

SLG51000C - EVB

SLG51000C Power GreenPAK Evaluation Board R1.1

1. Install Go Configure™ Software Hub

Download and install the latest Go Configure™ Software Hub software from <u>https://www.renesas.com/software-tool/go-configure-software-hub</u>.

Go Configure Software Hub		×
Go Configure Software Hub is being installed. Please wait		1
< Back	Next > Cancel	

3. Set Project Settings

Set desired voltages and other settings according to your project.

pecs	Informat	ion	General	Security			
perati	ng conditio	ns					
		Min.		Typ.	Max.		
VDD (v):	2.80	-	3.80	\$ 5.00	ŵ	0
Tempe	rature (°C):	-40	\$	25	\$ 85	\$	0

5. Prepare Development Board

Using external power supplies, apply 3.8 V to V_{DD} and 1.8 V to CS pins. Insert the GreenPAK Serial Debugger (GSD) into the Evaluation Board for chip emulation.

2. Create a New Project

Start Go Configure™ Software Hub and select the SLG51000C device from the Power GreenPAK™ section.

	Software Tool	Part Family			-				
	40	м	SLC	51000	C			Fite.	
		Granitia	Fart Number	DS	V80 (M)	N002 (V)	Temperature CO	eulesoleuo	
		Greenway	3 SLG51001V	Contect as	2,80 to 5,00	1,20 to 5,00	-8120 to 7520	104	3/10015
Recent			SIGNICOC	HCE.					
		AnalogPVK	\$1.651001C	PER	2,80 to 5,00		-82.20 to 85.20	1993	Synchroniz
			R 51.651002C	PER	2,80 to 5,00	1,30 to 5,00	-40.00 to 85.00	1925	B(U
	GreenRisk	LINKS	AN SLOUNDAR	PER	230 to 5.90		-40.00 15 85.00	1(1)10	
	Designer		SLORNSM	100	2.50 to 5.90		-80.00 to 85.00	1908	
Develop			SLORNSV	100	2.30 to 5.30		-9220 15 2520	19051	
Ownerop		Fower Greeking	SLGRM2V	PER	230 to 530		-40.00 to 85.00	19081	
			SIGNNEY	808	7.80 to 5.90		-9010 to 8510	19091	
		Automotive Mag	SIGNSTM.	858	3.71 to 5.90		-4010 to 7510	10019	
		MI STORES		1.716-5.91		4110144 IN IS	1010		
	Lorget PGA	LonetRich	Details						
	Workshop			Datasta	et (Freduct page) /	(galantian notes) Re	names Get samples Gr	(au trate	
opilcation			Packages W.CSH-M Supported Developme						
			 CorroRACSectal 	behugger (SLG40)	NESE) (STROCTE Evoluation	on Seclet			
			Description: The SLGS1033 contain small multi-reil applicat		nd ordeninshie les	r dropout regulation o	ind is designed for high p	eformance camera mod	ules and other
			Too integrated LDOs are characteristics of 13 pV	optimized to meeting in addition to	the requirements of high PSR of St cB	l high-padormanca a at 1 MPir and tight os	nalog circuits. They provi ripat voltage accuracy of	de very lese eutput veibeg ±1 % ever berependsze.	e noise
							t the requirements of low on deventeers, applicat		

4. Develop the Project

You are now ready to start developing using all available components including Power Sequencer, LDOs, LUTs, DFFs, DLYs, and much more.

		KR COLOR	High Rufurmana (20)	VOUT 12001 VOUT 12002 VOUT 12002 VOUT 12003	
e not tiittes		VED COLOR		VCUT LDO2	
a vice				VCUT LDO2	
a vice				NOUT LOO2	
			1001		
	(10) (a)	- (MRI)	1000	VSID	
		VN DO4	High Voltage LDD	VOUT LOOP	
1	100 30			VOUT LDOS	
	-			- Kom	
			and the second se		
100	anologi per				
	- 14-		The second second		
118	mill		10001	Constant Constant	
				r vertoos traversetoo	

6. Emulate the Chip

Click the toolbar icon to start the Power GreenPAK™ Emulation Tool. Choose the GreenPAK Serial Debugger from the Development Platform Selector window. Press the Emulation button to load the project code onto the chip. At this point the chip will operate according to the project code. Press the Sync button to upload project changes to the chip. Emulation can be performed multiple times, even on programmed chips. Press the Emulation button again to exit the emulation mode.

Debugging controls	0 🗙				
Debuggin	g Controls				
GreenPAK Serial Debugge	Change platform				
Greenrak Senar Debugge	Import configuration				
Device: Auto detect	•				
Emulation	Test Mode				
Sync					
VDD: @	1.80 V 👻				

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD-PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers who are designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only to develop an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third-party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising from your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

(Disclaimer Rev.1.01)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit <u>www.renesas.com/contact-us/</u>.