

To our customers,

Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology

Corporation, and Renesas Electronics Corporation took over all the business of both
companies. Therefore, although the old company name remains in this document, it is a valid
Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice
1. All information included in this document is current as of the date this document is issued. Such information, however, is

subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of

semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by
you or third parties arising from the use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as
indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular
application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.

“Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,
especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with
applicable laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-
owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

Regarding the change of names mentioned in the document, such as Hitachi
Electric and Hitachi XX, to Renesas Technology Corp.

The semiconductor operations of Mitsubishi Electric and Hitachi were transferred to Renesas

Technology Corporation on April 1st 2003. These operations include microcomputer, logic, analog

and discrete devices, and memory chips other than DRAMs (flash memory, SRAMs etc.)

Accordingly, although Hitachi, Hitachi, Ltd., Hitachi Semiconductors, and other Hitachi brand

names are mentioned in the document, these names have in fact all been changed to Renesas

Technology Corp. Thank you for your understanding. Except for our corporate trademark, logo and

corporate statement, no changes whatsoever have been made to the contents of the document, and

these changes do not constitute any alteration to the contents of the document itself.

Renesas Technology Home Page: http://www.renesas.com

Renesas Technology Corp.

Customer Support Dept.

April 1, 2003

To all our customers

Cautions

Keep safety first in your circuit designs!

1. Renesas Technology Corporation puts the maximum effort into making semiconductor products better and more reliable, but

there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire

or property damage.

Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i)

placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or (iii) prevention against any malfunction or

mishap.

Notes regarding these materials

1. These materials are intended as a reference to assist our customers in the selection of the Renesas Technology Corporation

product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any

other rights, belonging to Renesas Technology Corporation or a third party.

2. Renesas Technology Corporation assumes no responsibility for any damage, or infringement of any third-party's rights,

originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in

these materials.

3. All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents

information on products at the time of publication of these materials, and are subject to change by Renesas Technology

Corporation without notice due to product improvements or other reasons. It is therefore recommended that customers contact

Renesas Technology Corporation or an authorized Renesas Technology Corporation product distributor for the latest product

information before purchasing a product listed herein.

The information described here may contain technical inaccuracies or typographical errors.

Renesas Technology Corporation assumes no responsibility for any damage, liability, or other loss rising from these

inaccuracies or errors.

Please also pay attention to information published by Renesas Technology Corporation by various means, including the

Renesas Technology Corporation Semiconductor home page (http://www.renesas.com).

4. When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and

algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of

the information and products. Renesas Technology Corporation assumes no responsibility for any damage, liability or other

loss resulting from the information contained herein.

5. Renesas Technology Corporation semiconductors are not designed or manufactured for use in a device or system that is used

under circumstances in which human life is potentially at stake. Please contact Renesas Technology Corporation or an

authorized Renesas Technology Corporation product distributor when considering the use of a product contained herein for

any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea

repeater use.

6. The prior written approval of Renesas Technology Corporation is necessary to reprint or reproduce in whole or in part these

materials.

7. If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license

from the Japanese government and cannot be imported into a country other than the approved destination.

Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is

prohibited.

8. Please contact Renesas Technology Corporation for further details on these materials or the products contained therein.

SuperHTM RISC engine
Simulator/Debugger
User’s Manual

U
ser’s M

anual

Rev.1.0 1999.09

Renesas Microcomputer
Development Environment
System

SPARC: Solaris,
HP9000 Series 700

Cautions

1. Hitachi neither warrants nor grants licenses of any rights of Hitachi’s or any third party’s
patent, copyright, trademark, or other intellectual property rights for information contained in
this document. Hitachi bears no responsibility for problems that may arise with third party’s
rights, including intellectual property rights, in connection with use of the information
contained in this document.

2. Products and product specifications may be subject to change without notice. Confirm that you
have received the latest product standards or specifications before final design, purchase or
use.

3. Hitachi makes every attempt to ensure that its products are of high quality and reliability.
However, contact Hitachi’s sales office before using the product in an application that
demands especially high quality and reliability or where its failure or malfunction may directly
threaten human life or cause risk of bodily injury, such as aerospace, aeronautics, nuclear
power, combustion control, transportation, traffic, safety equipment or medical equipment for
life support.

4. Design your application so that the product is used within the ranges guaranteed by Hitachi
particularly for maximum rating, operating supply voltage range, heat radiation characteristics,
installation conditions and other characteristics. Hitachi bears no responsibility for failure or
damage when used beyond the guaranteed ranges. Even within the guaranteed ranges,
consider normally foreseeable failure rates or failure modes in semiconductor devices and
employ systemic measures such as fail-safes, so that the equipment incorporating Hitachi
product does not cause bodily injury, fire or other consequential damage due to operation of
the Hitachi product.

5. This product is not designed to be radiation resistant.

6. No one is permitted to reproduce or duplicate, in any form, the whole or part of this document
without written approval from Hitachi.

7. Contact Hitachi’s sales office for any questions regarding this document or Hitachi
semiconductor products.

Rev. 1.0, 09/99, page i of vi

Preface

The SuperH RISC engine Simulator/Debugger (referred to in this manual as the
simulator/debugger) is a software tool that simulates the SuperH RISC engine series of
microcomputers to support software development on a host computer.

This manual describes the simulator/debugger overview and its usage. Carefully read this manual
before using the simulator/debugger. For the C/C++ compiler, assembler, inter-module optimizer,
and librarian related to this simulator/debugger, read the following manuals.

• SuperH RISC engine C/C++ Compiler User's Manual

• SuperH RISC engine Assembler User's Manual

• Linkage Editor, Librarian, Object Converter User's Manual

For details on each SuperH RISC engine series microprocessors, refer to appropriate hardware
and programming manuals.

This manual explains the overview of the debugger and how to set up and operate it. For detailed
operation, initiate the simulator/debugger to read the on-line manual.

It is assumed that commands are input from the workstation after the C shell is initiated. When
using another shell, refer to the host system and other related manuals.

The following symbols are used in this manual:

< >: The contents within < > are to be specified.

[]: Parameters enclosed with [] can be omitted.

{A|B}: Either A or B can be selected.

∆: Indicates one or more blank spaces.

(SP): Press the space key.

(RET): Press the return key.

Input: The bold italic face indicates the input by the user.

%: C shell prompt.

Rev. 1.0, 09/99, page ii of vi

Rev. 1.0, 09/99, page iii of vi

Contents

Section 1 Overview..1
1.1 Operating Environment ...1
1.2 Features ...2
1.3 Simulation Range ..2
1.4 Notes..3

Section 2 Simulator/Debugger Functions ..5
2.1 Simulator/Debugger Memory Management ..5
2.2 Endian ...5
2.3 Pipeline Reset Processing..5
2.4 Memory Management Unit (MMU)..6
2.5 Cache...6
2.6 Bus State Controller (BSC) ...7
2.7 Direct Memory Access Controller (DMAC) ...7
2.8 Exception Processing ..7
2.9 Control Registers...9
2.10 Trace..10
2.11 Standard I/O and File I/O Processing ..11
2.12 Break Conditions...12
2.13 Floating-Point Data ...15

Section 3 Operation..17
3.1 Setting a Path and Environment Variables ..17
3.2 Start-up ..18
3.3 Windows..21
3.4 Loading Load Module ...26
3.5 Displaying Source File ..27
3.6 Setting Breakpoints ...28
3.7 Specifying Symbolic Debugging for Addresses..29
3.8 Executing Program..30
3.9 Displaying Variable Contents..31
3.10 Analyzing Execution Performance..33
3.11 Analyzing Stack Use Status...35
3.12 Quit ..36

Section 4 Simulator/Debugger Commands..37
4.1 ASSEMBLE ..41
4.2 BREAK_CLEAR ..42
4.3 BREAK_ENABLE..43

Rev. 1.0, 09/99, page iv of vi

4.4 BREAKACCESS ..44
4.5 BREAKACCESS_DISPLAY..45
4.6 BREAKDATA ..46
4.7 BREAKDATA_DISPLAY..47
4.8 BREAKPOINT..48
4.9 BREAKPOINT_DISPLAY...49
4.10 BREAKREGISTER ..50
4.11 BREAKREGISTER_DISPLAY..52
4.12 BREAKSEQUENCE...53
4.13 BREAKSEQUENCE_DISPLAY..54
4.14 COMPARE..55
4.15 DATA_SEARCH ..56
4.16 DISASSEMBLE..57
4.17 DISPLAY_CHARACTERS..58
4.18 EXEC_MODE...59
4.19 FILE_LOAD ...60
4.20 FILE_SAVE ..62
4.21 GO ..63
4.22 GO_RANGE ...64
4.23 GO_RESET...66
4.24 GO_TILL ..68
4.25 HELP...69
4.26 LOAD_STATUS...70
4.27 LOG ..71
4.28 LOG_ENABLE...72
4.29 LOG_STOP...73
4.30 MAP_CLEAR ...74
4.31 MAP_DISPLAY ...75
4.32 MAP_SET ...77
4.33 MEMORY_DISPLAY ..78
4.34 MEMORY_EDIT..80
4.35 MEMORY_FILL...82
4.36 MEMORY_MOVE ...83
4.37 PERFORMANCE_ANALYSIS..84
4.38 PERFORMANCE_ANALYSIS_CLEAR...85
4.39 PERFORMANCE_ANALYSIS_DISPLAY ...86
4.40 PERFORMANCE_ANALYSIS_ENABLE ..88
4.41 QUIT ...89
4.42 RADIX ..90
4.43 REGISTER..91
4.44 RESET...99
4.45 ROUND_MODE ...100
4.46 SAVE_STATUS ...101

Rev. 1.0, 09/99, page v of vi

4.47 STACK_ANALYSIS ..102
4.48 STACK_ANALYSIS_DISPLAY ...103
4.49 STATUS..105
4.50 STEP..107
4.51 STEP_G...108
4.52 STEP_INTO ..110
4.53 STEP_INTO_G ...112
4.54 TLB (Only for the SH-3/SH-3E/SH-4 Series)...114
4.55 TLB_DUMP (Only for the SH-3/SH-3E/SH-4 Series) ...117
4.56 TLB_FLUSH (Only for the SH-3/SH-3E/SH-4 Series) ..119
4.57 TLB_SEARCH (Only for the SH-3/SH-3E/SH-4 Series) ...120
4.58 TRACE..121
4.59 TRACE_CONDITION..127
4.60 TRACE_CLEAR...128
4.61 TRAP_ADDRESS...129
4.62 TRAP_ADDRESS_DISPLAY..145
4.63 TRAP_ADDRESS_ENABLE...146
4.64 .<register> ...147
4.65 Limitations ..150

Section 5 Message List ..153
5.1 Information Messages ...153
5.2 Error Messages ..154

Section 6 Windows and Dialog Boxes...163

Section 7 How to Create CPU Information File ..165
7.1 Functions of CPU Information File Creating Program (CIA) ...165
7.2 Invoking CIA...165
7.3 CIA Usage Procedures and Selection Menus ..166
7.4 CIA Sample Sessions ..169
7.5 CIA Limitations...173

Rev. 1.0, 09/99, page vi of vi

Figures
Figure 3.1 Set Up Window ..20
Figure 3.2 Base Window..21
Figure 3.3 Subwindow and Help Window...24
Figure 3.4 Error Window and Manual Window ..25
Figure 3.5 Example of Load Module Selection ...26
Figure 3.6 Example of Source File Selection...27
Figure 3.7 Example of Setting Breakpoint...28
Figure 3.8 Example of Input on Execution Window..30
Figure 3.9 Example of Variable Content Display ..32
Figure 3.10 Example of Performance Display ...34
Figure 3.11 Example of Stack Trace Display ..35
Figure 3.12 Example of Input on Quit Window...36
Figure 7.1 CIA Usage Procedure ...166

Tables
Table 2.1 Memory Types..5
Table 2.2 Memory Types for the SH-4 Series ..7
Table 2.3 Processing When a Break Condition is Satisfied..12
Table 2.4 Simulation Errors..13
Table 2.5 Register States at Simulation Error Stop ..14
Table 4.1 Simulator/Debugger Command List ...37
Table 4.2 Vector Table ...66
Table 4.3 System Call Functions ..130
Table 4.4 Special Value Expressions in Single-Precision ..151
Table 4.5 Special Value Expressions in Double-Precision...151
Table 5.1 Information messages ...153
Table 5.2 Error Messages ...154
Table 6.1 Menu and Function...163
Table 7.1 CIA Limitations ..173

Rev. 1.0, 09/99, page 1 of 173

 Section 1 Overview

 This simulator/debugger provides the CPU simulation and debugging function for SuperH RISC
engine series microcomputers to support simulation for the SH-1, SH-2, SH-3, SH-4, SH-2E,
SH-3E and SH-DSP series. The simulator/debugger Ver. 2 promotes efficient debugging of
programs written in the C++ language in addition to those written in the C or assembly language.

 This simulator/debugger operates together with the user interface software that runs on the
workstation.

 1.1 Operating Environment

 This simulator/debugger supports the following machine environments as a host system.

 (1) Machine with SPARC*1 (hereinafter referred to as SPARC)

 Operating system (OS): Solaris version*2 2.4 (OSF/Motif*3)

 Window system: OSF/Motif

 Memory capacity: 32 Mbytes or more (differs depending on the system operating status)

 Disk capacity: 30 Mbytes or more (including free space required for performing
operations)

 (2) HP9000 series 700*4 (hereinafter referred to as HP9000)

 Operating system (OS): HP-UX 10.2*5

 Window system: OSF/Motif

 Memory capacity: 32 Mbytes or more (differs depending on the system operating status)

 Disk capacity: 30 Mbytes or more (including free space required for performing
operations)

 (3) Software configuration

 The simulator/debugger is configured as follows:

 Installer: cas_install

 Interface software: csdsh, dbgif

 Simulator/debugger: sdsh12, sdshdsp, sdsh3e, sdsh2e, sdsh4

 CPU information file creation program: ciash, ciashdsp, ciash4

 Notes: 1. SPARC is a CPU and workstation administrated by SPARC International, Inc., and is

based on the architecture developed by Sun Microsystems, Inc. (United States).

 2. Solaris is a trademark of Sun Microsystems, Inc. (United States).

 3. OSF/Motif is a trademark of Open Software Foundation, Inc. (United States).

 4. HP9000 Series 700 is a trademark of Hewlett-Packard Company. (United States).

 5. HP-UX is a trademark of Hewlett-Packard Company. (United States).

Rev. 1.0, 09/99, page 2 of 173

 1.2 Features

 (1) Since the simulator/debugger runs on a host computer, software debugging can start without
using an actual SuperH RISC engine user system, thus reducing overall system development
time.

 (2) The simulator/debugger performs a pipeline simulation to calculate the number of instruction
execution cycles for a program, thus enabling performance evaluation without using an actual
SuperH RISC engine user system.

 (3) The simulator/debugger offers the following features and functions that enable efficient
program testing and debugging.

 The ability to handle SuperH RISC engine CPUs

 Functions to trace instructions or subroutines

 Functions to stop or continue execution when an error occurs during user program
execution

 Function-unit performance measurement

 A comprehensive set of break functions

 Functions to define and modify memory areas

 1.3 Simulation Range

 (1) The simulator/debugger supports the following SuperH RISC engine microcomputer
functions.

 All execution instructions (pipeline simulation)

 Exception processing

 Registers

 All address areas

 MMU (only for SH-3, SH-3E, and SH-4 series)

 Cache (only for SH-3, SH-3E, and SH-4 series)

 DMAC (only for SH-4 series)

 BSC (only for SH-4 series)

 FPU (only for SH-2E, SH-3E, and SH-4 series)

 (2) The simulator/debugger does not support the following SuperH RISC engine microcomputer
functions. Programs that use these functions must be debugged with the SuperH RISC
engine emulator.

 Timer

 Serial communication interface

 I/O port

 Interrupt controller (INTC)

Rev. 1.0, 09/99, page 3 of 173

 1.4 Notes

 (1) When loads to the host computer is large, such as when many processes are operating, the
simulator/debugger cannot be initiated even when the memory capacity specified above is
available.

 (2) When using an X Window System*6 terminal, it must be the one on which the window system
for the host computer can operate.

 (3) Terminating subwindow display

 Subwindow display, such as Dump window display, cannot be terminated by clicking the
Close or Cancel button. Click the STOP button of the base window and then the Close or
Cancel button to close a subwindow.

 (4) Terminating simulator/debugger

 The simulator/debugger cannot be terminated during debugger command processing. Click
the STOP button of the base window to abort the processing and then terminate the
simulator/debugger.

 (5) Re-initiating simulator/debugger

 The simulator/debugger operates with two processes: csdsh and dbgif. Selecting Quit in the
window menu forcibly terminates only the csdsh process, and or dbgif may remain. In this
case, the integrated development manager cannot be re-initiated. Terminate dbgif in the
following way:

 Example: Check if dbgif process remains while the integrated development manager is not
operating:

 %ps -e|grep dbgif(RET)

 689 pts/4 1:32 dbgif

 If dbgif process remains, forcibly terminate it with the kill command:

 %kill -9 <PID>(RET)

 <PID>: The process number displayed at the beginning of the ps command execution result
(689 in the above example)

 (6) If the following error message is output when the integrated development manager is initiated
on SPARC, set with environment variable LD_LIBRARY_PATH the name of the directory in
which the dynamic link library (libXt) is stored.

 <Error message>

 ld.so.x: csdsh: fatal: libXt.so.x: can't open file: error=2

 When environment variable LD_LIBRARY_PATH has not been specified

 %setenv LD_LIBRARY_PATH <directory that stores library>(RET)

 When environment variable LD_LIBRARY_PATH has been specified

 %setenv LD_LIBRARY_PATH <directory specified before>:<directory that stores
library>(RET)

 Notes: 6. X Window System is a product designed by Massachusetts Institute of Technology.

Rev. 1.0, 09/99, page 4 of 173

Rev. 1.0, 09/99, page 5 of 173

 Section 2 Simulator/Debugger Functions

 This section describes the SuperH RISC engine simulator/debugger Ver. 2. Note that the
endian, MMU, cache, and control registers can be used only in the SH-3, SH-3E, and SH-4 series,
and BSC and DMAC can be used only in the SH-4 series.

 2.1 Simulator/Debugger Memory Management

 (1) Memory Map Specification

 A memory map is specified to calculate the number of memory access cycles during
simulation. The simulator/debugger supports the memory types shown in table 2.1.

Table 2.1 Memory Types

 Memory Type User Program Execution

 Internal ROM area (X-ROM, Y-ROM) Enabled

 Internal RAM area (X-RAM, Y-RAM) Enabled

 External bus area Enabled

 Internal I/O area Disabled

 A memory map is specified by a CPU information file. For how to create a CPU information
file, refer to section 7, How to Create CPU Information File.

 (3) Memory resource allocation

 A memory resource is automatically allocated by loading the user program.

 An area not defined in the program, however, is not allocated. In this case, allocate a memory
resource using the MAP_SET command.

 (4) SH-4 memory management

 The bus width of area 0 and the size of MPX memory and NORMAL memory must be
specified in the CPU information file. Other settings must be specified in the BSC register.

 2.2 Endian

 In the SH-3, SH-3E, and SH-4 series, little endian as well as big endian can be specified as the
data allocation format in the memory; a user program created in the little endian format can also
be simulated and debugged. The endian can be selected by the option when the
simulator/debugger is started. For details on the option, refer to section 3.2, Start-up.

 2.3 Pipeline Reset Processing

 The simulator/debugger, which simulates the pipeline, resets the pipeline when:

Rev. 1.0, 09/99, page 6 of 173

• The program counter (PC) is modified after the instruction simulation stops and before it
restarts.

• The GO command to which the execution start address has been specified is executed.

• Initialization is performed or a program is loaded.

• Memory data being currently fetched and decoded is rewritten.

 When the pipeline is reset, data already fetched and decoded is cleared, and new data is fetched
and decoded from the current PC. In addition, the number of executed instructions and the
number of instruction execution cycles are cleared to zero.

 2.4 Memory Management Unit (MMU)

 For the SH3, SH3E, and SH-4 series, the simulator/debugger simulates MMU operations such as
TLB operations, address translation, or MMU-related exceptions (TLB miss, TLB protection
exception, TLB invalid exception, and initial page write). The user program using address
translation by the MMU can be simulated and debugged. In addition, the MMU-related exception
handler routines can be simulated and debugged.

 As well as during user program execution, the MMU translates virtual addresses into physical
addresses during address display or input in the dialog boxes or windows. Therefore, in the dialog
boxes and windows, memory can be accessed with the virtual addresses used in the user program.
The MMU operations depend on the MCU type.

 2.5 Cache

 For the SH-3, SH-3E, and SH-4 series, the simulator/debugger simulates operations of the cache.
Cache operations during user program execution can be monitored.

 In the simulator/debugger, the cache hit ratio can be displayed with the STATUS command.

 Checking and Displaying the Cache Hit Ratio: The simulator/debugger displays the cache hit
ratio in percentage with the STATUS command. The cache hit ratio is obtained by dividing the
cache hit count by the cache access count (the sum of the cache hit count and cache miss count).

 Initializing the Cache Hit Ratio: The displayed cache hit ratio is reset to zero when the
simulator/debugger is initiated, the pipeline is reset, or the CCR register value is modified.

 Note: The simulator/debugger does not change the high-order three bits of the address tag stored
in a cache address array to zeros.
When loading memory to the area to which the cache has been mapped by selecting the
[File Load] menu, turn the AT bit of the MMUCR off to disable the MMU.

Rev. 1.0, 09/99, page 7 of 173

 2.6 Bus State Controller (BSC)

For the SH-4 series, the simulator/debugger has the functions for specifying and modifying the
memory map to use the BSC; the user program using the BSC can be debugged.

Table 2.2 lists the memory types that can be specified for the SH-4 series.

Table 2.2 Memory Types for the SH-4 Series

Address Specifiable Memory Types

H'00000000 to H'03FFFFFF (area 0) Normal memory, burst ROM, and MPX

H'04000000 to H'07FFFFFF (area 1) Normal memory, byte control SRAM, and MPX

H'08000000 to H'0BFFFFFF (area 2) Normal memory, DRAM, SDRAM, and MPX

H'0C000000 to H'0FFFFFFF (area 3) Normal memory, DRAM, SDRAM, and MPX

H'10000000 to H'13FFFFFF (area 4) Normal memory, byte control SRAM, and MPX

H'14000000 to H'17FFFFFF (area 5) Normal memory, burst ROM, and MPX

H'18000000 to H'1BFFFFFF (area 6) Normal memory, burst ROM, and MPX

H'1C000000 to H'1FFFFFFF (area 7) Cannot be specified

H'7C000000 to H'7C001FFF Internal RAM (cannot be changed)

H'E0000000 to H'FFFFFFFF I/O (cannot be changed)

The high-order three bits of the addresses for areas 0 to 7 in table 2.2 must be ignored;
H'00000000 and H'20000000 are both in area 0.

The simulator/debugger does not support the PCMCIA.

 2.7 Direct Memory Access Controller (DMAC)

For the SH-4 series, the simulator/debugger simulates the 4-channel DMAC operations; the user
program using the DMAC can be debugged.

 2.8 Exception Processing

 The simulator/debugger detects the generation of exceptions corresponding to TRAPA
instructions, general illegal instructions, slot illegal instructions, and address errors. In addition,
for the SH-3, SH-3E, and SH-4 series, the simulator/debugger simulates MMU-related exception
processing (TLB miss, TLB protection exception, TLB invalid exception, and initial page write).
For the SH-2E, SH-3E, and SH-4 series, the simulator/debugger also simulates FPU exception
processing. This also enables simulation when an exception occurs.

 Exception processing is simulated as follows according to the execution mode selected by the
EXEC_MODE command.

Rev. 1.0, 09/99, page 8 of 173

 (1) SH-1, SH-2, SH-2E, and SH-DSP Series:

 [1] When [C (continue)] is selected (continue mode):

 (a) Detects an exception during instruction execution.

 (b) Saves the PC and SR in the stack area.

 (c) Reads the start address from the vector address corresponding to the vector number.

 (d) Starts instruction execution from the start address. If the start address is 0, the
simulator/debugger stops exception processing, displays that an exception processing
error has occurred, and enters the command input wait state.

 [2] When the [S (stop)] is selected (stop mode):

 Executes steps (a) to (c) above, then stops.

 (2) SH-3 and SH-3E Series:

 [1] When [C (continue)] is selected (continue mode):

 (a) Detects an exception during instruction execution.

 (b) Saves the PC and SR to the SPC and SSR, respectively.

 (c) Sets the BL bit, RB bit, and MD bit in the SR to 1s.

 (d) Sets an exception code in control registers EXPEVT. If necessary, appropriate values
are set in other control registers.

 (e) Sets the PC to the vector address corresponding to the exception cause. (If an exception
is detected when the BL bit in the SR is 1, reset vector address H'A0000000 is set
regardless of the exception cause.)

 (f) Starts instruction execution from the address set in the PC.

 [2] When the [S (stop)] is selected (stop mode):

 Executes steps (a) to (e) above, then stops.

 (3) SH-4 Series:

 [1] When [C (continue)] is selected (continue mode):

 (a) Detects an exception during instruction execution.

 (b) Saves the PC and SR to the SPC and SSR, respectively.

 (c) Sets the BL bit, RB bit, and MD bit in the SR to 1s.

 (d) Sets the FD (FPU disable) bit in the SR to 0 at reset.

 (e) Sets an exception code in control register EXPEVT. If necessary, appropriate values
are set in other control registers.

 (f) Sets the PC to the vector address corresponding to the exception cause. (If an exception
is detected when the BL bit in the SR is 1, reset vector address H'A0000000 is set
regardless of the exception cause.)

 (g) Starts instruction execution from the address set in the PC.

 [2] When the [S (stop)] is selected (stop mode):

 Executes steps (a) to (f) above, then stops.

Rev. 1.0, 09/99, page 9 of 173

 2.9 Control Registers

 For the SH-3, SH-3E, and SH-4 series, the simulator/debugger supports the memory-mapped
control registers that are used for exception processing, MMU control, and cache control. In
addition, for the SH-4 series, the simulator/debugger supports the control registers that are used
for BSC control and DMAC control. Therefore, a user program using exception processing,
MMU control, and cache control can be simulated and debugged.

 MMU PTEH: Page table entry high register
PTEL: Page table entry low register

TTB: Translation table base register
TEA: TLB exception address register

MMUCR: MMU control register

 Exception processing TRA: TRAPA exception register
EXPEVT: Exception event register
INTEVT: Interrupt event register

 Cache CCR: Cache control register
QACR0 and QACR1*: Queue address control registers 0 and 1

 BSC BCR1 and BCR2*: Bus control registers 1 and 2
WCR1 to WCR3*: Wait state control registers 1 to 3

MCR*: Individual memory control register
RTCSR*: Refresh timer control/status register
RTCNT*: Refresh timer/counter
RTCOR*: Refresh time constant register

RFCR*: Refresh count register

 DMAC SAR0 to SAR3*: DMA source address registers 0 to 3
DAR0 to DAR3*: DMA destination address registers 0 to 3

DMATCR0 to DMATCR3*: DMA transfer count registers 0 to 3
CHCR0 to CHCR3*: DMA channel control registers 0 to 3

DMAOR*: DMA operation register

Note: The registers marked with * are supported only for the SH-4 series.

 The simulator/debugger does not support the PCMCIA interface and the synchronous DRAM
mode register.

Rev. 1.0, 09/99, page 10 of 173

 2.10 Trace

 The simulator/debugger writes the execution results into the trace buffer, which can hold the
results for up to 1024 instructions. The trace information acquisition conditions are specified by
the TRACE_CONDITION command. The acquired trace information is displayed on the Trace
window.

 The trace information displayed in the Trace window depends on the target CPU as follows.

 (1) SH-1, SH-2, SH-2E, and SH-DSP Series:

 C/C++ or assembly-language source programs

 Total number of instruction execution cycles

 Instruction address

 Pipeline execution status

 Instruction mnemonic

 Data access information (destination and accessed data)

 (2) SH-3 and SH-3E Series:

 C/C++ or assembly-language source programs

 Total number of instruction execution cycles

 Data on the address bus

 Data on the data bus

 Instruction code

 Instruction number

 Instruction mnemonic

 Instruction number that was fetched

 Instruction number that was decoded

 Instruction number that was executed

 Instruction number that accessed memory

 Instruction number that wrote back data

 Data access information (destination and accessed data)

 (3) SH-4 Series:

 C/C++ or assembly-language source programs

 Total number of instruction execution cycles (CPU internal clock)

 Program counter address

 Instruction number that was fetched

 Number of the instruction that has been executed (E), accessed memory (A), or wrote back
data (S) by EX pipeline simulation

 Number of the instruction that has been executed (E), accessed memory (A), or wrote back
data (S) by LS pipeline simulation

Rev. 1.0, 09/99, page 11 of 173

 Number of the instruction that has been executed (E), accessed memory (A), or wrote back
data (S) by BR pipeline simulation

 Number of the instruction that has been executed (E), accessed memory (A), or wrote back
data (S) by FP pipeline simulation

 Instruction number assigned to the instruction to be executed

 Memory address, instruction code, and mnemonic of the instruction to be executed.

 Data access information (destination and accessed data)

 2.11 Standard I/O and File I/O Processing

 The simulator/debugger supports the standard I/O and file I/O processing to enable input and
output between the user program and standard I/O devices (console and keyboard). The supported
I/O processing is as follows:

• One-byte input and output through the standard input/output device

• One-line input and output through the standard input/output device

• Opens and closes a file

• Inputs and outputs one byte from and to a file

• Inputs and outputs a line from and to a file

• Checks the end of file (EOF)

• Moves and/or acquires the current address of the file pointer

 The TRAP_ADDRESS command is used to enable this function. Write a subroutine branch
instruction (BSR, JSR or BSRF) to a specific address for input or output in the user program.
After initiating the simulator/debugger, specify the address using the TRAP_ADDRESS command
to execute the program. During executing the instruction of the user program, the
simulator/debugger executes I/O processing using the contents of R0 and R1 as parameters after
detecting a subroutine call instruction (BSR, JSR or BSRF) to a specified address. After
completing I/O processing, simulation restarts from the instruction following the subroutine call
instruction. For details, refer to section 4.61, TRAP_ADDRESS.

 Note: When a JSR, BSR, or BSRF instruction is used as a system call instruction, the instruction
following the system call instruction is executed as a normal instruction, not a slot
instruction. Therefore, the instruction placed immediately after the system call instruction
(JSR, BSR, or BSRF) must not be one that produces different results depending on
whether executed as a normal instruction or as a slot instruction.

Rev. 1.0, 09/99, page 12 of 173

 2.12 Break Conditions

 The simulator/debugger provides the following conditions for interrupting the simulation of a user
program during execution.

• Break due to the satisfaction of a break command condition

• Break due to the detection of an error during execution of the user program

• Break due to a trace buffer overflow

• Break due to execution of the SLEEP instruction

• Break due to the [Stop] button

 (1) Break Due to the Satisfaction of a Break Command Condition

 There are five break commands as follows:

 BREAKPOINT: Break based on the address of the instruction executed

 BREAKACCESS: Break based on access to a range of memory

 BREAKDATA: Break based on the value of data written to memory

 BREAKREGISTER: Break based on the value of data written to a register

 BREAKSEQUENCE: Break based on a specified execution sequence

 When a break condition is satisfied during user program execution, the instruction at the
breakpoint may or may not be executed before a break depending on the type of break, as
listed in table 2.3.

Table 2.3 Processing When a Break Condition is Satisfied

 Command Instruction When a Break Condition is Satisfied

 BREAKPOINT Not executed

 BREAKACCESS Executed

 BREAKDATA Executed

 BREAKREGISTER Executed

 BREAKSEQUENCE Not executed

 For BREAKPOINT and BREAK_SEQUENCE, if a breakpoint is specified at an address other
than the beginning of the instruction, the break condition will not be detected.

 When a break condition is satisfied during user program execution, a break condition
satisfaction message is displayed and execution stops.

Rev. 1.0, 09/99, page 13 of 173

 (2) Break Due to the Detection of an Error During Execution of the User Program

 The simulator/debugger detects simulation errors, that is, program errors that cannot be
detected by the CPU exception generation functions. The EXEC_MODE command specifies
whether to stop or continue the simulation when such an error occurs. Table 2.4 lists the error
messages, error causes, and the action of the simulator/debugger in the continue mode.

Table 2.4 Simulation Errors

 Error Message Error Cause Processing in Continue Mode

 Memory Access
Error

 Access to a memory area that has not
been allocated
Write to a memory area having the write
protect attribute
Read from a memory area having the
read disable attribute
Access to a memory area where memory
does not exist

 On memory write, nothing is written;
on memory read, all bits are read as
1

 Illegal Operation Zero division executed by the DIV1
instruction

 Operates similar to the actual device
operation

 Illegal DSP
Operation

 Shift of more than 32 bits executed by the
PSHA instruction
Shift of more than 16 bits executed by the
PSHL instruction

 Operates similar to the actual device
operation

 Invalid DSP
Instruction Code

 Invalid DSP instruction code Always stops

 TLB Multiple Hit Hit to multiple TLB entries at MMU
address translation

 Undefined

When a simulation error occurs in the stop mode, the simulator/debugger returns to the
command wait state after stopping instruction execution and displaying the error message.
Table 2.5 lists the states of the program counter (PC) and status register (SR) at simulation
error stop.

Rev. 1.0, 09/99, page 14 of 173

Table 2.5 Register States at Simulation Error Stop

 Error Message PC Value SR Value

 Memory Access
Error

 When an instruction is read:

• SH-DSP

 The third instruction address before the instruction that caused the
error.

• SH-1, SH-2, SH-3, SH-3E, SH-2E, and SH-4

 The instruction address before the instruction that caused the
error.
The slot address if an error occurs when a branch destination is
read.

 When an instruction is executed:

 The instruction address following the instruction that caused the
error.

 Unchanged

 Illegal Operation The instruction address following the instruction that caused the error.

 Illegal DSP
Operation

 The second instruction address following the instruction that caused
the error.

 Invalid DSP
Instruction Code

 The second instruction address following the instruction that caused
the error.

 TLB Multiple Hit The address of the instruction that caused the error.

 Use the following procedure when debugging programs which include instructions that
generate simulation errors.

 (a) First execute the program in the stop mode and confirm that there are no errors except
those in the intended locations.

 (b) After confirming the above, execute the program in the continue mode.

 Note: If an error occurs in the stop mode and simulation is continued after changing the
simulator mode to the continue mode, simulation may not be performed correctly. When
restarting a simulation, always restore the register contents (general, control, and system
registers) and the memory contents to the state prior to the occurrence of the error.

 (3) Break Due to Trace Buffer Full

 With the break mode specified by the TRACE_CONDITION command, the
simulator/debugger stops its execution when the trace buffer becomes full during instruction
execution, displaying the following message.

 Trace buffer full

Rev. 1.0, 09/99, page 15 of 173

 (4) Break Due to Execution of the SLEEP Instruction

 When the SLEEP instruction is executed during instruction execution, the simulator/debugger
stops execution. The following message is displayed when execution is stopped.

 Sleep

 Note: When restarting execution, change the PC value to the instruction address at the restart
location.

 (5) Break Due to the [Stop] Button or Ctrl + C Keys

 Users can forcibly terminate execution by pressing the [Stop] button or Ctrl + C keys during
instruction execution. The following message is displayed when execution is terminated.

 User break

 Execution can be resumed with the GO or STEP command.

 2.13 Floating-Point Data

 Floating-point numbers can be displayed and input for the following real-number data, which
makes floating-point data processing easier.

• Data when the [Break Data] or [Break Register] menu is opened

• Data on the Dump window

• Register value on the Registers window

• Input value in the Registers window

 The floating-point data format conforms to the ANSI C standard.

 When floating-point data is converted from decimal to binary, the rounding mode of the following
two can be selected by the ROUND_MODE command.

• RN mode (Round to Nearest)

• RZ mode (Round to Zero: default)

 If a denormalized number is specified for binary-to-decimal or decimal-to-binary conversion, it is
converted to zero in the RZ mode, but it is not converted and is left as a denormalized number in
the RN mode. If an overflow occurs for decimal-to- binary conversion, the maximum floating
point number is specified for the RZ mode and infinity is specified for the RN mode.

Rev. 1.0, 09/99, page 16 of 173

Rev. 1.0, 09/99, page 17 of 173

 Section 3 Operation

 This section explains how to start the interface software and check the simulator/debugger
operation.

This section assumes that the user knows how to operate the window system on the host computer.

 3.1 Setting a Path and Environment Variables

 Manually set a path and environment variables when not using the installer to add them to the
shell script.

 (1) Setting Path: Add the directory of the interface software (csdsh) to the current path
specification.

 %set∆∆∆∆path=($path∆∆∆∆<interface software directory path>)(RET)

 (2) Setting Environment Variables: The interface software uses the following environment
variables.

 HS_CA_HOM

 Specifies the directory of the interface software definition files.

 %setenv∆∆∆∆HS_CA_HOM∆∆∆∆<definition file directory path> (RET)

 HS_CA_DEF

 Specifies the summary file for the interface software definition files.

 %setenv∆∆∆∆HS_CA_DEF∆∆∆∆<summary file name> (RET)

 HS_CA_INT

 Specifies a setup file to automatically determine the initial settings during interface
software initiation. Specify a setup file on the current directory by referring to the setup
file sample on the definition file directory. Refer to section 3.2, Start-up, for details on the
setup file contents.

 %setenv∆∆∆∆HS_CA_INT∆∆∆∆<setup file name> (RET)

 HS_CA_SIM

 Specifies a CPU type to automatically determine the CPU of the interface software.
Specify SH1, SH2, SH3, SH4, SH2E, SH3E, or SH-DSP for the CPU type.

 %setenv∆∆∆∆HS_CA_SIM∆∆∆∆<CPU type> (RET)

Rev. 1.0, 09/99, page 18 of 173

3.2 Start-up

 (1) Interface software start-up

 The interface software command format is as follows:

 % csdsh[∆∆∆∆<setup file name>](RET)

 After start-up, the following message appears.

 SH SERIES CYCLE-ACCURATE SIMULATOR/DEBUGGER Vn.m

 Copyright (C) Hitachi,Ltd.1998

 Copyright (C) Hitachi ULSI System Co.,Ltd.1998

 Licensed Material of Hitachi,Ltd.

 (2) Setup file

 Used for specifying the simulator, backup file and replay file to be used.

 Use the editor to create the setup file. When the setup file is not specified at start-up, the setup
window as shown in figure 3.1 appears, in which each item explained below needs to be
entered.

 Each item is specified in the setup file or on the setup window as follows:

 (a) Simulator specifications

 The simulator specifying format is as follows (see below for the parameter at start-up):

 <simulator/debugger name>[∆<parameter at start-up>]

SH-1/SH-2 series:

sdsh12[∆-cpu=<CPU information file name>](RET)

(1) (2)

SH-2E series:

sdsh2e[∆-cpu=<CPU information file name>](RET)

(1) (2)

SH-DSP series:

sdshdsp[∆-cpu=<CPU information file name>](RET)

(1) (2)

SH-3/SH-3E series:

sdsh3e[∆-cpu=<CPU information file name>][∆-endian={big|little}](RET)

(1) (2) (3)

SH-4 series:

sdsh4[∆-cpu=<CPU information file name>][∆-endian={big|little}](RET)

(1) (2) (3)

Rev. 1.0, 09/99, page 19 of 173

 Description: (1) The command name of the simulator/debugger program registered in the host
computer.

 (2) When this option is specified, the simulator/debugger reads CPU information
from the specified file to use it as a memory map.

 ".cpu" is assumed when no file format is specified.

 (3) Specifies the endian type (for SH-3, SH-3E, and SH-4 series only)

 big: Big endian

 little: Little endian

 (b) Backup file specifications (omissible)

 The backup file, which can be created when quitting the simulator/debugger, is used to
save the window position and size as well as the settings on the window. By specifying the
backup file at start-up, the settings at the previous quitting can be restored. The backup file
is specified as follows:

 BAK∆<backup file name>

 (c) Replay file specifications (omissible)

 The replay file, which can be created using the recording function of the
simulator/debugger, is used to save operation on the simulator/debugger (inputs of the
simulator/debugger commands and clicks of the buttons). By specifying the replay file at
start-up, default settings and other operation required for debugging can be automatically
executed. The replay file is specified as follows:

 REP∆<replay file name>

 (d) Example of setup file

 An example of specifying the backup and replay files using the SH-3 simulator/debugger is
as follows:

 # Set up file

 sdsh3e

 BAK backup

 REP recover

Rev. 1.0, 09/99, page 20 of 173

(3) Set Up window

 Displays the items specified in the setup file.

 When the setup file is specified with environment variable HS_CA_INT, the contents of the
setup file are displayed. When the setup file is specified on the command line, the interface
software is started with the contents of the setup file specified on the command line, and this
window will not be displayed.

Figure 3.1 Set Up Window

Rev. 1.0, 09/99, page 21 of 173

3.3 Windows

 (1) Base window

 The interface software displays the base window after setup. Operation executed on this
window is as follows: source file display, program execution, source level debugging such as
break point setting, release, and symbol content display, subwindow selection, and
simulator/debugger command input.

Figure 3.2 Base Window

Rev. 1.0, 09/99, page 22 of 173

 (a) Menu bar

 The menu bar has the following items (refer to section 6, Windows and Dialog Boxes, for
details):

• File: Selects the subwindow for file-related operation (e.g. loading and saving).

• View: Selects the subwindow for display-related operation such as registers, symbols
and disassembly.

• Execute: Selects the subwindow for execution-related operation.

• Break: Selects the subwindow for break-related operation.

• Trace: Selects the subwindow for trace-related operation.

• Help: Selects the subwindow having the help function.

 (b) Source file name

 Displays the name of the source file displayed in the source area with the absolute path
name.

 (c) Source area

• Displays the source file contents of the user load module.

• Mark "PC->" shows the line where execution has stopped (value of the program
counter).

 The display of the source file contents is updated at execution stop.

• Mark "BP->" shows the line where a breakpoint is set.

 (d) Command button

 Available command buttons are as follows:

• Step Into

 When a function call exists in the source line indicated by the program counter,
executes up to the first line of the called function.

• Step

 Executes the line indicated by the program counter. If a function call exists in the
source line, execution stops after executing the whole of the function.

• Step Out

 When the program counter indicates a line in a function, executes the function and
stops when returning to the calling function.

• Continue

 Starts execution from the address indicated by the program counter.

• Go To

 Executes to the line selected in the source area (clicked line)

• Reset

 Executes the Reset command of the debugger.

• Stop

 Forcibly stops the running debugger command.

Rev. 1.0, 09/99, page 23 of 173

• Set

 Sets a breakpoint on the line selected in the source area (clicked line), displaying the
"BP->" mark. If a breakpoint cannot be set on the selected line (no corresponding
address found), the address is searched in the direction to the smaller line number to set
a breakpoint.

• Clear

 Clears the breakpoint on the line selected in the source area (clicked line), clearing the
"BP->" mark.

• Help

 Outputs these descriptions on the help window.

• Up

• Down

Changes the display ratio (in the vertical direction) of the source and command areas.

Up: Reduces the source area and expands the command area.

Down: Expands the source area and reduces the command area.

Note: On a load module which has been optimally compiled, the "PC->" mark in the source area
may not move as intended in the source file during program execution using the Step, Step
Into, Step Out, Continue or Go To button.

(e) Command area

Used to directly input simulator/debugger commands and display the results of command
execution. For available commands, refer to section 4, Simulator/Debugger Commands.

Rev. 1.0, 09/99, page 24 of 173

(2) Subwindow and help window

The subwindow is opened by pulling the menu button on the base window down and selecting
the menu item ("Menu Item..."). Each subwindow also has the Help button to open the help
window for displaying its functions.

Figure 3.3 Subwindow and Help Window

Rev. 1.0, 09/99, page 25 of 173

(3) Error window and manual window

When an error occurs, the error window is opened to display error messages. Using the
Manual button on the error window, the manual window for explaining error messages can be
opened. When there are several messages, select the one you want to view on the error
window and then press the Manual button.

Figure 3.4 Error Window and Manual Window

Rev. 1.0, 09/99, page 26 of 173

3.4 Loading Load Module

Use the File Load window to load a load module. Input the file name output by the inter-module
optimizer and press the CA&DEBUGGER button, which automatically triggers the
simulator/debugger to allocate load module memory.

When the source file has been moved from the directory where the source file was stored when the
load module was output by the inter-module optimizer, enter the path for the old source file
directory in the Old Path Name in the File Load window, and enter the path for the current source
file directory in the New Path Name.

Figure 3.5 Example of Load Module Selection

Rev. 1.0, 09/99, page 27 of 173

3.5 Displaying Source File

The source file can be displayed or the file to display can be changed by the following procedure.

(a) After loading is completed, open the Source Files window or Function Name window.

(b) Select the Source Files or Function Name to display and press the Base Window Display
button.

Figure 3.6 Example of Source File Selection

Rev. 1.0, 09/99, page 28 of 173

3.6 Setting Breakpoints

A breakpoint can be set by specifying the source line in the source area and pressing the Set
button. To clear the breakpoint, specify the source line and press the Clear button.

Figure 3.7 Example of Setting Breakpoint

Rev. 1.0, 09/99, page 29 of 173

3.7 Specifying Symbolic Debugging for Addresses

Addresses can be symbolically input using line numbers, function names or variable names
instead of numeric values (see figure 3.8).

This section explains how to specify symbols. <unit name> is a character string excluding
".<suffix>" from the object module file name output by the compiler or the assembler. When
<unit name> and <file name> include no special characters (other characters than alphanumerics,
"_" or $), double quotation mark (") can be omitted.

(1) Line number

[& <unit name>]% <file name> #<line number>

Specify <unit name> when the specified source file is included in several units.

(2) Function name

[& <unit name>] |<function name>

Specify <unit name> when the specified function name is used in several units as an internal
function.

(3) Variable name

For variable names, variable and constant names of C language and label and EQU names of
the assembly language can be specified. For EQU names, values are assumed as addresses.
When specifying a structure or union member of the C language, input it in the format of
<structure name. member name>.

(a) Externally defined variable

!<variable name>

(b) Variable inside a unit

&" <unit name>" !<variable name>

(c) Variable name inside a function

[&" <unit name>"] |<function name>!<variable name>

Specify <unit name> when the specified function name is used in several units as an
internal function.

Rev. 1.0, 09/99, page 30 of 173

3.8 Executing Program

Programs can be executed by specifying the program counter (PC) and the stack pointer (SP) on
the register window or in the command area and pressing the command button (Step Into, Step,
Step Out, Continue, or Go To).

Execution can also be started by specifying the execution start address on the Go window.

Figure 3.8 Example of Input on Execution Window

Rev. 1.0, 09/99, page 31 of 173

3.9 Displaying Variable Contents

The contents of variables can be displayed by the following procedure.

(a) Select the variable name in the source area. (In figure 3.9, variable a is selected.)

(b) Open the Symbol Value window using the View menu, acquiring the variable name.

(c) Press the Set button on the Symbol Value window.

Rev. 1.0, 09/99, page 32 of 173

Figure 3.9 Example of Variable Content Display

Rev. 1.0, 09/99, page 33 of 173

3.10 Analyzing Execution Performance

Execution performance can be analyzed by the following procedure.

(a) Open the Performance Analysis window using the View menu.

(b) Input the function name to analyze in the Function Name or Delete Index column and press the
Add button.

(c) Press the Start button to start analysis.

(d) Press the Display button to display the analysis results.

(e) Press the Graph button to display the results in a graph.

Rev. 1.0, 09/99, page 34 of 173

Figure 3.10 Example of Performance Display

Rev. 1.0, 09/99, page 35 of 173

3.11 Analyzing Stack Use Status

The stack use status can be analyzed by the following procedure.

(a) Open the Stack Analysis window using the View menu.

(b) Press the Start button to start analyzing the stack use status.

(c) Press the Display button to display the analysis results.

(d) Press the Graph button to display the results in a graph.

Figure 3.11 Example of Stack Trace Display

Rev. 1.0, 09/99, page 36 of 173

3.12 Quit

The Quit window is displayed by selecting the Quit button on the File menu and operation is
stopped by pressing the Quit button on the Quit window.

After selecting "Window" for backup selection, the interface software window position and size
and setting information on the window can be saved.

The default setting of the file name to save setting information is "HS_CA.BAK".

Figure 3.12 Example of Input on Quit Window

Rev. 1.0, 09/99, page 37 of 173

Section 4 Simulator/Debugger Commands

Table 4.1 shows simulator/debugger commands available on the command line.

Table 4.1 Simulator/Debugger Command List

No. Command Abbr. Function

1 ASSEMBLE AS Assembles line by line

2 BREAK_CLEAR BC Clears breakpoints

3 BREAK_ENABLE BE Enables or disables breakpoints

4 BREAKACCESS BA Sets break conditions based on access to a
memory range

5 BREAKACCESS_DISPLAY BAD Displays break conditions based on access
to a memory range

6 BREAKDATA BD Sets a break condition based on the value
of memory data

7 BREAKDATA_DISPLAY BDD Displays the break conditions based on the
value of memory data

8 BREAKPOINT BP Sets breakpoints based on the address of
instruction execution

9 BREAKPOINT_DISPLAY BPD Displays breakpoints based on the address
of instruction execution

10 BREAKREGISTER BR Sets break conditions based on the value
of data in a register

11 BREAKREGISTER_DISPLAY BRD Displays break conditions based on the
value of data in a register

12 BREAKSEQUENCE BS Sets breakpoints with execution sequence
specified

13 BREAKSEQUENCE_DISPLAY BSD Displays breakpoints with execution
sequence specified

14 COMPARE CMP Compares memory contents

15 DATA_SEARCH DS Searches for data

16 DISASSEMBLE DA Disassembles and displays memory
contents

17 DISPLAY_CHARACTERS DCH Displays character string

18 EXEC_MODE EM Switches execution mode

19 FILE_LOAD FL Loads file

20 FILE_SAVE FS Saves memory data to a file

21 GO G Executes instructions continuously

Rev. 1.0, 09/99, page 38 of 173

Table 4.1 Simulator/Debugger Command List (cont)

No. Command Abbr. Function

22 GO_RANGE GR Executes instructions continuously (with
range specified)

23 GO_RESET GS Executes user program from the vector
address

24 GO_TILL GT Executes instructions continuously (with
stop address specified)

25 HELP HE Displays command names and input
formats

26 LOAD_STATUS LS Restores the simulator/debugger memory
and register status

27 LOG LO Starts creating an execution history file

28 LOG_ENABLE LE Enables/disables execution history file
creation

29 LOG_STOP LT Stops creating an execution history file

30 MAP_CLEAR MC Clears memory areas

31 MAP_DISPLAY MI Displays memory areas

32 MAP_SET MS Sets memory areas

33 MEMORY_DISPLAY MD Displays memory contents

34 MEMORY_EDIT ME Modifies memory contents

35 MEMORY_FILL MF Initializes memory areas

36 MEMORY_MOVE MV Moves memory blocks

37 PERFORMANCE_ANALYSIS PA Sets execution performance analysis

38 PERFORMANCE_ANALYSIS_CLEAR PC Clears execution performance analysis

39 PERFORMANCE_ANALYSIS_DISPLAY PD Displays execution performance analysis
results

40 PERFORMANCE_ANALYSIS_ENABLE PE Enables/disables or resets execution
performance analysis

41 QUIT Q Exits the simulator/debugger

42 RADIX RX Sets the radix

43 REGISTER R Displays registers

44 RESET RS Resets the simulator/debugger

45 ROUND_MODE RM Specifies and displays the floating-point
rounding mode

46 SAVE_STATUS SS Saves the current simulator/debugger
status in a file

Rev. 1.0, 09/99, page 39 of 173

Table 4.1 Simulator/Debugger Command List (cont)

No. Command Abbr. Function

47 STACK_ANALYSIS SA Enables/disables or resets stack use
analysis

48 STACK_ANALYSIS_DISPLAY SD Displays the stack use analysis results

49 STATUS ST Displays the simulator/debugger status

50 STEP S Performs step execution (executes
subroutine as one step)

51 STEP_G SG Specifies step execution address range
executing subroutine as one step

52 STEP_INTO SI Performs step execution

53 STEP_INTO_G SIG Specifies step execution range

54 TLB TLB Modifies the TLB contents

55 TLB_DUMP TLBD Displays the TLB contents

56 TLB_FLUSH TLBF Flushes the TLB contents

57 TLB_SEARCH TLBS Searches for the TLB contents

58 TRACE T Displays trace buffer

59 TRACE_CONDITION TC Sets trace condition, and starts or stops
trace

60 TRACE_CLEAR TL Clears trace buffer

61 TRAP_ADDRESS TA Sets the system call start address

62 TRAP_ADDRESS_DISPLAY TD Displays the system call start address

63 TRAP_ADDRESS_ENABLE TE Enables/disables the system call start
address

64 .<register> . Changes the contents of registers

Rev. 1.0, 09/99, page 40 of 173

This section explains the command format.

(1) (3)

(2)

Format (4)

Parameter (5)

Function (6)

Description (7)

Note (8)

Example (9)

The numbered items in the above format are described below.

(1) Command name.

(2) Command abbreviation.

(3) Command function.

(4) Input format for the command.

(5) Description of command parameters and options.

(6) Command function.

(7) Description on command usage.

(8) Notes on command usage.

(9) Usage examples.

Rev. 1.0, 09/99, page 41 of 173

4.1 ASSEMBLE

ASSEMBLE Assembles line by line

AS

Format ASSEMBLE∆<start address> (RET)

Parameter • <start address> Indicates the address to store the results of assembly.

Function This command converts assembly language notations input in interactive mode to
machine language in line units and stores the results starting at the indicated start
address. In assemble mode, entering "." terminates the AS command, entering "^"
moves the position backward by 1 byte, and pressing the Enter key moves the position
forward by 1 byte. For descriptions in the assembly language, refer to the SuperH
RISC engine Cross Assembler User's Manual.

Example To interactively input assembly language notation, convert them to machine language,
and store them starting at address H'400:

: ASSEMBLE 400 (RET)

00000400: (RET)

00000401: (RET)

00000402: MOV #H'02E,R1(RET)

00000402 MOV #H'02E,R1

00000404: ADD R1,R2(RET)

00000404 ADD R1,R2

00000406: ^(RET)

00000405: .(RET)

:

Rev. 1.0, 09/99, page 42 of 173

4.2 BREAK_CLEAR

BREAK_CLEAR Clears breakpoints

BC

Format BREAK_CLEAR[∆<index>](RET)

Parameter • <index> Specifies the break number (break number can be checked by breakpoint
display).
Unless specified, all breakpoints are cleared.

Function Clears the breakpoint having the specified break number.
The breakpoints set by the following commands can be cleared.

BREAKACCESS, BREAKDATA, BREAKPOINT, BREAKREGISTER, and
BREAKSEQUENCE

Example To clear the first breakpoint:

: BREAK_CLEAR 0 (RET)

:

Rev. 1.0, 09/99, page 43 of 173

4.3 BREAK_ENABLE

BREAK_ENABLE Enables or disables breakpoints

BE

Format BREAK_ENABLE∆{E|D}[∆<index>](RET)

Parameters • Enable/disable {E|D}
E (enable): Enables the set break conditions.
D (disable): Disables the set break conditions.

• <index> Specifies the break number (break number can be checked by
breakpoint display).
Unless specified, all breakpoints are enabled or disabled.

Function Enables or disables the breakpoints having the specified break numbers.
The breakpoints set by the following commands can be enabled or disabled.

BREAKACCESS, BREAKDATA, BREAKPOINT, BREAKREGISTER, and
BREAKSEQUENCE

Examples 1. To disable the first breakpoint:

: BREAK_ENABLE D 0 (RET)

:

2. To enable all breakpoints:

: BREAK_ENABLE E (RET)

:

Rev. 1.0, 09/99, page 44 of 173

4.4 BREAKACCESS

BREAKACCESS Sets break conditions based on access to a memory

BA range

Format BREAKACCESS∆<start address>[∆<end address>][∆{R|W|RW}](RET)

Parameters • <start address>[∆<end address>]
Specifies the start address or the range of memory for which the simulator/
debugger will stop if accessed by the user program.
When the end address is not specified, the range consists of only the specified
address.

• Access type {R|W|RW}
R (read): Breaks on a read from the specified memory.
W (write): Breaks on a write to the specified memory.
RW (read/write): Breaks on either a read from or a write to the specified

memory (default).

Function Sets break conditions based on access to memory.
Execution stops when the specified memory range has been accessed.
Up to two memory ranges can be specified.
Note that breakpoints are automatically enabled when a breakpoint is set.

Example To set a breakpoint so that execution stops when the range from address H'1000 to
address H'1100 has been read or written:

: BREAKACCESS 1000 1100 RW (RET)

:

Rev. 1.0, 09/99, page 45 of 173

4.5 BREAKACCESS_DISPLAY

BREAKACCESS_DISPLAY Displays break conditions based on access to a memory

BAD range

Format BREAKACCESS_DISPLAY (RET)

Function Displays the break conditions based on access to memory in the following format:
<INDEX>: Break No.
<E/D>: Enable/disable
<START>: Start address
<END>: End address
<ATTR>: Access type

Example To display the current settings (address is displayed in hexadecimal):

: BREAKACCESS_DISPLAY(RET)

 <INDEX> <E/D> <START> <END> <ATTR>

 001 E 00001000 00001100 RW

Rev. 1.0, 09/99, page 46 of 173

4.6 BREAKDATA

BREAKDATA Sets a break condition based on the value of memory data

BD

Format BREAKDATA∆<break address>∆<data>[;<size>][∆<option>](RET)

Parameters • <break address>
Specifies the address whose contents are to be checked during execution.

• <data>
Specifies the break condition data.

• <size> Data size {B|W|L|D|S}
B (byte): Byte data
W (word): Word data
L (long): Long-word data (default)
D (double float): Double-precision floating-point data
S (single float): Single-precision floating-point data

• <option> Data equal/not equal {EQ|NE}
EQ (equal): Breaks when the data are equal. (default)
NE (not equal): Breaks when the data are not equal.

Function This command sets a breakpoint based on data written to memory.
Program execution stops when the break condition is satisfied.
Up to eight breakpoints can be set.
Note that breakpoints are automatically enabled when a breakpoint is set.

Examples (1) To set a breakpoint so that execution stops when word-size data with the value
10 is written to address H'2000:

: BREAKDATA 2000 10;W (RET)

:

(2) To set a breakpoint so that execution stops when address H'AF00 is changed to
byte-size data with a value other than 20:

: BREAKDATA 0AF00 20;B NE (RET)

:

Rev. 1.0, 09/99, page 47 of 173

4.7 BREAKDATA_DISPLAY

BREAKDATA_DISPLAY Displays the break conditions based on the value of

BDD memory data

Format BREAKDATA_DISPLAY(RET)

Function Displays the breakpoints based on the value of memory data in the following
format:
<INDEX>: Break No.
<E/D>: Enable/disable
<ADDRESS>: Break address
<DATA>: Written data and data size
<EQ/NE>: Data equal/not equal

Example To display the currently set breakpoints (note that addresses, and data are displayed in
hexadecimal):

: BREAKDATA_DISPLAY (RET)

 <INDEX> <E/D> <ADDRESS> <DATA> <EQ/NE>

 006 D 0000FF00 0010:W EQ

 005 E 0000AF00 20:B NE

 004 E 00000100 00000100:L EQ

 003 E 00000020 1.235678e-12:S EQ

 002 E 00000010 1.2345678901234567e-123:D EQ

:

Rev. 1.0, 09/99, page 48 of 173

4.8 BREAKPOINT

BREAKPOINT Sets breakpoints based on the address of instruction

BP execution

Format BREAKPOINT∆<instruction address>[∆<count>](RET)

Parameters • <instruction address> Specifies the address of the breakpoint.
• <count> Specifies the count of fetchings of instructions at the

specified address (H'1 to H'3FFF).
The count is automatically set at 1 unless specified.

Function Specifies the breakpoints based on the address of instruction execution.
Program execution stops at the break address when the break conditions are satisfied.
The instruction at the break address is not executed.
Up to 255 breakpoints can be set.
Note that breakpoints are automatically enabled when a breakpoint is set.

Notes (1) If a breakpoint is set at any address other than the first byte of an instruction, the
break will not be detected.

(2) The count of passes is reset when program execution stops.

Example To set a breakpoint so that execution stops when attempting to execute the instruction
at address H'2000 for the eighth time:

: BREAKPOINT 2000 8 (RET)

:

Rev. 1.0, 09/99, page 49 of 173

4.9 BREAKPOINT_DISPLAY

BREAKPOINT_DISPLAY Displays breakpoints based on the address of instruction

BPD execution

Format BREAKPOINT_DISPLAY(RET)

Function Displays the breakpoints based on the address of instruction execution in the
following format:
<INDEX>: Break No.
<E/D>: Enable/disable
<ADDRESS>: Breakpoint address
<COUNT>: Count of fetchings of instructions at the specified address

Example To display the current settings (address and counts are displayed in hexadecimal):

: BREAKPOINT_DISPLAY(RET)

 <INDEX> <E/D> <ADDRESS> <COUNT>

 000 E 00002000 8

:

Rev. 1.0, 09/99, page 50 of 173

4.10 BREAKREGISTER

BREAKREGISTER Sets break conditions based on the value of data in a

BR register

Format BREAKREGISTER∆<register>[∆<data>[;<size>][∆<option>]](RET)

Parameters • <register>
Specifies the register for which the break is to be set.

• <data>
Specifies the data value for the break condition.
When no value is specified, a break occurs when the specified register is written.

• <size> Data size {B|W|L|S|D}
When no size is specified, the register size is used.
When a floating-point value is specified as the data, the size must not be omitted.
B (byte): Byte data
W (word): Word data
L (long): Long-word data
S (single Float): Single-precision floating-point data
D (double Float): Double-precision floating-point data (only for SH-4)

• <options> Data equal/not equal {EQ|NE}
EQ (equal): Breaks when the data are equal. (default)
NE (not equal): Breaks when the data are not equal.

Function This command sets break conditions based on data written to the registers.
SP can be specified instead of R15.
The command sets a break condition so that execution stops when the specified
register is accessed. Note that breakpoints are automatically enabled when a
breakpoint is set.
Up to eight breakpoints can be set.

Examples (1) To set a breakpoint so that execution stops when register R0 is written:

: BREAKREGISTER R0 (RET)

:

(2) To set a breakpoint so that execution stops when the contents of register R1
becomes FF:

: BREAKREGISTER R1 FF;B (RET)

:

Rev. 1.0, 09/99, page 51 of 173

(3) To set a breakpoint so that execution stops when register R2 is written by a value
other than FF:

: BREAKREGISTER R2 FF;B NE (RET)

:

(4) To set a breakpoint so that execution stops when the contents of register FR1
becomes 1.0E-5:

: BREAKREGISTER FR1 1.0E-5;S (RET)

:

Rev. 1.0, 09/99, page 52 of 173

4.11 BREAKREGISTER_DISPLAY

BREAKREGISTER_DISPLAY Displays break conditions based on the value of data in a

BRD register

Format BREAKREGISTER_DISPLAY(RET)

Function Displays the break conditions based on the value of data in a register in the following
format:
<INDEX>: Break No.
<E/D>: Enable/disable
<REGISTER>: Register name
<DATA>: Written data and data size
<EQ/NE>: Data equal/not equal

Example To display the currently set breakpoints (displayed in the floating-point format when
the data size is S or in hexadecimal for other data):

: BREAKRESISTER_DISPLAY(RET)

 <INDEX> <E/D> <REGISTER> <DATA> <EQ/NE>

 003 E FR1 1.000000e-5 EQ

 002 E R2 000000FF NE

 001 E R1 000000FF EQ

 000 E R0 -------- EQ

Rev. 1.0, 09/99, page 53 of 173

4.12 BREAKSEQUENCE

BREAKSEQUENCE Sets breakpoints with execution sequence specified

BS

Format BREAKSEQUENCE∆<instruction address1>[∆<instruction address2>...
∆<instruction address8>] (RET)

Parameter • <instruction address> Specifies the address(es) for sequential breakpoint

Function This command sets breakpoints with execution sequence specified.
Execution stops at the last specified address when the instructions at the specified
addresses have been executed in the specified order.
Note that a sequence of up to eight addresses can be specified.

Notes (1) If a breakpoint is set at any address other than the first byte of an instruction, the
break will not be detected.

(2) The execution sequence status is reset when instruction execution stops.

Example To set sequential breakpoints at addresses H'2000, H'2100 and H'3000:

: BREAKSEQUENCE 2000 2100 3000 (RET)

:

Break will occur when addresses H'2000, H'2100, and H'3000 are executed.
Note that passing an address is defined as passing at least once. Thus, the breakpoint
sequence is not reset when an address is executed more than once.

Rev. 1.0, 09/99, page 54 of 173

4.13 BREAKSEQUENCE_DISPLAY

BREAKSEQUENCE_DISPLAY Displays breakpoints with execution sequence specified

BSD

Format BREAKSEQUENCE_DISPLAY(RET)

Function Displays the following information on the breakpoints with execution sequence
specified:

<INDEX>: Break No.
<E/D>: Enable/disable

1ST BREAK POINT = xxxxxxxx: Instruction address 1
2ND BREAK POINT = xxxxxxxx: Instruction address 2

 : :

Example To display the currently set sequential breakpoint:

: BREAKSEQUENCE_DISPLAY(RET)

 <INDEX> <E/D>

 008 E 1ST BREAK POINT = 00002000

 2ND BREAK POINT = 00002100

 3RD BREAK POINT = 00002200

:

Rev. 1.0, 09/99, page 55 of 173

4.14 COMPARE

COMPARE Compares memory contents

CMP

Format COMPARE∆<start address>∆<end address>
∆<comparison memory start address>(RET)

Parameters • <Start address>
Specifies the start address of the source data.

• <End address>
Specifies the end address of the source data.

• <Comparison memory start address>
Specifies the start of the comparison data memory area.

Function Compares the specified range of memory (the source data) with the comparison data
in byte units.
When data that does not match is found, those data items and their addresses are
displayed.

Example To compare the H'500 bytes of data starting at address H'1000 with the H'500 bytes of
data starting at address H'2000, and to display the addresses and values of the source
data and comparison data when data which does not match is found:

: COMPARE 1000 14FF 2000(RET)

SOURCE DATA COMPARED DATA

00001005 3F 00002005 42

 : :

000014FE 00 000024FE 80

:

Rev. 1.0, 09/99, page 56 of 173

4.15 DATA_SEARCH

DATA_SEARCH Searches for data

DS

Format DATA_SEARCH∆<start address>∆<end address>∆<data>[;<size>](RET)

Parameters • <start address>
Specifies the search start address.

• <end address>
Specifies the search end address.

• <data>
Specifies the data to be searched.

• <size> Size of data {B|W|L|D|S}
B (byte): Searches for byte data (default).
W (word): Searches for word data.
L (long): Searches for long-word data.
D (double float): Double-precision floating-point data
S (single float): Single-precision floating-point data

Function This command searches for the specified data in the specified memory range.

Note When searching for word data, the start address must be the word boundary (multiple of
two). When searching for single-precision floating-point, double-precision floating-point,
or long-word data, the start address must be the long-word boundary (multiple of four).

Example To search for the value 005E from address H'1000 to address H'14FF:

: DATA_SEARCH 1000 14FF 005E;W (RET)

ADDRESS

00001004

00001100

000011A8

:

Rev. 1.0, 09/99, page 57 of 173

4.16 DISASSEMBLE

DISASSEMBLE Disassembles and displays memory contents

DA

Format DISASSEMBLE∆<start address>[∆<instruction count>](RET)

Parameters • <start address>
Specifies the start address for disassembly.

• <instruction count>
Specifies the count of instructions to be disassembled (default = 16,
max. = 65535).

Function Disassembles and displays the range specified by the start address the instruction
count.
Displays the instruction start address, mnemonic instruction and operand.
An invalid instruction is displayed with a hexadecimal instruction code.

Example To disassemble and display the four instructions starting at address H'400:

: DISASSEMBLE 400 4 (RET)

00000400 STS.L PR,@-R15

00000402 ADD #H'C8,R15

00000404 MOV #H'00,R3

00000406 MOV.L R3,@(H'08:4, R15)

:

Rev. 1.0, 09/99, page 58 of 173

4.17 DISPLAY_CHARACTERS

DISPLAY_CHARACTERS Displays character string

DCH

Format DISPLAY_CHARACTERS∆<character string>(RET)

Parameter • <character string> Specifies character string.

Function Displays the characters following a space behind the command name.

Example To display SIMULATOR on the screen:

: DISPLAY_CHARACTERS SIMULATOR (RET)

SIMULATOR

:

Rev. 1.0, 09/99, page 59 of 173

4.18 EXEC_MODE

EXEC_MODE Switches execution mode

EM

Format Set: EXEC_MODE∆{S|C}(RET)
Display: EXEC_MODE(RET)

Parameter • Execution mode specifier {S|C}
S (stop): In this mode, execution is stopped when the simulator/debugger

detects an abnormality (simulation error) in the user program.
C (continue): In this mode, simulation errors are ignored and execution continues

when the simulator/debugger detects an abnormality (simulation
error) in the user program.

The simulator/debugger execution mode is set to S when first invoked.

Function This command selects whether execution will continue or stop when an abnormality is
detected during the execution of user program. When the execution mode specifier is
omitted, the current setting of the execution mode is displayed.
Refer to section 2.12 (2), Break due to detection of an error during execution of the
user program, for more information on abnormalities which may occur while executing
the user program.

Description Set: Stop mode is recommended for the early stages of debugging, with
continue mode being useful in the later stages.

Display: Stop is displayed in stop mode, and Continue in continue mode.

Examples (1) To set the execution mode to continue mode:

: EXEC_MODE C (RET)

:

(2) To display the current execution mode:

: EXEC_MODE (RET)

Continue

:

Rev. 1.0, 09/99, page 60 of 173

4.19 FILE_LOAD

FILE_LOAD Loads file

FL

Format FILE_LOAD∆<file name>[∆{SYS|ELF|STY}](RET)

Parameters • <file name>
Specifies the name of the file to be loaded.
An extension is added as follows if the file format is specified, or ".abs" is added
as a file extension if the format specified:
SYS: .abs
ELF: .abs
STY: .mot

• File format specifications {SYS|ELF|STY}
SYS (SYSROF): Loads a SYSROF file (default).
ELF (ELF): Loads an ELF file.
STY (STYPE): Loads an STYPE file (Motorola S record type only).

Function Loads the user program.
Although memory required for loading is allocated by the FILE_LOAD command for
SYSROF and ELF files, no memory is allocated for STYPE files.

Description Reset the simulator/debugger before loading the user program (for SYSROF and
ELF only).
The default settings after loading the user program are as follows:
Memory area: An area for the user program is allocated (for SYSROF and ELF

only).
PC: SYSROF:

If an entry address was specified in the user program, the PC is set to that
address. Otherwise, the PC is set to the start address of the code section that
appeared first.
STYPE:
If an entry address was specified in the user program, the PC is set to that
address. Otherwise, the PC is set to the start address of the load module.
ELF:
The PC is set to the start address of the section that appeared first.

SP: The SP is set to the last address of the internal RAM + 1.
If no internal RAM area exists, the SP is set to 0.

Other registers and flags are not set.

Rev. 1.0, 09/99, page 61 of 173

Examples (1) To load SYSROF-type user program "test1.abs":

: FILE_LOAD test1.abs (RET)

:

(2) To load STYPE file "test2.mot":

: FILE_LOAD test2.mot STY (RET)

:

Rev. 1.0, 09/99, page 62 of 173

4.20 FILE_SAVE

FILE_SAVE Saves memory data to a file

FS

Format FILE_SAVE∆<file name>∆<start address>∆<end address>(RET)

Parameters• <file name>
Specifies the file name to be saved.

• <start address>
Specifies the start address of memory data to be saved.

• <end address>
Specifies the end address of memory data to be saved.

Function Stores the memory area to a file. Data is saved in the Motorola S record format.
When a file name which already exists is specified, data is overwritten.
When no extension is specified for a file name, ".mot" is added.

Example To save memory data from address H'2000 to address H'2FFF in file "sample.mot":

: FILE_SAVE sample.mot 2000 2FFF (RET)

:

Rev. 1.0, 09/99, page 63 of 173

4.21 GO

GO Executes instructions continuously

G

Format GO∆[<start address>][;D](RET)

Parameters • <start address>
Specifies the address from which program execution starts.
When omitted, execution starts from the address specified by the program counter.

• Break disable
D (disable breaks): Breakpoints specified with the break commands are

temporarily disabled.

Function This command executes the user program continuously starting at the specified start
address.
When D is specified, the break is temporarily disabled during GO command execution
but are enabled again when execution stops.
When execution stops, the executed instruction count (in decimal), the current register
values, a disassembled display of the last instruction executed, and a termination
message are displayed.
After specifying a start address, the pipeline is reset at execution start.

Example To execute the user program from address H'1000 to address H'101E (for SH-1):

: GO 1000(RET)

Exec Instructions = 30

PC=00001020 SR=00000000:----------------------IIII---- SP=05000000

GBR=00000000 VBR=00000000 MACH=00000000 MACL=00000000 PR=00000000

R0-7 00000000 0000FFFF 00000000 00000000 01000000 00000000 00000000 00000000

R8-15 00000000 00000000 00000010 00000000 0000FFFF 00000000 00000000 05000000

0000101E MOV #H'00,R3

+++5001 : PC breakpoint

:

Rev. 1.0, 09/99, page 64 of 173

4.22 GO_RANGE

GO_RANGE Executes instructions continuously (with range specified)

GR

Format GO_RANGE∆<start address>∆<break address>[;D](RET)

Parameters • <start address>
Specifies the address from which program execution starts.

• <break address>
Specifies the address at which program execution stops.

• Break disable
D (disable breaks): Breakpoints specified with the break commands are

temporarily disabled.

Function This command executes the user program continuously starting at the specified start
address and stops execution at the specified break address. The instruction at the break
address is not executed.
When D is specified, the break is temporarily disabled during GO command execution
but are enabled again when execution stops.
When execution stops, the executed instruction count (in decimal), the current register
values, a disassembled display of the last instruction executed, and a termination
message are displayed.
After specifying a start address, the pipeline is reset at execution start.

Note If a break address is specified at a point that is not the first byte of an instruction, the break
will not be detected.

Rev. 1.0, 09/99, page 65 of 173

Example To execute the user program from address H'1000 to address H'1020 for SH-3(the
instruction at address H'1020 is not executed):

: GO_RANGE 1000 1020(RET)

Exec Instructions = 30

PC=00001020 SR=700000F0:-MRB--------------------1111 SP=00001FEC

GBR=00000000 VBR=00000000 MACH=00000000 MACL=00000000 PR=00000000

R0-7 00000000 00000000 00000003 00000002 000001E4 00000000 00000000 00000000

R8-15 00000000 00000000 00000000 00000000 00000000 00000001 000001EC 00001FEC

R0_BANK-R3_BANK 00000000 00000000 00000000 00000000

R4_BANK-R7_BANK 00000000 00000000 00000000 00000000

SSR=00000000 SPC=00000000

PTEH=00000000 PTEL=00000000 TTB=00000000 TEA=00000000 MMUCR=00000000

EXPEVT=00000000 INTEVT=00000000 TRA=00000000 CCR=00000000

0000101E MOV #H'00,R3

+++5001 : PC breakpoint

:

Rev. 1.0, 09/99, page 66 of 173

4.23 GO_RESET

GO_RESET Executes user program from the vector address

GS

Format GO_RESET(RET)

Function Executes the user program starting from the address specified by the reset vector.
When execution stops, the executed instruction count (in decimal), the current register
values, a disassembled display of the last instruction executed, and a termination
message are displayed.

Description SH-1/SH-2/SH-DSP/SH-2E series:
Before execution, the reset exception processing vector table must be set on memory.
Save the initial values of PC and SP on the table.

Table 4.2 Vector Table

Register Vector No. Vector Table Address to be Saved

PC 0 H'00000000 to H'00000003

SP 1 H'00000004 to H'00000007

SH-3/SH-3E/SH-4 series:
The reset vector address is fixed at H'A0000000.

Rev. 1.0, 09/99, page 67 of 173

Example To start power-on reset execution from the reset vector (for SH-3):

: GO_RESET

Exec Instructions = 12

PC=A0000018 SR=700000F0:-MRB--------------------1111---- SP=7F001000

GBR=00000000 VBR=00000000 MACH=00000000 MACL=00000000 PR=00000000

R0-7 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

R8-15 00000000 00000000 00000000 00000000 00000000 00000000 00000000 7F001000

R0_BANK-R3_BANK 00000000 00000000 00000000 00000000

R4_BANK-R7_BANK 00000000 00000000 00000000 00000000

SSR=00000000 SPC=00000000

PTEH=00000000 PTEL=00000000 TTB=00000000 TEA=00000000 MMUCR=00000000

EXPEVT=00000000 INTEVT=00000000 TRA=00000000 CCR=00000000

A0000016 NOP

+++5001 : PC breakpoint

:

Rev. 1.0, 09/99, page 68 of 173

4.24 GO_TILL

GO_TILL Executes instructions continuously (with stop address

GT specified)

Format GO_TILL∆<break address 1>[∆<break address 2>∆<break address 3>...
∆<break address 10>][;D](RET)

Parameters • <break address>
Specifies the address at which user program execution stops. (up to 10 points)

• Break disable
D (disable breaks): Breakpoints specified with the break commands are

temporarily disabled.

Function This command executes the user program continuously starting at the address specified
by the program counter, and stops execution at specified break address. The
instruction at the break address is not executed.
Up to ten break addresses can be specified.
When D is specified, the break is temporarily disabled during GO command execution
but are enabled again when execution stops.
When execution stops, the executed instruction count (in decimal), the current register
values, a disassembled display of the last instruction executed, and a termination
message are displayed.

Note If a break address is specified at a point that is not the first byte of an instruction, the break
will not be detected.

Example To continuously execute the user program from the address specified by the current
program counter to address H'1000, H'1010 or H'1020 for SH-1:

: GO_TILL 1000 1010 1020(RET)

Exec Instructions = 30

PC=00001020 SR=00000000:-------------------------------- SP=05000000

GBR=00000000 VBR=00000000 MACH=00000000 MACL=00000000 PR=00000000

R0-7 00000000 0000FFFF 00000000 00000000 01000000 00000000 00000000 00000000

R8-15 00000000 00000000 00000010 00000000 0000FFFF 00000000 00000000 05000000

0000101E MOV #H'00,R3

+++5001 : PC breakpoint

:

Rev. 1.0, 09/99, page 69 of 173

4.25 HELP

HELP Displays command name and input format

HE

Format HELP[∆<command name>](RET)

Parameter • <command name>
Specifies the name of the command to display the help message.

Function Displays the help message for the specified command.
When the command name is omitted, a list of commands is displayed.

Examples (1) To display a list of commands:

: HELP(RET)

.<register> ;

ASsemble Break_Clear

Break_Enable BreakAccess

BreakAccess_Display BreakData

BreakData_Display BreakPoint

BreakPoint_Display BreakRegister

 : :

Trace Trace_cLear

Trace_Condition Trap_Address

Trap_address_Display Trap_address_Enable

:

(2) To display the syntax of the HELP command:

:HELP HELP(RET)

HE|HELP[<command name>]

:

Rev. 1.0, 09/99, page 70 of 173

4.26 LOAD_STATUS

LOAD_STATUS Restores the simulator/debugger memory and register

LS status

Format LOAD_STATUS[∆<file name>](RET)

Parameter • <file name>
Specifies the name of a file in which the simulator/debugger memory and register
status is saved.
When the file name is omitted, the file sdsh.sav is assumed.
When the file extension is omitted, the extension .sav is supplied as default.

Function The states of memory and the registers are restored to the point when the
corresponding SAVE_STATUS command was executed.
Reloads the load module which has been loaded at SAVE_STATUS command
execution.

Example To load the memory and register status saved in the file "test1.sav":

: LOAD_STATUS test1.sav(RET)

:

Rev. 1.0, 09/99, page 71 of 173

4.27 LOG

LOG Starts creating an execution history file

LO

Format LOG∆<file name>[∆A](RET)

Parameters• <file name>
Specifies the file name to which the execution history is output.

• Append mode specification
A (append): Adds the execution history to the specified file.

When this option is omitted, the execution history is saved from the
start of the specified file.

Function Starts outputting to the execution history file.
If the specified file already exists, the file is deleted to create a new file.
When restart is specified without stopping after start, the file which is receiving outputs
is closed and then output to the specified file resumes.

Note When an error occurs during I/O processing of a system call, I/O data is not written to the
output file.

Examples (1) To start writing to sample.log file to which command inputs and display data are
written:

: LOG sample.log (RET)

:

(2) To add the execution history to sample.log:

: LOG sample.log A (RET)

:

Rev. 1.0, 09/99, page 72 of 173

4.28 LOG_ENABLE

LOG_ENABLE Enables/disables execution history file creation

LE

Format LOG_ENABLE∆{E|D}(RET)

Parameter • Terminates and resumes outputting to the execution history file {E|D}
E (enable): Resumes outputting to the file.
D (disable): Terminates outputting to the file.

Function Outputting to the file terminates when option "D" (disable) is specified or resumes
when "E" (enable) is specified.

Note When an error occurs during I/O processing of a system call, I/O data is not written to the
output file.

Examples (1) To terminate writing to the file:

: LOG_ENABLE D (RET)

:

(2) To resume writing to the file:

: LOG_ENABLE E (RET)

:

Rev. 1.0, 09/99, page 73 of 173

4.29 LOG_STOP

LOG_STOP Stops creating an execution history file

LT

Format LOG_STOP(RET)

Function Stops creating an execution history file.

Note When an error occurs during I/O processing of a system call, I/O data is not written to the
output file.

Example To stop writing to the file:

: LOG_STOP (RET)

:

Rev. 1.0, 09/99, page 74 of 173

4.30 MAP_CLEAR

MAP_CLEAR Clears memory areas

MC

Format MAP_CLEAR∆<start address>∆<end address>(RET)

Parameters • <start address>
Specifies the start address in the memory area.

• <end address>
Specifies the end address in the memory area.

Function Clears memory areas allocated by the MAP_SET command.

Example To clear address H'301F from address H'3000 which has already been specified:

: MAP_CLEAR 3000 301F (RET)

:

Rev. 1.0, 09/99, page 75 of 173

4.31 MAP_DISPLAY

MAP_DISPLAY Displays memory areas

MI

Format MAP_DISPLAY[∆M](RET)

Parameter • Memory map information display
M (map): Specifies the memory map information display in the CPU information

file.

Functions The memory map information is displayed in the following format.
(1) Memory map information display

<START>: Start address
<END>: End address
<ATTR>: Access type (R: read, W: write, RW: read/write)
<SECT_NAME>: Section name

(2) Memory map information display in the CPU information file
<KIND>: Memory type (I/O: internal I/O, RAM: internal RAM,

ROM: internal ROM, EXT: external bus area)
<START>: Start address
<END>: End address
<STATE>: Memory access state count (--- is displayed for SH-4)
<BUS>: Memory data bus width

Examples (1) To display the current memory allocation state:

: MAP_DISPLAY (RET)

 <START> <END> <ATTR> <SECT_NAME>

 00000000-000003FF W

 00002000-000020EF RW SECT1

 00003000-0000301F W

:

Rev. 1.0, 09/99, page 76 of 173

(2) To display memory map information in the CPU information file:

: MAP_DISPLAY M (RET)

 <KIND> <START> <END> <STATE> <BUS>

 EXT 00000000-7EFFFFFF 00000001 00000032

 RAM 7F000000-7F000FFF 00000001 00000032

 EXT 7F001000-DFFFFFFF 00000001 00000032

 I/O E0000000-FFFFFFFF 00000001 00000032

:

Rev. 1.0, 09/99, page 77 of 173

4.32 MAP_SET

MAP_SET Sets memory areas

MS

Format MAP_SET∆<start address>[∆<end address>][∆{R|W|RW}](RET)

Parameters • <start address>
Specifies the start address in the memory area.

• <end address>
Specifies the end address in the memory area.
The start address is assumed unless specified.

• Access type {R|W|RW}
R (read): Specifies the memory area to be read-only.
W (write): Specifies the memory area to be write-only.
RW (read/write): Specifies the memory area to be read/write. (default)

Function Sets memory areas used by the user program.

Notes (1) Areas are reset with newly specified contents even if the range to be set by the
MAP_SET command has already been allocated.

(2) Several areas can be re-specified or cleared at the same time.

Examples (1) To allocate addresses H'3000 to H'301F as a read-only memory area:

: MAP_SET 3000 301F R(RET)

:

(2) To change the access type to write-only for the memory area allocated to
addresses H'0 to H'03FF :

: MAP_SET 0 3FF W(RET)

:

Rev. 1.0, 09/99, page 78 of 173

4.33 MEMORY_DISPLAY

MEMORY_DISPLAY Displays memory contents

MD

Format MEMORY_DISPLAY∆<start address>[∆<length>][;<size>](RET)

Parameters • <start address>
Specifies the start address of memory content display.

• <length>
Specifies the length (byte count) of the data to be displayed
(default: H'100, max.: H'4000)

• <size> Data size {B|W|L|D|S|A}
B (byte): Byte data (default)
W (word): Word data
L (long): Long-word data
D (double float): Double-precision floating-point data
S (single float): Single-precision floating-point data
A (ASCII): ASCII data

Function Displays memory contents.

Note When memory contents are displayed in a word size, the start address must be the word
boundary (multiple of two). When memory contents are displayed in a single-precision
floating-point, double-precision floating-point, or long-word size, the start address must be
the long-word boundary (multiple of four).

Examples (1) To display memory contents from address H'1000 in byte units:

: MEMORY_DISPLAY 1000;B(RET)

address +0 +1 +2 +3 +4 +5 +6 +7 +8 +9 +A +B +C +D +E +F

00001000 4F 22 7F C8 E3 00 1F 32 A0 12 00 09 D1 1E 41 0B

00001010 00 09 1F 03 40 11 89 01 60 0B 1F 03 53 F2 43 08

 : :

000010E0 A0 08 00 09 63 F2 52 F2 32 38 1F 23 E3 0A051 FS

000010F0 31 33 89 D1 63 F2 52 F3 32 3C 1F 23 E3 0A 51 F3

:

Rev. 1.0, 09/99, page 79 of 173

(2) To display 16-byte memory contents from address H'1000 in word units:

: MEMORY_DISPLAY 1000 10;W(RET)

address +0 +2 +4 +6 +8 +A +C +E

00001000 4F22 7FC8 E300 1F32 A012 0009 D11E 410B

:

(3) To display 16-byte memory contents from address H'1000 in long word units:

: MEMORY_DISPLAY 1000 10;L(RET)

address +0 +4 +8 +C

00001000 4F227FC8 E3001F32 A0120009 D11E410B

:

(4) To display 8-byte double-precision floating-point data from address H'2000:

: MEMORY_DISPLAY 2000 8;D(RET)

address +0 +1 +2 +3 +4 +5 +6 +7

00002000 23 1F 00 E3 C8 7F 22 4F 2.87495706857453e-67

:

(5) To display 8-byte single-precision floating-point data from address H'2000:

: MEMORY_DISPLAY 2000 8;S(RET)

address +0 +1 +2 +3

00002000 C8 7F 22 4F -2.612572e+05

00002004 32 1F 00 E3 9.255220e-09

:

(6) To display 22-byte ASCII data from address H'3000:

: MEMORY_DISPLAY 3000 16;A(RET)

address ASCII

00003000 0".....2......A.

00003010@.

:

Rev. 1.0, 09/99, page 80 of 173

4.34 MEMORY_EDIT

MEMORY_EDIT Modifies memory contents

ME

Format Modify: MEMORY_EDIT∆<start address>∆<data>[;<size>](RET)
Interactive mode: MEMORY_EDIT∆<start address>[;<size>](RET)

Parameters • <start address>
Specifies the start address to be modified.
<data>
Specifies the contents to be modified.

• <size> Data size {B|W|L|D|S|A}
B (byte): Memory is to be modified in byte units. (default)
W (word): Memory is to be modified in word units.
L (long): Memory is to be modified in long-word units.
D (double float): Memory is to be modified in double-precision floating-point

units.
S (single float): Memory is to be modified in single-precision floating-point

units.
A (ASCII): Memory is to be modified in ASCII character string units.

Function Changes the contents of memory to the specified value.

Description When a command for specifying the interactive mode is input, the interactive mode
is entered after the contents of the specified address is displayed.

MEMORY_EDIT∆∆∆∆<start address>(RET)

address data: [{<data>|^}](RET)

address data: [{<data>|^}](RET)

 .

 .

address data: .(RET)

address data: Displays the data before modification.

<data>: Specifies the data to be modified.

^: Displays the contents of the previous address.

Only (RET) is input: Displays the contents of the next address.

. (period): Terminates the MEMORY_EDIT command.

Rev. 1.0, 09/99, page 81 of 173

Note When memory contents are modified in a word size, the start address must be the word
boundary (multiple of two). When memory contents are modified in a single-precision
floating-point size, double-precision floating-point size, or long-word size, the start address
must be the long-word boundary (multiple of four).

Examples (1) To change the contents of one byte of memory at address H'1000 to H'3E:

: MEMORY_EDIT 1000 3E;B(RET)

:

(2) To change the memory contents in one byte unit from address H'1000 in the
interactive form:

: MEMORY_EDIT 1000;B(RET)

00001000 3E : 5F(RET)

00001001 FF : (RET)

00001002 55 : 25(RET)

 : :

00001005 CC : .(RET)

:

(3) To change the memory contents in single-precision floating-point units from
address H'2000 in the interactive form:

: MEMORY_EDIT 2000;S(RET)

00002000 1.413991E-3 : F'-3.1415922E+1(RET)

00002004 1.234567E+5 : .(RET)

:

Rev. 1.0, 09/99, page 82 of 173

4.35 MEMORY_FILL

MEMORY_FILL Initializes memory areas

MF

Format MEMORY_FILL∆<start address>∆<end address>∆<data value>[;<size>]
 [∆<verify flag>](RET)

Parameters • <start address>
Specifies the start address of the memory to be initialized.

• <end address>
Specifies the end address of the memory to be initialized.

• <data value>
Specifies the data to be set.

• <size> Data size {B|W|L|D|S}
B (byte): Byte data (default)
W (word): Word data
L (long): Long-word data
D (double float): Double-precision floating-point data
S (single float): Single-precision floating-point data

• <verify flag> Data is verified after setting {V|N}
V: Verified (default)
N: Not verified

Function Sets initial data in the specified range of addresses.

Note When word-size data is written into a memory area range, the start address must be the
word boundary (multiple of two). When single-precision floating-point size, double-
precision floating-point size, or long-word size is written into a memory area range, the
start address must be the long-word boundary (multiple of four).

Examples (1) To clear addresses H'1000 to H'1FFF to 0 and then verify them:

: MEMORY_FILL 1000 1FFF 0(RET)

:

(2) To set H'FF00 to addresses H'2000 to H'2FFF in word units without verifying
them:

: MEMORY_FILL 2000 2FFF FF00;W N(RET)

:

Rev. 1.0, 09/99, page 83 of 173

4.36 MEMORY_MOVE

MEMORY_MOVE Moves memory blocks

MV

Format MEMORY_MOVE∆<start address>∆<end address>
∆<transfer destination address>(RET)

Parameters • <start address>: Specifies the start address of the transfer source.
• <end address>: Specifies the end address of the transfer source.
• <transfer destination address>: Specifies the start address of the transfer

destination.

Function Copies the memory data in the specified range to the specified transfer destination.
Before copying, allocate an area for the transfer destination using the MAP_SET
command.

Example To copy the contents in addresses H'1000 to H'14FF one by one to addresses H'2000 and
later:

: MEMORY_MOVE 1000 14FF 2000 (RET)

:

Rev. 1.0, 09/99, page 84 of 173

4.37 PERFORMANCE_ANALYSIS

PERFORMANCE_ANALYSIS Sets execution performance analysis

PA

Format PERFORMANCE_ANALYSIS[∆<start address>](RET)

Parameter • <start address>
Specifies the start address of the function whose execution performance is to be
analyzed.
When no start address is specified, execution performance of all functions (only
those actually executed) is to be analyzed.

Function Analyzes the maximum, minimum and total execution cycle and call counts of the
specified function(s).

Note The analysis results may be invalid if the PC value is changed (pipeline reset) by the
.<register> or other commands during function analysis.

Example To specify execution performance analysis of all functions:

:PERFORMANCE_ANALYSIS(RET)

:

Rev. 1.0, 09/99, page 85 of 173

4.38 PERFORMANCE_ANALYSIS_CLEAR

PERFORMANCE_ANALYSIS_CLEAR Clears execution performance analysis

PC

Format PERFORMANCE_ANALYSIS_CLEAR[∆<index>](RET)

Parameter • <index>
Specifies the function number to be cleared (index can be checked by execution
performance analysis display).
If no index is specified, all analysis results are cleared.

Function Clears execution performance analysis.

Example To clear the analysis results of index no.1:

:PERFORMANCE_ANALYSIS_CLEAR 1(RET)

:

Rev. 1.0, 09/99, page 86 of 173

4.39 PERFORMANCE_ANALYSIS_DISPLAY

PERFORMANCE_ANALYSIS_DISPLAY Displays execution performance analysis results

PD

Format PERFORMANCE_ANALYSIS_DISPLAY[∆{A|C}](RET)

Parameter • Display type {A|C}
A (address): Displays analysis results in the address (ascending) order (default).
C (cycle): Displays analysis results in the cycle count (descending) order.

Function Displays the execution performance analysis results in the following format:
INDEX: Registered number of the function
ADDRESS: Start address of the function
MAXCYCLE: Maximum execution cycle count of the function
MINCYCLE: Minimum execution cycle count of the function
TOTALCYCLE: Total execution cycle count of the function
COUNT: Call count of the function
%: Ratio of the total execution cycle count of the function to that of

the whole user program
HISTOGRAM: Displays the above ratio in a histogram

Description (1) Displays the execution cycle count for each specified function.
(2) The execution cycle count is obtained from the difference between the

accumulative execution cycle counts at execution of call instructions from the
specified function and that of return instructions from the specified function.

(3) Up to 9999 functions can be set.

Examples (1) To display the analysis results in the address (ascending) order:

:PERFORMANCE_ANALYSIS_DISPLAY(RET)

INDEX ADDRESS MAXCYCLE MINCYCLE TOTALCYCLE COUNT % HISTOGRAM

 0 00001234 20000 10000 50000 3 45 ####

 1 00005678 15000 5000 600000 9 55 #####

:

Rev. 1.0, 09/99, page 87 of 173

(2) To display the analysis results in the cycle count (descending) order:

:PERFORMANCE_ANALYSIS_DISPLAY C(RET)

INDEX ADDRESS MAXCYCLE MINCYCLE TOTALCYCLE COUNT % HISTOGRAM

 1 00005678 15000 5000 600000 9 55 #####

 0 00001234 20000 10000 50000 3 45 ####

:

Rev. 1.0, 09/99, page 88 of 173

4.40 PERFORMANCE_ANALYSIS_ENABLE

PERFORMANCE_ANALYSIS_ENABLE Enables/disables or resets execution performance

PE analysis

Format PERFORMANCE_ANALYSIS_ENABLE∆{E|D|R}(RET)

Parameter • Specification type {E|D|R}
E (enable): Enables analysis.
D (disable): Disables analysis.
R (reset): Resets the analysis results.

Function Enables/disables execution performance analysis or resets the analysis results.

Description (1) Execution performance analysis is disabled when the simulator is initiated.
(2) By resetting, only the analysis results are reset and the execution performance

analysis enable/disable setting and the registered start address (including all
functions) are not changed.

Examples (1) To disable execution performance analysis:

: PERFORMANCE_ANALYSIS_ENABLE D(RET)

:

(2) To reset the analysis results:

: PERFORMANCE_ANALYSIS_ENABLE R(RET)

:

Rev. 1.0, 09/99, page 89 of 173

4.41 QUIT

QUIT Exits the simulator/debugger

Q

Format QUIT(RET)

Function Exits the simulator/debugger and returns to the OS.
Closes the execution history and command files if they are opened.

Example To terminate simulator/debugger processing:

: QUIT (RET)

(The csdsh and the simulator/debugger is terminated and the OS prompt will be
displayed)

Rev. 1.0, 09/99, page 90 of 173

4.42 RADIX

RADIX Sets the radix

RX

Format Set: RADIX∆{B|O|D|H}(RET)
Display: RADIX(RET)

Parameter • Radix {B|O|D|H}
B: Sets the radix to binary.
O: Sets the radix to octal.
D: Sets the radix to decimal.
H: Sets the radix to hexadecimal.
The radix is set to hexadecimal when the simulator/debugger is invoked.

Function Sets or displays the default radix. The radix is displayed if no parameter is specified.
When B', H', D' or O' is input before numeric data, the input precedes the default
radix.
Display contents
B: Binary
O: Octal
D: Decimal
H: Hexadecimal

Examples (1) To display the current radix:

: RADIX(RET)

Hexadecimal

:

(2) To change the radix to decimal:

: RADIX D(RET)

: RADIX(RET)

Decimal

:

Rev. 1.0, 09/99, page 91 of 173

4.43 REGISTER

REGISTER Displays registers

R

Format REGISTER[∆{C|F|A}](RET)

Parameter Specification of the display register {C|F|A}
C (cpu): Displays the CPU register contents (and DSP registers for the SH-DSP)

(default)
F (fpu): Displays the FPU register contents (Valid for only for the SH-2E, SH-3E,

and SH-4)
A (all): Displays the contents of the CPU, FPU, and management registers (display

of the management register is valid only for the SH-3, the SH-3E, and
SH-4).

Function Displays the following register contents.

Display for the SH-1 or SH-2 series
• CPU registers

—General registers: R0-R15
—Control registers: SR, GBR, VBR
—System registers: MACH, MACL, PR, PC

Display for the SH-DSP series
• CPU registers

—General registers: R0-R15
—Control registers: SR, RS, RE, GBR, VBR, MOD
—System registers: MACH, MACL, PR, PC

• DSP registers
—Data registers: A0, A0G, A1, A1G, M0, M1, X0, X1, Y0, Y1
—Control register: DSR

Display for the SH-3 series
• CPU registers

—General registers: R0-R15, R0_BANK-R7_BANK
—Control registers: SR, GBR, VBR, SSR, SPC
—System registers: MACH, MACL, PR, PC

• Management registers: PTEH, PTEL, TTB, TEA, MMUCR, EXPEVT,
INTEVT, TRA, CCR

Rev. 1.0, 09/99, page 92 of 173

Display for the SH-2E series
• CPU registers

—General registers: R0-R15
—Control registers: SR, GBR, VBR
—System registers: MACH, MACL, PR, PC

• FPU registers:
—Floating-point registers: FR0-FR15
—Control registers: FPSCR
—System registers: FPUL

Display for the SH-3E series:
• CPU registers

—General registers: R0-R15 R0_BANK-R7_BANK
—Control registers: SR, GBR, VBR, SSR, SPC
—System registers: MACH, MACL, PR, PC

• Management registers: PTEH, PTEL, TTB, TEA, MMUCR, EXPEVT,
INTEVT, TRA, CCR

• FPU registers
—Floating point registers: FR0-FR15
—Control register: FPSCR
—System register: FPUL

Display for the SH-4 series:
• CPU registers

—General registers: R0-R15 R0_BANK-R7_BANK
—Control registers: SR, GBR, VBR, SSR, SPC, SGR, DBR
—System registers: MACH, MACL, PR, PC

• Management registers: PTEH, PTEL, TTB, TEA, MMUCR, EXPEVT,
INTEVT, TRA, CCR, QACR0, QACR1

• FPU registers
—Floating point registers: FR0-FR15, XF0-XF15, DR0, DR2, DR4, DR6,

DR8, DR10, DR12, DR14, XD0, XD2, XD4, XD6,
XD8, XD10, XD12, XD14

—Control register: FPSCR
—System register: FPUL

Rev. 1.0, 09/99, page 93 of 173

Example To display the registers:
SH-1/SH-2 series

: REGISTER A(RET)

PC=00000000 SR=000000F0:-----------------------1111---- SP=00000000

GBR=00000000 VBR=00000000 MACH=00000000 MACL=00000000 PR=00000000

R0-7 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

R8-15 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

:

SH-DSP series

: REGISTER A(RET)

PC=00000000 SR=000000F0:----000000000000--------111100-- SP=00000000

GBR=00000000 VBR=00000000 MACH=00000000 MACL=00000000 PR=00000000

R0-7 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

R8-15 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

RS=00000000 RE=00000000 MOD=00000000

DSR=00000000:----------------------------COB-

A0G=00 A0=00000000 M0=00000000 X0=00000000 Y0=00000000

A1G=00 A1=00000000 M1=00000000 X1=00000000 Y1=00000000

:

SH-3 series

: REGISTER A(RET)

PC=00000000 SR=700000F0:-MRB--------------------1111---- SP=00000000

GBR=00000000 VBR=00000000 MACH=00000000 MACL=00000000 PR=00000000

R0-7 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

R8-15 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

R0_BANK-R3_BANK 00000000 00000000 00000000 00000000

R4_BANK-R7_BANK 00000000 00000000 00000000 00000000

SSR=00000000 SPC=00000000

PTEH=00000000 PTEL=00000000 TTB=00000000 TEA=0000000 MMUCR=00000000

EXPEVT=00000000 INTEVT=00000000 TRA=00000000 CCR=00000000

:

Rev. 1.0, 09/99, page 94 of 173

: REGISTER C(RET)

PC=00000000 SR=700000F0:-MRB--------------------1111---- SP=00000000

GBR=00000000 VBR=00000000 MACH=00000000 MACL=00000000 PR=00000000

R0-7 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

R8-15 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

R0_BANK-R3_BANK 00000000 00000000 00000000 00000000

R4_BANK-R7_BANK 00000000 00000000 00000000 00000000

SSR=00000000 SPC=00000000

:

SH-3E series

: REGISTER A(RET)

PC=00000000 SR=700000F0:-MRB--------------------1111---- SP=00000000

GBR=00000000 VBR=00000000 MACH=00000000 MACL=00000000 PR=00000000

R0-7 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

R8-15 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

R0_BANK-R3_BANK 00000000 00000000 00000000 00000000

R4_BANK-R7_BANK 00000000 00000000 00000000 00000000

SSR=00000000 SPC=00000000

PTEH=00000000 PTEL=00000000 TTB=00000000 TEA=0000000 MMUCR=00000000

EXPEVT=00000000 INTEVT=00000000 TRA=00000000 CCR=00000000

FPUL=00000000 FPSCR=00040001:-------------D----------------RZ

FR0-7 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

FR8-15 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

FR0- 3 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00

FR4- 7 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00

FR8-11 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00

FR12-15 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00

:

Rev. 1.0, 09/99, page 95 of 173

: REGISTER F(RET)

PC=00000000 SR=700000F0:-MRB------------------1111---- SP=00000000

FPUL=00000000 FPSCR=00040001:-------------D----------------RZ

FR0-7 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

FR8-15 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

FR0- 3 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00

FR4- 7 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00

FR8-11 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00

FR12-15 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00

:

: REGISTER C(RET)

PC=00000000 SR=700000F0:-MRB--------------------1111---- SP=00000000

GBR=00000000 VBR=00000000 MACH=00000000 MACL=00000000 PR=00000000

R0-7 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

R8-15 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

R0_BANK-R3_BANK 00000000 00000000 00000000 00000000

R4_BANK-R7_BANK 00000000 00000000 00000000 00000000

SSR=00000000 SPC=00000000

:

SH-2E series

: REGISTER A(RET)

PC=00000000 SR=000000F0:------------------------1111---- SP=00000000

GBR=00000000 VBR=00000000 MACH=00000000 MACL=00000000 PR=00000000

R0-7 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

R8-15 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

FPUL=00000000 FPSCR=00040001:-------------D-----------------RZ

FR0-7 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

FR8-15 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

FR0- 3 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00

FR4- 7 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00

FR8-11 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00

FR12-15 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00

:

Rev. 1.0, 09/99, page 96 of 173

: REGISTER F(RET)

PC=00000000 SR=000000F0:------------------------1111---- SP=00000000

FPUL=00000000 FPSCR=00040001:-------------D-----------------RZ

FR0-7 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

FR8-15 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

FR0- 3 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00

FR4- 7 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00

FR8-11 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00

FR12-15 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00

: REGISTER C(RET)

PC=00000000 SR=000000F0:------------------------1111---- SP=00000000

GBR=00000000 VBR=00000000 MACH=00000000 MACL=00000000 PR=00000000

R0-7 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

R8-15 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

:

SH-4 series

: REGISTER A(RET)

PC=00000000 SR=700000F0:-P1B--------------------1111---F SP=00000000

GBR=00000000 VBR=00000000 MACH=00000000 MACL=00000000 PR=00000000

R0-7 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

R8-15 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

R0_BANK-R3_BANK 00000000 00000000 00000000 00000000

R4_BANK-R7_BANK 00000000 00000000 00000000 00000000

SSR=00000000 SPC=00000000 DBR=00000000 SGR=00000000

PTEH=00000000 PTEL=00000000 TTB=00000000 TEA=00000000 MMUCR=00000000

EXPEVT=00000000 INTEVT=00000000 TRA=00000000 CCR=00000000

QACR0=00000000 QACR1=00000000

FPUL=00000000 FPSCR=00040001:----------0SSZ----------------RZ

FR0-7 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

FR8-15 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

FR0- 3 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00

FR4- 7 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00

FR8-11 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00

FR12-15 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00

Rev. 1.0, 09/99, page 97 of 173

XF0-7 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

XF8-15 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

XF0- 3 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00

XF4- 7 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00

XF8-11 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00

XF12-15 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00

DR0-6 0000000000000000 0000000000000000 0000000000000000 0000000000000000

DR8-14 0000000000000000 0000000000000000 0000000000000000 0000000000000000

DR0 ,DR2 0.000000000000000e+00 0.000000000000000e+00

DR4 ,DR6 0.000000000000000e+00 0.000000000000000e+00

DR8 ,DR10 0.000000000000000e+00 0.000000000000000e+00

DR12,DR14 0.000000000000000e+00 0.000000000000000e+00

XD0-6 0000000000000000 0000000000000000 0000000000000000 0000000000000000

XD8-14 0000000000000000 0000000000000000 0000000000000000 0000000000000000

XD0 ,XD2 0.000000000000000e+00 0.000000000000000e+00

XD4 ,XD6 0.000000000000000e+00 0.000000000000000e+00

XD8 ,XD10 0.000000000000000e+00 0.000000000000000e+00

XD12,XD14 0.000000000000000e+00 0.000000000000000e+00

:

: REGISTER F(RET)

PC=00000000 SR=700000F0:-P1B--------------------1111---F SP=00000000

FPUL=00000000 FPSCR=00040001:----------0SSZ----------------RZ

FR0-7 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

FR8-15 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

FR0- 3 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00

FR4- 7 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00

FR8-11 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00

FR12-15 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00

XF0-7 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

XF8-15 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

XF0- 3 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00

XF4- 7 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00

XF8-11 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00

XF12-15 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00

Rev. 1.0, 09/99, page 98 of 173

DR0-6 0000000000000000 0000000000000000 0000000000000000 0000000000000000

DR8-14 0000000000000000 0000000000000000 0000000000000000 0000000000000000

DR0 ,DR2 0.000000000000000e+00 0.000000000000000e+00

DR4 ,DR6 0.000000000000000e+00 0.000000000000000e+00

DR8 ,DR10 0.000000000000000e+00 0.000000000000000e+00

DR12,DR14 0.000000000000000e+00 0.000000000000000e+00

XD0-6 0000000000000000 0000000000000000 0000000000000000 0000000000000000

XD8-14 0000000000000000 0000000000000000 0000000000000000 0000000000000000

XD0 ,XD2 0.000000000000000e+00 0.000000000000000e+00

XD4 ,XD6 0.000000000000000e+00 0.000000000000000e+00

XD8 ,XD10 0.000000000000000e+00 0.000000000000000e+00

XD12,XD14 0.000000000000000e+00 0.000000000000000e+00

:

: REGISTER C(RET)

PC=00000000 SR=700000F0:-P1B--------------------1111---F SP=00000000

GBR=00000000 VBR=00000000 MACH=00000000 MACL=00000000 PR=00000000

R0-7 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

R8-15 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

R0_BANK-R3_BANK 00000000 00000000 00000000 00000000

R4_BANK-R7_BANK 00000000 00000000 00000000 00000000

SSR=00000000 SPC=00000000 DBR=00000000 SGR=00000000

:

Rev. 1.0, 09/99, page 99 of 173

4.44 RESET

RESET Resets the simulator/debugger

RS

Format RESET(RET)

Function Resets the simulator/debugger.
After this command is executed, the simulator/debugger is set as follows:
Pipeline: Reset
Registers: Initialized as follows:

• SH-1/SH-2/SH-DSP series
SR: H'F0
Others: H'0

• SH-2E series
SR: H'F0
FPSCR: H'40001
Others: H'0

• SH-3
SR: H'700000F0
Others: H'0

• SH-3E/SH-4
SR: H'700000F0
FPSCR: H'40001
Others: H'0

Memory: All memory settings are cleared.
User program: All information concerning the user program is deleted, and the

simulator/debugger assumes that no program is loaded.
Command: All command settings excluding the RADIX command are cleared and

initialized.

Example To reset the simulator/debugger:

: RESET(RET)

:

Rev. 1.0, 09/99, page 100 of 173

4.45 ROUND_MODE

ROUND_MODE Specifies and displays floating-point rounding mode

RM

Format Set: ROUND_MODE∆{Z|N}(RET)
Display: ROUND_MODE (RET)

Parameter • Rounding mode {Z|N}
Z: Rounds toward zero (default).
N: Rounds to the nearest value.

Function Specifies the floating-point rounding mode.

Examples (1) To display the current rounding mode:

: ROUND_MODE(RET)

ROUND TO ZERO

:

(2) To specify the round-to-nearest mode:

: ROUND_MODE N(RET)

:

Rev. 1.0, 09/99, page 101 of 173

4.46 SAVE_STATUS

SAVE_STATUS Saves the current simulator/debugger status in a file

SS

Format SAVE_STATUS[∆<file name>](RET)

Parameter • <file name>
Specifies the name of the file in which the simulation status is saved.
When the file name is omitted, the file sdsh.sav is assumed.
When the file extension is omitted, the extension .sav is added.

Function Saves the current simulation status in a file.
• Name of the program file which has been loaded last
• CPU information
• Default radix
• Memory map setting information
• Trace condition
• Break information
• Register information

Example To save the simulation state in file test1.sav:

: SAVE_STATUS test1.sav(RET)

:

Rev. 1.0, 09/99, page 102 of 173

4.47 STACK_ANALYSIS

STACK_ANALYSIS Enables/disables or resets the stack use analysis results

SA

Format STACK_ANALYSIS∆{E|D|R}(RET)

Parameter • Enable/disable/reset {E|D|R}
E (enable): Enables stack use analysis.
D (disable): Disables stack use analysis.
R (reset): Resets the stack use analysis results.

Function Enables/disables stack use analysis or resets the analysis results.

Description By resetting, only the analysis results are reset and the stack use analysis
enable/disable setting is not changed.

Examples (1) To enable stack use analysis:

: STACK_ANALYSIS E(RET)

:

(2) To reset the stack use analysis results:

: STACK_ANALYSIS R(RET)

:

(3) To disable stack use analysis:

: STACK_ANALYSIS D(RET)

:

Rev. 1.0, 09/99, page 103 of 173

4.48 STACK_ANALYSIS_DISPLAY

STACK_ANALYSIS_DISPLAY Displays the stack use analysis results

SD

Format STACK_ANALYSIS_DISPLAY[∆PC][∆M](RET)

Parameters • PC: Displays the program counter value (not displayed as a default).
• M: Displays the maximum/minimum stack pointer values (not displayed as

a default).

Function Displays the cycle count and stack value when a stack has changed as the results of
stack use analysis. When PC is specified, the program counter value when a stack has
changed is displayed. When M is specified, the maximum and minimum stack values
are displayed.

Description (1) Analyzes stack use.
(2) Saves changes of the SP values during program execution.

The buffer is configured in the form of a ring and stores up to 9999 data.
When 10000 or more data is saved, the buffer is overwritten from its head.

(3) Displayed items are as follows:

CYCLE SP PC

XXXXXXXXXX XXXXXXXX XXXXXXXX

 : : :

XXXXXXXXXX XXXXXXXX XXXXXXXX

 CYCLE SP PC

Max XXXXXXXXXX XXXXXXXX XXXXXXXX

Min XXXXXXXXXX XXXXXXXX XXXXXXXX

[CYCLE]: Cycle count
[SP]: Stack pointer value
[PC]: Program counter value
[Max]: Displays the maximum stack pointer value.
[Min]: Displays the minimum stack pointer value.

(4) Stack use analysis is disabled when the simulator is initiated.

Rev. 1.0, 09/99, page 104 of 173

Examples (1) To display the stack use analysis results:

: STACK_ANALYSIS_DISPLAY(RET)

CYCLE SP

 333 00000FF0

 10000 00000900

 999998 00000FFC

:

(2) To display the stack use analysis results including the maximum and minimum
program counter and stack pointer values:

: STACK_ANALYSIS_DISPLAY PC M(RET)

CYCLE SP PC

 333 00000FF0 000000F0

 10000 00000090 00000F00

9999999999 00000FFC 00000FF0

 CYCLE SP PC

Max 9999999999 00000FFC 00000FF0

Min 10000 00000090 00000F00

:

Rev. 1.0, 09/99, page 105 of 173

4.49 STATUS

STATUS Displays the simulator/debugger status

ST

Format STATUS(RET)

Function Displays the CPU type and endian when the simulator/debugger is started, and the
execution cycle count and cache hit ratio when the simulator/debugger stops.

Display for SH-1, SH-2, SH-2E, and SH-DSP
CPU=xxx ENDIAN=xxxx CYCLE=xxxx

(1) (2) (3)

Display for SH-3 and SH-3E
CPU=xxx ENDIAN=xxxx CYCLE=xxxx

(1) (2) (3)
CACHE HIT=xx%

(4)

Display for SH-4
CPU=xxx ENDIAN=xxxx CYCLE=xxxx

(1) (2) (3)
INSTRUCTION CACHE HIT=xx% OPERAND CACHE HIT=xx%

(5) (6)

(1) CPU type
(2) Endian
(3) Execution cycle count (10-digit decimal)
(4) Cache hit ratio (percentage)
(5) Instruction cache hit ratio (percentage)
(6) Operand cache hit ratio (percentage)

Rev. 1.0, 09/99, page 106 of 173

Examples (1) To display the simulator/debugger status when the CPU type SH-1 and big endian
are specified at startup.

: STATUS (RET)

CPU=SH1 ENDIAN=BIG CYCLE=128

:

(2) To display the simulator/debugger status when the CPU type SH-3E and big
endian are specified at startup.

: STATUS (RET)

CPU=SH3E ENDIAN=BIG CYCLE=4186

CACHE HIT=89%

:

(3) To display the simulator/debugger status when the CPU type SH-4 and little
endian are specified at startup.

: STATUS (RET)

CPU=SH4 ENDIAN=LITTLE CYCLE=157353

INSTRUCTION CACHE HIT=89% OPERAND CACHE HIT=34%

:

Rev. 1.0, 09/99, page 107 of 173

4.50 STEP

STEP Performs step execution (executes subroutine as one

S step)

Format STEP[∆<step count>][∆R](RET)

Parameters • <step count>
Specifies the number of instruction execution steps. (H'1 to H'FFFF)
When omitted, one step is executed.

• Register content display R
R (register): Displays the contents of the registers after instruction execution.

Function Executes instructions one at a time starting at the current program counter for the
specified number of steps.

Description (1) Displays the mnemonic of the executed instruction each time an instruction is
executed.
If the R option is specified, the contents of the register after instruction
execution is also displayed.

(2) For a subroutine branched by the BSR, JSR or BSRF instruction, execution is
performed from the start of the subroutine to the instruction following the RTS
instruction (since RTS is a delay branch instruction) as one step.

(3) Execution stops when the break condition set by a break command is satisfied
or an error is detected by the simulator/debugger.
In this case, the stop cause is displayed.

Example To execute five instructions, executing the subroutine as though it were a single
instruction:

: STEP 5 (RET)

00000000 MOV.L R3,@R14

00000002 MOV.L @(H'0084:8,PC), R1

00000004 JSR @R1

00000006 NOP

00000008 LDS.L @R15+, PR

+++ 5000 : Step normal end

:

Rev. 1.0, 09/99, page 108 of 173

4.51 STEP_G

STEP_G Specifies step execution address range executing

SG subroutine as one step

Format STEP_G∆<start PC address>∆<end PC address>[∆R](RET)

Parameters • <start PC address>
Specifies the dummy start address (H'0 to H'FFFFFFFF).
In this simulator/debugger, the start address of the step execution range is always
the current PC value regardless of this setting.

• <end PC address>
Specifies the end PC address of the step execution range.

• Register content display R
R (register): Displays the contents of the register after step execution.

Function Executes instructions one at a time from the current PC address to the end PC address.

Description (1) Displays the mnemonic of the last executed instruction.
If the R option is specified, the contents of the register after instruction
execution is also displayed.

(2) For a subroutine branched by the BSR, JSR or BSRF instruction, execution is
performed from the start of the subroutine to the instruction following the RTS
instruction (since RTS is a delay branch instruction) as one step.

(3) Execution stops when the break condition set by a break command is satisfied
or an error is detected by the simulator/debugger.
In this case, the stop cause is displayed.

(4) The relationship between the start and end PC addresses is as follows:
When the end PC address is an odd value, the last bit is set to 0 to make it an
even value (ANDing with 0xfffffffe to make it an even value).
Examples: 1 → 0, 101 → 100, ffff → fffe

When current PC address = end PC address, step execution is performed at the
current PC address by one step.
When current PC address > end PC address, step execution is performed at the
current PC address by one step.
When current PC address < end PC address, step execution is performed from
the current PC address to the end PC address.

Step execution stops when the PC value becomes outside the range from the
current PC addresses and the end PC address (except during subroutine
execution).

Rev. 1.0, 09/99, page 109 of 173

Example To perform step execution from the current PC address to address H'8:

: STEP_G 0 8 (RET)

00000008 LDS.L @R15+,PR

+++ 5000 : Step normal end

:

Rev. 1.0, 09/99, page 110 of 173

4.52 STEP_INTO

STEP_INTO Performs step execution

ST

Format STEP_INTO[∆<step count>][∆R](RET)

Parameters • <step count>
Specifies the number of instruction execution steps. (H'1 to H'FFFF)
When omitted, one step is executed.

• Register content display R
R (register): Displays the contents of the registers after instruction execution.

Function Executes instructions one at a time starting at the current program counter for the
specified number of steps.
When a subroutine is called by the program, the called subroutine is also executed one
step at a time.

Description (1) Displays the mnemonic of the executed instruction each time an instruction is
executed.
If the R option is specified, the contents of the register after instruction
execution is also displayed.

(2) Execution stops when the break condition set by a break command is satisfied
or an error is detected by the simulator/debugger.
In this case, the stop cause is displayed.

Rev. 1.0, 09/99, page 111 of 173

Examples (1) To execute one instruction and then display the mnemonic of the executed
instruction and the contents of the registers following the instruction execution
(For the SH-3):

: STEP_INTO R(RET)

PC=00001002 SR=700000F0:-MRB-------------------IIII---- SP=00000000

GBR=00000000 VBR=00000000 MACH=00000000 MACL=00000000 PR=00000000

R0-7 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

R8-15 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

R0_BANK-R3-BANK 00000000 00000000 00000000 00000000

R4_BANK-R7-BANK 00000000 00000000 00000000 00000000

SSR=00000000 SPC=00000000

PTEH=00000000 PTEL=00000000 TTB=00000000 TEA=00000000 MMUCR=00000000

EXPEVT=00000000 INTEVT=00000000 TRA=00000000 CCR=00000000

00001000 MOV #H'00,R3

+++5000 : Step normal end

:

(2) To execute three instructions:

: STEP_INTO 3(RET)

00000404 MOV.L #0000002E,R4

00000406 MOV.L #FFFFFFFF,R3

00000408 ADD.L R1,R2

+++5000 : Step normal end

:

Rev. 1.0, 09/99, page 112 of 173

4.53 STEP_INTO_G

STEP_INTO_G Specifies step execution range

SIG

Format STEP_INTO_G∆<start PC address>∆<end PC address>[∆R](RET)

Parameters • <start PC address>
Specifies the dummy start address (H'0 to H'FFFFFFFF).
In this simulator/debugger, the start address of the step execution range is always
the current PC value regardless of this setting.

• <end PC address>
Specifies the end PC address of the step execution range.

• Register content display R
R (register): Displays the contents of the register after instruction execution.

Function Executes instructions one at a time from the current PC address to the end PC address.
When a subroutine is called by the program, the called subroutine is also executed one
step at a time.

Description (1) Displays the mnemonic of the instruction which has been executed last.
If the R option is specified, the contents of the register after instruction
execution is also displayed.

(2) When a subroutine is called by the program, the called subroutine is also
executed one step at a time.

(3) Execution stops when the break condition set by a break command is satisfied
or an error is detected by the simulator/debugger.
In this case, the stop cause is displayed.

(4) The relationship between the start and end PC addresses is as follows:
When the end PC address is an odd value, the last bit is set to 0 to make it an
even value (ANDing with 0xfffffffe to make it an even value).
Examples: 1 → 0, 101 → 100, ffff → fffe

When current PC address = end PC address, step execution is performed at the
current PC address by one step.
When current PC address > end PC address, step execution is performed at the
current PC address by one step.
When current PC address < end PC address, step execution is performed from
the current PC address to the end PC address.

Step execution stops when the PC value becomes outside the range from the
current PC addresses and the end PC address (also during subroutine
execution).

Rev. 1.0, 09/99, page 113 of 173

Example To perform step execution from the current PC address to address H'6:

: STEP_INTO_G 0 6(RET)

00000006 ADD.L R1,R2

+++5000 : Step normal end

:

Rev. 1.0, 09/99, page 114 of 173

4.54 TLB (Only for the SH-3/SH-3E/SH-4 Series)

TLB Modifies the TLB contents

TLB

Format • For SH-3 and SH3E
Modification: TLB∆<index>∆<way>[∆<AA data>][∆:∆<DA data>](RET)
Interactive mode: TLB∆<index>∆<way>(RET)

• For SH-4
Modification: TLB[∆{I|U}]∆<entry>[∆<AA data>][∆:∆<DA data>](RET)
Interactive mode: TLB[∆{I|U}]∆<entry>(RET)

Parameters • <index>
Specifies the TLB way index to be modified. (H'00 to H'1F)

• <way>
Specifies the TLB way to be modified. (H'0 to H'3)

• <AA data>
Specifies data to be written into the address array.

• <DA data>
Specifies data to be written into the data array.

• TLB type to be modified {I|U}
I: Specifies the instruction TLB (ITLB) (default).
U: Specifies the unified TLB (UTLB).

• <entry>
Specifies the TLB entry to be modified.

Function Modifies the TLB contents.

Rev. 1.0, 09/99, page 115 of 173

Description (1) Modification (direct):
Modifies the TLB contents with the specified data.

(2) Modification (interactive mode):
If the modification data (AA and DA data) is omitted, the TLB
contents are modified interactively using the following formats.
Displays the current data, and requests the modification data to be input.

For SH-3 and SH-3E

: TLB∆∆∆∆<index>∆∆∆∆<way>(RET)

ii w aaaaaaaa/dddddddd : [∆∆∆∆<AA data>][∆∆∆∆:∆∆∆∆<DA data>](RET)

ii w aaaaaaaa/dddddddd :

(1) (2) (3) (4)

(1): Index (2-digit hexadecimal)
(2): Way (1-digit hexadecimal)
(3): Current address array data (8-digit hexadecimal)
(4): Current data array data (8-digit hexadecimal)

For SH-4

: TLB∆∆∆∆<entry>(RET)

ee aaaaaaaa/dddddddd : [∆∆∆∆<AA data>][∆∆∆∆:∆∆∆∆<DA data>](RET)

ee aaaaaaaa/dddddddd :

(1) (2) (3)

(1): Entry (2-digit hexadecimal)
(2): Current address array data (8-digit hexadecimal)
(3): Current data array data (8-digit hexadecimal)

The following can be entered instead of modification data:
.(period): Terminates the TLB command.
^: Returns to the previous TLB entry.
(RET) only: Goes to the next TLB entry.

Rev. 1.0, 09/99, page 116 of 173

Examples (1) To modify the entry in index 0 and way 0 in SH-3:

: TLB 0 0 00000000 : 00000000(RET)

:

(2) To modify the TLB contents sequentially from the entry in index 0 and way 0 in
SH-3:

: TLB 0 0(RET)

00 0 00000000/00000000 : 00000101 : 00000500 (RET)

00 1 00000000/00000000 : 00000101 : 00000900 (RET)

00 2 00000000/00000000 : (RET)

00 3 00000000/00000000 : ^(RET)

00 2 00000000/00000000 : 00000101 : 00001100 (RET)

00 3 00000000/00000000 : 00000101 : 00001100 (RET)

01 0 00000000/00000000 : .(RET)

:

Rev. 1.0, 09/99, page 117 of 173

4.55 TLB_DUMP (Only for the SH-3/SH-3E/SH-4 Series)

TLB_DUMP Displays the TLB contents

TLBD

Format • For SH-3 and SH3E
TLB_DUMP(RET)

• For SH-4
TLB_DUMP[{∆I|U}](RET)

Parameter • TLB type to be displayed {I|U}
I: Specifies the instruction TLB (ITLB) (default).
U: Specifies the unified TLB (UTLB).

Function Displays the contents of the TLB address and data arrays.

Description Displays the TLB contents in the following formats:

For SH-3 and SH-3E

<NO> <WAY0> <WAY1> <WAY2> <WAY3>

 ii aaaaaaaa/dddddddd aaaaaaaa/dddddddd aaaaaaaa/dddddddd aaaaaaaa/dddddddd

(1) (2) (3) (2) (3) (2) (3) (2) (3)

(1): Index (2-digit hexadecimal)
(2): Current address array data (8-digit hexadecimal)

Bits 16 to 12 (five bits) are always 0.
(3): Current data array data (8-digit hexadecimal)

For SH-4

<NO> <ADDR ARRAY> <DATA ARRAY>

 ee aaaaaaaa/dddddddd

 (1) (2) (3)

(1): Entry (2-digit hexadecimal)
(2): Address array data (8-digit hexadecimal)
(3): Data array data (8-digit hexadecimal)

Rev. 1.0, 09/99, page 118 of 173

Example To display the contents of all indexes in SH-3:

: TLB_DUMP(RET)

<NO> <WAY0> <WAY1> <WAY2> <WAY3>

 00 00000000/00000000 00000000/00000000 00000000/00000000 00000000/00000000

 01 00000000/00000000 00000000/00000000 00000000/00000000 00000000/00000000

 : : : : :

 1F 00000000/00000000 00000000/00000000 00000000/00000000 00000000/00000000

:

Rev. 1.0, 09/99, page 119 of 173

4.56 TLB_FLUSH (Only for the SH-3/SH-3E/SH-4 Series)

TLB_FLUSH Flushes the TLB contents

TLBF

Format • SH-3/SH-3E series
TLB_FLUSH(RET)

• SH-4 series
TLB_FLUSH[{∆I|U}](RET)

Parameters • Type of TLB to flush {I|U}
I: Specifies instruction TLB (ITLB). (Default)
U: Specifies unified TLB (UTLB).

Function Flushes the TLB contents.

Example To flush the TLB contents in SH3:

: TLB_FLUSH(RET)

:

Rev. 1.0, 09/99, page 120 of 173

4.57 TLB_SEARCH (Only for the SH-3/SH-3E/SH-4 Series)

TLB_SEARCH Searches for the TLB contents

TLBS

Format • SH-3/SH-3E series
TLB_SEARCH∆<address>[∆<address type>](RET)

• SH-4 series
TLB_SEARCH[∆{I|U}]∆<address>[∆<address type>](RET)

Parameters • <address>
Specifies the address to be searched for.

• <address type>
Specifies the type of address to be searched for as follows.
P: Physical address
V: Virtual address (default)

• Type of TLB to search {I|U}
I: Specifies instruction TLB (ITLB). (Default)
U: Specifies unified TLB (UTLB).

Function Searches for the TLB address array which holds the specified virtual address, or
Searches for the TLB data array which holds the specified physical address.
The index, way number, address and data array values of the corresponding entry are
displayed.

Examples (1) To search for the TLB contents using virtual address H'00000000 in SH-3:

: TLB_SEARCH 0 (RET)

00 0 00000101/20000158

00 2 00000103/20100158

:

(2) To search for the TLB contents using physical address H'20000000 in SH-3:

: TLB_SEARCH 20000000 P (RET)

00 0 00000101/20000158

:

Rev. 1.0, 09/99, page 121 of 173

4.58 TRACE

TRACE Displays trace buffer

T

Format TRACE[∆<offset>[∆<count>]](RET)

Parameters • <offset>
Specifies the first cycle to be displayed (0 to 1023).
Indicates the number of cycles from the head of the trace buffer.
Unless specified, the ninth and later cycles from the last are displayed.

• <count>
Specifies the count to be displayed (1 to 1024).
Unless specified, ten cycles are displayed.
When specifying the count, the offset must also be specified.

Function Displays the contents of the trace buffer.
The last cycle (which has been executed last) of the buffer is cycle 0 and the previous
cycles have negative values.

Rev. 1.0, 09/99, page 122 of 173

Description (1) The contents to display are as follows:
SH-1, SH-2, SH-DSP, and SH-2E series:

PTR CYCLE ADDR-BUS PIPELINE INSTRUCTION

XXXXX XXXXXXXX XXXXXXXX XXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

[PTR]: Pointer in the trace buffer (the instruction which has been
executed last is "0")

[CYCLE]: Accumulative cycle count of executed instructions
(cleared by pipeline reset)

[ADDR-BUS]: Instruction address
[PIPELINE]: The meanings of the pipeline execution state symbols are

as follows:
F: Instruction fetch (with memory access)
f: Instruction fetch (with no memory access)
D: Instruction decode
E: Instruction execution
M: Memory access
W: Write back
P: DSP (SH-DSP series only)
m: Multiplier execution
-: Stall inherent to instruction
>: Split
<: Stall due to contention
For details on pipeline operation, refer to the
programming manual of each device.

[INSTRUCTION]: Mnemonic instruction and data access (indicated in the
form of "transfer destination <− transfer data")

Rev. 1.0, 09/99, page 123 of 173

SH-3 and SH-3E series:

PTR CYCLE ADDR-BUS DATA-BUS CODE NO INSTRUCTION

IF DE EX MA SW ACCESS DATA

XXXXX XXXXXXXXXX XXXXXXXX XXXXXXXX XXXX XX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

XX XX XX XX XX XXXXXXXXXXXXXXXXXXXXXXXXXXX

[PTR]: Pointer in the trace buffer (the instruction which has been
executed last is "0")

[CYCLE]: Accumulative cycle count of executed instructions
(cleared by pipeline reset)

[ADDR-BUS]: Data on the address bus
[DATA-BUS]: Data on the data bus
[CODE]: Instruction code
[No]: Instruction execution number (corresponding to the

execution number of each stage)
[INSTRUCTION]: Mnemonic instruction
[IF]: Execution number of fetched instruction
[DE]: Execution number of decoded instruction
[EX]: Execution number of executed instruction
[MA]: Execution number of instruction that accessed memory
[SW]: Execution number of instruction that wrote back data
[ACCESS DATA]: Contents of data access (indicated in the form of "transfer

destination <− transfer data")

Rev. 1.0, 09/99, page 124 of 173

SH-4 series:

PTR CYCLE ADDRESS code1 code2 EX-EAS LS-EAS BR-EAS FP-EXASD

INSTRUCTION ACCESS DATA

XXXXX XXXXXXXXXX XXXXXXXX XXXX XXXX X X X X X X X X X X X X X X

XXXXXXXXXXXXXXXXX XX XXXXXXXXXXXXXXXXXXXXXXXXXXX

[PTR]: Pointer in the trace buffer (the instruction which has been
executed last is "0")

[CYCLE]: Accumulative cycle count of executed instructions
(cleared by pipeline reset)

[ADDRESS]: Program counter address
[code1]: Code1 of the fetched program
[code2]: Code2 of the fetched program
[EX-EAS]: Number of the instruction that has been executed (E),

accessed memory (A), or wrote back data (S) by EX
pipeline execution

[LS-EAS]: Number of the instruction that has been executed (E),
accessed memory (A), or wrote back data (S) by LS
pipeline execution

[BR-EAS]: Number of the instruction that has been executed (E),
accessed memory (A), or wrote back data (S) by BR
pipeline execution

[FP-EXASD]: Number of the instruction that has been executed (E),
accessed memory (A), or wrote back data (S) by FP
pipeline execution (The X stage uses only FSCA, FSRRA,
FIPR, and FTRV instructions, and the D stage uses only
FDIV and FSQRT instructions)

[INSTRUCTION]: Instruction number assigned to the instruction to be
executed,
Memory address, instruction code, and mnemonic of the
instruction to be executed.

[ACCESS DATA]: Contents of data access (indicated in the form of "transfer
destination <− transfer data")

Note Trace information is displayed for up to 1023 instructions.

Rev. 1.0, 09/99, page 125 of 173

Example To display five cycles from the head of the trace buffer:
SH-1, SH-2 and SH-DSP series:

: TRACE 0 5(RET)

PTR CYCLE ADDR-BUS PIPELINE INSTRUCTION

-1023 0000010193 000001B0 FFDE>MM :MOV.L R1,@R6 000001EC <- 00000001

-1022 0000010195 000001B2 fD>E> :TST R5,R5 T<-(0)

-1021 0000010197 000001B4 FFD>E> :BT 000001BA T(0)

-1020 0000010199 000001B6 f>D>E :MOV #FF,R2 R2 <- FFFFFFFF

-1019 0000010200 000001B8 FFDE>MM :MOV.L R2,@R6 000001EC <- FFFFFFFF

:

SH-3 and SH-3E series:

: TRACE 0 5(RET)

PTR CYCLE ADDR-BUS DATA-BUS CODE NO INSTRUCTION IF DE EX MA SW

ACCESS DATA

-0014 0000000000 BEADCAFE 00000000 0009 -- ------------------- -- -- -- -- --

-0013 0000000001 00000000 00000000 0009 -- ------------------- 01 -- -- 00 --

-0012 0000000002 00000002 4F227FC8 4F22 01 STS.L PR,@-R15 02 01 -- -- --

-0011 0000000003 00000004 4F227FC8 7FC8 02 ADD #C8,R15 03 02 01 -- --

-0010 0000000004 00001F84 E3001F32 E300 03 MOV #00000000,R3 04 03 02 01 --

(01):00001F84 <- 00000000

:

Rev. 1.0, 09/99, page 126 of 173

SH-2E series:

: t 0 5(RET)

PTR CYCLE ADDR-BUS PIPELINE INSTRUCTION

-0010 0000000000 :PIPELINE RESET

-0009 0000000002 80000000 FFDE> :ADD #FC, R15 R15<-00000FEC

-0008 0000000004 80000002 fD>EMM>> :MOV.L R4, @R15 00000FEC<-00000000

-0007 0000000007 80000004 FFD<<E> :MOV #0A, R2 R2<-0000000A

-0006 0000000009 80000006 f<<D>EMM>> :MOV.L R2, @R15 00000FEC<-0000000A

:

SH-4 series:

: t 0 5(RET)

PTR CYCLE ADDRESS code1 code2 EX-EAS LS-EAS BR-EAS FP-EXASD INSTRUCTION

-1023 0000004426 00000060 xxxx xxxx x x x x x x x x x x x x x x

-1022 0000004427 00000060 xxxx xxxx x x x x x x x x x x x x x x

-1021 0000004428 00000064 xxxx *E30A x x x x x x x x x x x x x x [5

(0000005E): E30A MOV #0A, R3]

-1020 0000004429 00000064 xxxx xxxx 5 x x x x x x x x x x x x x

-1019 0000004430 00000064 xxxx xxxx x 5 x x x x x x x x x x x x

:

Rev. 1.0, 09/99, page 127 of 173

4.59 TRACE_CONDITION

TRACE_CONDITION Sets trace condition, and starts or stops trace

TC

Format Start: TRACE_CONDITION[[∆{I|S}][∆E][∆{C|B}]](RET)
Stop: TRACE_CONDITION∆D(RET)

Parameter • Instruction type {I|S}
I (instruction): All instructions are saved in the trace buffer (default).
S (subroutine): Only subroutine calling instructions (BSR, JSR, and BSRF) are

saved in the trace buffer.
• Trace start/stop {E|D}

E (enable): Starts saving in the trace buffer (default).
D (disable): Terminates saving in the trace buffer.

• Trace buffer full handling {C|B}
C (continue): Overwrites the previous contents of the trace buffer after the trace

buffer overflows. (default)
B (break): Interrupts program execution when the trace buffer overflows.

Function Sets the trace condition.

Description Saving in the trace buffer has been disabled when the simulator is initiated.

Examples (1) To save all instructions in the trace buffer following the execution of the
command:

: TRACE_CONDITION I (RET)

:

(2) To save only subroutine calls in the trace buffer:

: TRACE_CONDITION S E(RET)

:

(3) To terminate saving in the trace buffer:

: TRACE_CONDITION D(RET)

:

Rev. 1.0, 09/99, page 128 of 173

4.60 TRACE_CLEAR

TRACE_CLEAR Clears trace buffer

TL

Format TRACE_CLEAR(RET)

Function Clears the contents of the trace buffer.

Description Only the trace buffer is cleared and the trace conditions (the instruction type, the
trace start/end setting and processing when the trace buffer is full) are not changed.

Example To clear the contents of the trace buffer:

: TRACE_CLEAR(RET)

:

Rev. 1.0, 09/99, page 129 of 173

4.61 TRAP_ADDRESS

TRAP_ADDRESS Sets the system call start address

TA

Format TRAP_ADDRESS∆<start address>(RET)

Parameter • <start address>
Specifies the system call start address.
After the start address is specified, the system call becomes valid.

Function Sets the system call start address for inputting and outputting characters between the
user program and the standard I/O device, and file I/O. Only one address can be set.
If the branch address of an executed JSR, BSR, and BSRF instruction is the same as
the address specified with this command, normal simulation is not performed, but
rather the system call indicated by the function code is executed.
A parameter block and an I/O buffer must be allocated within the user program.
The user program must set up R0 and R1, the parameter block, and the I/O buffer
before executing the JSR, BSR, or BSRF instruction.
Simulation is restarted from the instruction following the JSR, BSR, or BSRF
instruction after the system call processing.
The contents of R0 and R1 and the other registers are shown below.
Since the contents stored in the parameter block differ for each system call function,
the parameter block contents are described under each function.

MSB 1 byte 1 byte

H'01R0 register Function code _ _

LSB

Parameter block addressR1 register

Notes <System Call Functions>
The simulator/debugger provides functions to issue system calls to the host computer
from the user program.
The following table lists the system calls that can be used by a user program.

Rev. 1.0, 09/99, page 130 of 173

Table 4.3 System Call Functions

Function Code Function Description

H'21 GETC Inputs one character from standard input

H'22 PUTC Outputs one character to standard output

H'23 GETS Inputs a line of characters from standard input

H'24 PUTS Outputs a line of characters to standard output

H'25 FOPEN Opens a file

H'06 FCLOSE Closes a file

H'27 FGETC Inputs one byte from a file

H'28 FPUTC Outputs one byte to a file

H'29 FGETS Inputs a line from a file

H'2A FPUTS Outputs a line to a file

H'0B FEOF Checks for end of file

H'0C FSEEK Moves the file pointer

H'0D FTELL Returns the current position of the file pointer

Rev. 1.0, 09/99, page 131 of 173

(1) GETC
<Function>

Inputs one character from standard input.
<Function code>

H'21
<Parameter block>

+0

MSB 0 15

+2
Input buffer address

<Example>
To input one character from standard input (usually the keyboard):

 MOV.L PAR_ADR,R1

 MOV.L REQ_COD,R0

 MOV.L CALL_ADR,R3

 JSR @R3

 NOP

STOP NOP

SYS_CALL NOP

 .ALIGN 4

CALL_ADR .DATA.L SYS_CALL

REQ_COD .DATA.L H'01210000

PAR_ADR .DATA.L PARM

PARM .DATA.L INBUF

INBUF .RES.B 2

 .END

Rev. 1.0, 09/99, page 132 of 173

(2) PUTC
<Function>

Outputs one character to standard output.
<Function code>

H'22
<Parameter block>

MSB 0 15

+0

+2
Output data address

<Example>
To output the character 'A' to standard output (usually the console):

 MOV.L PAR_ADR,R1

 MOV.L REQ_COD,R0

 MOV.L CALL_ADR,R3

 JSR @R3

 NOP

STOP NOP

SYS_CALL NOP

 .ALIGN 4

CALL_ADR .DATA.L SYS_CALL

REQ_COD .DATA.L H'01220000

PAR_ADR .DATA.L PARM

PARM .DATA.L OUTDATA

OUTDATA .DATA.B "A"

 .END

Rev. 1.0, 09/99, page 133 of 173

(3) GETS
<Function>

Inputs a line of characters from standard input.
A line feed character (LF) terminates the input line.
Up to 79 characters can be input in a line.
If more than 79 characters are input, the 80th character will be converted to a
line feed (LF).

<Function code>
H'23

<Parameter block>

MSB 150

+0

+2
Input buffer address

<Example>
To input one line from standard input (usually the keyboard):

 MOV.L PAR_ADR,R1

 MOV.L REQ_COD,R0

 MOV.L CALL_ADR,R3

 JSR @R3

 NOP

STOP NOP

SYS_CALL NOP

 .ALIGN 4

CALL_ADR .DATA.L SYS_CALL

REQ_COD .DATA.L H'01230000

PAR_ADR .DATA.L PARM

PARM .DATA.L INBUF

INBUF .RES.B 80

 .END

Rev. 1.0, 09/99, page 134 of 173

(4) PUTS
 <Function>

Outputs a line of characters to standard output.
A line feed character (LF) terminates the output line.
Up to 131 characters can be output on a line.
If more than 131 characters are specified, the 132nd character will be
converted to a line feed (LF).

<Function code>
H'24

<Parameter block>

MSB 150

+0

+2
Output buffer address

<Example>
To output the string "Hello world" to standard output (usually the console):

 MOV.L PAR_ADR,R1

 MOV.L REQ_COD,R0

 MOV.L CALL_ADR,R3

 JSR @R3

 NOP

STOP NOP

SYS_CALL NOP

 .ALIGN 4

CALL_ADR .DATA.L SYS_CALL

REQ_COD .DATA.L H'01240000

PAR_ADR .DATA.L PARM

PARM .DATA.L OUTDATA

OUTDATA .SDATA."Hello world"

 .DATA.B H'0A

 .END

Rev. 1.0, 09/99, page 135 of 173

(5) FOPEN
<Function>

The FOPEN opens a file and returns the file number.
After this processing, the returned file number must be used to input, output, or
close files.
A maximum of 256 files can be open at the same time.

<Function code>
H'25

<Parameter block>

Start address of file name

One byte

+0

+2

+4

+6

One byte

Return value

Open mode

File number

Unused

MSB 150

<Parameters>
 • Return value (output)

0: Normal completion
–1: Error

 • File number (output)
The number to be used in all processing after opening.

 • Open mode (input)
H'00: "r"
H'01: "w"
H'02: "a"
H'03: "r+"
H'04: "w+"
H'05: "a+"
H'10: "rb"
H'11: "wb"
H'12: "ab"
H'13: "r+b"
H'14: "w+b"
H'15: "a+b"
These modes are interpreted as follows.
"r": Open for reading.
"w": Open an empty file for writing.
"a": Open for appending (write starting at the end of the file).
"r+": Open for reading and writing.
"w+": Open an empty file for reading and writing.

Rev. 1.0, 09/99, page 136 of 173

"a+": Open for reading and appending.
"b": Open in binary mode.

 • Start address of file name (input)
The start address of the area for storing the file name.

Rev. 1.0, 09/99, page 137 of 173

(6) FCLOSE
<Function>

Closes a file
<Function code>

H'06
<Parameter block>

+0 Return value File number

One byte One byte
MSB 150

<Parameters>
 • Return value (output)

0: Normal completion
–1: Error

 • File number (input)
The number returned when the file was opened.

Rev. 1.0, 09/99, page 138 of 173

(7) FGETC
<Function>

Inputs one byte from a file
<Function code>

H'27
<Parameter block>

Start address of input buffer

+0

+2

+4

+6

Return value File number

Unused

One byte One byte
MSB 150

<Parameters>
 • Return value (output)

0: Normal completion
–1: EOF detected or error

 • File number (input)
The number returned when the file was opened.

 • Start address of input buffer (input)
The start address of the buffer for storing input data.

Rev. 1.0, 09/99, page 139 of 173

(8) FPUTC
<Function>

Outputs one byte to a file
<Function code>

H'28
<Parameter block>

Start address of output buffer

+0

+2

+4

+6

Return value File number

Unused

One byte One byte
MSB 150

<Parameters>
 • Return value (output)

0: Normal completion
–1: Error

 • File number (input)
The number returned when the file was opened.

 • Start address of output buffer (input)
The start address of the buffer used for storing the output data.

Rev. 1.0, 09/99, page 140 of 173

(9) FGETS
<Function>

Reads character string data from a file.
Data is read until either a new line code or a NULL code is read, or until the
buffer is full.

<Function code>
H'29

<Parameter block>

Start address of input buffer

+0

+2

+4

+6

Return value File number

Buffer size

One byte One byte
MSB 150

<Parameters>
 • Return value (output)

0: Normal completion
–1: EOF detected or error

 • File number (input)
The number returned when the file was opened.

 • Buffer size (input)
The size of the area for storing the read data. A maximum of 256 bytes can be
stored.

 • Start address of input buffer (input)
The start address of the buffer for storing input data.

Rev. 1.0, 09/99, page 141 of 173

(10)FPUTS
<Function>

Writes character string data to a file.
The NULL code that terminates the character string is not written to the file.

<Function code>
H'2A

<Parameter block>

Start address of output buffer

+0

+2

+4

+6

Return value File number

Unused

One byte One byte
MSB 150

<Parameters>
 • Return value (output)

0: Normal completion
–1: Error

 • File number (input)
The number returned when the file was opened.

 • Start address of output buffer (input)
The start address of the buffer for storing output data.

Rev. 1.0, 09/99, page 142 of 173

(11)FEOF
<Function>

Checks for end of file
<Function code>

H'0B
<Parameter block>

+0 Return value File number

One byte One byte
MSB 150

<Parameters>
 • Return value (output)

0: File pointer is not at EOF
–1: EOF detected

 • File number (input)
The number returned when the file was opened.

Rev. 1.0, 09/99, page 143 of 173

(12)FSEEK
<Function>

Moves the file pointer to the specified position
<Function code>

H'0C
<Parameter block>

Offset

+0

+2

+4

+6

Return value

Direction

File number

Unused

One byte One byte
MSB 150

<Parameters>
 • Return value (output)

0: Normal completion
–1: Error

 • File number (input)
The number returned when the file was opened.

 • Direction (input)
0: The offset specifies the position as a byte count from the start of the file.
1: The offset specifies the position as a byte count from the current file pointer.
2: The offset specifies the position as a byte count from the end of the file.

 • Offset (input)
The byte count from the location specified by the direction parameter.

Rev. 1.0, 09/99, page 144 of 173

(13)FTELL
<Function>

Returns the current position of the file pointer
<Function code>

H'0D
<Parameter block>

MSB

+0

+2

+4

+6

Return value File number

Unused

Offset

One byte

0 15

One byte

<Parameters>
 • Return value (output)

0: Normal completion
–1: Error

 • File number (input)
The number returned when the file was opened.

 • Offset (input)
The current position of the file pointer, as a byte count from the start of the file.

Example Set the system call address to H'10:

: TRAP_ADDRESS 10(RET)

:

Rev. 1.0, 09/99, page 145 of 173

4.62 TRAP_ADDRESS_DISPLAY

TRAP_ADDRESS_DISPLAY Displays the system call start address

TD

Format TRAP_ADDRESS_DISPLAY(RET)

Function Displays the system call start address and whether the call is enabled or disabled.

Description The system call start address and whether the call is enabled or disabled are
displayed in the following format:

: TD(RET)

 aaaaaaaa b

aaaaaaaa: System call start address

b: E (enable) = System call enabled

D (disable) = System call disabled

Example To display the system call start address and whether the call is enabled or disabled:

: TRAP_ADDRESS_DISPLAY(RET)

00000010 E

:

Rev. 1.0, 09/99, page 146 of 173

4.63 TRAP_ADDRESS_ENABLE

TRAP_ADDRESS_ENABLE Enables/disables the system call start address

TE

Format TRAP_ADDRESS_ENABLE∆{E|D}(RET)

Parameters • <start address>
Specifies the system call address.
After the start address is specified, the system call becomes valid.

• Enable/disable {E|D}
E (enable): Enables the set system call start address.
D (disable): Disables the set system call start address.

Function Enables/disables the system call for inputting and outputting characters from the user
program to the standard I/O device and file I/O.

Example To disable the system call start address:

: TRAP_ADDRESS_ENABLE D(RET)

:

Rev. 1.0, 09/99, page 147 of 173

4.64 .<register>

.<register> Changes the contents of registers

Format General command form: .<register>∆{<data>|<real number>}(RET)
Interactive mode: .<register>(RET)

Parameters • <register>
Specifies the general, control, system, management, DSP or FPU register name.

• <data>
Specifies a new value.

• <real number>
Specifies a new value in single-precision floating-point format ("F' " is added
before the value) or double-precision floating-point format ("D' " is added before
the value).

Function Changes the contents of registers to the specified value.
Description (1) R0 to R15 can be specified for the general register name. SP can be specified

instead of R15.
For the SH-3, SH-3E, and SH-4 series, R0_BANK to R7_BANK can also be
specified.
Between R0 to R7 and R0_BANK to R7_BANK, the value change results are
reflected to each other according to the contents of the MD and RB bits of SR.

(2) SR, GBR and VBR can be specified for the control register name.
For the SH-DSP series, RS, RE and MOD can also be specified.
For the SH-3, SH-3E, and SH-4 series, SSR and SPC can also be specified.
For the SH-4 series, SGR and DBR can also be specified.

(3) MACH, MACL, PR and PC can be specified for the system register name.
(4) FPUL, FPSCR and FR0 to FR15 can be specified for the FPU register name

(for the SH-2E, SH-3E, and SH-4 series).
For the SH-4 series, XF0-XF15, DR0-DR14, and XD0 to XD14 can also be
specified.

(5) PTEH, PTEL, TTB, TEA, MMUCR, EXPEVT, INTEVT, TRA and CCR can
be specified for the management register name (only for the SH-3, SH-3E, and
SH-4 series).
For the SH-4 series, QACR0 and QACR1 can also be specified.

(6) A0, A0G, A1, A1G, M0, M1, X0, X1, Y0, Y1 and DSR can be specified for
the DSP register name (only for the SH-DSP series).
A value of up to eight bits can be set for the A0G and A1G registers.
When a value exceeding eight bits is specified, the lower eight bits become
valid.

Rev. 1.0, 09/99, page 148 of 173

(7) After a command for specifying the interactive mode is input, the interactive
mode is entered after the contents of the specified address is displayed.
.<register>(RET)

register data:[{<data>|<real number>|^}](RET)

register data:[{<data>|<real number>|^}](RET)

 .

 .

 .

register data: .(RET)

register data: Displays the data before change.
<data>: Specifies new data.
<real number>: Specifies a new value in single-precision or

double-precision floating-point format.
^: Displays the contents of the previous register.
(RET) only: Displays the contents of the next register.
. (period): Terminates the .<register> command.

Examples (1) To change the contents of register R0 to H'1000:

: .R0 1000(RET)

:

(2) To change the contents of register R1 to H'9999:

: .R1 9999(RET)

:

(3) To change the contents of registers one by one from register R1 in interactive
mode and display the contents of the previous and next registers:

: .R1(RET)

R1 00009999 : 5678(RET)

R2 00000000 : ^(RET)

R1 00005678 : (RET)

R2 00000000 : 345(RET)

R3 00000000 : ^(RET)

R2 00000345 : .(RET)

:

Rev. 1.0, 09/99, page 149 of 173

(4) To display and change the contents of registers from system register PC in
interactive mode:

: .PC(RET)

PC 00000100 : 400(RET)

SR 00000000 : .(RET)

:

(5) To change the contents of FPU register FR0 to F'9876543e+21:

: .FR0 F'9876543e+21(RET)

:

Rev. 1.0, 09/99, page 150 of 173

4.65 Limitations

This section explains the limitations of using the SuperH RISC engine simulator/debugger.

(1) When an operator is included in the input character string at command input, the numerals
before and after the operator are calculated and used.

Note that calculation is not conducted if there is a space before or after an operator.

Floating-point data is not calculated.

Examples

: me 0 10+1 ;b

: md 0 10

address +0 +1 +2 +3 +4 +5 +6 +7 +8 +9 +A +B +C +D +E +F

00000000 11 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

:

(2) When displaying the mnemonic code of the instruction which has been executed last using a
Go or Step command, other code than that of the last instruction may be displayed. This is
because two instructions may be decoded in one step since one step unit has been set as from
an E stage to the next E stage, displaying the code of the instruction which has been executed
first.

(3) If a delayed branch instruction is included at the end of the memory area, a Memory Access
Error occurs when the instruction is executed.

This is because a delayed branch instruction fetches the next instruction, but no memory is
available for pre-fetching this instruction to be read and discarded, causing an error.

(4) When W, L, D or S is specified as the size for the Memory_Display command, specify the
boundary of each size for the start address.

Otherwise, the memory contents are displayed as all Fs.

Examples

: md 0 10 ;w

address +0 +2 +4 +6 +8 +A +C +E

00000000 0001 0002 0003 0004 0005 0006 0007 0008

: md 1 10 ;w

address +0 +2 +4 +6 +8 +A +C +E

00000001 FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF

:

Rev. 1.0, 09/99, page 151 of 173

(5) The tables below show special floating-point values.

How to express them depends on the host computer.

Table 4.4 Special Value Expressions in Single-Precision

Value SPARC HP9000

0x00000000 0.000000e+00 0.000000e+00

0x80000000 -0.000000e+00 -0.000000e+00

0x7F800000 Inf +.+00000e+01

0xFF800000 -Inf --.-00000e+01

0x7F800001 NaN ?.00000e+00

Table 4.5 Special Value Expressions in Double-Precision

Value SPARC HP9000

0x0000000000000000 0.000000000000000e+00 0.000000000000000e+00

0x8000000000000000 -0.000000000000000e+00 -0.000000000000000e+00

0x7FF0000000000000 Infinity +.+00000000000000e+01

0xFFF0000000000000 -Infinity --.-00000000000000e+01

0x7FF8000000000001 NaN ?.000000000000000e+00

(6) The simulator/debugger for the HP9000 has the following limitations on floating-point
operation.

• Quiet NAN (not-a number)
While the result is a quiet NAN in the actual CPU, it may be a signaling NAN in the
simulator/debugger.

• Invalid operation flag in the FPSCR
Even when an invalid operation is performed, the invalid operation flag may not be set.

(7) Do not input a Tab code during inputting a command since it does not function as a delimiter.

Rev. 1.0, 09/99, page 152 of 173

Rev. 1.0, 09/99, page 153 of 173

Section 5 Message List

5.1 Information Messages

The simulator/debugger outputs information messages to notify the users of execution progress.
Table 5.1 lists information messages output by the simulator/debugger.

Table 5.1 Information messages

Error No. Message Description

5000 Step normal end Execution of STEP, STEP_G, STEP_INTO, STEP_INTO_G, or
STEP_OUT command was completed normally.

5001 PC breakpoint Execution was interrupted due to the occurrence of a
breakpoint condition.

5002 Break sequence Execution was interrupted due to the occurrence of a break
sequence condition.

5003 Break data Execution was interrupted due to the occurrence of a break
data condition.

5004 Break register Execution was interrupted due to the occurrence of a break
register condition.

5005 Break access Execution was interrupted due to the occurrence of a break
access condition.

5006 Trace buffer full Execution was interrupted since the Break mode had been
selected by "Trace buffer full handling" in the Trace Acquisition
dialog box and the trace buffer had become full.

5007 Sleep Execution was interrupted due to the execution of a SLEEP
instruction.

5008 Stop Execution was interrupted by the [STOP] button.

Rev. 1.0, 09/99, page 154 of 173

5.2 Error Messages

The simulator/debugger outputs error messages to notify users of user program errors or operation
errors. Table 5.2 lists the error messages.

Table 5.2 Error Messages

No. Message Contents/Measures

0001 Program error An internal error occurred.
Contact the nearest Hitachi office.

0007 Not enough memory Memory to be used by the simulator/debugger cannot
be allocated.
Extend memory or change the user program.

0009 User aborted Processing was interrupted by the break key input.

0010 File not found The specified file was not found.

0011 Invalid CPU kind The specified debug information file does not
correspond to the CPU setting.

0501 Invalid parameter The parameter value is invalid.

0502 Invalid address The address value is invalid.
Specify a correct one.

0503 User break Processing was interrupted by the break key input.

0505 Not found Not found.

0507 Cannot load file Loading failed.

0508 Cannot save file Saving failed.

0509 Divide by zero The divisor in the integer expression is 0.
Change it to a value other than 0.

0510 Number out of range Data outside the range was specified.

0511 Invalid command An invalid command was executed.

0512 Invalid operator The operator is invalid.

0513 Mismatched parentheses The parentheses are not matched.

0514 Invalid character constant The character constant is invalid.

0515 Invalid register name The register name is invalid.

0516 Invalid function name The function name is invalid.

0517 File write error A file write error occurred.

Rev. 1.0, 09/99, page 155 of 173

Table 5.2 Error Messages (cont)

No. Message Contents/Measures

0519 Out of analysis space The analysis range was exceeded.

0520 Analysis ranges overlap The analysis ranges overlapped.

0521 Not an analysis range It is not an analysis range.

0522 No trace data available No valid trace data was available.

0525 File verify error A difference was found during file verification.

0526 File format error The file format is invalid.

0532 Cannot load as program.
No Source level debugging
available

The user program has not been loaded.
It is assumed that debug option was not specified
when creating the program.
Source level debugging cannot be performed.

0533 File does not exist The specified file does not exist.

0534 Not enough memory Memory to be used by the simulator/debugger
cannot be allocated.
Extend memory or change the user program.

0536 No function selected No function has been selected.

0537 File read error A file read error occurred.

0600 Not logging Logging by a LOG command has not been
executed.

0601 No log file set No LOG file has been specified.

0602 Program did not start. The user program has not been executed.

0603 Program has stopped. Execution of the user program has stopped.

0604 Must specify go till address. Specify the break address.

0606 Memory map not available No memory map has been set.

0607 Trace record out of range The traced range was exceeded.

0609 Trace not available Trace is invalid.

0905 Invalid expression An invalid expression was used.

0906 String too long The character string is too long.

Rev. 1.0, 09/99, page 156 of 173

Table 5.2 Error Messages (cont)

No. Message Contents/Measures

1002 Register not found The register was not found.

1003 Invalid register index The register index is invalid.

1006 Invalid memory map mode specified An invalid memory map mode was specified.

1007 Invalid endian type An invalid endian type was specified.

1500 Invalid mnemonic The mnemonic is invalid.

1501 Invalid operand The operand is invalid.

1502 Syntax error The command parameter is invalid.

1503 Too many operands Too many operands were specified.

1504 Operand out of range The address specified by the operand exceeded the
range.

1505 Bad address operand alignment The address alignment is invalid.

1507 Invalid numeric constant The input value is invalid.

1508 Divide by zero The divisor in the integer expression was 0.
Change it to a value other than 0.

1509 Invalid mnemonic specifier An illegal mnemonic was described.

2001 Not currently available The entered command is not supported by the
simulator/debugger or cannot be executed now, or
the reset vector is not set to an readable memory
area. Set the reset vector to a readable/writable
memory area.

2010 Invalid address value The address value is invalid.

2011 Invalid length value An invalid length was specified.

2012 Invalid index value An invalid index was specified.

2013 Invalid memory space value An invalid memory map was set.

2019 Invalid parameter An invalid parameter was specified.

2020 Compare failed Non-conformance was found during comparison.

2021 Find failed No conforming item was found.

2022 Verify failed Non-conformance was found during verification.

2023 Table full The table has become full.

2030 Not an instruction The specified breakpoint address was not an
instruction.

Rev. 1.0, 09/99, page 157 of 173

Table 5.2 Error Messages (cont)

No. Message Contents/Measures

2100 Invalid address An invalid address was specified.

2101 Invalid count An invalid count was specified.

2102 Too many parameter Too many parameters were specified.

2103 No breakpoint set No breakpoint has been set.

2104 Invalid data Invalid data was specified.

2105 Invalid size An invalid size was specified.

2106 Invalid option An invalid option was specified.

2107 No breakdata set No break data has been set.

2108 Invalid start address An invalid start address was specified.

2109 Invalid end address An invalid end address was specified.

2110 Invalid access type An invalid access type was specified.

2111 No breakaccess set No break access has been set.

2112 Invalid register name An invalid register name was specified.

2113 No set parameter No parameter has been specified.

2114 No breaksequence set No break sequence has been set.

2115 Invalid index value An invalid index was specified.

2116 Get break failure Break setting failed.

2117 No resource No program has been loaded.

2118 No set performance range No time analysis function has been set.

2119 No breakregister set No break register has been set.

2120 Address re-use The address was re-used.

2121 Can't read Reading failed.

2122 Exception handling error An exception handling error occurred.

2123 No get memory area Memory map setting failed.

2124 Invalid address An invalid address was specified.

2125 Address already use The specified address has already been used.

2126 Exception error An exception processing error occurred.
Correct the user program to prevent the error from
occurring.

Rev. 1.0, 09/99, page 158 of 173

Table 5.2 Error Messages (cont)

No. Message Contents/Measures

2127 Memory access error One of the following states occurred:

(1) A memory area that had not been allocated was
accessed.

(2) Data was written to a memory area having the
write protect attribute.

(3) Data was read from a memory area having the
read disable attribute.

(4) A memory area in which memory does not exist
was accessed.

Allocate memory, change the memory attribute, or
correct the user program to prevent the memory from
being accessed.

2128 Address error One of the following states occurred:

(1) A PC value was an odd number.

(2) An instruction was read from the internal I/O area.

(3) Word data was accessed to an address other than
2n.

(4) Long-word data was accessed to an address other
than 4n.

(5) The VBR or SP was a value other than a multiple
of 4.

(6) An error occurred in the exception processing of
an address error.

Correct the user program to prevent the error from
occurring.

2129 Memory already set The memory map has already been set.

2130 Memory area not exist The specified address has not been set for memory
map.

2131 Invalid value An invalid value was specified.

Rev. 1.0, 09/99, page 159 of 173

Table 5.2 Error Messages (cont)

No. Message Contents/Measures

2132 General invalid instruction One of the following conditions caused a general
invalid instruction error.

(1) The program attempted to execute a code that is
not an instruction.

(2) An error occurred during exception processing of
general invalid instructions.

Correct the user program so that the error does not
occur.

2133 Illegal operation The following condition caused an illegal operation.

(1) A zero division occurred during the DIV1
instruction.

Correct the user program so that the error does not
occur.

2134 Invalid slot instruction One of the following conditions caused an invalid
slot instruction error.

(1) The branch instruction that changes PC
immediately after the delayed branch instruction
was executed.

(2) An error occurred during exception processing of
the invalid slot instruction.

Correct the user program so that the error does not
occur.

2135 Illegal DSP operation Either of the following states occurred:

(1) A shift exceeding 32 bits was attempted with the
PSHA instruction.

(2) A shift exceeding 16 bits was attempted with the
PSHL instruction.

Correct the user program to prevent the error from
occurring.

2136 Invalid DSP instruction code An invalid instruction code was detected in the DSP
parallel instruction.
Correct the user program to prevent the error from
occurring.

2137 TLB miss TLB miss occurred during simulation or command
execution.
Take necessary measures such as updating TLB
contents.

Rev. 1.0, 09/99, page 160 of 173

Table 5.2 Error Messages (cont)

No. Message Contents/Measures

2138 TLB invalid TLB invalid exception processing occurred during
simulation or execution.
Take necessary measures such as updating TLB
contents.

2139 TLB protection violation TLB protection violation occurred during simulation.

2140 Initial page write Initial page writing occurred during simulation.

2141 TLB multiple hit The virtual address access hit multiple TLB entries
during simulation or execution.
TLB is not set appropriately.
Modify TLB contents and program (handler routine).

2142 Multiple exception One of the following states occurred during floating-
point operation:

(1) An invalid operation

(2) A division by zero

Correct the user program to prevent the error from
occurring.

2143 Illegal LRU set The LRU value of the cache is illegal.

Check the setting.

2144 Simulated I/O A system call error occurred.
Correct incorrect contents of registers R0, R1, and
parameter block.

2145 System call error A system call error occurred.

2146 FPU Error One of the following states occurred during floating-
point operation:

(1) An FPU error occurred.

(2) An invalid operation occurred.

(3) A division by zero occurred.

(4) An overflow occurred.

(5) An underflow occurred.

(6) An inaccurate operation occurred.

Correct the user program to prevent the error from
occurring.

2147 No get stack data No stack information has been obtained.

2148 Unified TLB Miss A unified TLB miss occurred during memory access.
Take necessary procedures such as updating the
unified TLB contents.

Rev. 1.0, 09/99, page 161 of 173

Table 5.2 Error Messages (cont)

No. Message Contents/Measures

2150 Unified TLB Protection Violation A unified TLB protection exception occurred during
memory access. Take necessary procedures such
as updating the unified TLB contents.

2151 Initial Page Write The initial page has been written to. Take necessary
procedures such as updating the TLB contents.

2152 Unified TLB Multiple Hit Multiple unified TLB entries were hit when a virtual
address was accessed in memory. Unified TLB is
not correctly set. Modify unified TLB contents and
user program (handler routine).

2153 Instruction TLB Miss An instruction TLB miss occurred during memory
access. Take necessary procedures such as
updating the instruction TLB contents.

2155 Instruction TLB Protection Violation An instruction TLB protection exception occurred
during memory access. Take necessary procedures
such as updating the instruction TLB contents.

2156 Instruction TLB Multiple Hit Multiple instruction TLB entries were hit when a
virtual address was accessed in memory. Instruction
TLB is not correctly set. Modify instruction TLB
contents and user program (handler routine).

2157 FPU Disable An attempt was made to execute an FPU instruction
while the FPU is disabled (SR.FD = 1). Correct the
user program to prevent the error from occurring.

2158 Slot FPU Disable An attempt was made to execute an FPU instruction
in a delay slot while the FPU is disabled (SR.FD =
1). Correct the user program so that no error occurs.

2159 Instruction TLB Illegal LRU An LRU value in the instruction TLB is illegal. Check
the setting.

2160 Illegal PR bit An attempt was made to execute an FPU instruction
while the PR bit value of the FPSCR is illegal.
Correct the user program to prevent the error from
occurring.

2161 Illegal Combination
BSC Register

An attempt was made to access the area for which
the BSC register setting is invalid. Correct the user
program to prevent the error from occurring.

Rev. 1.0, 09/99, page 162 of 173

Table 5.2 Error Messages (cont)

No. Message Contents/Measures

3002 Incorrect object module format The file format is incorrect.

3003 Object module allocation Memory to be used by the simulator/debugger
cannot be allocated.
Extend memory or change the user program.

3004 Object module not absolute format The file format is incorrect.

3005 Incorrect object module cpu A user program for another CPU was attempted to
be loaded.

3030 Can't convert Conversion failed.

3041 Not enough memory Memory is insufficient.

Rev. 1.0, 09/99, page 163 of 173

Section 6 Windows and Dialog Boxes

The table below lists the menu bars of the simulator/debugger and the corresponding pull-down
menus.

Table 6.1 Menu and Function

Menu bar Pull-down menu Sub-menu Function

File Auto Typing Inputs debugger commands from a file

Logging Outputs a file showing the debugger
command results

Recording Saves the simulator/debugger operation
procedure

Replaying Replays the saved operation procedure

File Selection Selects the file name

File Load Load

Load Status Restores the debugger status

File Save Saves

Save Status Saves the debugger status

Quit Stops the simulator/debugger

View Register Displays and changes registers

Disassemble Displays disassembled program

Show Calls Displays function calls

Source Files Displays source files and their names

Function List Displays function names and source files

Expression Value Displays expression values

Localized Dump Localizes the memory contents to
Japanese

Stack Displays the stack contents

Symbol List Symbol Displays variable names whose contents
can be displayed at the PC address

Object Displays the object names of the current
scope

Class Displays the class names of the current
scope

Symbol Value Symbol Value No. x Displays and changes the variable contents
(x = 1 to 4)

Rev. 1.0, 09/99, page 164 of 173

Table 6.1 Menu and Function (cont)

Menu bar Pull-down menu Sub-menu Function

View Dump Dump No. x Displays the memory contents (x = 1 to 4)

Analysis Performance Sets and displays execution performance
analysis

Stack Sets and displays stack trace

Execute Go Starts execution

Exec Mode Sets and displays execution mode

Break Break Sets, displays, and clears breakpoints

Break Access Sets, displays, and clears the break
condition based on access

Break Data Sets, displays and clears the break
condition based on memory value

Break Register Sets, displays and clears the break
condition based on register value

Break Sequence Sets, displays and clears the break
condition based on execution sequence

Trace Trace Displays trace information

Trace Condition Sets the trace condition and starts and
stops trace

Help General Operation Explains simulator/debugger operation
procedure

Symbolic Input Explains address symbolic specifications

Command Name Explains debugger commands

Rev. 1.0, 09/99, page 165 of 173

Section 7 How to Create CPU Information File

7.1 Functions of CPU Information File Creating Program (CIA)

The simulator/debugger uses a CPU information file to load sections of each microcomputer
according to memory map and check that sections have not been loaded crossing memory type
boundaries. A CPU information file is created using the CIA (CPU Information Analyzer).

The CIA has the following three functions.

(1) CPU information file creation

Creates the CPU memory map information file of the microcomputer to be used.

(2) CPU information file display

Allows the contents of the generated CPU information file to be checked.

(3) CPU information editing (deletion/addition)

Allows the contents of the generated CPU information file to be modified by deleting or
adding.

7.2 Invoking CIA

The format of the command line used to invoke the CIA program is shown below.

• SH-1, SH-2, SH-3, SH-2E, and SH-3E

 % ciash∆∆∆∆<CPU information file name>(RET)

• SH-DSP

 % ciashdsp∆∆∆∆<CPU information file name>(RET)

• SH-4

 % ciash4∆∆∆∆<CPU information file name>(RET)

 Either an existent or a new CPU information file can be specified. When an existent CPU
information file is specified, the program requests the input of a name for the output CPU
information file. If the file extension is omitted, the extension .cpu is supplied as default.

Rev. 1.0, 09/99, page 166 of 173

 7.3 CIA Usage Procedures and Selection Menus

 Figure 7.1 shows the procedure used with the CIA program.

CIA program invocation

CPU mode
selection

Bit size and comment input processing

Memory map specification processing

Editing

CIA termination

(Go to (3))

' . ' (Exit)

' . ' (Exit)

(1)

(2)

(3)

(4)

(Go to (3))

Figure 7.1 CIA Usage Procedure

Rev. 1.0, 09/99, page 167 of 173

 (1) Mode selection

 ciash

 A CPU is selected among SH-1, SH-2, SH-3 and SH-3E.

 ciashdsp

 Either internal exception vector mode or external exception vector memory mode is
selected.

 ciash4

 No mode is selected.

 (2) Comment input

 A comment can be specified to identify the CPU information. Up to 127 characters can be
specified.

 The comment can only be input when creating a new CPU information file. The CIA
procedure starts with step (4), Editing, when an existent CPU information file is specified.

 (3) Memory map specification

 The ROM, EXTERNAL, RAM, or IO can be selected as memory map specification. Memory
map specification is iterated until a period (the exit command) is specified.

 (4) Editing

 The following options are presented as a CPU information editing menu.

 ciash, ciashdsp

1:ADD 2:DELETE 3:COMMENT 4:CIA ABORT .:CIA END

• When '1'(ADD) is selected, the memory map specification of step 3 is performed.

• When '2'(DELETE) is selected, the system prompts (by index number) for input of an
address range to be deleted.

• When '3'(COMMENT) is selected, the system prompts for input of a new comment
line.

• When '4'(CIA ABORT) is selected, CIA processing is terminated without saving the
CPU information file.

• When '.'(CIA END) is selected, the system writes the memory map information to the
CPU information file and completes CIA processing normally.

Rev. 1.0, 09/99, page 168 of 173

 ciash4

1:MODIFY 2:MODIFY 3:COMMENT 4:CIA ABORT .:CIA END

• When '1'(MODIFY) is selected, the memory map specification of step 3 is performed.

• When '2'(MODIFY) is selected, the memory map specification of step 3 is performed
(same as item 1).

• When '3'(COMMENT) is selected, the system prompts for input of a new comment
line.

• When '4'(CIA ABORT) is selected, CIA processing is terminated without saving the
CPU information file.

• When '.'(CIA END) is selected, the system writes the memory map information to the
CPU information file and completes CIA processing normally.

Rev. 1.0, 09/99, page 169 of 173

 7.4 CIA Sample Sessions

 This section explains typical CIA use when the SH-3 is used. The bold italic face is the input by
the user.

 (1) Creating a new CPU information file

 % ciash sh3 ---(1)

 SH SERIES CIA Ver. 3.0 (HS0700CICS3SM)
 Copyright (C) Hitachi, Ltd. 1992, 1996
 Licensed Material of Hitachi, Ltd.

 *** NEW FILE ***

 *** CPU MENU ***
 1:SH1 2:SH2 3:SH3 4:SH3E
 ? 3 ---(2)

 BIT SIZE 32 ? :32 ---(3)

 COMMENT? :SH3 CPU INFORMATION ---(4)

 *** MAP MENU ***
 0:ROM 1:EXTERNAL 2:RAM 3:I/O .:END
 ? 1 ---(5)

 * EXTERNAL START ADDRESS? 0 ---(6)

 END ADDRESS? fffff ---(7)

 STATE COUNT ? 3 ---(8)

 DATA BUS SIZE ? 32 ---(9)

 * EXTERNAL START ADDRESS? . (period input) ---(10)

 *** MAP MENU ***
 0:ROM 1:EXTERNAL 2:RAM 3:I/O .:END
 ? . (period input)

 ***** CPU INFORMATION *****
 CPU : SH3 ---(11) (a)

 SH3 CPU INFORMATION ---(11) (b)

 BIT SIZE : 32 ---(11) (c)

 No Device Start End State Bus
 1:EXTERNAL:00000000-000FFFFF 3 32 ---(11) (d)-(i)

Rev. 1.0, 09/99, page 170 of 173

 *** EDIT MENU ***
 1:ADD 2:DELETE 3:COMMENT 4:CIA ABORT .:CIA END
 ? . (period input) ---(12)

 *** CIA COMPLETED ***
 %

 Description:

 (1) Specify the name of a new CPU information file when the CIA program is invoked.

 (2) Specify the CPU type.

 (3) Specify the bit size in decimal. The displayed default is taken if the specification is
omitted.

 (4) Specify a comment. The comment field is left blank if this line is omitted. If more than
127 characters are entered, a warning message is displayed and the characters following
the first 127 are ignored.

 (5) Specify the memory type as a number corresponding to the input menu.

 (6) Specify the start address of the corresponding memory area in hexadecimal.

 (7) Specify the end address of the corresponding memory area in hexadecimal.

 (8) Specify the number of states for the corresponding memory area in decimal.

 (9) Specify the data bus width for the corresponding memory area in decimal.

 (10) Terminate data entry for the corresponding memory area with a period ('.').

 (11) The edit menu is automatically displayed when the input menu is terminated.

 (a) The CPU type

 (b) The comment

 (c) The bit size

 (d) The map number

 (e) The memory type

 (f) The start address

 (g) The end address

 (h) The number of states

 (i) The data bus width

 (12) Inputting a period terminates CIA processing normally. The memory map data is written
to the file (sh3.cpu) specified when the CIA program was invoked.

Rev. 1.0, 09/99, page 171 of 173

 (2) Editing a CPU information file

 The address range and data bus width of the external memory are changed as follows:

 % ciash sh1.cpu ---(1)

 SH SERIES CIA Ver. 3.0 (HS0700CICS3SM)

 Copyright (C) Hitachi, Ltd. 1992, 1996

 Licensed Material of Hitachi, Ltd.

 *** OLD FILE ***

 NEW CPU FILE NAME? sh1.cpu ---(2)

 ***** CPU INFORMATION *****

 CPU : SH1

 SH1 CPU INFORMATION

 BIT SIZE : 28

 No Device Start End State Bus

 1 : ROM AREA : 00000000 - 0000FFFF 1 32

 2 : EXTERNAL : 01000000 - 010FFFFF 4 16

 3 : RAM AREA : 0F000000 - 0F000FFF 1 32

 *** EDIT MENU ***

 1:ADD 2:DELETE 3:COMMENT 4:CIA ABORT .:CIA END

 ? 2 ---(3)

 DELETE MAP NUMBER? 2 ---(4)

 ***** CPU INFORMATION *****

 CPU : SH1

 SH1 CPU INFORMATION

 BIT SIZE : 28

 No Device Start End State Bus

 1 : ROM AREA : 00000000 - 0000FFFF 1 32

 2 : RAM AREA : 0F000000 - 0F000FFF 1 32

Rev. 1.0, 09/99, page 172 of 173

 *** EDIT MENU ***

 1:ADD 2:DELETE 3:COMMENT 4:CIA ABORT .:CIA END

 ? 1 ---(5)

 *** MAP MENU ***

 0:ROM 1:EXTERNAL 2:RAM 3:I/O .:END

 ? 1 ---(6)

 * EXTERNAL START ADDRESS? 9000000

 END ADDRESS? 90fffff

 STATE COUNT ? 4

 DATA BUS SIZE ? 8

 * EXTERNAL START ADDRESS? . (period input)

 *** MAP MENU ***

 0:ROM 1:EXTERNAL 2:RAM 3:I/O .:END

 ? . (period input) ---(7)

 ***** CPU INFORMATION *****

 CPU : SH1

 SH1 CPU INFORMATION

 BIT SIZE : 28

 No Device Start End State Bus

 1 : ROM AREA : 00000000 - 0000FFFF 1 32

 2 : EXTERNAL : 09000000 - 090FFFFF 4 8

 3 : RAM AREA : 0F000000 - 0F000FFF 1 32

 *** EDIT MENU ***

 1:ADD 2:DELETE 3:COMMENT 4:CIA ABORT .:CIA END

 ? . (period input)

 *** CIA COMPLETED ***

 %

Rev. 1.0, 09/99, page 173 of 173

 Description

 (1) Specify the name of the file to be edited when the CIA program is invoked.

 The extension .cpu is supplied if the file extension is omitted.

 (2) Specify a new file to be created when editing is completed. If only (RET) is entered, the
data will be output to the file specified in item (1). If only the file extension is omitted, the
extension .cpu will be supplied. The map data is automatically displayed.

 (3) Specify DELETE to delete information to be changed in the edit menu.

 (4) Specify the information to be deleted as a map number. The state of the map information
after the deletion is displayed.

 (5) Specify ADD to input the changed information.

 (6) The input menu is displayed, and the memory type is entered in the same manner as that
used when creating a new CPU information file. The state of the map information after the
addition is displayed.

 (7) If END is specified, map information of added results will be displayed.

 7.5 CIA Limitations

 Table 7.1 lists the limitations on data specified using the CIA program. The CIA program cannot
handle values which exceed these limitations.

Table 7.1 CIA Limitations

 Item Limitation Value

 Input file format • CPU information files output by the CIA

 Bit size • Only values specified in decimal

• The specifiable range is from 24 to 32

 Address specifications • Only values specified in hexadecimal

• The specifiable range depends on the bit size

 Memory area • Only values specified in decimal

• The specifiable range is from 1 to 64

 Number of states • Only values specified in decimal

• The specifiable range is from 1 to 65535

Data bus width • Only values specified in decimal

• The specifiable values are multiples of 8 between 8 and
65528

 Comment length • Up to 127 characters

 Number of map information items • Up to 65535 items

SuperHTM RISC engine Simulator/Debugger
User’s Manual

Publication Date: 1st Edition, September 1999
Published by: Electronic Devices Sales & Marketing Group
 Semiconductor & Integrated Circuits
 Hitachi, Ltd.
Edited by: Technical Documentation Group
 UL Media Co., Ltd.
Copyright © Hitachi, Ltd., 1999. All rights reserved. Printed in Japan.

	Cover
	Cautions
	Preface
	Contents
	Section 1 Overview
	1.1 Operating Environment
	1.2 Features
	1.3 Simulation Range
	1.4 Notes

	Section 2 Simulator/Debugger Functions
	2.1 Simulator/Debugger Memory Management
	2.2 Endian
	2.3 Pipeline Reset Processing
	2.4 Memory Management Unit (MMU)
	2.5 Cache
	2.6 Bus State Controller (BSC)
	2.7 Direct Memory Access Controller (DMAC)
	2.8 Exception Processing
	2.9 Control Registers
	2.10 Trace
	2.11 Standard I/O and File I/O Processing
	2.12 Break Conditions
	2.13 Floating-Point Data

	Section 3 Operation
	3.1 Setting a Path and Environment Variables
	3.2 Start-up
	3.3 Windows
	3.4 Loading Load Module
	3.5 Displaying Source File
	3.6 Setting Breakpoints
	3.7 Specifying Symbolic Debugging for Addresses
	3.8 Executing Program
	3.9 Displaying Variable Contents
	3.10 Analyzing Execution Performance
	3.11 Analyzing Stack Use Status
	3.12 Quit

	Section 4 Simulator/Debugger Commands
	4.1 ASSEMBLE
	4.2 BREAK_CLEAR
	4.3 BREAK_ENABLE
	4.4 BREAKACCESS
	4.5 BREAKACCESS_DISPLAY
	4.6 BREAKDATA
	4.7 BREAKDATA_DISPLAY
	4.8 BREAKPOINT
	4.9 BREAKPOINT_DISPLAY
	4.10 BREAKREGISTER
	4.11 BREAKREGISTER_DISPLAY
	4.12 BREAKSEQUENCE
	4.13 BREAKSEQUENCE_DISPLAY
	4.14 COMPARE
	4.15 DATA_SEARCH
	4.16 DISASSEMBLE
	4.17 DISPLAY_CHARACTERS
	4.18 EXEC_MODE
	4.19 FILE_LOAD
	4.20 FILE_SAVE
	4.21 GO
	4.22 GO_RANGE
	4.23 GO_RESET
	4.24 GO_TILL
	4.25 HELP
	4.26 LOAD_STATUS
	4.27 LOG
	4.28 LOG_ENABLE
	4.29 LOG_STOP
	4.30 MAP_CLEAR
	4.31 MAP_DISPLAY
	4.32 MAP_SET
	4.33 MEMORY_DISPLAY
	4.34 MEMORY_EDIT
	4.35 MEMORY_FILL
	4.36 MEMORY_MOVE
	4.37 PERFORMANCE_ANALYSIS
	4.38 PERFORMANCE_ANALYSIS_CLEAR
	4.39 PERFORMANCE_ANALYSIS_DISPLAY
	4.40 PERFORMANCE_ANALYSIS_ENABLE
	4.41 QUIT
	4.42 RADIX
	4.43 REGISTER
	4.44 RESET
	4.45 ROUND_MODE
	4.46 SAVE_STATUS
	4.47 STACK_ANALYSIS
	4.48 STACK_ANALYSIS_DISPLAY
	4.49 STATUS
	4.50 STEP
	4.51 STEP_G
	4.52 STEP_INTO
	4.53 STEP_INTO_G
	4.54 TLB (Only for the SH-3/SH-3E/SH-4 Series)
	4.55 TLB_DUMP (Only for the SH-3/SH-3E/SH-4 Series)
	4.56 TLB_FLUSH (Only for the SH-3/SH-3E/SH-4 Series)
	4.57 TLB_SEARCH (Only for the SH-3/SH-3E/SH-4 Series)
	4.58 TRACE
	4.59 TRACE_CONDITION
	4.60 TRACE_CLEAR
	4.61 TRAP_ADDRESS
	4.62 TRAP_ADDRESS_DISPLAY
	4.63 TRAP_ADDRESS_ENABLE
	4.64 .<register>
	4.65 Limitations

	Section 5 Message List
	5.1 Information Messages
	5.2 Error Messages

	Section 6 Windows and Dialog Boxes
	Section 7 How to Create CPU Information File
	7.1 Functions of CPU Information File Creating Program (CIA)
	7.2 Invoking CIA
	7.3 CIA Usage Procedures and Selection Menus
	7.4 CIA Sample Sessions
	7.5 CIA Limitations

	Colophon

