Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010 Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
 of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
 No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
 of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

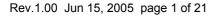
HD49815TF

Digital Camera Signal Processor

REJ03F0138-0100 (Previous: ADE-207-316)

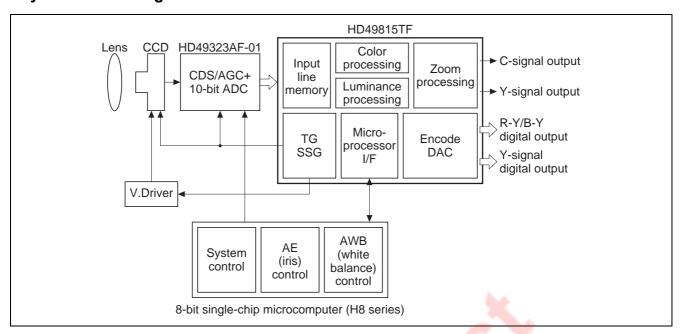
> Rev.1.00 Jun 15, 2005

Description

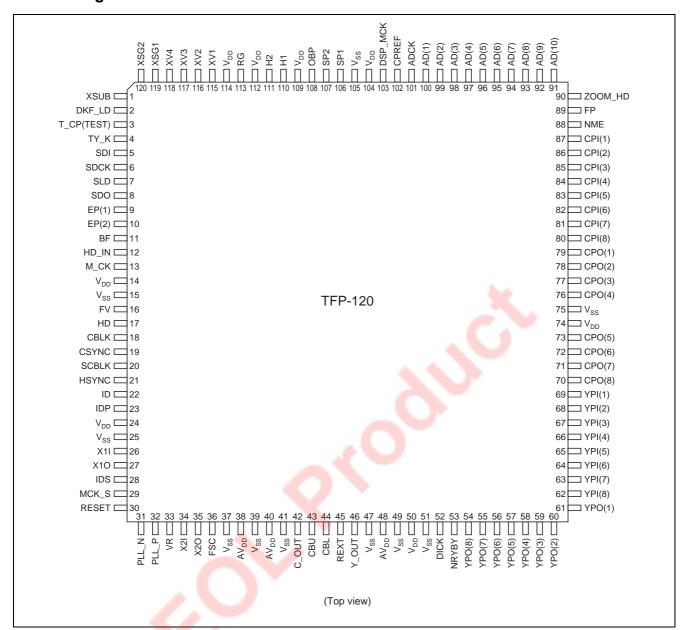

The HD49815TF is a CMOS IC that has been developed as a digital signal-processing IC for CCD-camera digital-signal-processing systems.

Functions

- CCD-sensor drive-pulse generation (TG)
- Digital AGC (automatic gain control)
- Color signal separation circuit
- RGB matrix
- RGB gain
- RGB and Y gamma
- Color-difference matrix
- Enhancer
- · RGB and Y setup
- Digital I/F (4:2:2)
- Zoom control
- · Mirror reversal
- Synchronization signal generator for encoding (SSG)
- AWB, AE, and AF detection
- Two-channel 8-bit D/A converter


Features

- The HD49815TF provides camera-signal processing, TG, SSG, zoom, and D/A functions and other functions in a single chip and supports high system-integration level.
- In conjunction with the HD49323AF-01 (CDS/AGC + 10-bit ADC) and the control microcomputer, the HD49815TF forms a three-chip kit that can implement an optimal CCD-camera digital-signal-processing system.
- The HD49815TF provides the zoom function and controls the 1- to 256- times linear zoom. It also provides the half-mirror function.
- Since the HD49815TF can be made compatible with the former product, HD49811TFA, through software, a shorter development term is enabled.
- Since software controls AWB, AE, and AF, any protocol can be prepared according to the camera shooting conditions.
- Programmable TG enables use of any CCD device.



System Block Diagram

Pin Arrangement

Pin Description

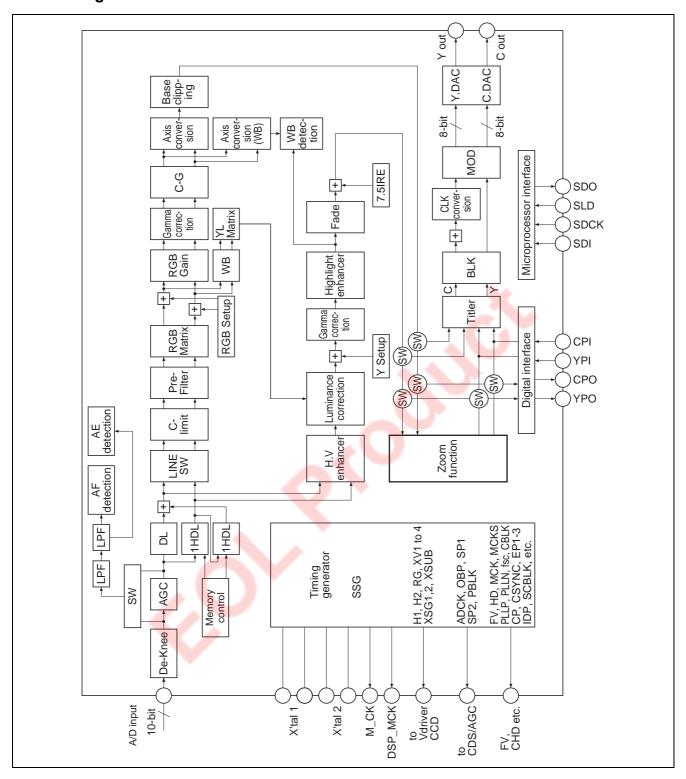
Pin No.	Symbol	Pin Name	I/O	Description	I/O Format			
1	XSUB	CCD shutter pulse	0	CCD control pulse	ZC2R			
2	DKF_LD	Line input LD	I	Line input dedicated load	ICS			
3	T_CP	Test	1	Test pin (GND input)	IC			
4	TY_K	Title SW	1	Title-killer SW (1 = On, 0 = Off)	ICD			
5	SDI	State data input	1	State data-setting data input	IC			
6	SDCK	State data clock	1	State data-setting clock	ICS			
7	SLD	State data load pulse	1	State data-latch pulse	ICS			
8	SDO	AWB, AE, data output	0	AWB, AE, and AF detection-data output	ZC2R			
9	EP (1)	AE window pulse 1	0	Iris detection-area-setting pulse: SP-A7 [8] output changeover	ICZC2R			
10	EP (2)	AE window pulse 2	0	Iris detection-area-setting pulse: SP-A7 [8] output changeover	ICZC2R			
11	BF	Burst flag	0	Burst flag output	ICZC2R			
12	HD_IN	External CSYNC input	1	External CSYNC input	ICSD			
13	M_CK	Microprocessor clock	0	Microprocessor clock output (1/2 or 1/4 dividing of X'tal 1)	OC2R			
14	V_{DD}	V _{CC} 2	_	3.3 V power supply	VCCI			
15	V _{SS}	GND	_	GND	GNDI			
16	FV	Field vertical output	0	Vertical synchronization pulse	ICZC2R			
17	HD	HD output	0	Horizontal synchronization pulse	ICZC2R			
18	CBLK	Blanking pulse	0	Blanking pulse	ICZC2R			
19	CSYNC	SYNC output	0	SYNC pulse	ICZC2R			
20	SCBLK	SC blanking pulse	0	Subcarrier blanking pulse (SECAM)	ICZC2R			
21	HSYNC	Horizontal SYNC	0	Horizontal SYNC pulse (SECAM)	OC2R			
22	ID	Identity	0	SECAM determination pulse	OC2R			
23	IDP	Identity pulse	0	SECAM determination pulse	ICZC2R			
24	V_{DD}	V _{CC} 2		3.3 V power supply	VCCC			
25	V _{SS}	GND	_	GND	GNDC			
26	X1I	X'tal 1 input	1	2fsc oscillator input	IQ3			
27	X10	X'tal 1 output	0	2fsc oscillator output	OQ3			
28	IDS	Line ID reset input	1	Line-determination-signal input	ICD			
29	MCK_S	MCK output SW	I	Pin 13 MCK dividing setting SW (1 = 1/2, 0 = 1/4)	IC			
30	RESET	Reset	ı	Reset: to restore the initial data settings	ICS			
31	PLL_N	PLL negative	0	PLL signal output	ZC2			
32	PLL P	PLL positive	0	PLL signal output	ZC2			
33	VR	Vertical reset	I	Vertical synchronization signal input	ICSD			
34	X2I	X'tal 2 input	I	4fsc oscillator input	IQ2			
35	X2O	X'tal 2 output	0	4fsc oscillator output	OQ2			
36	FSC	Sub carrier frequency	0	fsc output	ICZC2R			
37	V _{SS}	GND	 	GND	GNDA			
38	AV _{DD}	Analog V _{CC} 2	_	Analog system power supply: 3.3 V	VCCA			
39	V _{SS}	GND	_	GND	GNDA			
40	AV _{DD}	Analog V _{CC} 2	_	Analog system power supply: 3.3 V	VCCA			
41	V _{SS}	GND	 _	GND	GNDA			
42	C OUT	C analog signal output	0	Chrominance-signal analog output	OA			
43	CBU	Current buffer upper	1	D/A upper current source	IA			
44	CBL	Current buffer lower	1	D/A lower current source	IA			
45	REXT	Reference resister EXT	<u>'</u>	Reference voltage input	IA			

Pin Description (cont.)

Pin No.	Symbol	Pin Name	I/O	Description	I/O Format
46	Y_OUT	Y analog signal output	0	Luminance-signal analog output	OA
47	V _{SS}	GND	 	GND	GNDA
48	AV_{DD}	Analog V _{CC} 2	 	Analog system power supply: 3.3 V	VCCA
49	V _{SS}	GND	_	GND	GNDA
50	V_{DD}	V _{CC} 2	 	Digital system power supply: 3.3 V	VCCI
51	V _{SS}	GND	_	GND	GNDI
52	DICK	Digital interface clock	0	Digital interface clock output	ICZC2R
53	NRYBY	R-Y, B-Y phase output	0	Color-difference signal phase clock	ICZC2R
54	YPO (8)	Y parallel output (8); MSB	0	Luminance-signal digital output MSB	OC2R
55	YPO (7)	Y parallel output (7)	0	Luminance-signal digital output	OC2R
56	YPO (6)	Y parallel output (6)	0	Luminance-signal digital output	OC2R
57	YPO (5)	Y parallel output (5)	0	Luminance-signal digital output	OC2R
58	YPO (4)	Y parallel output (4)	0	Luminance-signal digital output	OC2R
59	YPO (3)	Y parallel output (3)	0	Luminance-signal digital output	OC2R
60	YPO (2)	Y parallel output (2)	0	Luminance-signal digital output	OC2R
61	YPO (1)	Y parallel output (1); LSB	0	Luminance-signal digital output LSB	OC2R
62	YPI (8)	Y parallel input (8); MSB	I	Luminance-signal digital input MSB	ICD
63	YPI (7)	Y parallel input (7)	I	Luminance-signal digital input	ICD
64	YPI (6)	Y parallel input (6)	I	Luminance-signal digital input	ICD
65	YPI (5)	Y parallel input (5)	ı	Luminance-signal digital input	ICD
66	YPI (4)	Y parallel input (4)	ı	Luminance-signal digital input	ICD
67	YPI (3)	Y parallel input (3)	ı	Luminance-signal digital input	ICD
68	YPI (2)	Y parallel input (2)	1	Luminance-signal digital input	ICD
69	YPI (1)	Y parallel input (1); LSB	LA	Luminance-signal digital input LSB	ICD
70	CPO (8)	C parallel output (8); MSB	0	Chrominance-signal digital output MSB	OC2R
71	CPO (7)	C parallel output (7)	0	Chrominance-signal digital output	OC2R
72	CPO (6)	C parallel output (6)	0	Chrominance-signal digital output	OC2R
73	CPO (5)	C parallel output (5)	0	Chrominance-signal digital output	OC2R
74	V_{DD}	V _{CC} 2	_	3.3 V power supply	VCCO
75	V _{SS}	GND	_	GND	GNDO
76	CPO (4)	C parallel output (4)	0	Chrominance-signal digital output	OC2R
77	CPO (3)	C parallel output (3)	0	Chrominance-signal digital output	OC2R
78	CPO (2)	C parallel output (2)	0	Chrominance-signal digital output	OC2R
79	CPO (1)	C parallel output (1); LSB	0	Chrominance-signal digital output LSB	OC2R
80	CPI (8)	C parallel input (8); MSB	I	Chrominance-signal digital input MSB	ICD
81	CPI (7)	C parallel input (7)	I	Chrominance-signal digital input	ICD
82	CPI (6)	C parallel input (6)	I	Chrominance-signal digital input	ICD
83	CPI (5)	C parallel input (5)	I	Chrominance-signal digital input	ICD
84	CPI (4)	C parallel input (4)	I	Chrominance-signal digital input	ICD
85	CPI (3)	C parallel input (3)	1	Chrominance-signal digital input	ICD
86	CPI (2)	C parallel input (2)	I	Chrominance-signal digital input	ICD
87	CPI (1)	C parallel input (1); LSB	ı	Chrominance-signal digital input LSB	ICD
88	NME	Memory HD output	0	Line memory control output	ICZC2DR
89	FP	Field pulse	0	Field pulse	ICZC2R
90	ZOOM HD	Zoom HD output	0	Horizontal synchronization signal	ICZC2R
91	AD (10)	AD input (10); MSB	I	A/D data input MSB	IC
92	AD (9)	AD input (9)	ı	A/D data input	IC
93	AD (8)	AD input (8)	ı	A/D data input	IC
94	AD (7)	AD input (7)	i	A/D data input	IC

Pin Description (cont.)

Pin No.	Symbol	Pin Name	I/O	Description	I/O Format
95	AD (6)	AD input (6)	I	A/D data input	IC
96	AD (5)	AD input (5)	I	A/D data input	IC
97	AD (4)	AD input (4)	I	A/D data input	IC
98	AD (3)	AD input (3)	I	A/D data input	IC
99	AD (2)	AD input (2)	I	A/D data input	IC
100	AD (1)	AD input (1); LSB	I	A/D data input LSB	IC
101	ADCK	AD clock	0	A/D converter clock	ICZC2R
102	CPREF	Clamp reference output	0	Clamp reference pulse	2C3
103	DSP_MCK	Microprocessor clock output	0	Microprocessor clock output: SP-A7 [8] output changeover	ICZC2R
104	V_{DD}	V _{CC} 2	_	3.3 V power supply	VCCO
105	V _{SS}	GND	_	GND	GNDO
106	SP1	Sampling pulse 1	0	Sampling pulse for the AGC/CDS IC	ICZC2
107	SP2	Sampling pulse 2	0	Sampling pulse for the AGC/CDS IC	ICZC2
108	OBP	OBP pulse	0	Optical black-pulse output	ICZC2R
109	V_{DD}	V _{cc} 1		3 V or 5 V power supply (H1/H2 power supply)	VCCC35
110	H1	H1	0	CCD-sensor horizontal drive pulse	OC3R
111	H2	H2	0	CCD-sensor horizontal drive pulse	OC3R
112	V_{DD}	V _{cc} 1		5 V power supply (RG power supply)	VCCC5
113	RG	Reset gate	0	CCD-sensor control reset gate	ZC3R
114	V_{DD}	V _{CC} 2		3.3 V power supply	VCCO
115	XV1	XV1	0	CCD-sensor vertical control pulse	ICZC2R
116	XV2	XV2	0	CCD-sensor vertical control pulse	ICZC2R
117	XV3	XV3	0	CCD-sensor vertical control pulse	ICZC2R
118	XV4	XV4	0	CCD-sensor vertical control pulse	ICZC2R
119	XSG1	XSG1	0	CCD-sensor vertical control pulse	ZC2R
120	XSG2	XSG2	0	CCD-sensor vertical control pulse	ZC2R


Description of I/O Format

I/O Format	Contents
IC	CMOS level input
ICD	CMOS level input with pull-down resistor
ICS	CMOS level schmitt input
ICSD	CMOS level input with pull-down resistor
ICZC2	CMOS level common I/O (4 mA)
ICZC2DR	CMOS level common I/O with pull-down resistor and through-put control (4 mA)
ICZC2R	CMOS level common I/O with through-put control (4 mA)
OC2R	CMOS level output with through-put control (4 mA)
OC3R	CMOS level output with through-put control (8 mA)
IQ2	Crystal oscillator input
OQ2	Crystal oscillator output
IQ3	Crystal oscillator input
OQ3	Crystal oscillator output
ZC2	CMOS-level three-state output (4 mA)
ZC2R	CMOS-level three-state output with through-put control (4 mA)
ZC3	CMOS-level three-state output (8 mA)
ZC3R	CMOS-level three-state output with through-put control (8 mA)
VCCI	Core system power supply: 3 V
VCCO	Puddling system power supply: 3 V
VCCC	Common power supply: 3 V
VCCC5	Common power supply: 5 V for pin 112
VCCC35	Common power supply: 3 or 5 V for pin 109
GNDI	Core system GND
GNDO	Puddling system GND
GNDC	Common GND
IA	Analog input
OA	Analog output
VCCA	Analog power supply
GNDA	Analog GND

Notes: 1. Pin 113 is used for 5 V system output.

2. Pins 110 and 111 are used for 3 V or 5 V system output. They depend on the voltage of pin 109.

Block Diagram

Absolute Maximum Ratings

 $(Ta = 25^{\circ}C)$

Item		Symbol	Ratings	Unit
Power supply voltage		V _{CC}	-0.2 to +6.8	V
Pin voltage (5 V operation blo	ck)	Vt5V	-0.2 to V _{CC} 1 +0.2	V
Pin voltage (3 V operation block	ck)	Vt3V	-0.2 to V _{CC} 2 +0.2	V
Output current	Per output	lo	-32 to +32	mA
	Per GND-V _{CC} pair	lot	-72 to +72	mA
Allowable power dissipation		Popr	450	mW
Operating temperature		Topr	-10 to +75	°C
Storage temperature	With bias	Tbias	-10 to +75	°C
	Without bias	Tstg	-40 to +125	°C

- Notes: 1. Using this LSI at values in excess of the absolute maximum ratings may permanently damage the LSI. The LSI should normally be operated under the conditions specified for the electrical characteristics. Exceeding these conditions may lead to incorrect operation and may adversely affect LSI reliability.
 - 2. All voltage values are referenced to GND = 0 V.
 - 3. The pin voltage ratings also apply to the NC pins.
 - 4. V_{CC}1 indicates the 5 V system power supply and V_{CC}2 indicates the 3 V system power supply.

Electrical Characteristics

 $(V_{CC}1 = 4.75 \text{ V to } 5.25 \text{ V}, V_{CC}2 = 2.85 \text{ V to } 3.15 \text{ V}, AV_{CC} = 2.85 \text{ V to } 3.15 \text{ V}, Ta = 25^{\circ}\text{C})$

Item	Symbol	Min	Тур	Max	Unit	Test Conditions	Note
CMOS-level	V _{IHC}	V _{CC} 2×0.75	_	V _{CC} 2	V		
input voltage	V _{ILC}	0.0	_	V _{CC} 2×0.20	٧		
CMOS schmitt	V _{TC} +	2.50		V _{CC} 2	٧	V _{CC} 1 = 5 V	
input voltage	V _{TC} -	0.0	_	0.60	V	V _{CC} 2 = 3 V	
Output voltage	V _{OHC1}	V _{CC} 1–0.5	_	_	V	I _{OH} = –200 μA 5 V system pin	1
	V _{OLC1}	_	_	0.4	V	I _{OL} = 200 μA 5 V system pin	
	V _{OHC2}	V _{CC} 2-0.5	_	_	V	I _{OH} = –200 μA 3 V system pin	1, 5
	V _{OLC2}	_	_	0.4	V	I _{OL} = 200 μA 3 V system pin	1, 6
Input leakage current	ILI	_	_	1.0	μΑ	$V_{IN} = 0 V to V_{CC}$	2
Output leakage current	I _{LO}	_	_	1.0	μΑ	Output Hi-Z conditions	2
Pull-down current	I _{PD}	5	_	100	μΑ	$V_{IN} = V_{CC}2 = 3 V$	
Power dissipation	Popr	_	_	450	mW	$V_{CC}1 = 5 \text{ V},$ $V_{CC}2 = 3 \text{ V},$ $AV_{CC} = 3 \text{ V}$	3
Analog output voltage (full scale)	Vfull	0.80	1.00	1.20	V		3, 4
Analog output voltage (zero scale)	Vzero	-0.20	0.00	0.20	V		
Differential linearity	DNL	-2.0	_	2.0	LSB		

Notes: 1. Output voltage must be measured in the steady state.

- 2. Except for pins that include a pull-down resistor.
- 3. Guaranteed at CBU = 0.1 μ F, CBL = 0.1 μ F, REXT = 3.4 k Ω , analog output load resistance = 500 Ω , and Ta = 25°C.
- 4. Applied to pins indicated as OA in the I/O format column of the pin-functions table.
- 5. Because V_{OH} of pin 31 cannot be measured logically, it was not tested.
- 6. Because V_{OL} of pin 32 cannot be measured logically, it was not tested.
- 7. $V_{CC}1$, $V_{CC}2$, and AV_{CC} indicate the 5 V system power supply, the 3 V system power supply, and the analog system power supply, respectively. V_{CC} indicates $V_{CC}1$, $V_{CC}2$, and AV_{CC} .
- 8. The voltage range of pin 109 (VCCC35) is V_{CC} = 2.85 V to 5.25 V.

Crystal Oscillation Circuit

1. Measuring conditions

```
The oscillation frequency was measured under the following conditions
```

 $V_{CC}1 = 5.0 \text{ V} \\ V_{CC}2 = 3 \text{ V} \\ Ta = 25^{\circ}\text{C} \\ 8 \text{ MHz, } 20 \text{ MHz, and } 24 \text{ MHz:}$

Rf = 1 to 10 M Ω Cin, Cout = 20 pF (±20 pF)

 $Cin, Cout = 20 pr (\pm 20)$

32 MHz:

 $Rf = 1 \text{ to } 10 \text{ M}\Omega$

 $Cin = 20 pF (\pm 20 pF)$

Cout = 100 pF (\pm 20 pF), Co = 15 pF (\pm 5 pF), Lout = 1 μ H

The conditions above may be changed within the range of measuring conditions.

2. Measuring method

Under the measuring conditions above, two methods were tested.

fmin. = 20 MHz, and fmax. = 32 MHz (applied to pins 26 and 27)

fmin. = 8 MHz, and fmax. = 24 MHz (applied to pins 34 and 35)

Note: The oscillation start time tosc is max. = 200 ms.

3. Measuring circuit

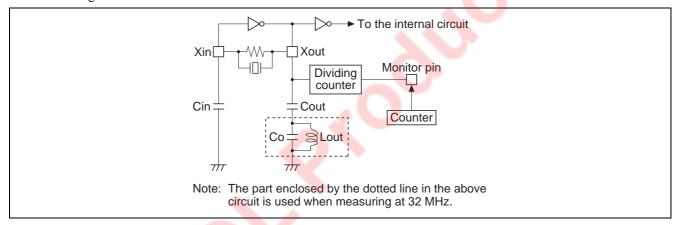


Figure 1 Measuring Circuit

Built-in Functions and System Configuration

System Configuration

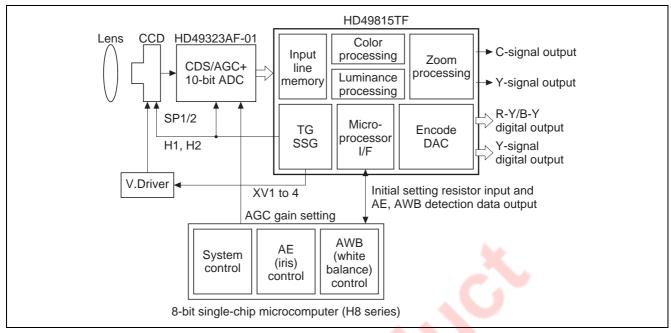


Figure 2 System Configuration

System Description

1. CCD

The following lists the pixels of the CCD sensors that can be used with the HD49815TF. For other pixel numbers, contact our sales dept.

 $512 (H) \times 492 (V) NTSC$

 $512 (H) \times 582 (V) PAL$

 $682 (H) \times 492 (V) NTSC$

 $681 (H) \times 582 (V) PAL$

2. CDS/AGC + 10-bit ADC

The HD49323AF-01 (manufactured by Renesas) is recommended as an optimal CDS/AGC + 10-bit ADC IC for the HD49815TF. Since the HD49323AF-01 provides a correlated double sampling circuit that realizes high S/N and an automatic gain control (AGC) circuit that implements programmable control of 0 dB to 34.7 dB, it enables a high-image-quality camera system when used in conjunction with the HD49815TF.

3. 8-bit single-chip microcomputer

The 8-bit single-chip microcomputer controls the system. It receives the image detection data that the HD49815TF is gathering and implements automatic iris control (AE), automatic white balance control (AWB), and automatic focus control (AF).

When setting the power on, this microcomputer implements the initial setting to the state data of the HD49815TF. For details on the state data, see "Renesas Camera DSP (HD49815TF) State Data".

Built-in Functions

1. Input line memory block

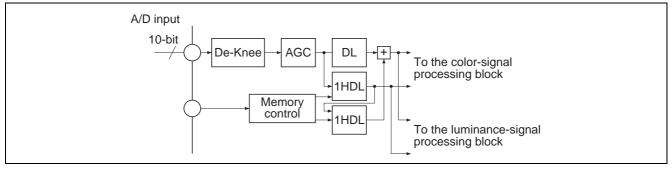


Figure 3 Input Line Memory Block

a. De-knee function

When the CDS/AGC IC at the pre-stage or the external circuit uses the knee circuit to expand the dynamic range of the signal, the de-knee (inverse knee) circuit returns the signal converted by the knee circuit to the original state

The de-knee point can be set in State Data SP A0 [1]. The gain of the high-luminance block is 1/2.

b. AGC function

A digital AGC circuit is provided. The AGC gain can be set in State Data SP A0 [2] from 1 to 16 times.

c. 1H delay line (1HDL) function

This circuit obtains horizontal efficient pixels of the CCD output signal. The number of efficient pixels is set in State Data SP_A0 [9, 10] and TM_A0 [14] MCSET.

2. Color-signal processing block

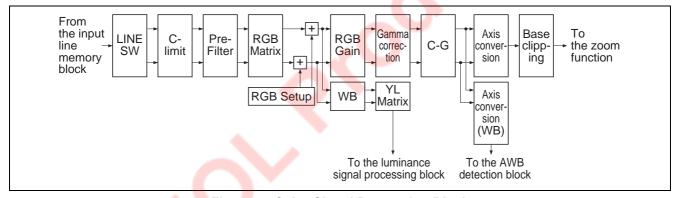


Figure 4 Color-Signal Processing Block

a. C-limit (complementary color clipping level) function

High clipping processing is performed on the complementary color signals independently. High clipping is set in State Data SP_A2 [0 to 3].

The complementary color signal indicates Gb: (G + Cy), Wr: (Ye + Mg), Wb: (Mg + Cy), and Gr: (G + Ye).

b. RGB-matrix block

The three primary colors (red, green, and blue) are acquired in the RGB matrix by multiplying arbitrary coefficients by the four complementary colors (Gb, Wr, Wb, and Gr) and taking the total of those results. The RGB matrix is designed to support the minimum color moire and to enable free color reproduction. Arbitrary coefficients are set in State Data SP A2 [4 to 15]. The following shows the formula.

c. RGB-setup block

The black level of the color signals is variable according to the coefficients of the RGB matrix. The value calculated by the formula below is subtracted from the color signal to correct the black level. The subtracted value can be set externally and is set in State Data SP A3 [0 to 2].

Formula = $-[48 \times \Sigma \text{ (Matrix data)} \times 2^3]$

d. RGB-gain block

The RGB gain value acquired in the AWB control is set in the RGB gain circuit to improve the white reproduction performance. As it is set prior to the gamma correction, it changes the gamma correction amount. The RGB gain can be set in State Data SP_A3 [3 to 5] from 1 to 256 times. (The G gain is set from 1 to 128 times.)

e. C gamma (γ) correction block

The C gamma correction circuit performs gamma processing on the RGB signal. It is set in State Data SP_A3 [6 to 9]. Four kinds of values can be set independently, according to the input-signal level, to acquire optimal gamma characteristics: the C gamma dark (to reduce the gain of the small signals for improving S/N), C gamma coefficient (to control the expansion of the gamma curve), C gamma knee (to decide the slope of the large signals), and C gamma limit (to perform high-clipping processing for the input signal of the C gamma circuit).

f. YL matrix block

The luminance level changes according to the color temperature of the imaged object. Set State Data SP_A5 [12, 13] for the luminance correction. To correct the luminance, create YL from the three primary colors (R, G, and B) and convert it to the luminance signal level. The YL matrix circuit creates the YL level from the RGB signal. The YL matrix is set in State Data SP_A3 [11 to 13].

g. The axis-conversion (C-Y matrix) block

The C-Y (color-difference) matrix takes R-G and B-G as its input signals, and creates the R-Y and B-Y color-difference signals by setting coefficients for those inputs.

The axis-conversion (C-Y matrix) circuits are set in State Data SP A8 [0 to 5].

h. Base-clipping block

Since base clipping is performed on the color-difference signals, the base-clipping circuit has the characteristics of clipping the sections near axes on a vector scope.

This circuit is set in State Data SP_A8 [8].

3. Luminance-signal-processing block

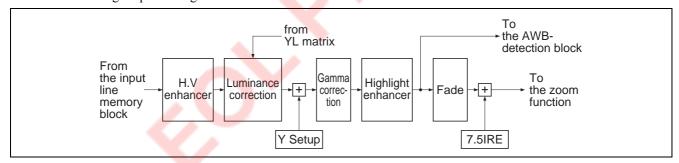


Figure 5 Luminance-Signal-Processing Block

a. H-enhancer function

The H-enhancer circuit allows the core level, the enhancer gain, and the noise coefficient to be set independently to acquire optimal characteristics.

This circuit is set in State Data SP A4 [4 to 7].

b. V-enhancer function

The V-enhancer circuit allows the enhancer coefficient to be set and can control the gain for only those signal components that exceed the set core level.

This circuit is set in State Data SP_A4 [8 to 10].

c. Luminance correction

The ratio of the red and blue levels changes according to the color temperature of the imaged object. For example, if a red object is imaged at a low color temperature, the luminance level increases and the object appears to have a lower chrominance. Therefore, the luminance correction circuit performs luminance-correction processing to implement color depth reproduction.

The luminance-correction circuit is set in State Data SP A5 [12, 13].

d. Y setup

Since the OB clamp processes the signal, the black level of the 10-bit signal input to the HD49815TF is fixed to 48/1024. The Y-setup circuit subtracts 48 at the black level. However, when 48 at the black level differs due to the noise mixed in the analog signal, the Y-setup circuit subtracts that value.

The Y-setup circuit is set in State Data SP A5 [6].

e. Gamma correction

The gamma-correction circuit implements the gamma-correction processing for the separated Y signal. Four kinds of values can be set independently, according to the input-signal level, to acquire optimal gamma characteristics: the gamma input limit, the gamma knee coefficient, the gamma coefficient, and the gamma black clipping.

The gamma correction circuit is set in State Data SP_A5 [1 to 4].

f. Highlight enhancer

For input-Y signal levels in excess of 100 IRE, the highlight enhancer implements highlight enhancer processing. This circuit is set in State Data SP A5 [0, 5, and 14].

g. Fade

The fade circuit amplifies the luminance signal by a factor of 0 to 1.

This circuit is set in State Data SP A5 [9].

4. Zoom, encode block, TG, SSG, and AWB and AE detection blocks

a. Zoom processing

The Y, R-Y, and B-Y signals completed the color-signal processing and the luminance-signal processing can be electronically zoomed by a factor of 1 to 256.

After clipping CCD signals for V direction, zoom circuit clips these signals for H direction, and expand these signals for H and V directions.

The zooming times and the read starting position for the V and H directions are set in State Data TM_A2 [3, 4, 5, 6, 8, and 9] and ZM_A0 to 6.

b. Encode block

This circuit encodes the signals completed the color-signal processing, the luminance-signal processing, and the zoom processing as the NTSC/PAL TV-monitor method.

A DAC that converts the digital signal to an analog signal is provided. The DAC has two channels: one for R-Y signals and one for B-Y signals.

c. TG and SSG

The TG generates the signals required to drive the CCD sensor (H1, H2, RG, SG1/2, and the V transfer pulse), and the CDS/AGC control signals (SP1 and SP2).

In addition, the SSG generates the signals to synchronize with the TV monitor (the Sync signal).

The drive timing of the generated signals differs according to the manufacturer and the specifications of the CCD sensor. Setting the state data enables setting of any timing.

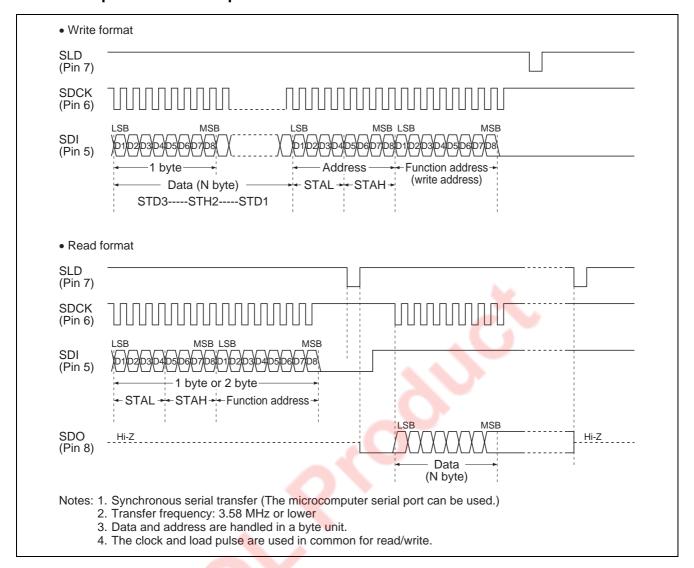
The state data of TG and SSG can be set in TM A0, A1, A2, A3, and A8.

d. AWB- and AE-detection blocks

The HD49815TF provides automatic white-balance (AWB) and automatic-iris (AE) detection circuits that are indispensable for a camera.

The AWB-detection block takes the R-Y and B-Y color-difference signals completed the color-signal processing, and converts to the R-B and MG-G axes. The converted signals are sent to circuits for the white detection to obtain white signal components only, and the white-color difference value is detected. The 8-bit single-chip microcomputer acquires this detection data, and controls the R and B gains to produce the true white.

The State Data of the AWB detection is AWB_A0 and A8.


The AE-detection block divides the CCD output signal converted to digital by the 10-bit ADC to six arbitrary areas, and performs integration processing. This function enables detection of the lighting level of the image signal.

The 8-bit single-chip microcomputer acquires this detection data, and controls the accumulation amount (the shutter) of the CCD sensor or the iris motor of the lens to maintain the proper lighting.

The State Data of the AF detection is AE A0 to A7 and A8.

Microcomputer Interface Specifications

Data Transfer Specification

For data transfer between the HD49815TF and the microcomputer, two types (N and E for write, and R1 and R2 for read) are available. The following table shows the relationship between the function block and the transfer specifications. On the next page, the details of the transfer specifications are described.

Function Block	Transfer Mode	Transfer Specifications *1	Related Address
Signal processing	W	N	SP_A0, 2 to 5, 7 to 10, 15
TM	W	N	TM_A3, 15
		E	TM_A0 to 2, 8, 10 to 12
	R	R1	TMR_A0
Iris	W	N	AE_A0 to 7
	R	R2	AE_A8
White balance	W	N	AWB_A0
	R	R1	AWB_A8
AF	W	N	AF_A0 to 3
	R	R1	AF_A8 to 13
ZOOM	W	N	ZM_A0 to 6

Note: 1. Transfer specifications

Type N : Normal transfer from the microcomputer to the DSP

Type E : Transfer using the set pulse (synchronous with VD) or the reset signal (used as a synchronous

pulse in the DSP) sent from the microcomputer to the RS latch in the DSP

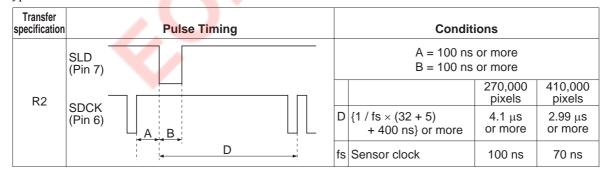
Note: This cannot be set during the standby mode.

Type R1: Data transfer (1) from the DSP to microcomputer Type R2: Data transfer (2) from the DSP to microcomputer

RENESAS

• Type N

Transfer specification	Pulse Timing	Conditions
N	SLD (Pin 7) SDCK (Pin 6)	A = 100 ns or more B = 100 ns or more C = 100 ns or more


• Type E

Transfer specification	Pulse Timing	Conditions									
	SLD	270,000 410,00 pixels pixel									
	(Pin 7)	A 0.5 / fs + 100 ns or more									
_		300 ns 240 r									
E	SDCK	B 2 / fs + 100 ns or more or more or more									
	(Pin 6) A B	D 5.5 / fs + 100 ns or more 650 ns or more or more									
	D	fs Sensor clock 100 ns 70 ns	S								

• Type R1

Transfer specification	Pulse Timing	Conditions
R1	SLD (Pin 7) SDCK (Pin 6) A B D	A = 100 ns or more B = 100 ns or more D = 400 ns or more Do not read the white balance data and the AF read data within the 1H period from the start of the V blanking.

• Type R2

Note: 2 to 9. Function addresses

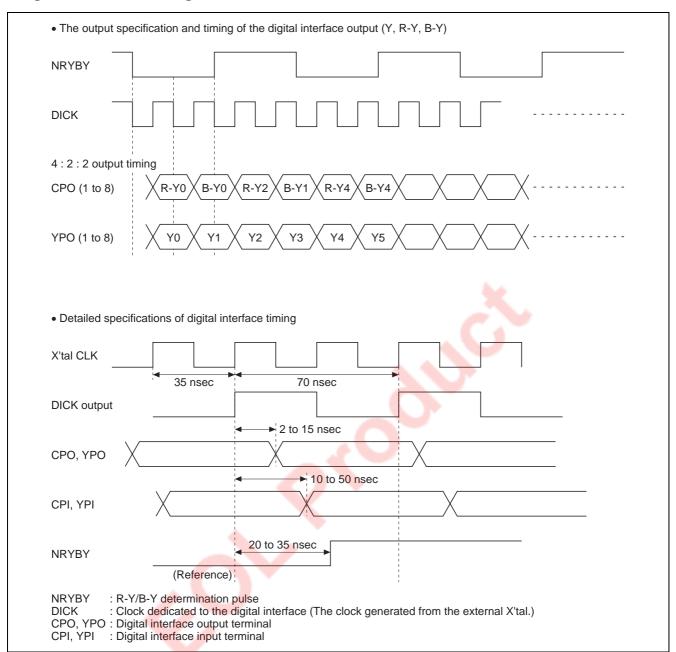
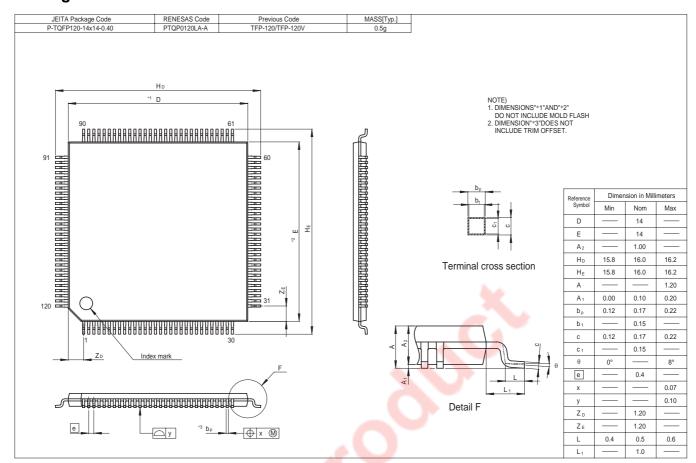

The following table shows the function addresses for each function block (during state data transfer) and the data to be transferred from the microcomputer.

Table 2 Function Addresses for each Function Block and State Data


			List of Data Transferred													Remarks																	
2		Function Address STAH STAL STD1 STD2												This example																			
Signa										D8	D7	D6	D5	D4	D3	D2	D1	D8 I	D7 D	6 D5	D4	1 D3	D2	D1	D8	D7	D6	D5	D4	D:	3 D	2 D1	is related to
process		0 ()	0	0	0	0	0	0	*	*	*	*	*	*	*	*	*	* *	*	*	*	*	*	*	*	*	*	*	*	*	* *	SP-A0[9].
(Settin exampl		-	-	0	0	-	-	0	0	0	0	0	0	1	0	0	1	ואח	D7 D	6 D5	D4	1 D3	D2	D1								_ D9	
3	0)		_	_		_	_	ess	_	_	ST		_	-		AL	_		J. D		D1		102			_	_	SI	D2	<u> </u>		100	This example
TM wri	ite	D8 D									_		D5					ואַח	ח דח				D2	D1	אם	D7	De				3 D	2 D1	
		_	\rightarrow	0	0	0	0	0	1	*	*	*	*	*	*	*	*	*	* *	_	*	*	*	*	*	*	*	*	*	*	,		TM-A0 [14].
(Settin exampl			-	0	0	-	-	+-	1	0	0	0	0	1	1	1	-	D8 I		-	+-	ו חמ	D2	D1	i i	i i	ļ .	† ·	+ -	Ť.	+		-
4	<i>c)</i>	_	_	_		_	_	ess	-	U	U	U	-	'		'	0	וויסטו	טווכ	סוסו	רטוי	r DO	المارا	וט									
TM rea	he	D8 D									Data read for automatic phase adjustment for SP1, SP2, and RG																						
			-	0	0	_	-	+	\vdash			ala	116	au	101	au	lOH	ialic	рпа	se a	iuju	ıSııı	ileili	. 10	ادا	г I,	Si	۷,	an	u r	\G		
		-		_	_	1	0	_	1		CT.	A I I		l .	CT			Ι			- D4							-	-				This assessed
		Func	_				-				ST		D.F.	_	_	AL		DO	DZ D		D1	_	Da	D4	D0	D-7	D.C		D2	-	2 0	2 04	This example is related to
			- -	-					- 1					-		+==	-	D8 I	ט זע	b D5	-		1					-	-	-	- -		the IRIS peak
			-	0	1	0	*	*	*	*	*	*	*	*	*	*	*		= -	\vdash	*	*	*	*	0	0	0	0	0	0	_		detection area.
	5		_	0	1	0	1	0	0		_	_	_		_	D2	_					_		_	0	0	0	0	0	_	(0 0	
. –	VV	Func									ST		-			AL		B - 1			TD1			.	B -				D2		. -	a E	This example is related to
AE		-	-	\rightarrow		_	_	_	-	-				_		-	-	D8 I	D7 D	_	-	-	D2		-	_	_	_	_	_	_	2 D1	the window
		-	-	0	0	0	0	0	1	*	*	*	*	*	*	*	*			- *	*	*	*	*	0	0	0	0	0	+-	-	_	H count 3.
		-	_	0	0	0	0	0	1	1	0	1	0	0	0	1	0	<u> -</u>		- D5	5 D4	1 D3	D2	D1	0	0	0	0	0	0	(0 0	
	6							ess			ST				_	AL																	
	6 R	D8 D	7 [)6	D5	D4	D3	D2	D1	D8	D7	D6	D5	D4	D3	D2	D1		I	Read	d a	rea	set	ting	g by	/ S	TA	L (4	l bi	ts)			
		_	_	0	1	1	0	0	0	-	_	—	_	*	*	*	*																
		Func					-	_			ST			_	_	ΊAL		<u>L</u>			D1								D2				This example
		D8 D	7 [)6	D5	D4	D3	D2	D1	D8	D7	D6	D5	D4	D3	D2	D1	D8 I	D7 D	6 D5	D4	1 D3	D2	D1	D8	D7	D6	D5	D4	D:	3 D	2 D1	is related to the offset R-B.
		0 ()	1	0	0		_	_	_	_	_	*	*	*	*	*	*	* *		*	*	*	*	0	0	0	0	0	0	(0 (THE OHSEL K-D.
	7	0 ()	1	0	0	_	-	_	-	_		0	0	0	0	1	-	D	6 D5	D4	1 D3	D2	D1	0	0	0	0	0	0	(0 (
	W	Func	tior	ιA	ddr	ess	Α	DA.	ГА		ST	AΗ			ST	AL				ST	TD1	<u> </u>				٧	Vin	dov	v s	etti	na		This example
AWB		D8 D	7 [)6	D5	D4	D3	D2	D1	D8	D7	D6	D5	D4	D3	D2	D1	D8 I	D7 D	6 D5	D4	1 D3	D2	D1			r w					Э	is related to
		0 ()	0	0	0	0	0	*	*	*	*	*	*	*	*	*	_		- *	*	*	*	*			WE						the V count 2.
		0 ()	0	0	0	0	0	1	1	0	1	1	0	0	1	1	D8 I	07 D	6 D5	D4	1 D3	D2	D1		ax	is p	ha	se	set	ttin	g	
		F	un	cti	on	Ac	ddr	ess	;																								
	8 R	D8 D	7 [)6	D5	D4	D3	D2	D1									V	Vhite	bal	land	ce r	read	1									
	ĸ	0 ()	1	0	1	0	0	0																								
		Func	tior	ı A	ddr	ess	Α	DA.	ГА	-	ST	ΑН			ST	AL																	This example
		D8 D	7 [06	D5	D4	D3	D2	D1	D8	D7	D6	D5	D4	D3	D2	D1	1		Н	IPF	ba	ındv	vidt	h s	ele	ctio	on					is related to
		0 ()	1	1	0	*	*	*	*	*	*	*	*	*	*	*]		R	lace	ام۔م	ip q	ıı2ı	atity	, 0	attir	าต	۵tc				the HRF bandwidth
	9	0 ()	1	1	0	0	0	0	_	_			D4	D3	D2	D1	1			usi	0 01	'P 4	uui	itity	y	Juli	ıg,	Old	,.			selection.
	W	Func	tior	ı A	ddr	ess	Α	DA'	ГА		ST	АН			ST	AL				ST	ΓD1	l											This example
AF		D8 D	7 [06	D5	D4	D3	D2	D1	D8	D7	D6	D5	D4	D3	D2	D1	D8 I	D7 D	6 D5	D4	1 D3	D2	D1	s	ett	ing	for	int	ea	rat	ion	is related to
		0 ()	0	0	0	0	0	1	1	1	0	0	0	*	*	*	*	* *	*	*	*	*	*			nd (the differential
		0 ()	0	0	0	0	_	1	1	1	0	0	0	1	0	1	D8 I	07 D	6 D5	D4	1 D3	D2	D1	1					-			gate of V-end.
		_	_	-		_	_	ess				-			_			-				, -			-								
	10	D8 D	_	_	_	_	_	-	_								V	f feto	h ac	ldre	ss i	(rea	ad d	cyc	le)								
	R	0 (_	\rightarrow		-	+	_	*													(_	,	- /								
						ide			_				Dat	a 1						Da	ta 2	2						Da	ta :	3			
		D8 D	7 [D2	D1																								1
		-	5	\rightarrow	1	_	_	*	*																								
ZOOM	VV							-					Dat	a 4						Da	ta :	5						Da	ta	6			
																																	1
Note: For the ZOOM, the transfer of in total of seven bytes is required for the header and data 1 to 6											- 0																						

Note: For the ZOOM, the transfer of in total of seven bytes is required for the header and data 1 to 6.

Digital Interface Timing

Package Dimensions

Renesas Technology Corp. Sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

Keep safety first in your circuit designs!

1. Renesas Technology Corp. puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage.

Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or (iii) prevention against any malfunction or mishap.

Notes regarding these materials

- Notes regarding these materials

 1. These materials are intended as a reference to assist our customers in the selection of the Renesas Technology Corp. product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Renesas Technology Corp. a third party.

 2. Renesas Technology Corp. assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials, and are subject to change by Renesas Technology Corp. without notice due to product improvements or other reasons. It is therefore recommended that customers contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor for the latest product information before purchasing a product listed herein.

 The information described here may contain technical inaccuracies or typographical errors.

 Renesas Technology Corp. assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors.

 Please also pay attention to information published by Renesas Technology Corp. by various means, including the Renesas Technology Corp. Semiconductor home page (http://www.renesas.com).

 4. When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Renesas Technology Corp. assumes no responsibility for any damage, liability or other loss resulting from the information contained herein.

 5. Renesas Technology Corp. semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Renesas Technology Corp. or an authorized Renesas Technology
- use.

 6. The prior written approval of Renesas Technology Corp. is necessary to reprint or reproduce in whole or in part these materials.

 7. If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination.

 Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited.

 8. Please contact Renesas Technology Corp. for further details on these materials or the products contained therein.

RENESAS SALES OFFICES

http://www.renesas.com

Refer to "http://www.renesas.com/en/network" for the latest and detailed information.

Renesas Technology America, Inc. 450 Holger Way, San Jose, CA 95134-1368, U.S.A Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501

Renesas Technology Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K. Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900

Renesas Technology Hong Kong Ltd.
7th Floor, North Tower, World Finance Centre, Harbour City, 1 Canton Road, Tsimshatsui, Kowloon, Hong Kong Tel: <852> 2265-6688, Fax: <852> 2730-6071

Renesas Technology Taiwan Co., Ltd. 10th Floor, No.99, Fushing North Road, Taipei, Taiwan Tel: <886> (2) 2715-2888, Fax: <886> (2) 2713-2999

Renesas Technology (Shanghai) Co., Ltd. Unit2607 Ruijing Building, No.205 Maoming Road (S), Shanghai 200020, China Tel: <86> (21) 6472-1001, Fax: <86> (21) 6415-2952

Renesas Technology Singapore Pte. Ltd.
1 Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632 Tel: <65> 6213-0200, Fax: <65> 6278-8001