

Microcomputer Technical Information
CP(K), O

Document No. ZBG-CC-06-0028 1/1
Date issued July 11, 2006 78K0S/KU1+, 78K0S/KY1+,

78K0S/KA1+, 78K0S/KB1+

Usage Restrictions

Issued by 1st Solution Group
Multipurpose Microcomputer Systems Division
4th Systems Operations Unit
NEC Electronics Corporation

√ Usage restriction
 Upgrade
 Document modification

Related documents

78K0S/KY1+ User’s Manual: U16994EJ3V0UD00

78K0S/KA1+ User’s Manual: U16898EJ3V0UD00

78K0S/KB1+ User’s Manual: U17446EJ2V0UD00

Notification
classification

 Other notification

1. Affected products

78K0S/KU1+

μPD78F9200, μPD78F9201, μPD78F9202

78K0S/KY1+

μPD78F9210, μPD78F9211, μPD78F9212

78K0S/KA1+

μPD78F9221, μPD78F9222

78K0S/KB1+

μPD78F9232, μPD78F9234

2. Restriction details

Restriction on using flash self-programming

When using flash self-programming, clear the FLCMD register to 0 immediately before shifting to

normal mode or self-programming mode. In addition, execute NOP and HALT instructions after specific

sequence processing to shift to self-programming mode.

 * See the attachment for details on specific sequence processing.

This is a restriction to avoid an operation bug that occurs when the standby function performed by the

HALT instruction and flash self-programming are used together and executed repeatedly.

3. Details on restriction and workaround

See the attachment for details on the restriction and its workaround.

4. Modification plan

This restriction is avoidable by using a software workaround, so the device will not be revised for this

restriction. Please regard this item as a usage restriction.

The user’s manual will be revised with descriptions on the above restriction.

ZBG-CC-06-0028 Attachment - 1/11

Usage Restrictions in 78K0S/KU1+, 78K0S/KY1+, 78K0S/KA1+ and 78K0S/KB1+

1. Product History

<78K0S/KU1+>

Description
 μPD78F9200, μPD78F9201,

 μPD78F9202

Restriction on using flash self-programming Δ

<78K0S/KY1+>

Description
 μPD78F9210, μPD78F9211,

 μPD78F9212

Restriction on using flash self-programming Δ

<78K0S/KA1+>

Description μPD78F9221, μPD78F9222

Restriction on using flash self-programming Δ

<78K0S/KB1+>

Description μPD78F9232, μPD78F9234

Restriction on using flash self-programming Δ

Remark The meaning of each symbol is as follows.

 Δ: Restriction applies (correction is not planned)

2. Restriction Details
• Restriction on using flash self-programming

[Description and cause]

If the standby function performed by the HALT instruction and flash self-programming are used together

using the procedure shown in the figure on the next page, the subsequent operation becomes unexpected.

Specific sequence:

The following two modes are available in these products.

- Normal mode:
 The state in which normal operation is executed. Operation enters into a standby state after

execution of the HALT instruction.

- Self-programming mode:
 The state in which self-programming commands are executable. After setting commands,

addresses and write data and executing the HALT instruction, self-programming is executed.

The specific sequence described in this document is referring to the register manipulation to switch
these two modes.

ZBG-CC-06-0028 Attachment - 2/11

Process Leading up to Unexpected Operation

HALT
instruction

HALT
execution flag

FLSPM

SELF execution
status

FLCMD
register value 00H Any command value

Normal HALT
execution

Normal HALT
execution

Shift to
SELF

Shift to
SELF

Command
setting

SELF
execution

End of
SELF

<1>

<2>

<3>

<4>

<5>

<6>

Unexpected
operation

HALT
instruction

HALT
execution flag

FLSPM

SELF execution
status

FLCMD
register value 00H Any command value

Normal HALT
execution

Normal HALT
execution

Shift to
SELF

Shift to
SELF

Command
setting

SELF
execution

End of
SELF

<1>

<2>

<3>

<4>

<5>

<6>

Unexpected
operation

<1> An ordinary HALT instruction is executed and the internal HALT execution flag is set.

Self-programming is executed by setting the FLSPM bit while the HALT execution flag is set.

<2> The specific sequence is executed and the operation then enters into self-programming mode. At

this time, the FLSPM bit changes to indicate that self-programming is now executable. However,

self-programming commands are not executed at this time, because the FLCMD register has been

initialized to 00H.

<3> Once a command value is set to the FLCMD register and the HALT instruction is executed, the

self-programming command is executed. The HALT execution flag is cleared just as the

self-programming command is executed.

<4> Execution of the self-programming command is completed, the specific sequence is executed again,

and operation enters into normal mode.

<5> The HALT instruction is executed again, operation enters into standby, and the HALT execution flag

is set.

<6> After the standby state is released, the specific sequence is executed to shift to self-programming

mode. If the command value set to the FLCMD register has not been initialized at this time, the

command still set to the FLCMD register is reexecuted when the FLSPM bit is set.

Self-programming is subsequently executed during CPU operation and the CPU fetches an

incorrect instruction from the flash memory, resulting in an unexpected operation.

Remark The same situation occurs when flash self-programming is executed before <1>.

ZBG-CC-06-0028 Attachment - 3/11

Workaround:

When using flash self-programming, clear the FLCMD register to 0 immediately before shifting to

normal mode or self-programming mode; this prevents execution of illegal commands immediately

after the mode is shifted. In addition, execute NOP and HALT instructions after specific sequence

processing to shift to self-programming mode; this controls the execution timing between the CPU and

the flash memory control block.

The flowcharts and source code examples for the operation bug and its workaround implementation

are described on the following pages.

ZBG-CC-06-0028 Attachment - 4/11

Flowchart leading up to unexpected operation:

<1>

<2>

<3>

<4>

<5>

1st time 2nd time

<6>

<7>

HALT instruction execution
(standby processing)

Shift to self-programming
mode

Sets self-programming
command

HALT instruction execution
(Execution of self-programming)

Shift to normal mode

<1>

<2>

<3>

<4>

<5>

1st time 2nd time

<6>

<7>

HALT instruction execution
(standby processing)

Shift to self-programming
mode

Sets self-programming
command

HALT instruction execution
(Execution of self-programming)

Shift to normal mode

<1> An ordinary HALT instruction is executed to shift to standby. After that, the standby state is released

by a standby release signal, such as an interrupt.

<2> The specific sequence is executed to shift to self-programming mode.

<3> A self-programming command (block erase in the source code example) is set to the FLCMD

register.

<4> The self-programming command is executed by executing the HALT instruction.

<5> After self-programming processing specified in <3> is completed, the specific sequence is executed

to shift to normal mode. This example presumes that processes from <1> to <5> are performed

repeatedly.

<6> An ordinary HALT instruction is executed to generate a standby release signal, and the standby

state is released.

<7> A self-programming command (block erase in the source code example) is executed immediately

after the specific sequence is executed to shift to self-programming mode for the second time.

Consequently, microcontroller operation becomes unexpected.

ZBG-CC-06-0028 Attachment - 5/11

Example source code causing unexpected operation (assembly language):
MAINLOOP:
 ; Executes HALT to shift to standby state - <1> and <6> in flowchart
 HALT

 ; Saves the interrupt mask setting before executing self-programming.
 DI ; Disables interrupts
 MOV A,MK0 ; Saves interrupt mask setting
 XCH A,X
 MOV A,MK1 ; Saves only MK0 in KU1+ and KY1+
 PUSH AX
 MOV MK0,#0FFH
 MOV MK1,#0FFH

 ; Executes the specific sequence to shift to self-programming mode - <2> and <7> in flowchart
ModeOnLoop:
 MOV PFCMD,#0A5H ; Controls PFCMD register
 MOV FLPMC,#01H ; Controls FLPMC register (set value)
 MOV FLPMC,#0FEH ; Controls FLPMC register (inverted set value)
 MOV FLPMC,#01H ; Sets self-programming mode
 ; When using a clock generated by an external resonator or external input clock, insert a 16 μs wait.

 ; Operation becomes unexpected when entered into self-programming mode for the second time.
 BT PFS.0,$ModeOnLoop ; Confirms completion of mode shift

 ; Performs command settings - <3> in flowchart
 MOV A, #0FH
 MOV FLAPH,A ; Sets number of block to be erased
 MOV FLAPHC,A ; Sets compare number for block to be erased (value set to FLAPH)
 MOV FLCMD,#03H ; Sets flash control command (block erase)
 MOV PFS,#00H ; Clears flash status register
 MOV WDTE,#0ACH ; Clears and starts WDT

 ; Executes erase command - <4> in flowchart
 HALT ; Executes self-programming

 ; Executes the specific sequence to shift to normal mode - <5> in flowchart
ModeOffLoop:
 MOV PFS,#00H
 MOV PFCMD,#0A5H ; Controls PFCMD register
 MOV FLPMC,#00H ; Controls FLPMC register (set value)
 MOV FLPMC,#0FFH ; Controls FLPMC register (inverted set value)
 MOV FLPMC,#00H ; Sets normal mode
 BT PFS.0,$ModeOffLoop ; Confirms completion of mode shift

 POP AX ; Restores interrupt mask setting
 MOV MK1,X
 XCH A,X
 MOV MK0,A
 BR MAINLOOP

ZBG-CC-06-0028 Attachment - 6/11

Example source code causing unexpected operation (C language):
 while(1){

 /* Executes HALT to shift to standby state - <1> and <6> in flowchart */

 HALT();

 /* Saves interrupt mask settings */

 DI(); // Disables interrupts

 ch_mask_bak0 = MK0; // Saves only MK0 in KU1+ and KY1+

 ch_mask_bak1 = MK1; // ch_mask_bak0/1 are variables for saving

 /* Shifts to self-programming mode - <2> and <7> in flowchart */

 do{

 PFS = 0; // Clears flash status register

 PFCMD = 0xA5; // Controls PFCMD register

 FLPMC = 0x01; // Controls FLPMC register (set value)

 FLPMC = 0xFE; // Controls FLPMC register (inverted set value)

 FLPMC = 0x01; // Sets self-programming mode

 /* When using a clock generated by an external resonator or external input clock,

 insert a 16 μs wait.*/

 /* Operation becomes unexpected when entered into self-programming mode

 for the second time. */

 }while(PFS.0 == 1); // Confirms completion of mode shift

 /* Performs command settings - <3> in flowchart */

 FLAPH = FLAPHC = 0x0F; // Specifies block to be erased

 FLCMD = 0x03; // Specifies erase command

 PFS = 0x00; // Clears flash status register

 WDTE = 0xAC; // Clears WDT counter

 /* Executes erase command - <4> in flowchart */

 HALT(); // Executes erase command

 /* Shifts to normal mode - <5> in flowchart */

 do{

 PFS = 0; // Clears flash status register

 PFCMD = 0xA5; // Controls PFCMD register

 FLPMC = 0x00; // Controls FLPMC register (set value)

 FLPMC = 0xFF; // Controls FLPMC register (inverted set value)

 FLPMC = 0x00; // Sets normal mode

 }while(PFS.0 == 1); // Confirms completion of mode shift

 /* Restores interrupt mask settings */

 MK0 = ch_mask_bak0;

 MK1 = ch_mask_bak1;

 }

ZBG-CC-06-0028 Attachment - 7/11

Flowchart of workaround implementation:

HALT instruction execution
(standby processing)

Shift to self-programming
mode

Sets self-programming
command

HALT instruction execution
(Execution of self-programming)

Shift to normal mode

FLCMD = 0

NOP, HALT
instruction execution

FLCMD = 0

Added processing<1>

<2>

<3>

<4>

<5>

<6>

<7>

<8>

1st time 2nd time
<9>

* If the CPU clock ≤ 1 MHz, it
will be set to 1 MHz or higher.

* If the CPU clock has been changed,
the clock setting before self-
programming is restored.

HALT instruction execution
(standby processing)

Shift to self-programming
mode

Sets self-programming
command

HALT instruction execution
(Execution of self-programming)

Shift to normal mode

FLCMD = 0

NOP, HALT
instruction execution

FLCMD = 0

Added processing<1>

<2>

<3>

<4>

<5>

<6>

<7>

<8>

1st time 2nd time
<9>

* If the CPU clock ≤ 1 MHz, it
will be set to 1 MHz or higher.

* If the CPU clock has been changed,
the clock setting before self-
programming is restored.

<1> An ordinary HALT instruction is executed to shift to standby. After that, the standby state is released

by a standby release signal, such as an interrupt.

<2> The FLCMD register is cleared to 0 before executing the specific sequence to shift to

self-programming mode. The CPU clock is set to 1 MHz or higher.

<3> The specific sequence is executed to shift to self-programming mode.

<4> After the specific sequence (1 assigned to FLPMC for the second time), NOP and HALT instructions

are executed. It takes at most 10 μs until the HALT instruction is released.

<5> A self-programming command (such as write or erase) is set to the FLCMD register.

<6> The self-programming command is executed by executing the HALT instruction.

<7> The FLCMD register is cleared to 0 before the specific sequence is executed to shift to normal

mode.

<8> Execute the specific sequence to shift to normal mode. If the CPU clock has been changed, the

clock setting before self-programming is restored at this time.

<9> This bug is avoided by adding the above processes <2>, <4>, <7> and <8>.

ZBG-CC-06-0028 Attachment - 8/11

Example of source code to which workaround is implemented (assembly language):
MAINLOOP:

 ; Executes HALT to shift to standby state - <1> and <9> in flowchart

 HALT

 ; Saves the interrupt mask setting before executing self-programming.

 DI ; Disables interrupts

 MOV A,MK0 ; Saves interrupt mask setting

 XCH A,X

 MOV A,MK1 ; Saves only MK0 in KU1+ and KY1+

 PUSH AX

 MOV MK0, #0FFH

 MOV MK1, #0FFH

 ; Initializes FLCMD register - <2> in flowchart

 MOV FLCMD, #00H

 ; If CPU clock ≤ 1 MHz, sets CPU clock to 1 MHz or higher.

 ; Executes the specific sequence to shift to self-programming mode - <3> in flowchart

ModeOnLoop:

 MOV PFCMD,#0A5H ; Controls PFCMD register

 MOV FLPMC,#01H ; Controls FLPMC register (set value)

 MOV FLPMC,#0FEH ; Controls FLPMC register (inverted set value)

 MOV FLPMC,#01H ; Sets self-programming mode

 ; Executes NOP and HALT instructions - <4> in flowchart

 NOP

 HALT

 ; When using a clock generated by an external resonator or external input clock, insert an 8 μs wait.

 BT PFS.0,$ModeOnLoop ; Confirms completion of mode shift

 ; Performs command settings - <5> in flowchart

 MOV A, #0FH

 MOV FLAPH,A ; Sets number of block to be erased

 MOV FLAPHC,A ; Sets compare number for block to be erased (value set to FLAPH)

 MOV FLCMD,#03H ; Sets flash control command (block erase)

 MOV PFS,#00H ; Clears flash status register

 MOV WDTE,#0ACH ; Clears and starts WDT

 ; Executes erase command - <6> in flowchart

 HALT ; Executes self-programming

 ; Initializes FLCMD register - <7> in flowchart

 MOV FLCMD, #00H

 ; If the CPU clock has been changed, the setting before self-programming is restored.

ZBG-CC-06-0028 Attachment - 9/11

 ; Executes the specific sequence to shift to normal mode - <8> in flowchart

ModeOffLoop:

 MOV PFS,#00H

 MOV PFCMD,#0A5H ; Controls PFCMD register

 MOV FLPMC,#00H ; Controls FLPMC register (set value)

 MOV FLPMC,#0FFH ; Controls FLPMC register (inverted set value)

 MOV FLPMC,#00H ; Sets normal mode

 BT PFS.0,$ModeOffLoop ; Confirms completion of mode shift

 POP AX ; Restores interrupt mask setting

 MOV MK1,X

 XCH A,X

 MOV MK0,A

 BR MAINLOOP

ZBG-CC-06-0028 Attachment - 10/11

Example of source code to which workaround is implemented (C language):

 while(1){

 /* Executes HALT to shift to standby state - <1> and <9> in flowchart */

 HALT();

 /* Saves interrupt mask settings */

 DI(); // Disables interrupts

 ch_mask_bak0 = MK0; // Saves only MK0 in KU1+ and KY1+

 ch_mask_bak1 = MK1; // ch_mask_bak0/1 are variables for saving

 /* Initializes FLCMD register - <2> in flowchart */

 FLCMD = 0;

 /* If CPU clock ≤ 1 MHz, sets CPU clock to 1 MHz or higher */

 /* Enters into self-programming mode - <3> in flowchart */

 do{

 PFS = 0; // Clears flash status register

 PFCMD = 0xA5; // Controls PFCMD register

 FLPMC = 0x01; // Controls FLPMC register (set value)

 FLPMC = 0xFE; // Controls FLPMC register (inverted set value)

 FLPMC = 0x01; // Sets self-programming mode

 }while(PFS.0 == 1); // Confirms completion of mode shift

 /* Executes NOP and HALT instructions - <4> in flowchart */

 NOP();

 HALT();

 /* When using a clock generated by an external resonator or external input clock, insert an 8 μs wait.*/

 /* Performs command settings - <5> in flowchart */

 FLAPH = FLAPHC = 0x0F; // Specifies block to be erased

 FLCMD = 0x03; // Specifies erase command

 PFS = 0x00; // Clears flash status register

 WDTE = 0xAC; // Clears WDT counter

 /* Executes erase command - <6> in flowchart */

 HALT(); // Executes erase command

 /* Initializes FLCMD register - <7> in flowchart */

 FLCMD = 0;

 /* If the CPU clock has been changed, the setting before self-programming is restored. */

 /* Shifts to normal mode - <8> in flowchart */

 do{

 PFS = 0; // Clears flash status register

 PFCMD = 0xA5; // Controls PFCMD register

ZBG-CC-06-0028 Attachment - 11/11

 FLPMC = 0x00; // Controls FLPMC register (set value)

 FLPMC = 0xFF; // Controls FLPMC register (inverted set value)

 FLPMC = 0x00; // Sets normal mode

 }while(PFS.0 == 1); // Confirms completion of mode shift

 /* Restores interrupt mask settings */

 MK0 = ch_mask_bak0;

 MK1 = ch_mask_bak1;

 }

