board Support Package (Board Support Package)
e CGC (Clock Generation Circuit)

e WDT (Watchdog Timer)

e |OPORT (GPIO)

3.3.2 Creating a WDT Application Using the Synergy SSP and ISDE

3.3.2.1 Using the SSP and the e2 studio ISDE

The Synergy Software Package (SSP) from Renesas provides a complete driver library for developing
Synergy applications. The SSP provides Hardware Abstraction Layer (HAL) drivers, Board Support
Package (BSP) drivers and higher level Framework applications for the developer to use to create
applications. The SSP is integrated into the Renesas e2 studio Integrated Solution Development
Environment (ISDE) based on eclipse providing build (editor, compiler and linker) and debug phases

R11UMO0161EU0161 Revision 1.61 RENESAS
Jun.08.2024

Page 117 /5,198

Synergy Software Package User’s Manual

Starting Development > Tutorial: Using HAL Drivers - Programming the WDT > Creating a WDT Application Using the Synergy SSP and ISDE > Using the SSP and the e2 studio ISDE

with an extended GNU Debug (GDB) interface.
3.3.2.2 The WDT Application

The flowchart for the WDT application is shown below.

R11UMO0161EU0161 Revision 1.61 RENESANS Page 118/5,198
Jun.08.2024

Synergy Software Package User’s Manual

Starting Development > Tutorial: Using HAL Drivers - Programming the WDT > Creating a WDT Application Using the Synergy SSP and ISDE > The WDT Application

BSP initialises
docks, pins etc

hal_entry()

2 Initialise \WOT

3 Start WDT

Loop Count = 30

4 Turn on red LED and deday T

i

Tum off red LED and delay

m o
Loop %1”“ g Decrement Loop Count

Turn on green LED and delay .‘T

Turmn off green LED and delay

.

Figure 77: WDT Application Flow Diagram

R11UMO161EU0161 Revision 1.61 RENESAS Page 119/5,198
Jun.08.2024

Synergy Software Package

Starting Development > Tutorial: Using HAL Drivers - Programming the WDT > Creating a WDT Application Using the Synergy SSP and ISDE > WDT Application flow

User’s Manual

3.3.2.3 WDT Application flow

These are the main parts of the WDT application:

1. main() calls hal_entry(). The function hal_entry() is created by the SSP with a placeholder

for user code. The code for the WDT will be added to this function.
. Initialize the WDT, but do not start it.

N

3. Start the WDT by refreshin

g it.

4. The red LED is flashed 30 times and refreshes the watchdog each time the LED state is

changed.

5. Flash the green LED but DO NOT refresh the watchdog. After the timeout period of the
watchdog the device will reset which can be observed by the flashing red LED again as the

sequence repeats.

3.3.3 Creating the Project with the ISDE

Start the ISDE and choose a workspace folder in the Workspace Launcher. Configure a new Synergy

project as follows.

Note

The €’ studio screens shown in this manual are examples. Some details may differ between different releases of the

€” studio | SDE and the SSP.

1. Select File > New > Synergy C/C++ Project. Then select the template for the project.

File Edit Mavigate Search Project RenesasViews Run Window Help

New Alt+Shift+N » Renesas C/C++ Project

Open File... |- synergy C/C++ Project |
Open Projects from File System... 4 Project...

Recent Files » [Example...

Close Editor

P -

Templates for New Synergy C/C++ Project

Renesas Synergy C Executable Project

Gt W | o gther..

Renesas A C Executable Project for Renesas Synergy.

Renesas Synergy C Library Project
Renesas A C Library Project for Renesas Synergy.

Renesas Synergy C Project Using Synergy Library
Renesas Creates a C application project which uses an
existing Synergy library project

Renesas Synergy C++ Executable Project
Renesas A C++ Executable Project for Renesas Synergy.

Renesas Synergy C++ Library Project
2enesas A C++ Library Project for Renesas Synergy.

<

< Back Mext > Finish Cancel

Figure 78: Creating a New Project

2. In the ISDE Project Configuration (Synergy Project) window, enter a project name (for

R11UMO0161EU0161 Revision 1.61
Jun.08.2024

RLENESAS

Page 120/ 5,198

Synergy Software Package User’s Manual
Starting Development > Tutorial: Using HAL Drivers - Programming the WDT > Creating the Project with the ISDE

example, WDT_Application). Select the toolchain. If you want to choose a new location for
the project, deselect Use default location. Click Next.

e2 studio - Project Config| ion (Synergy CE: ble Project)
Specify the new project details, |

—>

Project Toolchains

Project name | WDT_Application| GNU ARM Embedded

Use default location

Location: | CA\Users\a5137109\e2_studio\synergy\WDT_Applical | Browse...

Choose file system: |default

@ < Back Finish Cancel
Figure 79: Project Configuration (Part 1)

3. This application runs on the Synergy S7G2 based DK-S7G2 board. So, for the Board select
S7G2 DK.

This will automatically populate the Device drop-down with the correct device used on this
board. Select the Toolchain version. Select J-Link ARM as the Debugger. No RTOS is

being used in this application but it can be left at the default. Click Next to configure the
project.

e2 studio - Project Config| ion (Synergy CE: ble Project)
Select the board support that you require. |

Device Selection

S5P version: |2.3.0 ~ Ecanilelals
Board: S7G2 DK ~
Device: R7FS7G2TH2ZAD1CBD
Select Tools Available Tools
Toolchain: GNU ARM Embedded ~ GNU ARM Embedded
Toolchain version: | 10.3.1.20210824 - 10.3.1.20210824
~ Debuggers
Debugger: J-Link ARM ~ J-Link ARM
~ RIOS

Express Logic ThreadX
~ Smart Manual

@ <Back B Cancel
Figure 80: Project Configuration (Part 2)

The project template is now selected. As no RTOS is required select BSP.

R11UMO0161EU0161 Revision 1.61 .QENESAS Page 121 /5,198
Jun.08.2024

Synergy Software Package User’s Manual

Starting Development > Tutorial: Using HAL Drivers - Programming the WDT > Creating the Project with the ISDE

e2 studio - Project Config| ion (Synergy CE ble Project) —
Select the type of project you wish to create,

Project Template Selection

® o} BSP
K Base Board Support Package for the chosen Synergy family.
[Renesas.Synergy.2.3.0.pack]

o d Blinky
v Blinky project.
[Renesas.Synergy.2.3.0.pack]

o d’ Blinky with ThreadX
. Threaded version of Blinky project.
[Renesas.Synergy.2.3.0.pack]

Code Generation Settings
Use Synergy Code Formatter

"?;‘ < Back Next » Cancel

Figure 81: Project Configuration (Part 3)

4. Click Finish.

The ISDE creates the project and opens the Project Explorer and Project Configuration Settings
views with the Summary page showing a summary of the project configuration.

3.3.4 Configuring the Project with the ISDE

The e2 studio ISDE simplifies and accelerates the project configuration process by providing a GUI
interface for selecting the options to configure the project.

The ISDE offers a selection of perspectives presenting different windows to the user depending on
the operation in progress. The default perspectives are C/C++ , Synergy Configuration and
Debug. The perspective can be changed by selecting a new one from the buttons at the top right of
the ISDE.

T | Bd C/Cr+ |k Synergy Configuration 4 Debug

Figure 82: Selecting a Perspective

The C/C++ perspective provides a layout selected for code editing. The Synergy Configuration
perspective provides elements for configuring a Synergy project, and the Debug perspective
provides a view suited for debugging.

1. In order to configure the project settings ensure the Synergy Configuration perspective is
selected.

2. Ensure the Project Configuration [WDT Application] is open. It is already open if the
Summary information is visible. To open the Project Configuration now or at any time make
sure the Synergy Configuration perspective is selected and double-click on the
configuration.xml file in the Project Explorer pane on the right side of the ISDE.

R11UMO0161EU0161 Revision 1.61 RENESANS Page 122 /5,198
Jun.08.2024

Synergy Software Package User’s Manual

Starting Development > Tutorial: Using HAL Drivers - Programming the WDT > Configuring the Project with the ISDE

1 Project Explorer
v I% WDT_Application
[Includes

v [src
(&= synergy_gen
€] hal_entry.c
w [synergy
(= board
&= ssp
(= script
= synergy_cfg
=| R7FS7G27TH2ADTCBD. pincfg
=| 57G2-DK.pincfg
%| WDT_Application Debug.launch
(7) Developer Assistance

Figure 83: Synergy Project Configuration Settings

At the base of the Project Configuration view there are several tabs for configuring the
project. A project may require changes to some or all of these tabs. The tabs are shown

below.

Summasy Generate Project Content

Project Summary ™
Renesas Synergy ~

Board: S7G2 DK
Device: RYFSTG27H2A01CBD
Toolchain; GCC ARM Embedded 8762
Toolchain Version: 10.3.1.20210824
S5P Version: 230

Selected software components

SSP Common Code v2.3.0
Clock Generation Circuit: Provides=[CGC] v2.3.0
Event Link Controller: Provides=[ELC] v2.3.0
Factory MCU Information Module: Provides=[FMI] v2.3.0
/O Port: Provides=[IO Port] v2.3.0
87G2_DK Board Support Files v2.3.0
Board support package for RTFS7TG27H2A01CBD v2.3.0
Board support package for S7G2 v2.3.0
Board support package for 57G2 v2.3.0

l;len:sz:: @ ﬁ
< @EC

ISummary BSP | Clocks | Pins | Threads | Messaging Componentsl

Figure 84: Project Configuration Tabs

3.3.4.1 BSP Tab

The BSP tab allows the Board Support Package (BSP) options to be modified from their defaults. For
this particular WDT project no changes are required. However, if you want to use the WDT in auto-
start mode, you can configure the settings of the OFS0 (Option Function Select Register 0) register in
the BSP tab. See the Synergy Hardware User’'s Manual for details on the WDT autostart mode.

3.3.4.2 Clocks Tab

The clocks tab presents a graphical view of the clock tree of the device. Using the drop down boxes
in the GUI enables configuration of the various clocks. The WDT uses PCLCKB. The default output
frequency for this clock is 60 MHz. Ensure this clock is outputting this value.

R11UMO0161EU0161 Revision 1.61 RENESANS Page 123/5,198
Jun.08.2024

Synergy Software Package

Starting Development > Tutorial: Using HAL Drivers - Programming the WDT > Configuring the Project with the ISDE > Clocks Tab

User’s Manual

3.3.4.3 Pins Tab

Clocks Configuration

KTAL 24MHz |—\
PLL Src: XTAL

! Clock Sre: PLL

PLL Div /2 k ~
PLL Mul x20.0 v
| USBMCLK 24MHz | |PLLZ4DMHZ¢
HOCO 20MHz v

LOCO 32768Hz
MOCO 8MHz
SUBCLK 32768Hz

= ICLK Div /1

= PCLKA Div /2

Generate Project Content

7 Restore Defaults

~ ICLK 240MHz

~ PCLKA 120MHz

= PCLKB Div /4

~ PCLKE 60MHz

= PCLKC Div /4
~ —6= PCLKD Div /2

SDCLKout On
[BCLK Div IZT

BCK/2

[UCLK Div /5

"= FCLK Div /4

~ PCLKC 60MHz

~ PCLKD 120MHz

~ SDCLKout 120MHz

~ BCLK 120MHz

~ BCLKout 60MHz

~ UCLK 48MHz

~ FCLK 60MHz

Figure 85: Clock Configuration

The Pins tab provides a graphical tool for configuring the functionality of the pins of the device. For
the WDT project no pin configuration is required. Although the project uses two LEDs connected to
pins on the device, these pins are pre-configured as output GPIO pins by the BSP.

3.3.4.4 Threads Tab

You can add any driver to the project using the Threads tab. The HAL drivers for the Clock
Generation Circuit, the Event Link Controller, and the 10 port pins are added automatically by the
ISDE when the project is configured. The WDT application uses no ThreadX Resources, so you only
need to add the HAL WDT driver.

Threads Configuration

Threads

4 New Thread

& [WDT_Application] Synergy Configuration

v gt HAL/Commen

4% g_fmi FMI Driver on r_fmi

4% g_cge CGC Driver on r_cge

4% g_elc ELC Driver on r_elc

42 g_ioport 1/0 Port Driver on r_ioport

HAL/Common Objects

HAL/Common Stacks

&) New Stack >

8

Generate Project Content

4% g_fmi FMI Driver on
r_fmi

@

42 g_cge CGC Driver on
r_cge

@

42 g_elcELC Driver on
r_ele

@

47 g ioport /0 Port
Driver on r_ioport

@

Summary | BSP | Clocks | Pins | Threads | Messaging | Components.

Figure 86: Threads Tab

The HAL/Common Stacks panel and is populated with the modules preselected by the ISDE.

R11UMO0161EU0161 Revision 1.61

Jun.08.2024

RLENESAS

Page 124 /5,198

Synergy Software Package User’s Manual

Starting Development > Tutorial: Using HAL Drivers - Programming the WDT > Configuring the Project with the ISDE > Threads Tab

1. Click on New Stack to find a pop-up window with the available HAL level drivers.
2. Select Watchdog Driver on r_wdt.

&) New Stack >

Driver > Analog >
Iriver or Framework > Connectivity >
X-Ware > Crypto >
Search.. Graphics >
Input >
Monitoring > 4 CRC Driver onr_crc
Power > | & Clock Accuracy Circuit Driver on r_cac
Storage > & Data Operation Circuit Driver on r_doc
System > 4 Watchdog Driver on r_iwdt
Timers ¥ I 4% Watchdog Driver on r_wdt I
Transfer >

Figure 87: Module Selection

The selected HAL WDT driver is added to the HAL/Common Stacks Panel and the
Property Window shows all configuration options for the selected module. The Property
tab for the WDT should be visible at the bottom left of the screen. If it is not visible check
that the Synergy Configuration perspective is selected.

{5} "[WDT_Application] Synergy Configuration =5

o

Threads Configuration e
Generate Project Content

Threads 4| Mew Thread =] HAL/Common Stacks 4| Mew Stack > % | Remove

v g HAL/Common
42 g_fmi FMI Driver on r_fmi
4% g_cgc CGC Driver on r_cge
47 g_elc ELC Driver on r_elc @ @ @ (O]
42 g_joport |/0 Port Driver on r_ioport
4 g_wdtD Watchdog Driver on r_wdt

& g wdtD Watchdog
Driver on r_wdt

47 g_cgc CGC Driver on 47 g_elc ELC Driver on
r_cgc r_elc

47 g_ioport1/0 Port
Driver on r_ioport

Il Driver on

HAL/Common Objects

Summary | BSP | Clocks |Pins | Threads | Messaging | Components

[T Properties < |1 Problems| @ Smart Browser ™3 =0

g_wdt0 Watchdog Driver on r_wdt

Property

w Common
Parameter Checking

v Module g_wdt) Watchdog Driver on r_wdt
Name
Start Mode
Start Watchdog After Configuration
Timeout

Settings
APl Info

Clock Division Ratio
‘Window Start Position
Window End Position

Value

Default (BSP)

g_wdtl

Register

True

16,384 Cycles

PCLK/8182

100% (Window Pasition Mot Specified)
0% (Window Position Not Specified)

Reset Control Reset Qutput
Stop Control ‘WDT Count Disabled in Low Power Mode
NMI Callback NULL

Figure 88: Module Properties

Change parameter Start Watchdog After Configuration from True to False. The other
parameters can be left with their default values. Setting Start Watchdog After Configuration to
False instructs the WDT driver (via its open API call) to configure the WDT but not to start it. It will
be started later by refreshing it.

R11UMO0161EU0161 Revision 1.61 Page 125/5,198

Jun.08.2024

RLENESAS

Synergy Software Package

Starting Development > Tutorial: Using HAL Drivers - Programming the WDT > Configuring the Project with the ISDE > Threads Tab

User’s Manual

g wdt0 Watchdog Driver on r wdt

Settings Property
AP Info ~ Common
Parameter Checking

Name
Start Mode

Timeout

Clock Division Ratio
Window Start Position
Window End Position
Reset Control

Stop Control

NMI Callback

i=| Properties 1#! Problems Q Smart Browser

~ Module g_wdt) Watchdog Driver on r_wdt

Start Watchdog After Configuration

Value

Default (BSP)

g_wdtl

Register

False

16,384 Cycles

PCLK/B192

100% (Window Position Not Specified)
0% (Window Position Not Specified)
Reset Output

'WDT Count Disabled in Low Power Mode
NULL

G

Figure 89: g wdt Watchdog Driver on WDT Properties

With PCLKB running at 60 MHz the WDT will reset the device 2.23 seconds after the last refresh.

WDT clock

Cycle time

60 MHz / 8192 = 7.32 kHz

1/7.324 kHz = 136.53 us

Timeout = 136.53 us x 16384 = 2.23 seconds

Save the Project Configuration file and click the Generate Project Content button in the top
right corner of the Project Configuration pane.

Figure 90: Generate Project Content Button

The ISDE generates the project files.

3.3.4.5 Components Tab

Generate Project Content

The components tab is included for reference to see which modules are included in the project.
Modules are selected automatically in the Components view when after they are added in the
Threads Tab.

For the WDT project ensure that the following modules are selected:

O WNHF

. HAL_Drivers -> r_cgc

. HAL_Drivers ->r_elc

. HAL_Drivers -> r_ioport
. HAL_Drivers -> r_wdt

. HAL_Drivers -> r_fmi

R11UMO0161EU0161 Revision 1.61

Jun.08.2024

RLENESAS

Page 126 / 5,198

Synergy Software Package User’s Manual

Starting Development > Tutorial: Using HAL Drivers - Programming the WDT > Configuring the Project with the ISDE > Components Tab

Components Configuration

Component Wersion Description
~ #p HAL Drivers
w o all

r_acmphs 230 High Speed Analog Comparator: Provides=[Comparator]
r_acmplp 230 Low Power Analog Comparator: Provides=[Comparator]
r_adec 23.0 A/D Converter: Provides=[ADC]
r_agt 230 Asynchronous General Purpose Timer: Provides=[TIMER]
r_agt_input_capture 230 Asynchronous Timer Input Capture: Provides=[Input Capture] , Requires=[AGT]
r_analog_connect 230 Analog Connections: Provides=[Analog Connect]
r_cac 230 Clock Accuracy Check: Provides=[CAC]
r_can 23.0 Controller Area Network: Provides=[CAN]

V| r_cge 230 Clock Generation Circuit: Provides=[CGC]
r_cre 230 Cyclic Redundancy Check: Provides=[CRC]
r_ctsu 230 Capacitive Touch Sensing Unit: Provides=[CT5U], Requires=[Transfer]
r_ctsuv2 230 Capacitive Touch Sensing Unit: Provides=[CT5U], Requires=[Transfer]
r_dac 230 D/A Converter: Provides=[DAC]
r_dac8 23.0 8 Bit D/A Converter: Provides=[DAC]
r_dmac 230 Direct Memory Access Controller: Provides=[Transfer]
r_doc 230 Data Operation Circuit: Provides=[DOC]
r_dtc 23.0 Data Transfer Controller: Provides=[Transfer]

| r_elc 23.0 Event Link Controller: Provides=[ELC]
r_flash_hp 230 Flash Memory: Provides=[Flash]
r_flash_lp 230 Flash Memory: Provides=[Flash]

| r_fmi 230 Factory MCU Information Module: Provides=[FMI]
r_gled 230 Graphics LCD: Provides=[Display]
r_gpt 230 General Purpose Timer: Provides=[Timer ,GPT]
r_gpt_input_capture 230 Timer Input Capture: Provides=[Input Capture] , Requires=[GPT]
r_icu 23.0 External IRQ: Provides=[External IRQ]

V| rioport 230 1/0 Port: Provides=[IO Port]
r_iwdt 230 Independent Watchdog Timer: Provides=[WDT]
r_jpeg_common 230 JPEG Common
r_jpeg_decode 230 JPEG Decode: Provides=[JPEG Decode]
r_jpeg_encode 230 JPEG Encode: Provides=[JPEG Encode]
r_kint 230 Key Input: Provides=[Key Matrix]
r_lpmv2_s124 230 Low Power Module V2 for 5124: Provides=[LPMY2]

Summary | BSP | Clocks |Pins | Threads Messaging | Components

Figure 91: Component Selection

Note
The list of modules displayed in the Components tab depends on the installed SSP version.

3.3.5 WDT Generated Project Files

Pressing the Generate Project Content button performs the following tasks.

e r_wdt folder and WDT driver contents created at:
o synergy/ssp/src/driver/

e r_wdt_api.h created in:
o synergy/ssp/inc/driver/api

e r_wdt.h created in:
o synergy/ssp/inc/driver/instances

The above files are the standard files for the WDT HAL module. They contain no specific project
contents. They are the driver files for the WDT. Further information on the contents of these files can
be found in the documentation for the WDT HAL module.
Configuration information for the WDT HAL module in the WDT project is found in:

» synergy cfg/ssp_cfg/driver/r_wdt_cfg.h

The above file’s contents are based upon the Common settings in the g_wdt Watchdog Driver on
WDT Properties pane.

R11UMO0161EU0161 Revision 1.61 RENESANAS Page 127 /5,198
Jun.08.2024

Synergy Software Package

Starting Development > Tutorial: Using HAL Drivers - Programming the WDT > WDT Generated Project Files

Property Value

w Common
Parameter Checking Default (B5P) i) [WDT_Application] Synergy Configuration [r_wdt_cfgh X

~ Module g_wdt0 Watchdog Driver on r_wdt 1 [+ generated configuration header file - do not edit */
Hame g_wdtd 5 = #ifndef R_WDT_CFG_H_
Start Mode Register 3 #define R_WDT_CFG_H_
Start Watchdag After Configuration False 4 #define WDT_CFG_PARAM_CHECKING_ENABLE (BSP_CFG_PARAM_CHECKING_ENABLE)
Timeout 16,384 Cycles 5 #endif /* R_WDT_CFGH_ ™/
Clock Division Ratio PCLK/B192 ?
‘Window Start Position 100% (Window Position Not Specified)
‘Window End Position 0% (Window Position Not Specified)
Reset Control Reset Output
Stop Control WDT Count Disabled in Low Power Mode
NMI Callback NULL

Figure 92: r_wdt_cfg.h Contents
Warning

Do not edit any of these files as they are recreated every time the Generate Project Content
button is pressed and so any changes will be overwritten.

r_ioport folder is not created at ssp/src/driver as this module is required by the BSP and so already
exists. It is included in the WDT project in order to include the correct header file in
src/synergy_gen/hal_data.h - see later in this document for further details. For the same reason the
other IOPORT header files - synergy/ssp/inc/api/r_ioport_api.h and
synergy/ssp/inc/instances/r_ioport.h are not created as they already exist.

In addition to generating the HAL driver files for the WDT and IOPORT files the ISDE also generates
files containing configuration data for the WDT and a file where user code can safely be added.
These files are shown below.

{5 Project Explorer O S 78
~ 2% WDT Application
5 Includes
w [sre
v [synergy_gen
|£] common_data.c
[n] common_data.h
|£] hal_data.c
[h] hal_data.h
\.g] main.c
\.£] pin_data.c
|c] hal_entry.c

Figure 93: WDT Project Files

iy
I}
o

3.3.5.1 WDT hal_data.h

The contents of hal_data.h are shown below.

/* generated HAL header file - do not edit */
#i f ndef HAL_DATA H_

#defi ne HAL_DATA H_

#i ncl ude <stdint.h>

#i ncl ude "bsp_api.h"

#i ncl ude "comon_dat a. h"

#i nclude "r_wdt.h"

#i nclude "r_wdt _api . h"

R11UMO0161EU0161 Revision 1.61 RENESANAS Page 128/5,198
Jun.08.2024

User’s Manual

Synergy Software Package User’s Manual

Starting Development > Tutorial: Using HAL Drivers - Programming the WDT > WDT Generated Project Files > WDT hal_data.h

hal_data.h contains the header files required by the ISDE generated project. In addition this file
includes external references to the g_wdt instance structure which contains pointers to the
configuration, control, api structures used for WDT HAL driver.

Warning

This file is regenerated each time Generate Project Content is pressed and must not be
edited.

3.3.5.2 WDT hal_data.c

The contents of hal_data.c are shown below.

R11UMO0161EU0161 Revision 1.61 Page 129 /5,198

Jun.08.2024

Synergy Software Package User’s Manual

Starting Development > Tutorial: Using HAL Drivers - Programming the WDT > WDT Generated Project Files > WDT hal_data.c

.stop_control = WDT_STOP_CONTROL_ENABLE,
. p_cal I back = NULL, };
/* Instance structure to use this nodule. */
const wdt_instance t g wdt0 =
{ .p_ctrl = & wdtO _ctrl, .p cfg = & _wdtO cfg, .p_api = & wdt _on_wdt };
void g_hal _init(void)
{

g_conmon_init ();

hal data.c contains g_wdt ctrl which is the control structure for this instance of the WDT HAL driver.
This structure should not be initialised as this is done by the driver when it is opened.

The contents of g_wdt_cfg are populated in this file using the g_wdt Watchdog Driver on WDT
Properties pane in the ISDE Project Configuration HAL tab. If the contents of this structure do
not reflect the settings made in the ISDE, ensure the Project Configuration settings are saved in
the ISDE before pressing the Generate Project Content button.

Warning
This file is regenerated each time Generate Project Content is pressed and so should not be
edited.

3.3.5.3 WDT main.c

Contains main() called by the BSP start-up code. main() calls hal_entry() which contains user
developed code (see next file). Here are the contents of main.c.

/* generated main source file - do not edit */

extern void hal _entry(void);

i nt mai n(voi d)

{
hal _entry ();
return O;
}
Warning
This file is regenerated each time Generate Project Content is pressed and so should not be
edited.

3.3.5.4 WDT hal_entry.c

R11UMO0161EU0161 Revision 1.61 RENESANAS Page 130 /5,198
Jun.08.2024

Synergy Software Package

Starting Development > Tutorial: Using HAL Drivers - Programming the WDT > WDT Generated Project Files > WDT hal_entry.c

User’s Manual

This file contains the function hal_entry() called from main(). User developed code should be placed

in this file and function.

For the WDT project edit the contents of this file to contain the code below. This code implements

the flowchart in overview section of this document.

/* HAL-only entry function */
#i ncl ude "hal data. h"
#defi ne RED LED NO OF FLASHES 30
#define RED LED PIN | OPORT _PORT 06 PIN 01 ? In case of SK-S7TQ&
#defi ne GREEN _LED PIN | OPORT _PORT 06 _PIN 00 ? In case of SK-S7&
#def i ne RED_LED DELAY_COUNT 1500000
#defi ne GRN_LED DELAY_COUNT 1200000
volatile uint32_t delay counter;
vol atile uintl16_t | oop_counter;
voi d hal _entry(void)
{
/* TODO add your own code here */
/* Open the WDT */
g_wdt 0. p_api - >open(g_wdt 0. p_ctrl, (wdt_cfg t *const)g wdtO.p_cfg);
/* Start the WDT by refreshing it */
g_wdt 0. p_api ->refresh(g wdtO.p_ctrl);
/* Flash the red LED and tickle the WDT for a few seconds */

for(l oop_counter=0; | oop_counter<RED LED NO OF FLASHES; | oop_counter ++)

{
/* Turn red LED on */

g_ioport.p_api->pinWite(RED LED PIN, | OPORT_LEVEL H GH);
[* Delay */

for(del ay_counter=0; del ay_ counter<RED LED DELAY COUNT; del ay_ counter ++);

/* Refresh WDT */
g_wdt 0. p_api ->refresh(g wdtO0.p_ctrl);
[* Turn red off */
g_ioport.p_api->pinWite(RED LED PIN, | OPORT_LEVEL_LOV);
/* Delay */

for(del ay_counter=0; del ay_ counter<RED LED DELAY COUNT; del ay_ counter ++);

/* Refresh WDT */

R11UMO0161EU0161 Revision 1.61 RENESAS
Jun.08.2024

Page 131 /5,198

Synergy Software Package User’s Manual

Starting Development > Tutorial: Using HAL Drivers - Programming the WDT > WDT Generated Project Files > WDT hal_entry.c

g_wdt 0. p_api - >refresh(g_wdt 0. p_ctrl);
}
/* Flash green LED but STOP tickling the WDT. WDT shoul d reset the
devi ce */
whi | e(1)
{
/[* Turn green LED on */
g_ioport.p_api->pinWite(GREEN LED PIN, | OPORT _LEVEL H GH);
/* Delay */
for(del ay_counter=0; delay counter<GRN LED DELAY COUNT; del ay counter ++);
/* Turn green off */
g_ioport.p_api->pinWite(GREEN LED PIN, | OPORT_LEVEL LOW);
/* Delay */
for(del ay_counter=0; delay counter<GRN LED DELAY COUNT; del ay counter ++);
}

The WDT HAL driver is called through the interface g_wdt_on_wdt defined in r_wdt.h. The WDT
HAL driver is opened through the open API call using the instance defined in r_wdt_api.h:

g_wdt 0. p_api - >open(g_wdt 0. p_ctrl, (wdt_cfg t *const)g wdtO.p_cfg);

The first passed parameter is the pointer to the control structure g_wdt_ctrl instantiated in
hal_data.c. The second parameter is the pointer to the configuration data g_wdt_cfg instantiated in
the same hal_data.c file.

The WDT is started and refreshed through the API call:

g_wdt 0. p_api - >refresh(g_wdt 0. p_ctrl);

Again the first (and only in this case) parameter passed to this API is the pointer to the control
structure of this instance of the driver.

3.3.6 Building and Testing the Project

Build the project in the ISDE Build > Build Project. The project should build without errors.

To debug the project

R11UMO0161EU0161 Revision 1.61 RENESANAS Page 132 /5,198
Jun.08.2024

Synergy Software Package User’s Manual

Starting Development > Tutorial: Using HAL Drivers - Programming the WDT > Building and Testing the Project

1. Connect the JLink debugger between the target board and host PC. Apply power to the
board.

2. In the Project Explorer pane on the right side of the ISDE right-click on the WDT project
WDT _Application and select Debug As > Debug Configurations.

3. Under Renesas GDB Hardware Debugging select WDT_Application Debug as shown

below.

Create, manage, and run configurations @

EiE =| x| B v - Mame: |WDT_AppI|cat\Dn Debug |

‘t}'PEmtEftE’(t | %5 Debugger | = Startup | % Source|] Common
[c] C/C++ Application
[£] C/C++ Remote Application
= EASE Script ‘ WOT_Application Browse...
[&] GDB Hardware Debugging C/C++ Application:
[E] 6DB OpenOCD Debugging | Debug/WDT_Application.elf
[c7] GDB Simulator Debugging (RHS50)
¥ Java Applet Variables... Search Project... Browse..,
[T Java Application
@ Launch Group
[T Remote Java Application Build Configuration: |Use Active ~

v [£7 Renesas GDB Hardware Debugging

Project:

Build (if required) before launching

[©] WDT_Application Debug (O Enable auto build () Disable auto build
[£9 Renesas Simulator Debugging (RX, RL78) (®) Use workspace settings Configure Workspace Settings...
Revert Apply
Filter matched 13 of 15 items ever pply
=)

Figure 94: Debug Configuration

4. Press the Debug button. Switch (Yes) to the Debug perspective if asked.

5. The code should run to the Reset _Handler() function.

6. Resume execution via Run > Resume. Execution will stop in main() at the call to
hal_entry().

7. Resume execution again.

The red LED should start flashing. After 30 flashes the green LED will start flashing and the red LED
will stop flashing.

While the green LED is flashing the WDT will underflow and reset the device resulting in the red LED
to flash again as the sequence repeats. However, this sequence does not occur when using the
debugger because the WDT does not run when connected to the debugger.

1. Stop the debugger in the ISDE via Run > Terminate.
2. Press the reset button on the target board. The LEDs begin flashing.

3.4 IAR Embedded Workbench for Renesas

3.4.1 Using IAR Embedded Workbench for Synergy

This section describes how to use the IAR Embedded Workbench for Renesas Synergy (IAR EW for
Synergy) in combination with the Renesas Synergy Standalone Configurator (SSC) to develop

R11UMO0161EU0161 Revision 1.61 RENESANS Page 133/5,198
Jun.08.2024

Synergy Software Package User’s Manual

Starting Development > IAR Embedded Workbench for Renesas > Using IAR Embedded Workbench for Synergy

applications with the Renesas Synergy Software Package (SSP). The architecture of the SSP directly
determines how you use the IAR EW for Synergy and SSC to develop a Synergy application. See the
following documents for details on the SSP architecture included in this manual:

e SSP Architecture
e BSP Architecture

3.4.2 What is IAR EW for Synergy?

IAR Embedded Workbench is now completely integrated with the Renesas Synergy Platform. The
new product IAR EW for Synergy provides add-on functionality to simplify and accelerate software
development, and provide the best performance and smallest code size.

Just like e? studio, IAR EW for Synergy offers secure source-level visibility into the Synergy Software
Package (SSP) as well as secure source-level debugging. The developer can see protected source
code but not modify or save it. Once the application code is developed, IAR EW for Synergy includes
IAR C-STAT® and C-RUN® analyzers, tools which help and guide to improve application code quality.

3.4.3 IAR EW Key Features

Integrated development environment with project management tools and editor
Highly optimizing C and C++ compiler and Linker for Renesas Synergy devices
Integration support for Renesas Synergy Standalone Configurator (SSC)

C-STAT and C-RUN code analysis tools included

Extensive HW target system support

Power debugging to visualize power consumption in correlation with source code
C-SPY® Debugger with JTAG/SWD support and support for RTOS-aware debugging on
hardware

e Support for ETM Trace

e Comprehensive user and reference guides and context-sensitive help function

e Compliant with ARM® Embedded Application Binary Interface (EABI) and ARM Cortex®
Microcontroller Software Interface Standard (CMSIS)

For detailed instructions on how to download and install IAR EW for Synergy, see the IAR EW for
Synergy Release Notes on the Synergy Gallery.

3.4.4 What is Synergy Standalone Configurator (SSC)?

The Synergy Standalone Configurator (SSC) is an Eclipse Rich Client Platform (RCP) application
containing the Synergy Project Generator and the Synergy Project Editor as implemented in the
Renesas e’ studio ISDE. SSC includes configurators like the Clock Configurator, Pin Configurator,
RTOS Configurator, SSP Module Selector/Configurator, and Interrupt Control Unit (ICU) Configurator
for use with 3™ party IDEs such as IAR EW for Synergy.

R11UMO0161EU0161 Revision 1.61 RENESANAS Page 134 /5,198
Jun.08.2024

Synergy Software Package User’s Manual

Starting Development > IAR Embedded Workbench for Renesas > What is Synergy Standalone Configurator (SSC)?

IAR Embedded Workbench®

for Renesas Synergy™ Synergy Standalone Configurator (SSC)

Synergy Project Generator

Synergy Project Editor

C-SPY Debugger IAR toolchain for ARM

BSP Configurator Clock Configurator

RTOS/HAL/SSP

Configurator Pin Configurator

Synergy-based
Target Board

Figure 95: IAR EW for Synergy and SSC Functional Block Diagram

Since the functionality of the SSC is identical to the Synergy Project Generator and the Synergy
Project Editor as implemented in the Renesas e? studio ISDE, refer to e2 studio ISDE User Guide for
information on how to use it.

For detailed instructions on how to download and install the SSC and the SSP to use with IAR EW for
Synergy, see the SSC Release Notes and the SSP Release notes on the Synergy Gallery.

3.4.5 Installing the Tools
To install the tools, follow the steps below:

1. Download and install the Renesas Synergy Standalone Configurator (SSC) from the Renesas
Synergy Gallery. You can find it under Development Tools. The default installation directory
is C:\Renesas\Synergy\SSC_<SSCversion>.

2. Download and install the Renesas Synergy Software Package (SSP) from the Renesas
Synergy Gallery. During the installation you will be prompted to specify an installation
directory for the SSP. Point the SSP installer to the directory where you just installed the
SSC (for example C:\Renesas\Synergy\SSC_<SSCversion>).

3. Download and install IAR Embedded Workbench for Renesas Synergy from the Renesas
Synergy Gallery. To install IAR Embedded Workbench:

a. In your web browser, specify the URL https://synergygallery.renesas.com and
download IAR Embedded Workbench for Renesas Synergy from the Renesas
Synergy Gallery. You will also find information about how to obtain a license and
get a license number.

b. Execute the installer that is included in the downloaded file.

c. Specify the license number when prompted for in the IAR License Manager.

R11UMO0161EU0161 Revision 1.61 .QEN ESANANAS Page 135/5,198
Jun.08.2024

https://synergygallery.renesas.com

Synergy Software Package User’s Manual

Starting Development > IAR Embedded Workbench for Renesas > Installing the Tools

Note
The lAR EW for Synergy license entitles you to use this specific edition of AR Embedded
Workbench, but not the Synergy Standalone Configurator for which separate licenses are
required.

3.4.6 Creating a Renesas Synergy Project using IAR EW for Synergy and
SSC

To create a Synergy Project using IAR EW for Synergy and SSC, follow the steps below:

1. In the IAR Embedded Workbench IDE, choose Project>Create New Project.

2. In the Create New Project dialog box, select Renesas Synergy Project and click OK.

G ™
Create New Project liz-l

Tool chain: ARM vJ

Project templates

~E Empty project

w23 asm

w00 Ce+

w3 C

L e Fv‘fnrnn":{hlu" avaritahla

‘- #+ Renesas Synergy Project

Description:

Creates an empty project.

OK | { Cancel

Figure 96: Creating a New Synergy Project using IAR EW for Synergy

3. In the Save As dialog box that appears, choose a suitable destination directory for your
workspace (the container that holds your project), for example MyWorkspace, and click
Save.

Note
Do not save your workspace in the root directory of your operating system (C:).

4. In the Renesas Synergy Setting dialog box that appears, specify the location of your
installed Synergy Standalone Configurator (SSC), which by default is installed in
C:\Renesas\Synergy\SSC_<SSCversion>.

Note

R11UMO0161EU0161 Revision 1.61 RENESANS Page 136 /5,198
Jun.08.2024

Synergy Software Package User’s Manual

Starting Development > IAR Embedded Workbench for Renesas > Creating a Renesas Synergy Project using IAR EW for Synergy and SSC

You do not need to specify a licensefile. You can click OK with the Licensefile field empty. An SSP
licensefileis not required and the source files are not encrypted for SSP v2.0.0 and later.

Renesas Synergy Settings X

Location where Renesas Synergy S5C/55F iz installed;
C:\Renesas\SynerquiSSC_v2022 10 R20221013 5| Wl oo

License file:

License information:

[] Replace encrypted files with decrypted fles

Cancel
Figure 97: Renesas Synergy Settings in IAR EW for Synergy

5. Click OK.

6. In the Save As dialog box that appears, specify the name of your project, for example
MyProject.

Note

Do not save your project in the root directory of your operating system (C:).

7. The IAR Embedded Workbench IDE now connects with the Renesas Synergy Standalone
Configurator (SSC). Specify the board support you require:

m | Synergy Standalone Configurator o == @

Synergy Standalone Configurator —

Select the board support that you require.

Device Selection

SSP version: [XXX - ‘

Board: [S7G2DK -|

Device: |R7FS7G27H2A01CBD || .. |

< Back Next > Finist Cancel

Figure 98: SSC selection Dialog for SSP, Board, and MCU to be used

Note
The SSP versions available in the drop-down list correspond to the versions you have previously
R11UMO0161EU0161 Revision 1.61 :{ENESAS Page 137 /5,198

Jun.08.2024

Synergy Software Package

Starting Development > IAR Embedded Workbench for Renesas > Creating a Renesas Synergy Project using IAR EW for Synergy and SSC

User’s Manual

installed on your computer.

Click Next.

8. The Synergy Software Packages come with several example projects, which include source
code files, header files, and linker configuration files, adapted for your device. Select the
example packages that you want to add to your project:

-

-
Synergy Standalone Configurator l | = |ﬁ

Synergy Standalone Configurator

Select the type of project you wish to create.

Project Template Selection

| BSP
g Base Board Support Package for the chosen Synergy family. No RTOS included.

| S7G2-DK BSP
Q Board Support Package for the S7G2-DK. No RTOS included.

® g §7G2-DK Blinky

Blinky for the S7G2-DK.

'| $7G2-DK Blinky with ThreadX
Q Threaded version of Blinky for the S7G2-DK.

Q °i 5$7G2-DK Developer Examples

Developer example code exercised over a command line interface.

\,
v

m

Next > [Finish] [Cancel

Figure 99: Project Template Selection Dialog

Click Finish.

9. In the Synergy Project Editor that opens up, you can now configure MCU pin function
assignments, clock and peripheral settings, and interrupt source assignments. When
finished configuring, click the Generate Project Content button. The source code is now

generated.

R11UMO0161EU0161 Revision 1.

Jun.08.2024

61 RENESAS

Page 138 /5,198

Synergy Software Package User’s Manual
Starting Development > IAR Embedded Workbench for Renesas > Creating a Renesas Synergy Project using IAR EW for Synergy and SSC

= | ®

S5 Pacoge] @ @ - [@~ B~ -
0 1 2 3 4 5 6 7 8

Generate Project Content L N vee_ ||
s [oam [on | vss || vss || soos | pass | 755 v
e configuration file (configuration — || = [Fus %08 [0 | vee | vee %z | sosz [5200 [—,,-_‘;

‘ | 7z ~ VIV IV~

< [P111 [P1s0 P1s2 | Pa0s 7309 [[P310 [[P311 | p201 || 2o

Figure 100: Generate Project Content Button

Note
You can always add or change the configuration of your Synergy project later on.

10. After a couple of seconds, your Renesas Synergy project is displayed in the IAR EW
Workspace window:

rﬁ MyWorkspace - IAR Embedded Workbench IDE

File Edit View Project Simulator Tools Window
D@ & 8RR o
Workspace x
[Debug v

Files &z By

=Ju MyProject- Debug* | v |
-2 @ Synergy
L a1 Source Files
e Csrc
H82 (O synergy_gen

common_data.c .
— B) common_data h
=) hal_data.c B
— k) hal_data.h
Fa R main.c >
L@ [pin_datac .
& [hal_entry.c -
g O synergy

Lassp

Faine

| Fabsp

| FaCdriver

| —) ssp_common_apih

| L— P ssp_versionh

Lasrc x
51 (1 Output

L— [MyProject.out

Figure 101: IAR EW for Synergy Workspace and Project Window

11. If you close the SSC, you can re-open it again by clicking the Synergy Configuration button

R11UMO0161EU0161 Revision 1.61 .QEN ESANANAS Page 139 /5,198
Jun.08.2024

Synergy Software Package User’s Manual

Starting Development > IAR Embedded Workbench for Renesas > Creating a Renesas Synergy Project using IAR EW for Synergy and SSC

in the toolbar, or by selecting Renesas Synergy > Configurator from the menu.

12. Whenever you switch back to the SSC to change configuration settings, click the Generate
Project Content button when finished. The affected source code files are now re-
generated.

13. You can now continue building and debugging according to the standard routines in the IAR
Embedded Workbench IDE, see the IAR Embedded Workbench® IDE User Guide on the IAR
web site.

As the SSC works just like the Synergy Project Editor in e? studio, refer to e2 studio ISDE
User Guide for more details on how to use it.

Note that the Synergy Project is by default configured for the J-Link debugging probe.
If you have another debugging probe, for example I-jet or I-jet Trace, choose

Project>Options>Debugger in the IDE and select I-jet/|TAGjet from the Driver drop-down
list.

R11UMO0161EU0161 Revision 1.61 RENESANAS Page 140/5,198
Jun.08.2024

Synergy Software Package User’s Manual

Module Overviews

Chapter 4 Module Overviews

You can find a list of Module Overviews on the following pages:

e Framework Layer
e HAL Layer
e Azure RTOS Modules

The Module Overviews for each SSP module have been significantly improved since the last release.
The new Module Overviews should provide all the information necessary for a developer to evaluate
a specific modules fitness for use in a target application and significantly help with the development
process. The intent of these notes is to provide all the information needed to begin developOment
with the target module in one easy to find location.

Each Module Overview includes the following sections:

1. A short introduction to the module includes a short description, a block diagram of key
module components, and a list of features

2. An API table lists all the available APIs, and example use of the APl and a short description
of the APIs function. A list of some of the key Status Return values is provided to help
determine the result of the API call.

3. A functional overview describes key module operations and includes a list of important
module limitations.

4. A step-by-step description of how to include the module in an application using the ISDE
threads tab and stack selection process.

5. A set of tables showing the configuration parameters for the module and key lower level
modules is provided so the developer can easily see the modules key capabilities. Note that
these configurable properties vary by MCU series and by SSP Release. Treat the tables in
these notes as illustrations and refer to the actual parameters available within the ISDE for
your target MCU and for your chosen SSP release. Example pin and clock configuration and
selection information is also provided to help guide development.

6. A simple implementation using the target module is provided and shows the steps used in a
typical application, the associated flow diagram, and the API use at each step. This helps
describe how APIs are commonly used and will give the developer a head start with their
implementation.

Module Guide Application Notes

These six sections are also found in the Module Guide Application Notes for a specific module. In the
Application Note additional sections provide detailed descriptions of the associated application
project that demonstrates the module working in an actual design. Development can be dramatically
simplified when the application project is used as a starting point or reference for a new design.
Module guide application notes can be found with the following search:
https://www.renesas.com/us/en/support/document-search?doc_file_all_types%5BApplication+Note%5
D=Application+Note&doc_file_all_types%5BSample+Code+-+FIT+Module%5D=Sample+Code+-+Fl
T+Module&doc file_all_types%5BSample+Code%5D=Sample+Code&doc_category tier 1=467666&
doc_category_tier 2=469306&doc_part_ numbers=&keywords=&sort_order=DESC&sort_by=field _do
cument_revision_date#documentation-tools-results. More module guide application notes are being
added all the time so check back frequently to find when new ones have been released.

R11UMO0161EU0161 Revision 1.61 RENESANAS Page 141 /5,198
Jun.08.2024

https://www.renesas.com/us/en/support/document-search?doc_file_all_types%5BApplication+Note%5D=Application+Note&doc_file_all_types%5BSample+Code+-+FIT+Module%5D=Sample+Code+-+FIT+Module&doc_file_all_types%5BSample+Code%5D=Sample+Code&doc_category_tier_1=467666&doc_category_tier_2=469306&doc_part_numbers=&keywords=&sort_order=DESC&sort_by=field_document_revision_date#documentation-tools-results
https://www.renesas.com/us/en/support/document-search?doc_file_all_types%5BApplication+Note%5D=Application+Note&doc_file_all_types%5BSample+Code+-+FIT+Module%5D=Sample+Code+-+FIT+Module&doc_file_all_types%5BSample+Code%5D=Sample+Code&doc_category_tier_1=467666&doc_category_tier_2=469306&doc_part_numbers=&keywords=&sort_order=DESC&sort_by=field_document_revision_date#documentation-tools-results
https://www.renesas.com/us/en/support/document-search?doc_file_all_types%5BApplication+Note%5D=Application+Note&doc_file_all_types%5BSample+Code+-+FIT+Module%5D=Sample+Code+-+FIT+Module&doc_file_all_types%5BSample+Code%5D=Sample+Code&doc_category_tier_1=467666&doc_category_tier_2=469306&doc_part_numbers=&keywords=&sort_order=DESC&sort_by=field_document_revision_date#documentation-tools-results
https://www.renesas.com/us/en/support/document-search?doc_file_all_types%5BApplication+Note%5D=Application+Note&doc_file_all_types%5BSample+Code+-+FIT+Module%5D=Sample+Code+-+FIT+Module&doc_file_all_types%5BSample+Code%5D=Sample+Code&doc_category_tier_1=467666&doc_category_tier_2=469306&doc_part_numbers=&keywords=&sort_order=DESC&sort_by=field_document_revision_date#documentation-tools-results
https://www.renesas.com/us/en/support/document-search?doc_file_all_types%5BApplication+Note%5D=Application+Note&doc_file_all_types%5BSample+Code+-+FIT+Module%5D=Sample+Code+-+FIT+Module&doc_file_all_types%5BSample+Code%5D=Sample+Code&doc_category_tier_1=467666&doc_category_tier_2=469306&doc_part_numbers=&keywords=&sort_order=DESC&sort_by=field_document_revision_date#documentation-tools-results

Synergy Software Package User’s Manual

Module Overviews

Using the Module Guide Module Overviews

The Module Overviews provide sufficient details to begin development, but there will be cases when
additional information is useful in implementing a design. The SSP User Manual provides a wealth of
information on the details of APl implementation, structures, enumerations and more. Simply jump to
the API reference section and find your module of interest to find any additional information you
might need.

HAL modules have chapters that cover the above topics as well. It is highly recommended that you
spend some time looking at the reference material available in ALL the reference chapters so you
know where to look when an APl implementation question, not answered in the module guide usage
note or associated module guide application note, comes up.

4.1 Framework Layer

Some SSP framework modules are not included in the following list of Module Overviews. This is
because some modules, although they can be selected and added to a thread, are only used as
lower level modules and are not expected to be used by a developer separately. These modules are
included in the Module Overview for the higher level module however. So if additional information is
desired, just refer to the associated higher level Module Overview. The following list shows how to
find these 'missing' modules:

Module Included In

D/AVE 2D Port on sf_tes_2d_drw GUIX Port on sf_el_gx under the Azure RTOS
Modules section as GUIX Port

D/AVE 2D Driver on dave2d GUIX Port on sf_el_gx under the Azure RTOS
Modules section as GUIX Port

ADC Periodic Framework

Audio Playback Framework

Audio Playback Hardware Framework Shared on sf audio_playback _hw_dac
Audio Playback Hardware Framework Shared on sf audio_playback hw_i2s
Audio Record ADC Framework

Audio Record I12S Framework

Block Media Framework on sf block_media_Ix_nor

Block Media Framework on sf block_media_gspi

Block Media Framework on sf_block_media_ram

R11UMO0161EU0161 Revision 1.61 RENESANAS Page 142 /5,198
Jun.08.2024

Synergy Software Package User’s Manual

Module Overviews > Framework Layer

Block Media Framework on sf_block_media_sdmmc
BLE Framework

Cellular Framework

Telnet Communications Framework on sf comms_telnet
Communications Framework on sf_el_ux_comms_v2
Console Framework

Crypto Framework

Capacitive Touch v2 Framework

External IRQ Framework

I12C Framework

JPEG Decode Framework

Memory Framework on sf_memory_qspi_nor
Messaging Framework

Power Profiles V2 Framework

SPI Framework

Thread Monitor Framework

Touch Panel V2 Framework

UART Communications Framework

Wi-Fi Framework

Wi-Fi QCA4010 Framework

4.1.1 ADC Periodic Framework

4.1.1.1 ADC Periodic Framework Module Introduction

The ADC Periodic Framework provides a high-level API for signal processing applications. The module
configures the ADC/SDADC to sample any of the available channels (using the single-scan mode) at a
configurable rate and buffers the data for a configurable number of sampling iterations before
notifying the application. The ADC Periodic Framework uses the ADC/SDADC, GPT or AGT and DTC
peripherals on a Renesas Synergy™ Microcontroller. A user-defined callback can be created to

R11UMO0161EU0161 Revision 1.61 RENESANS Page 143 /5,198
Jun.08.2024

Synergy Software Package User’s Manual

Module Overviews > Framework Layer > ADC Periodic Framework > ADC Periodic Framework Module Introduction

process the data each time a new sample is available.
ADC Periodic Framework Module Features

24-bit Sigma-Delta A/D Converter (S1JA only).
16-bit A/D Converter (S1JA)
14-bit A/D Converter (S3A7, S3A6, S3A3, 5124, S128)
12-bit A/D Converter (57G2, S5D9, S5D5)
Multiple Operation Modes
o Single Scan
o Group Scan
o Continuous Scan
Multiple Channels
o 1 channel (S1JA)
o 13 channels (unit 0), 12 channels (unit 1) (57G2 and S5D9)
13 channels (unit 0), 9 channels (unit 1) (S5D5)
18 channels (5124)
21 channels (5128)
25 channels (S3A6)
28 channels (S3A7)
Temperature sensor channel
Voltage sensor channel

o e o o o o

o 0 o o o o o

Application

Framework

ADC Periodic Framework Interface
sf_adc_periodic_instance

ThreadX® N
RTOS HAL Drivers / \ / \
ADC Driver ADC Driver Timer Driver Timer Driver Transfer Driver
R_ADC R_SDADC (S1JA) R_AGT R_GPT R_DTC

BSP

Figure 102: ADC Periodic Framework Module Block Diagram

4.1.1.2 ADC Periodic Framework Module APIs Overview

The ADC Periodic Framework defines APIs for opening, closing, starting and stopping the ADC scans.
A complete list of the available APIs, an example API call and a short description of each can be
found in the following table. A table of status return values follows the APl summary table.

ADC Periodic Framework Module APl Summary

Function Name Example API Call and Description

open g_sf adc_periodic.p_api->open(g_sf adc_periodic
.p_ctrl, g_sf adc_periodic.p_cfqg);

Acquires mutex, then initializes module at the
HAL layer.

R11UMO0161EU0161 Revision 1.61 .QENESAS Page 144 /5,198
Jun.08.2024

Synergy Software Package User’s Manual

Module Overviews > Framework Layer > ADC Periodic Framework > ADC Periodic Framework Module APIs Overview

start g_sf adc_periodic.p_api->start(g_sf adc_periodic
.p_ctrl);
Starts the scan.

stop g_sf adc_periodic.p_api->stop(g_sf adc_periodic.
p_ctrl);

Stops the hardware trigger (timer) from
triggering any more ADC scans.

close g_sf adc_periodic.p_api->close(g_sf adc_periodi
c.p_ctrl);
Releases channel mutex and closes channel at
HAL layer.

versionGet g_sf_adc_periodic.p_api->versionGet(&version);
Retrieve the API version using the version
pointer.

Note

For more complete descriptions of operation and definitions for the function data structures, typedefs, defines, API
data, API structures, and function variables, review the SSP User's Manual API References for the associated
module.

Status Return Values

Name Description
SSP_SUCCESS API Call Successful.
SSP_ERR_UNSUPPORTED Command not found in the current menu.
SSP_ERR_NOT_OPEN Driver control block not valid.
CallSF_ADC_PERIODIC_Open to configure.
SSP_ERR_ASSERTION Version get error- p_version was NULL.
SSP_ERR_INTERNAL An internal ThreadX® error has occurred. This is

typically a failure to create/use a mutex or to
create an internal thread.

Note
Lower-level drivers may return common error codes. Refer to the SSP User's Manual API References for the
associated module for a definition of all relevant status return values.

4.1.1.3 ADC Periodic Framework Module Operational Overview

The ADC Periodic Framework module samples and buffers ADC data. The Framework notifies the
application once the configured number of samples are buffered. The ADC Periodic Framework works
as follows:

e After initial configuration and after the scan process is started, the framework uses a
hardware timer to trigger an ADC scan in one-shot mode. Each scan can consist of one or
more channels. When each scan is completed, the ADC interrupt is intercepted by the DTC,
which moves the result of the scan into the user buffer.

e Each scan is defined as a sampling iteration, and the number of samples generated for each
scan is equal to the number of channels. If the channels are sequential, for example,
channels 1, 2, 3, 4, the data is captured in order. If the channels are not in sequence, for

R11UMO0161EU0161 Revision 1.61 RENESANAS Page 145 /5,198
Jun.08.2024

Synergy Software Package User’s Manual

Module Overviews > Framework Layer > ADC Periodic Framework > ADC Periodic Framework Module Operational Overview

example, channels 1, 3, 4, 5, then the samples generated by each scan also include data
from the unused channels in between. Thus, in the second example, five samples are
stored to the user buffer each time.

e The user specifies the total number of sample iterations that need to occur before being
notified. When the specified number of sampling iterations have occurred and the data for
each iteration has been stored into the user buffer, the user is notified via a callback with
an index for the valid data in the buffer and an event indicating that sampling for the
specified number of iterations is complete.

Unless the user stops the scan process, the scan continues to be triggered by the timer (using AGT
or GPT) and data will be written into the user buffer, which is treated by the Framework as a circular
buffer. The name and length of the buffer are specified via the ISDE configurator.

ADC Periodic Framework Module Important Operational Notes and Limitations

ADC Periodic Framework Module Operational Notes

1. At least one channel must be chosen while configuring the ADC/SDADC HAL driver to avoid
an API return error.

2. When configuring the scan rate for the ADC Framework (the GPT or AGT timer period),
make sure that the period is long enough to accommodate scanning of all selected
channels (about 2 microseconds for each channel conversion on a Synergy S7G2 device).

3. The ADC Periodic Framework stores data for all the channels from each scan into the user
specified buffer. When the specified number of sample iterations are completed, the user is
notified. If five channels are selected (channels 1,2,3,4,5) and the sample count is set to 3,
the user will be notified when 5 x 3 = 15 samples are available. The samples are ordered as
follows:

112 34 51, 2 3|4|5 12|34 5

Figure 103: ADC Periodic Framework Module Sample Order

When selecting the data buffer length in the ADC Periodic Framework configuration, make sure that
the buffer length is at least twice the length of the number of samples that will be generated (15 x 2
= 30 in this example). This is because once the user application is notified that the data is available,
the Framework will keep buffering in new data at the sample rate. Since the buffer is treated as a
circular buffer, you can inadvertently overwrite the data. If the size is not larger than the number of
samples generated, the data is overwritten before the application can use it.

The application callback has an index into the appropriate location in the buffer where valid data is
present.

ADC Periodic Framework Module Limitations

The ADC Periodic framework does not currently support the following features:
o The use of Group Scan mode
o The use of DMA
e When configuring the ADC channels to be used with this framework, the temperature or
voltage sensors must not be selected if any of the other available channels are also
selected. It is possible to use only the temperature sensor, only the voltage sensor, or any
number of the regular ADC channels.
e ADC Periodic framework does not support DTC transfer when lower lever driver is SDADC.
e When using ADC Periodic framework with lower level SDADC of 24-bit, user should not

R11UMO0161EU0161 Revision 1.61 RENESANAS Page 146 /5,198
Jun.08.2024

Synergy Software Package User’s Manual

Module Overviews > Framework Layer > ADC Periodic Framework > ADC Periodic Framework Module Operational Overview

access output data through "p_args" in callback function. User should access output data
only through user defined buffer.

e Refer to the most recent SSP Release Notes for any additional operational limitations for
this module.

4.1.1.4 Including the ADC Periodic Framework Module in an Application

This section describes how to include the ADC Periodic Framework Module in an application using the
SSP configurator.

Note
This section assumes you are familiar with creating a project, adding threads, adding a stack to a thread and
configuring a block within the stack. If you are unfamiliar with any of these items, refer to the first few chapters of
the SSP User's Manual to learn how to manage each of these important stepsin creating SSP-based applications.

To add the ADC Periodic Framework to an application, simply add it to a thread using the stacks
selection sequence given in the following table. (The default name for the ADC Periodic Framework is
g_adc_periodic0. This name can be changed in the associated Properties window.)

ADC Periodic Framework Module Selection Sequence

Resource ISDE Tab Stacks Selection Sequence
g_sf adc_periodicOADC Periodic | Threads New Stack> Driver>
Framework on sf_adc_periodic Analog> ADC Periodic

Framework on
sf_adc_periodic

When the ADC Periodic Framework on sf _adc_periodic is added to the thread stack as shown in the
following figure, the configurator automatically adds any needed lower-level modules. Any modules
needing additional configuration information have the box text highlighted in Red. Modules with a
Gray band are individual modules that stand alone. Modules with a Blue band are shared or
common; they need only be added once and can be used by multiple stacks. Modules with a Pink
band can require the selection of lower-level modules; these are either optional or recommended.
(This is indicated in the block with the inclusion of this text.) If the addition of lower-level modules is
required, the module description include Add in the text. Clicking on any Pink banded modules brings
up the New icon and displays possible choices.

R11UMO0161EU0161 Revision 1.61 RENESANAS Page 147 /5,198
Jun.08.2024

Synergy Software Package User’s Manual

Module Overviews > Framework Layer > ADC Periodic Framework > Including the ADC Periodic Framework Module in an Application

New Thread Stacks ¢ | New Stack > x| Remove

¢ g_sf_adc_periodicO ADC Periodic Framework on sf_adc_periodic

®

A
I | |
@ g_adc0 ADC Driveron | | %% Add Timer Driver @ g_transfer0 Transfer
r_adc Driver on r_dtc
Software Activation 1
A A

Figure 104: ADC Periodic Framework Module Stack

Note
The above diagramwill have an "Add ADC Driver" block instead of the "g_adc0" block for the SLJA only.

4.1.1.5 Configuring the ADC Periodic Framework Module

The ADC Periodic Framework Module must be configured by the user for the desired operation. The
available configuration settings and defaults for all the user-accessible properties are given in the
properties tab within the SSP configurator and are shown in the following tables for easy reference.
Only properties that can be changed without causing conflicts are available for modification. Other
properties are locked and not available for changes and are identified with a lock icon for the locked
property in the Properties window in the ISDE. This approach simplifies the configuration process and
makes it much less error-prone than previous manual approaches to configuration. The available
configuration settings and defaults for all the user-accessible properties are given in the Properties
tab within the SSP Configurator and are shown in the following tables for easy reference.

Note
You may want to open your | SDE, create the module and explore the property settings in parallel with looking over
the following configuration table settings. Thiswill help orient you and can be a useful 'hands-on' approach to
learning the ins and outs of developing with SSP.

Configuration Settings for the ADC Periodic Framework Module on sf_adc_periodic

ISDE Property Value Description
Parameter Checking BSP, Enabled, Disabled Enables or disables the
parameter checking.
Default: BSP
Name g_sf adc_periodicO Module name.
Name of the data-buffer to g_user_buffer Name of the 16-bit data buffer
store samples to store samples.
R11UMO0161EU0161 Revision 1.61 RLENESAS Page 148 / 5,198

Jun.08.2024

Synergy Software Package User’s Manual

Module Overviews > Framework Layer > ADC Periodic Framework > Configuring the ADC Periodic Framework Module

Length of the data-buffer 128 Length of the buffer to which
data is to be stored.

Number of sampling iterations |10 Priority of ADC Periodic
Framework internal thread.

Callback g_adc_framework user_callback | User function that will be called
once "sample_counts" number
of data has been buffered.

Name of generated initialization | sf adc_periodic_init0 Name of generated initialization
function function selection.
Auto Initialization Enable, Disable Auto initialization selection.

Default: Enable

Note
The example settings and defaults are for a project using the Synergy STG2 MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the ADC Periodic Framework Module Lower Level Modules

Typically, only a small number of settings must be modified from the default for lower level drivers
as indicated via the red text in the thread stack block. Notice that some of the configuration
properties must be set to a certain value for proper framework operation and will be locked to
prevent user modification. The following tables identify all the settings within the properties section
for the module.

Configuration Settings for the ADC HAL Module on r_adc

ISDE Property Value Description
Parameter Checking BSP, Enabled, Disabled If selected code for parameter
checking is included in the
Default: Enabled build.
Name g_adcO Module name.
Unit 0, 1 (57G2 Only) Specify the ADC Unit to be
used. The S7G2 has two units; 0
Default: 0 and 1.
Resolution 14-Bit (S3A7/S124 Only), 12-Bit, | Specify the conversion
10-Bit (57G2) resolution for this unit.

Default: 8-Bit (S7G2 Only)

Alignment Right, Left Specify the conversion result
alignment.
Default: Right

R11UMO0161EU0161 Revision 1.61 RENESANAS Page 149 /5,198
Jun.08.2024

Synergy Software Package

Module Overviews > Framework Layer > ADC Periodic Framework > Configuring the ADC Periodic Framework Module

User’s Manual

Clear after read

Off, On

Default: On

Specify if the result register
must be automatically cleared
after the conversion result is
read.

Note: If this is enabled, then
watching the result register
using a debugger always
results in a 0.

Mode

Single Scan

The ADC Framework
preconfigures and locks this
field.

Channels 0-6

Unused, Use in Normal/Group A,
Use in Group B

Default: Unused

In Normal mode of operation,
this bitmask field is used to
specify the channels that are
enabled in that ADC unit. For
example, if it is set to 0x101,
then channels 0 and 2 are
enabled. In group mode, this
field is used to specify which
channels belong to group A.

Channels 7-10 (S3A7/5124
Only)

Unused, Use in Normal/Group A,
Use in Group B

Default: Unused

In Normal mode of operation,
this bitmask field is used to
specify the channels that are
enabled in that ADC unit. For
example, if it is set to 0x101,
then channels 0 an