# Old Company Name in Catalogs and Other Documents

On April 1<sup>st</sup>, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: <a href="http://www.renesas.com">http://www.renesas.com</a>

April 1<sup>st</sup>, 2010 Renesas E<mark>lect</mark>ronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.



### Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
  of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
  No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
  of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
  - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
  - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; safety equipment; and medical equipment not specifically designed for life support.
  - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.



# M61140FP

## **Tuner Single Chip**

REJ03F0023-0130 Rev.1.3 Jun 14, 2004

## **Description**

The M61140FP is a semiconductor integrated circuit consisting of Tuner signal processing for NTSC color TV and VCRs.

The circuit includes Mixer circuit in Tuning system, Oscillator circuit, PLL frequency synthesizer and VIF/SIF, which permits a smaller tuner system.

### **Features**

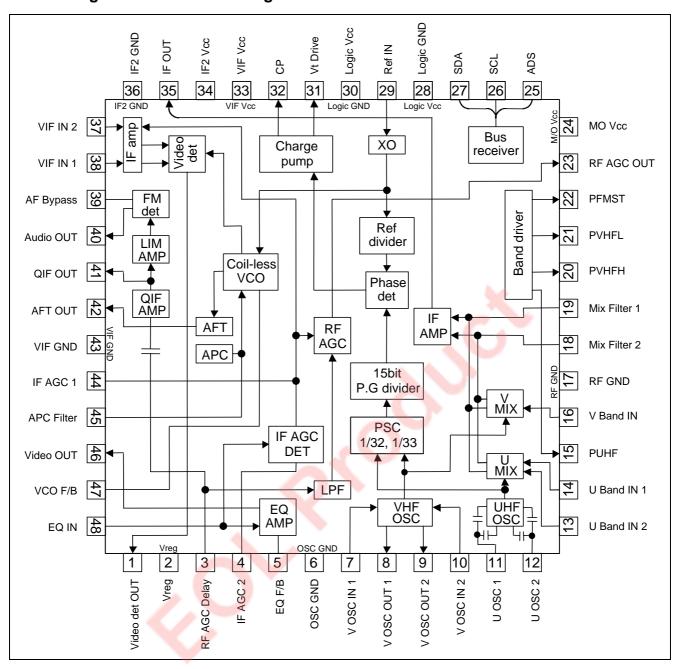
VIF/SIF
 Inter carrier type for NTSC
 Coil-less VCO
 Adjustment free AFT
 High-speed IF AGC

• PLL

Low phase noise and High-speed lock-up Built-in band switch driver (4 port) I2C bus control Available for both XO and external reference

Mixer/Oscillator
 Built-in U&V Oscillator and mixer
 Built-in IF Amplifier (Unbalanced Output)

## **Application**


TV, VCR

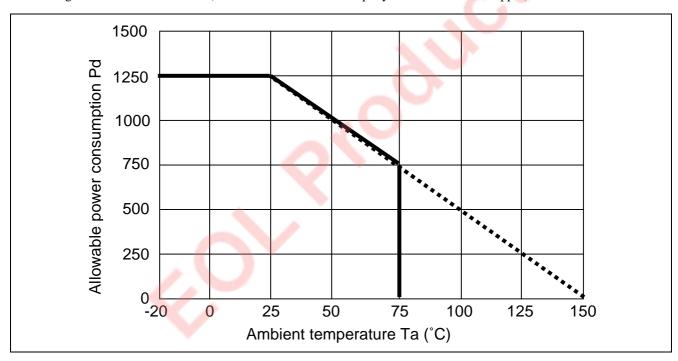
## **Recommended Operating Conditions**

Supply voltage range --- 4.75 to 5.25V

Recommended supply voltage --- 5.0V

## Pin Configuration and Block Diagram




## **Absolute Maximum Ratings**

(Ta=25°C, unless otherwise noted)

|                       | Parameter               | Symbol   | Ratings     | Unit | Note                           |
|-----------------------|-------------------------|----------|-------------|------|--------------------------------|
| Supply Voltage        |                         | Vcc      | 6           | V    |                                |
| MO Block              | Maximum Allowable Input | Vin      | 126         | dΒμV |                                |
| PLL Block             | Input Voltage           | Vimax    | 6           | V    | Pin25 to 27                    |
|                       | Port Output Voltage     | Vo       | 6           | V    | Pin20 to 22,15                 |
|                       | Port Output Current (1) | lopmax1  | 26          | mA   | Pin20, 21                      |
|                       | Port Output Current (2) | lopmax2  | 7           | mA   | Pin15, 22                      |
|                       | Port Output Current (3) | lopmax3  | 33          | mA   | 2 circuits are on at same time |
|                       | SDA Output Current      | losdamax | 10          | mA   |                                |
| Power Consumption     |                         | Pd       | 750         | mW   | Recommended circuit board.     |
|                       |                         |          |             |      | When Cu occupancy area is 50%. |
| Operating Temperature |                         | Topr     | -20 to +75  | °Ç   |                                |
| Storage Tem           | nperature               | Tstg     | -40 to +150 | °C   |                                |

### **Temperature Characteristics (maximum ratings)**

Mounting in standard circuit board ( $70\text{mm} \times 70\text{mm} \times 1.6\text{mmt}$  Epoxy board of one side copper)



## **Recommended Operating Condition**

(Ta=25°C, unless otherwise noted)

| Parameter                                 | Symbol | Ratings   | Unit | Note          |
|-------------------------------------------|--------|-----------|------|---------------|
| Guarantee Operating Voltage               | Vcc    | 4.5~5.3   | V    | Refer to Data |
| Supply Voltage Range                      | Vcc    | 4.75~5.25 | V    |               |
| Operating frequency of Crystal oscillator | fopr   | 4.0       | MHz  |               |
| Port output current (1)                   | loprt1 | 0~25      | mA   | Pin 20,21     |
| Port output current (2)                   | loprt2 | 0~5       | mA   | Pin 15,22     |

## **Pin Description**

| Pin No. | Pin name             | Function                                                                                                                                                                                                                           | Circuit Diagram                                       |
|---------|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|
| 1       | VIDEO DET<br>OUT     | Video detected output terminal. SIF trap and SIF B.P.F. are connected to this terminal. Because of open emitter configuration, an externally connected drive resistor is necessary.                                                | 33<br>50<br>1                                         |
| 2       | Vreg                 | Regulated voltage output. Approximately 3V output.                                                                                                                                                                                 | 33<br>9.9K<br>9.9K<br>7/// /// /// /// ///            |
| 3       | RF AGC<br>DELAY      | RF AGC terminal. This terminal combine 4.5MHz SIF signal input with set up the RF AGC delay point. The RF AGC delay point is set up by the DC component of input signal. AC component is FM detection threw the limiter amplifier. | 33<br>## 5.1K                                         |
| 4 44    | IF AGC 2<br>IF AGC 1 | IF AGC 2 terminal IF AGC 2 terminal. External capacitor effects AGC speed. When this terminal is grounded, the effect of VIF amp gain becomes minimum.                                                                             | 33<br>10K 50<br>W W W W W W W W W W W W W W W W W W W |
| 5       | EQ F/B               | Equalizer feedback terminal. It is possible to change the frequency characteristic of the video signal by attaching L,C,R to this terminal.                                                                                        | 33<br>500<br>7K<br>7K                                 |
| 6       | OSC GND              | OSC ground terminal.                                                                                                                                                                                                               |                                                       |

| Pin No. | Pin name       | Function                                                                                                                            | Circuit Diagram                                               |
|---------|----------------|-------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|
| 7       | V OSC IN 1     | VHF oscillator circuit is connected                                                                                                 | (2) <del>                                     </del>          |
| 8       | V OSC OUT 1    | externally. When band byte bit PUHF                                                                                                 |                                                               |
| 9       | V OSC OUT 2    | is set "1", bias current of oscillator transistor turns OFF.                                                                        |                                                               |
| 10      | V OSC IN 2     |                                                                                                                                     | 8<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10 |
| 11      | U OSC 1        | UHF oscillator circuit is connected                                                                                                 |                                                               |
| 12      | U OSC 2        | externally. When band byte bit PUHF is set "1", bias current of oscillator transistor turns ON.                                     | 400 \$ \$400<br>11) 2.5p  12) 2.5p  W                         |
| 13      | U BAND<br>IN 1 | UHF RF input terminal. Input type is balance input. In the case of                                                                  | 24 <del>*</del> *                                             |
| 14      | U BAND         | unbalance input, grounding of either pin 13 or 14 with capacitor is                                                                 |                                                               |
|         | IN 2           | required, while input to the other pin.                                                                                             | 13<br>14<br>18K<br>18K<br>18K                                 |
| 15      | PUHF           | Band change drive terminal. Output configuration is PNP open collector. When band selection bit PUHF is set "1", current is output. | 24<br>**47K                                                   |
| 16      | V BAND IN      | VHF RF input terminal. Input type is unbalance.  RF (Mixer) GND terminal.                                                           | 24<br>16<br>W 22K<br>22K<br>22K<br>22K                        |

| Pin No. | Pin name | Function                                                                      | Circuit Diagram                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|---------|----------|-------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 18      | MIX      | Mixer output terminal. The output                                             | 2 <del>4 + +</del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|         | FILTER 1 | terminal is open collector type,                                              | * <b>*</b> *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 19      | MIX      | single-tuned filter is connected. This pin is pull-up through power supply in | 200 20P V 4K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|         | FILTER 2 | order for voltage to be above 4.2V.                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|         |          | order for voltage to be above in                                              | (9) W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W   W |
|         |          |                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|         |          |                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|         |          |                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 20      | PVHFH    | Band change drive terminal. Output                                            | 28 <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 21      | PVHFL    | configuration is PNP open collector.                                          | <b>★ \$</b> 47K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|         |          | When band selection bit PVHFL or PVHFH is set "1", current is output.         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|         |          | 1 VIII II IS Set 1 , Current is output.                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|         |          |                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|         |          |                                                                               | (21)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|         |          |                                                                               | \ \ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|         |          |                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|         |          |                                                                               | m m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 22      | PFMST    | Band change drive terminal. Output                                            | 28 + + +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|         |          | configuration is PNP open collector. When band selection bit PFMST is         | <b>★ \$</b> 47K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|         |          | set "1", current is output. Reference                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|         |          | frequency or divided frequency of                                             | 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|         |          | local are output by test mode                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|         |          | condition.                                                                    | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|         |          |                                                                               | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|         |          |                                                                               | <b>★</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 23      | RF AGC   | RF AGC output terminal. It is current                                         | <i>/// ///</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|         | OUT      | drive type.                                                                   | 33 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|         |          |                                                                               | <b>*</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|         |          |                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|         |          |                                                                               | 23 <del>- W</del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|         |          |                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|         | 4        |                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|         |          |                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|         |          |                                                                               | $\frac{1}{M}$ $\frac{1}{M}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 24      | MO Vcc   | Mixer and oscillator block power                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 05      | ADC      | supply.                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 25      | ADS      | Address setting input terminal.  Address bit "MA1","MA2" is selected          | ® <del>  </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|         |          | by the potential at this terminal.                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|         |          |                                                                               | <b>★</b> \$ 40K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|         |          |                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|         |          |                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|         |          |                                                                               | 13K-K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|         |          |                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|         |          | •                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

| Pin No. | Pin name  | Function                                                                                                                                                                                                                                                                                    | Circuit Diagram                                                                                        |
|---------|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|
| 26      | SCL       | SCL input terminal.                                                                                                                                                                                                                                                                         | 28 <del></del>                                                                                         |
|         |           |                                                                                                                                                                                                                                                                                             | 26 W W W W W W W W W W W W W W W W W W W                                                               |
| 27      | SDA       | SDA input terminal. Reading and writing of data confirm to I <sup>2</sup> C bus of Philips.                                                                                                                                                                                                 | 28<br>27 W ACK                                                                                         |
| 28      | Logic Vcc | Logic block power supply.                                                                                                                                                                                                                                                                   |                                                                                                        |
| 29      | REF IN    | Reference frequency input terminal. Connect crystal oscillator at this terminal, or external signal (Sine wave).In this case of using external sine wave signal, pull down this terminal with 1.5k to $3.3k\Omega$ .                                                                        | 28 500 13K                                                         |
| 30      | Logic GND | Logic block power supply.                                                                                                                                                                                                                                                                   |                                                                                                        |
| 31      | VT DRIVE  | Filter transistor drive terminal. As for drive output, control bit "OS" controls it On or OFF                                                                                                                                                                                               | 28                                                                                                     |
| 32      | СР        | Charge pump output terminal. When the phase of the divide frequency of local is lead compared with the reference frequency, the "source" current state becomes active. If it is lag, the "sink" current becomes active. If the phase are the same, the high impedance state becomes active. | 32<br>31<br>150<br>0s<br>11K<br>50<br>11K<br>50<br>11K<br>11K<br>11K<br>11K<br>11K<br>11K<br>11K<br>11 |
| 33      | VIF Vcc   | VIF block power supply.                                                                                                                                                                                                                                                                     |                                                                                                        |
| 34      | IF2 Vcc   | Power supply terminal exclusively for IF amp output (pin 34) circuit.                                                                                                                                                                                                                       |                                                                                                        |
| 35      | IF OUT    | IF amp output terminal. This terminal is a low impedance and output IF frequency.                                                                                                                                                                                                           | 34<br>*** 20<br>35<br>*** 37                                                                           |

| Pin No. | Pin name             | Function                                                                                                                                                                                                                                                                                                            | Circuit Diagram                |
|---------|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|
| 36      | IF2 GND              | IF2 grand terminal. This grand is exclusively used by circuit of IF amplifier                                                                                                                                                                                                                                       |                                |
| 37 38   | VIF IN 1<br>VIF IN 2 | IF signal thew SAW filter is input. It is a balance type input.                                                                                                                                                                                                                                                     | 33<br>                         |
| 39      | AF BYPASS            | AF bypass terminal. It is connected to one of the input of a differential amplifier, external capacitor provides AC filtering. When resistor is connected in series with capacitor, it is possible to lows the amplitude of the audio output. When audio output terminal is not used, please connect pin 22 to GND. | 33 30K 1K 30K 1K 30K 1K 30K 1K |
| 40      | AUDIO OUT            | Sound output terminal. De-emphasis is achieved by external components.                                                                                                                                                                                                                                              | 33 200 9                       |
| 41      | QIF OUT              | QIF output terminal. FM signal which is converted to 4.5MHz is output. Additionally, this pin has dual function of being VIF VCO type selection. Connected to GND via $1.2k\Omega$                                                                                                                                  | 33 400 30K 6p mm               |
| 42      | AFT OUT              | AFT output terminal. Because of pulse-like signal output, a smoothing capacitor is connected externally. In addition, AFT detection sensitivity is set by external resistor.                                                                                                                                        | 33                             |
| 43      | VIF GND              | VIF GND terminal.                                                                                                                                                                                                                                                                                                   |                                |

| Pin No. | Pin name   | Function                                                                                                                      | Circuit Diagram                                                           |
|---------|------------|-------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|
| 45      | APC FILTER | APC filter terminal. It is the loop filter terminal which a VIF signal is made to lock VCO and keeps frequency constant.      | 33<br>21K 300<br>77<br>78<br>78<br>78<br>78<br>78<br>78<br>78<br>78<br>78 |
| 46      | VIDEO OUT  | Video output terminal. The signal inputted into the EQI terminal is outputted.                                                | 33<br>200<br>46                                                           |
| 47      | VCO F/B    | VCO feedback terminal. The feedback is to keep the free-running frequency of the built-in VCO.                                | 33<br>20K ₹ 10K                                                           |
| 48      | EQ IN      | The video signal threw the SIF trap is input to this terminal. DC impression from pin 1 is required for the input to 48 pins. | 33<br>48<br>100<br>48<br>100<br>100<br>100<br>100                         |

### **Setting Data**

M61140FP's bus format is based on Philips's I<sup>2</sup>C-bus.

Bidirectional bus communication control can be performed. It consists of WRITE mode which receives various data, and READ mode which transmits data. Recognition in WRITE mode and READ mode is performed by specification of the last bit on Address Byte (R/W bit). When the setup of a R/W bit is "0", it is set as WRITE mode and, in the case of "1", is set as READ mode. Furthermore, it has the address in which four programs are possible.

It enables this to use two or more devices on the same I<sup>2</sup>C bus.

Moreover, four programmable addresses are possible. Therefore, two or more devices become usable on I<sup>2</sup>C bus.

A setup of an address is chosen by the voltage impressed to an address setting terminal (ADS:25 pin).

If the address Byte in agreement is received, a data line will be set to "L" between knowledge, and at the time of WRITE mode, if Data Byte is received, SDA line between knowledge will be set to "L."

It shows a definition of bus protocol admitted in the following.

Mode\_1 STA CA DB1 DB2 CB1 CB2 STO

Mode\_2 STA CA CB1 CB2 DB1 DB2 STO

Mode 3 STA CA DB1 DB2 STO

Mode\_4 STA CA CB1 CB2 STO

STA: Start condition

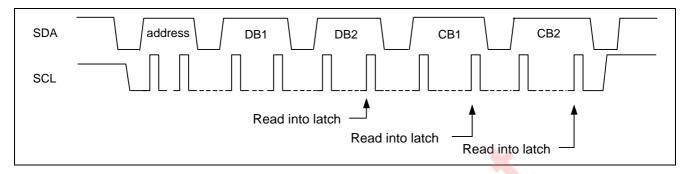
STO: Stop condition

CA: Chip address

DB1: Divider data byte 1

DB2: Divider data byte 2

CB1: Control data byte 1


CB2: Band data byte 2

#### (1) WRITE mode

The information of 5 bytes required for circuit operational chip address, control data and band SW data of 2 bytes and divider data of 2 bytes. after the chip address input, 2 or 4 bytes can be received. Function bit is contained in the first and the third data byte to distinguish between divider and 'control data/band SW data', with "0" going ahead of divider data, and "1" going ahead of 'control data/band SW data'.

The timing of Writing data for bus protocol Mode is shown in the figure below. Divider data uses 15 bits and is read in at the rise of the eighth clock bit of the second byte divider data (DB2). Control data (CB1) and band SW-data (BB) are each read in at the rise of their eighth clock bit.

### **Timing Chart**



#### Write mode data format

| Byte                | MSB |     |     |     |      | 110   |       | LSB   |   |
|---------------------|-----|-----|-----|-----|------|-------|-------|-------|---|
| Address Byte (CA)   | 1   | 1   | 0   | 0   | 0    | MA1   | MA0   | R/W=0 | Α |
| Divider Byte1 (DB1) | 0   | N14 | N13 | N12 | N11  | N10   | N9    | N8    | Α |
| Divider Byte2 (DB2) | N7  | N6  | N5  | N4  | N3   | N2    | N1    | N0    | Α |
| Control Byte (CB1)  | 1   | CP  | T2  | T1  | T0   | Rsa   | Rsb   | OS    | Α |
| Band Byte (CB2)     | Х   | Χ   | Х   | Χ   | PUHF | PFMST | PVHFH | PVHFL | Α |

### **Programmable Address Bit**

| Address input voltage applied to ADS [V] | MA1 | MA0 |
|------------------------------------------|-----|-----|
| 0 to 0.1xVcc                             | 0   | 0   |
| Open or 0.2 to 0.3xVcc                   | 0   | 1   |
| 0.4xVcc to 0.6xVcc                       | 1   | 0   |
| 0.9xVcc to Vcc                           | 1   | 1   |

N14 to N0: Set up for division ratio of the programmable divider

Frequency of VCO fvco: fvco=fref x N

Division ratio N:  $N=N14(2^14)+N13(2^13)+\cdots+N0(2^0)$ 

Range of division ratio N: N=1,024 to 32,767

fref: Reference frequency of phase comparator

### CP: Set up the charge pump current

|   | СР | Charge pump current * |
|---|----|-----------------------|
| 0 |    | 70μΑ                  |
| 1 |    | 300μΑ                 |

Note:\* Current of charge pump is typ current

In the case of setting current 270 $\mu$ A, when PLL is locked, charge pump current is automatically switched to CP=O (70 $\mu$ A).

T2, T1, T0: Set up for test mode

| CP | T2 | T1 | T0 | Charge pump     | Test output | Test SW | Mode         |
|----|----|----|----|-----------------|-------------|---------|--------------|
| 0  | 0  | 0  | Χ  | CP switched off | -           | OFF     | Normal mode  |
| 1  | 0  | 0  | Χ  | CP switched on  | -           | OFF     | Normal mode  |
| X  | 0  | 1  | Χ  | High impedance  | -           | OFF     | Test mode    |
| X  | 1  | 1  | 0  | Sink            | -           | OFF     | Test mode    |
| X  | 1  | 1  | 1  | Source          | -           | OFF     | Test mode    |
| 0  | 1  | 0  | 0  | High impedance  | fREF        | OFF     | Test mode    |
| 1  | 1  | 0  | Χ  | CP switched on  | -           | ON      | TV test mode |
| 0  | 1  | 0  | 1  | High impedance  | f1/N        | OFF     | Test mode    |

Note: fREF and f1/N is available on pin PFMST(pin 22). Test SW is for the mix filter damping switch

### Rsa: Set up tuning step

#### tuning step frequency

| Rsa | Rsb | Division ratio | @4MHz X'tal |
|-----|-----|----------------|-------------|
| 0   | 1   | 1/128          | 31.25kHz    |
| 1   | 1   | 1/64           | 62.5kHz     |
| X   | 0   | 1/80           | 50.0kHz     |

### OS: Set up drive output

|   | os | Drive output  | Mode        |   |
|---|----|---------------|-------------|---|
| 0 |    | ON            | Normal mode | 7 |
| 1 |    | OFF("L")level | Test mode   |   |

### PFMST, PUHF, PVHFL, PVHFH: PORT setting

|   | PFMST,PUHF,PVHFL,PVHFH | Output |
|---|------------------------|--------|
| 0 |                        | OFF    |
| 1 |                        | ON     |

PNP open collector output. When PUHF is "OFF", Mixer and Oscillator active VHF mode.

### (2) READ mode data format

At the time of READ mode, a power-on reset state, a phase comparison machine lock detector output state, and the state of the charge pump current change SW are outputted to a master device.

#### Read mode data format

| Byte         | MSB |    |      |   |   |     |     | LSB   |   |
|--------------|-----|----|------|---|---|-----|-----|-------|---|
| Address Byte | 1   | 1  | 0    | 0 | 0 | MA1 | MA0 | R/W=1 | Α |
| Status Byte  | POR | FL | ACPS | Х | Х | Х   | Χ   | Х     | Α |

X: 0 or 1 Don't care

POR: Power on reset flag. Output is "1" at power-on

Set to "1" when the time of a power supply voltage injection or power supply voltage falls in about 3V or less.

Reset by "0", if a Request to Send is carried out in READ mode and a flag is returned. Power supply voltage is about 3v or more, Reset by "0", after returning a flag in READ mode.

FL: Lock detector flag. Output is "1" at locked, output is "0" at unlocked.

ACPS: Automatic charge pump current flag. Output is "0" at charge pump current automatically switched mode, output is "1" at other mode.

### (3) Power on reset

The initial status is shown as below when supply voltage is turned on. If supply voltage becomes less than about 3.0V, the initial status is set.

| Byte                | MSB | 3 |   |   |   |   |   | LSB |
|---------------------|-----|---|---|---|---|---|---|-----|
| Divider Byte1 (DB1) | 0   | Х | Х | Х | Х | Х | Х | Х   |
| Divider Byte2 (DB2) | Х   | Χ | Χ | Χ | Χ | Χ | Х | Х   |
| Control Byte (CB1)  | 1   | 1 | 0 | 1 | Х | 1 | 1 | 1   |
| Band Byte (CB2)     | Х   | Х | Х | Χ | 0 | 0 | 0 | 0   |

### (4) Data format example

 $\label{eq:conditional} Ex1.US-TV-ch2~(fRF=55.25MHz,fosc=101MHz), CP~sw=ON,~Reference~Frequency=4MHz, 31.25kHz step,~PUHF="ON"$ 

| Byte                | MSB | } |   |   |   |     |     | LSB   |   |
|---------------------|-----|---|---|---|---|-----|-----|-------|---|
| Address Byte        | 1   | 1 | 0 | 0 | 0 | MA1 | MA0 | R/W=0 | Α |
| Divider Byte1 (DB1) | 0   | 0 | 0 | 0 | 1 | 1   | 0   | 0     | Α |
| Divider Byte2 (DB2) | 1   | 0 | 1 | 0 | 0 | 0   | 0   | 0     | Α |
| Control Byte (CB1)  | 1   | 1 | 0 | 0 | 0 | 0   | 1   | 0     | Α |
| Band Byte (CB2)     | Χ   | Х | Х | Х | 0 | 0   | 0   | 1     | Α |

Divide ratio N =  $101*10^6/31.25*10^3$ 

= 3232

 $=2^{11}+2^{10}+2^{7}+2^{5}$ 

Purchase of Renesas Technology electric corporation's I<sup>2</sup>C components conveys a license under the Philips I<sup>2</sup>C Patent Rights to use these components in an I<sup>2</sup>C system, provided that the system conforms to the I<sup>2</sup>C Standard Specification as defined by Philips

## **Electrical Characteristics**

### **DC** characteristics

(Ta=25°C, Vcc=5.0V otherwise noted.)

|                         | Measure |       | Input | Condition switches set to position "1" unless | Limits |     |     |      |      |
|-------------------------|---------|-------|-------|-----------------------------------------------|--------|-----|-----|------|------|
| Item                    | Symbol  | point | SG    | otherwise noted                               | min    | typ | max | Unit | Note |
| IF Vcc current          | IccIF   | 33    | -     | SW33=2                                        | 40     | 53  | 66  | mA   |      |
| IF2 Vcc current         | IccIF2  | 34    | -     | SW34=2                                        | 14     | 19  | 24  | mA   |      |
| M/O Vcc current         | IccRF   | 24    | -     | SW24=2                                        | 14     | 18  | 23  | mA   |      |
| Logic Vcc<br>current(1) | IccLo1  | 28    | -     | SW28=2 Port OFF                               | 11     | 14  | 18  | mA   |      |
| Logic Vcc<br>current(2) | IccLo2  | 28    | -     | SW28=2, Io(PVHFL) or Io(PVHFH)=20mA           | 27     | 37  | 46  | mA   |      |
| Logic Vcc<br>current(3) | IccLo3  | 28    | -     | SW28=2, Io(PFMST) or Io(PUHF)=5mA             | 15     | 20  | 25  | mA   |      |



## **Mixer and OSC Block**

(Ta=25°C, Vcc=5.0V otherwise noted.)

|   |                         |         |         |       | Condition switches set                                          |     |        |     |      |      |
|---|-------------------------|---------|---------|-------|-----------------------------------------------------------------|-----|--------|-----|------|------|
|   |                         |         | Measure | Input | to position "1" unless                                          |     | Limits |     |      |      |
|   | Item                    | Symbol  | point   | SG    | otherwise noted                                                 | min | typ    | max | Unit | Note |
| ٧ | Conversion gain1        | GvcV1   | 35,16   | -     | fRF=55.25MHz, CW                                                | 20  | 23     | 26  | dB   |      |
| Н | Conversion gain2        | GvcV2   | 35,16   | -     | fRF=361.25MHz, CW                                               | 20  | 23     | 26  | dB   |      |
| F | NF1                     | NFV1    | 35      | -     | fRF=55.25MHz, CW                                                | -   | 16.5   | 18  | dB   |      |
|   | NF2                     | NFV2    | 35      | -     | fRF=361.25MHz, CW                                               | -   | 17.5   | 20  | dB   |      |
|   | Cross modulation1       | CMV1    | 35      | -     | fd=55.25MHz, CW<br>fud=fd6MHz,<br>AM100kHz, 30%                 | -28 | -25    | -   | dBm  |      |
|   | Cross modulation2       | CMV2    | 35      | -     | fd=361.25MHz, CW<br>fud=fd6MHz,<br>AM100kHz, 30%                | -28 | -25    | 1   | dBm  |      |
|   | CS beat1                | CS1     | 35      | -     | fp=241.25MHz,<br>fs=245.75MHz<br>fc=244.83MHz,<br>AM100kHz, 30% | 55  | 60     | -   | dBc  |      |
|   | CS beat1                | CS2     | 35      | -     | fp=241.25MHz,<br>fs=245.75MHz<br>fc=244.83MHz,<br>AM100kHz,30%  | 55  | 60     | -   | dBc  |      |
| U | Conversion gain3        | GvcU3   | 35      | -     | fRF=367.25MHz, CW                                               | 27  | 30     | 33  | dB   |      |
| Н | Conversion gain4        | GvcU4   | 35      | -     | fRF=801.25MHz, CW                                               | 27  | 30     | 33  | dB   |      |
| F | NF1                     | NFU1    | 35      | -     | fRF=367.25MHz, CW                                               | -   | 11.5   | 13  | dB   |      |
|   | NF2                     | NFU2    | 35      | -     | fRF=801.25MHz, CW                                               | -   | 13     | 15  | dB   |      |
|   | cross<br>modulation1(-) | CMU1(-) | 35      | -     | fd=367.25MHz, CW<br>fud=fd-6MHz,<br>AM100kHz, 30%               | -31 | -28    | 1   | dBm  |      |
|   | cross<br>modulation1(+) | CMU1(+) | 35      | -     | fd=367.25MHz, CW<br>fud=fd+6MHz,<br>AM100kHz, 30%               | -37 | -34    | 1   | dBm  |      |
|   | cross<br>modulation2(-) | CMU2(-) | 35      |       | fd=801.25MHz, CW<br>fud=fd-6MHz,<br>AM100kHz, 30%               | -31 | -28    | 1   | dBm  |      |
|   | cross<br>modulation2(+) | CMU2(+) | 35      | -     | fd=801.25MHz, CW<br>fud=fd+6MHz,<br>AM100kHz, 30%               | -37 | -34    | -   | dBm  |      |
|   | CS beat3                | CS3     | 35      | -     | fp=615.25MHz,<br>fs=627.75MHz<br>fc=618.83MHz,<br>VoIF=-10dBm   | 55  | 60     | -   | dBc  |      |

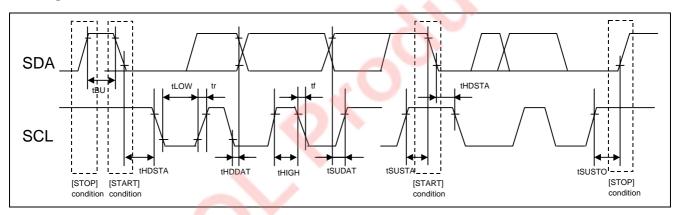
## **Mixer and OSC Block**

(Ta=25°C,Vcc=5.0V otherwise noted.)

|             |                            | 1        |         | 1     | `                                               |     | C, * CC= |      | ı — — |      |
|-------------|----------------------------|----------|---------|-------|-------------------------------------------------|-----|----------|------|-------|------|
|             |                            |          | Measure | Input | Condition switches set to position "1" unless   |     | Limits   |      |       |      |
|             | Item                       | Symbol   | point   | SG    | otherwise noted                                 | min | typ      | max  | Unit  | Note |
| B<br>e<br>a | 6ch beat                   | INT6ch   | 35      | -     | fp=83.25MHz,<br>fs=87.75MHz<br>VoIF=-10dBm      | 55  | 60       | -    | dBc   |      |
| t           | A5ch beat                  | INTA5ch  | 35      | -     | fp=91.25MHz,<br>VoIF=-10dBm                     | 60  | 65       | -    | dBc   |      |
|             | 5ch beat                   | INT5ch   | 35      | -     | fp1=83.25MHz,<br>fp=77.25MHz<br>VoIF=-10dBm     | 60  | 65       | -    | dBc   |      |
|             | PSC beat1                  | PSC183   | 35      | -     | fosc=183MHz                                     | -   | -        | -85  | dBm   |      |
|             | PSC beat2                  | PSC366   | 35      | -     | fosc=366MHz                                     | -   | -        | -85  | dBm   |      |
|             | PSC beat3                  | PSC732   | 35      | -     | fosc=732MHz                                     | -   | -        | -85  | dBm   |      |
| 0<br>S      | VHF OSC Power supply shift | ∆fosc_v  | 35      | -     | ΔVcc=10%                                        | -   | -        | ±500 | kHz   |      |
| С           | VHF OSC Swon<br>Drift      | Δfoscv_t | 35      | -     | VccOn 3sec to 5min                              | -3  |          | ±500 | kHz   |      |
|             | VHF OSC C/N1               | C/N(V1)  | 35      | -     | fp=83.25MHz,<br>VoIF=-10dBm +/-50kHz<br>offset  | 65  | -        | -    | dBc   |      |
|             | VHF OSC C/N2               | C/N(V2)  | 35      | -     | fp=241.25MHz,<br>VoIF=-10dBm +/-50kHz<br>offset | 65  | -        | -    | dBc   |      |
|             | UHF OSC Power supply shift | ∆fosc_u  | 35      | -     | ΔVcc =10%                                       | -   | -        | ±500 | kHz   |      |
|             | UHF OSC Swon<br>Drift      | ∆foscu_t | 35      | -     | VccOn 3sec to 5min                              | 55  | -        | -    | kHz   |      |
|             | UHF OSC C/N                | C/N(U)   | 35      | -     | fp=615.25MHz,<br>VoIF=-10dBm +/-50kHz<br>offset | 65  | -        | -    | dBc   |      |

## **PLL Block**

(Ta=25°C,Vcc=5.0V otherwise noted.)


|        |                     | 1      | 1        |       | ,                    |      | C, V CC |      |      | 1    |
|--------|---------------------|--------|----------|-------|----------------------|------|---------|------|------|------|
|        |                     |        |          |       | Condition switches   |      |         |      |      |      |
|        |                     |        |          |       | set to position "1"  |      |         |      |      |      |
|        | •                   |        | Measure  | Input | unless otherwise     |      | Limits  | 1    |      |      |
|        | Item                | Symbol | point    | SG    | noted                | min  | typ     | max  | Unit | Note |
| S      | High input voltage  | ViH    | 26,27    | -     | SW26,27=2            | 2.3  | -       | Vcc  | V    |      |
| D      | Low input voltage   | ViL    | 26,27    | -     | SW26,27=2            | -    | -       | 1.0  | V    |      |
| Α      | High input current  | liH    | 26,27    | -     | SW25A,26,27=2        | -    | -       | 10   | μΑ   |      |
| /      |                     |        |          |       | Vi=4.0V              |      |         |      |      |      |
| S<br>C | Low input current   | liL    | 26,27    | -     | SW25A,26,27=2        | -    | -1      | -10  | μΑ   |      |
| L      |                     |        |          |       | Vi=0.4V              |      |         |      |      |      |
| S      | Low output          | VoSL   | 27       | -     | SW25A,27=2 lo=3mA    | -    | -       | 0.4  | V    |      |
| D      | voltage             |        |          |       |                      |      |         |      |      |      |
| Α      | Leakage current     | IoSLK  | 27       | -     | SW25A,27=2 Vo=5.0V   | -    | -       | 10   | μΑ   |      |
| Α      | High input current  | ViAH   | 25       | -     | SW25,25A=2 Vi=5.0V   | -    | -       | 600  | μΑ   |      |
| D<br>S | Low input current   | liAL   | 25       | -     | SW25,25A=2 Vi=0.4V   | -    | -       | -200 | μΑ   |      |
| P      | Outrant malta mad   | 1/4    | 00.04    |       | 014/00 04 0 1- 05 4  | 4.0  | 4.0     |      | V    |      |
| 0      | Output voltage1     | Vop1   | 20,21    | -     | SW20,21=2 lo=-25mA   | 4.6  | 4.8     | -    |      |      |
| R      | Output voltage2     | Vop2   | 15,22    | -     | SW15,22=2 lo=-5mA    | 4.6  | 4.8     | -    | V    |      |
| T      | Leakage current     | IopLK  | 15 20~22 | -     | SW15,20,21,22=2      | -    | -       | 10   | μΑ   |      |
|        | LP L                |        | 00       |       | output "OFF"         | 470  | 000     | 400  |      |      |
| C<br>P | High output current | IcpH   | 32       | -     | SW32=2 Vo=2.5V       | ±170 | ±300    | ±400 | μΑ   |      |
|        | Low output          | IcpL   | 32       | -     | SW32=2 Vo=2.5V       | ±55  | ±75     | ±115 | μA   |      |
|        | current             |        |          |       |                      |      |         |      | •    |      |
|        | Leakage current     | IcpLK  | 32       | -     | SW32=2               | -    | -       | 50   | nA   |      |
|        | -                   | -      |          |       | Vo=2.5V,output "OFF" |      |         |      |      |      |
| V      | Tuning drive        | lovt   | 31       | -(    | SW31=2 Vo=0.5V       | -    | -       | 2.0  | mA   |      |
| Т      | output              |        |          |       |                      |      |         |      |      |      |
| Χ      | Operational         | fxin   | 29       | -     |                      | 3.2  | 4.0     | 4.4  | MHz  |      |
| i      | frequency of        |        |          |       |                      |      |         |      |      |      |
| n      | Crystal OSC         |        |          |       |                      |      |         |      |      |      |
|        | Absolute Value      | Rxin   | 29       | -     |                      | 2.0  | -       | -    | kΩ   |      |
|        | Sensitivity of      | Vixin  | 29,22    | SG17  | SW29=2,Sine wave     | 50   | -       | 600  | mVp  | *14  |
|        | External signal     |        |          |       | signal input         |      |         |      | -p   |      |
|        |                     |        |          |       | Data(T2,T1,T0)="01X" |      |         |      |      |      |

## Data input Block

(Ta=25°C,Vcc=5.0V otherwise noted.)

|                    |        | Measure | Input | Condition switches set to position "1" unless |     | Limits |     |      |      |
|--------------------|--------|---------|-------|-----------------------------------------------|-----|--------|-----|------|------|
| Item               | Symbol | point   | SG    | otherwise noted                               | min | typ    | max | Unit | Note |
| Clock frequency    | fSCL   | 26      |       |                                               | 0   | 100    | 400 | kHz  |      |
| Bus free time      | tBUF   | 27      |       |                                               | 1.3 | -      | -   | μsec |      |
| Data hold time     | tHDSTA | 27      |       |                                               | 0.6 | -      | -   | μsec |      |
| SCL LOW hold time  | tLOW   | 26      |       |                                               | 1.3 | -      | -   | μsec |      |
| SCL HIGH hold time | tHIGH  | 26      |       |                                               | 0.6 | -      | -   | μsec |      |
| Set up time        | tSUSTA | 26,27   |       |                                               | 0.6 | -      | -   | μsec |      |
| Data hold time     | tHDDAT | 26,27   |       |                                               | 0   | -      | -   | μsec |      |
| Data set up time   | tSUDAT | 26,27   |       |                                               | 100 | -      | -   | nsec |      |
| Rise time          | tR     | 26,27   |       |                                               | -   | -      | 300 | nsec |      |
| Fall time          | tF     | 26,27   |       |                                               | -   | -      | 300 | nsec |      |
| Set up time        | tSUSTO | 26      |       |                                               | 0.6 | -      | -   | μsec |      |

## Timing chart



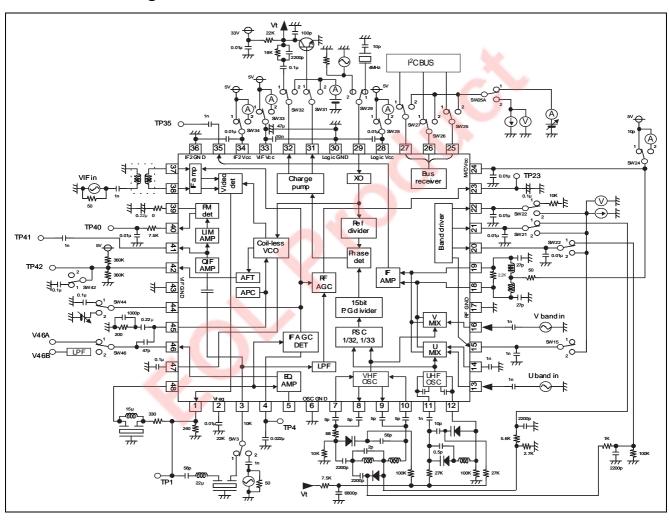
## VIF Block1

(Ta=25°C, Vcc=5.0V otherwise noted.)

|                          |              | Measure  | Input | Condition switches set to position "1" unless |      | Limits |      |      |      |
|--------------------------|--------------|----------|-------|-----------------------------------------------|------|--------|------|------|------|
| Item                     | Symbol       | point    | SG    | otherwise noted                               | min  | typ    | max  | Unit | Note |
| Video output level       | Vodet        | 46       | SG1   |                                               | 0.85 | 1.15   | 1.35 | Vp-p |      |
| Sync tip voltage         | VoSNK        | 46       | SG2   |                                               | 1.1  | 1.3    | 1.5  | V    |      |
| Video S/N                | VideoS/<br>N | 46       | SG2   | 5MHz LPF                                      | 48   | 50     | -    | dB   | *1   |
| Video out freq. response | BW           | 1        | SG3   |                                               | 6    | 7      | -    | MHz  | *2   |
| Input sensitivity        | VinMIN       | 1,37,38  | SG4   | Vo=-3dB point                                 | -    | 45     | 52   | dΒμV | *3   |
| Max. IF input            | VinMAX       | 1,37,38  | SG5   | Vo=-3dB point                                 | 101  | 105    | -    | dΒμV | *4   |
| AGC range                | GR           | -        |       | GR = VinMAX - Vin MIN                         | 52   | 60     | -    | dB   | *5   |
| Capture range U          | CR-U         | 46,37,38 | SG9   |                                               | 0.6  | 0.8    | -    | MHz  | *6   |
| Capture range L          | CR-L         | 46,37,38 | SG9   |                                               | 1.1  | 1.5    | -    | MHz  | *7   |
| Inter modulation         | IM           | 1        | SG11  |                                               | 32   | 40     | -    | dB   | *8   |
| D/G                      | DG           | 1        | SG12  |                                               | 4    | 3      | 5    | %    |      |
| D/P                      | DP           | 1        | SG12  |                                               | ),   | 3      | 5    | deg  |      |
| Input impedance          | Zin          | 37,38    | -     | DC                                            | 7- / | 2k     | -    | Ω    |      |
| Input capacitance        | Yin          | 37,38    | -     | 40MHz                                         | 1    | 5      | -    | pF   |      |
| RF AGC max voltage       | V23H         | 23       | SG6   |                                               | 4    | 4.3    | 4.6  | V    |      |
| RF AGC min voltage       | V23L         | 23       | SG7   | _O>                                           | 0    | 0.3    | 0.6  | V    |      |
| RFAGC Delay point        | Vi23         | 23,37,38 | SG8   | @3pin open                                    | 82   | 85     | 88   | dBμV | *9   |

## VIF Block2

(Ta=25°C,Vcc=5.0V otherwise noted.)


|  |                         |        | Measure | Input | Condition switches set to position "1" unless     | Limits |     |     |            |      |
|--|-------------------------|--------|---------|-------|---------------------------------------------------|--------|-----|-----|------------|------|
|  | Item                    | Symbol | point   | SG    | otherwise noted                                   | min    | typ | max | Unit       | Note |
|  | Freerun frequency       | fvco   | 42      | SG17  | SW42,29=2,44pin<br>"GND" Data<br>(T2,T1,T0="01X") | -500   | -   | 500 | kHz        | *15  |
|  | AFT Sensitivity         | μ      | 42      | SG10  | @360k/360k 0.1μF                                  | 12     | 24  | 36  | mV/<br>kHz | *10  |
|  | AFT high output voltage | V42H   | 42      | SG10  | 4.3                                               | 4.7    | 5   | >   |            |      |
|  | AFT Low output voltage  | V42L   | 42      | SG10  | 0                                                 | 0.3    | 0.7 | ٧   |            |      |
|  | AFT center voltage      | V42C1  | 42      | SG18  | frequency=58.75MHz                                | 2.4    | 2.5 | 2.6 | V          |      |
|  | AFT center voltage      | V42C2  | 42      | SG2   | frequency=45.75MHz                                | 2.4    | 2.5 | 2.6 | V          |      |

## SIF Block

(Ta=25°C,Vcc=5.0V otherwise noted.)

|                      |        | Measure | Input | Condition switches set to position "1" unless | Limits |     |      |       |      |
|----------------------|--------|---------|-------|-----------------------------------------------|--------|-----|------|-------|------|
| Item                 | Symbol | point   | SG    | otherwise noted                               | min    | typ | max  | Unit  | Note |
| Audio out level      | VoAF   | 40      | SG13  | SW3=2 @Pin39:0.22μF                           | 500    | 770 | 1040 | mVrms |      |
| Audio out THD        | THDAF  | 40      | SG13  | SW3=2 @Pin39:0.22μF                           | ı      | 0.4 | 0.9  | %     |      |
| AF S/N               | AF S/N | 40      | SG16  | SW3=2 @Pin39:0.22μF                           | 51     | 56  | ı    | dB    | *11  |
| Limiting sensitivity | LIM    | 3,40    | SG14  | SW3=2 S/N=30dB Point                          | -      | 50  | 55   | dBμV  | *12  |
| AMR                  | AMR    | 40      | SG15  | SW3=2                                         | 44     | 50  | •    | dB    | *13  |
| QIF output           | VoQIF  | 41      | SG16  | SW3=2                                         | 86     | 92  | -    | dΒμV  |      |

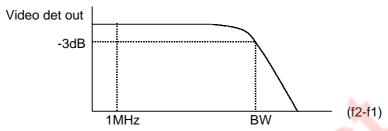
## **Measurement Diagram**



# Input Signal

| SG | 50ohm termination     |                         |                     |                  |  |  |
|----|-----------------------|-------------------------|---------------------|------------------|--|--|
| 1  | f0=45.75MHz           | Vi=90dBμV               | fm=20kHz            | AM=77.8%         |  |  |
| 2  | f0=45.75MHz           | Vi=90dBμV               | CW                  |                  |  |  |
| 3  | f1=45.75MHz           | Vi=90dBμV               | CW                  | -mixed signal    |  |  |
|    | f2=Frequency Variable | Vi=70dBμV CW            |                     | J Illixed Signal |  |  |
| 4  | f0=45.75MHz           | Level Variable          | fm=20kHz            | AM=77.8%         |  |  |
| 5  | f0=45.75MHz           | Level Variable          | fm=20kHz            | AM=14.0%         |  |  |
| 6  | f0=45.75MHz           | Vi=80dBμV               | CW                  |                  |  |  |
| 7  | f0=45.75MHz           | Vi=110dBμV              | CW                  |                  |  |  |
| 8  | f0=45.75MHz           | Level Variable          | CW                  |                  |  |  |
| 9  | f0=Frequency Variable | Vi=90dBμV               | fm=20kHz            | AM=77.8%         |  |  |
| 10 | f0=Frequency Variable | Vi=90dBμV               | CW                  |                  |  |  |
| 11 | f1=45.75MHz           | Vi=90dBμV               | CW                  |                  |  |  |
|    | f2=42.17MHz           | Vi=80dBμV               | CW                  | mixed signal     |  |  |
|    | f3=41.25MHz           | Vi=80dBμV               | CW                  |                  |  |  |
| 12 | f0=45.75MHz           | Sync Tip Level 90dBμ    | TV moduration=87.5% |                  |  |  |
|    |                       | 10 stair-steps waveform |                     |                  |  |  |
| 13 | f0=4.5MHz             | Vi=90dBμV               | fm=1kHz             | +/- 25kHz dev    |  |  |
| 14 | f0=4.5MHz             | Level Variable          | fm=1kHz             | +/- 25kHz dev    |  |  |
| 15 | f0=4.5MHz             | Vi=90dBμV               | fm=1kHz             | AM=30%           |  |  |
| 16 | f0=4.5MHz             | Vi=90dBμV               | CW                  |                  |  |  |
| 17 | f0=4.0MHz             | Level Variable          | CW                  |                  |  |  |
| 18 | f0=58.75MHz           | Vi=90dBμV               | CW                  |                  |  |  |

#### **Measurement of Electrical Characteristic Notes**


#### 1. Video S/N

Input SG2 to VIF IN and measure the video out (Pin 46) noise in r.m.s. at TP46B through a 5MHz (-3dB) L.P.F.

$$S/N=20\log\left(\begin{array}{c} 0.7xVodet \\ \hline NOISE \end{array}\right) (dB)$$

#### 2. Video Band Width

- 1. Measure the 1MHz component level of Video output TP1 with a spectrum analyzer when SG3 (f2=44.75MHz) is input to VIF IN. At that time, measure the voltage at TP44 with SW8, set to position 2, and then fix V8 at that voltage.
- 2. Reduce f2and measure the value of (f2-f1) when the (f2-f1) component level reaches -3dB from the 1MHz component level as shown below.



### 3. Input sensitivity

Input SG4 (Vi=90dB $\mu$ ) to VIF IN , and then gradually reduce Vi and measure the input level when the 20kHz component of Video output TP46A reaches -3dB from Vo det level.

### 4. Maximum Allowable Input

- 1. Input SG5 (Vi=90dBμ) to VIF IN, and measure the level of the 20kHz component of Video output.
- 2. Gradually increase the Vi of SG and measure the input level when the output reaches -3dB.

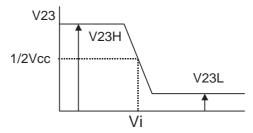
### 5. AGC control Range

GR=VinMAX-VinMIN (dB)

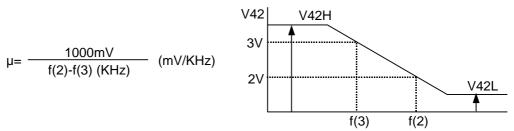
### 6. Capture range U

- 1. Increase the frequency of SG9 until the VCO is out of locked-oscillation
- 2. And decrease the frequency of SG9 and measure the frequency fU when the VCO is locked. CR-U=fU-45.75 (MHz)

#### 7. Capture range L


- 1. Decrease the frequency of SG9 until the VCO is out of locked-oscillation.
- 2. And increase the frequency of SG9 and measure the frequency fL when the VCO is locked. CR-L=45.75-fL (MHz)

### 8. Inter modulation


- 1. Input SG11 to VIF IN, and measure video output TP9 with an oscilloscope.
- 2. Adjust AGC filter voltage V44 so that the minimum DC level of the output waveform is 1.5V.
- 3. At that time, measure TP1 with a spectrum analyzer The inter modulation is defined as a difference between 0.92MHz and 3.58 MHz frequency components.

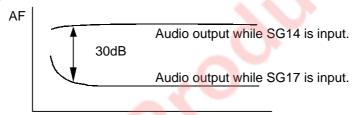
### 9. RF AGC Operating Voltage:

Input SG8 to VIF IN and gradually reduce Vi and then measure the input level when RF AGC output reaches 1/2Vcc, as shown below.



- 10. AFT sensitivity, Maximum AFT voltage, Minimum AFT voltage
  - 1. Input SG10 to VIF IN, and set the frequency of SG10 so that the voltage of AFT output TP42 is 3(V). This frequency is named f(3).
  - 2. Set the frequency of SG10 so that the AFT output voltage is 2(V). This frequency is named f(2).
  - 3. IN the graph shown below, maximum and minimum DC voltage are V42H and V42L, respectively.




### 11. AF S/N

1. Input SG19 to LIM IN, and measure the output noise level of Audio output (TP40). This level is named VN.

$$S/N=20log\left( \frac{VoAF}{VN} \right) (dB)$$

#### 12. Limiting Sensitivity

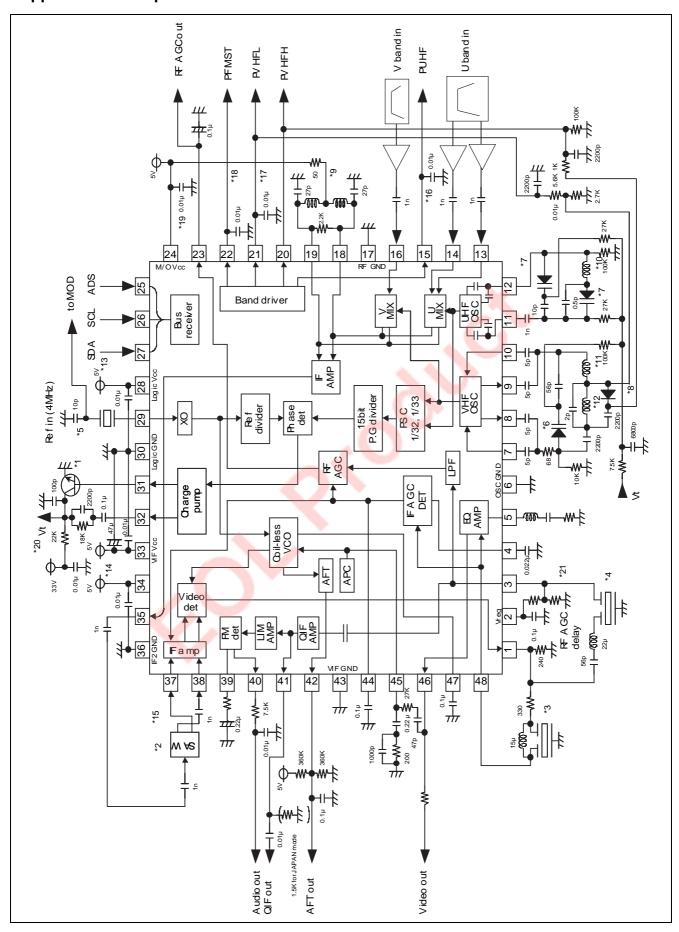
- 1. Input SG14 to LIM IN, and measure the 1kHz component level of AF output TP40.
- 2. Input SG17 to LIM IN, and measure the noise level of AF output TP40.
- 3. The input limiting sensitivity is defined as the input level when the difference between each 1kHz components of audio output (TP40) is 30dB, as shown below.



### 13. AM Rejection

- 1. Input SG15 to LIM IN, and measure the output level of Audio output (TP40). This level is named VAM.
- 2. AMR is

#### 14. Xin sensitivity of external signal


- 1. Input data that Control byte data CP,T2,T1,T0 is "0100" and Rsa,Rsa is "01"
- 2. The Reference frequency is output to Pin 22, measure the frequency with counter.
- 3. Input sensitivity is defined as the input level when the frequency is less than plus-or-minus 1ppm of 31.25kHz.

### 15. Freerun frequency

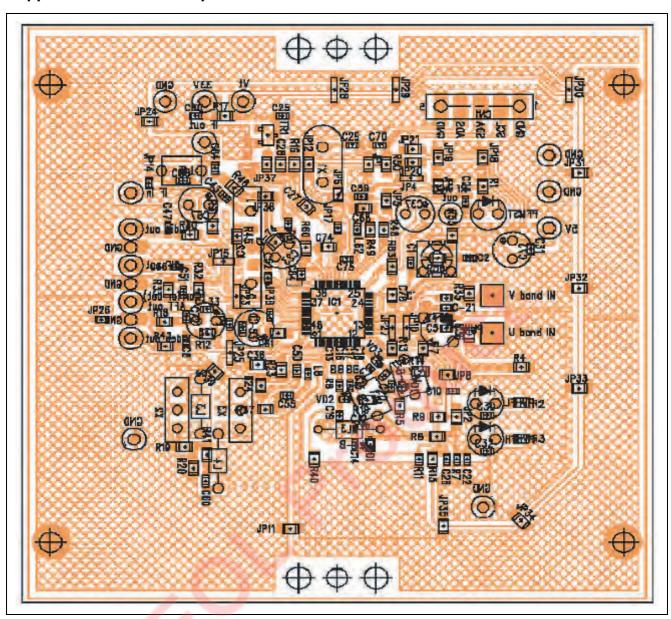
- 1. Input data that Control byte data CP,T2,T1,T0 is "01X".
- 2. The Reference frequency is output to Pin 42, measure the frequency with counter. This frequency is named fmoni.

Freerun frequency (foUS) is 52.9524[MHz] - fmoni x 9 [MHz] Freerun frequency (foJP) is 65.9512[MHz] - fmoni x 9 [MHz]

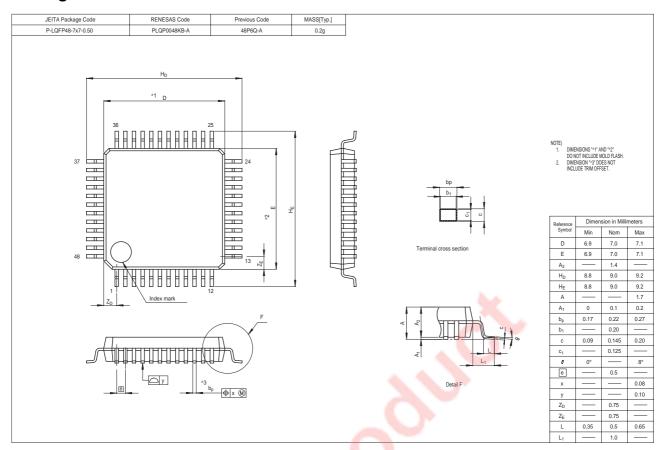
## **Application Example**



### **Application Note**


- \*1 2SC2643 equivalent made by Renesas
- \*2 45.75MHz SAW Filter made by EPCOS
- \*3 4.5MHz Trap: TPSRA4M50B00 made by Murata
- \*4 4.5MHz B.P.F.: SFSRA4M50EF00 made by Murata
- \*5 HC-49/U equivalent made by Daishinku. Load capacitance=20pF, Motinal resistance: Less 300  $\Omega$
- \*6,7 HVC306B, HVC306C equivalent made by Renesas
- \*8 HSC277 equivalent made by Renesas
- \*9 0.1mm 3mm φ 6t x2 P886ANS-0194VN made by TOKO
- \*10 0.5mm 2.4mm \$\phi\$ 1.5t
- \*11 0.5mm 2.4mm \$\phi\$ 2.5t
- \*12 0.5mm 2.4mm \$\phi\$ 8.5t
- \*13,14 The bypass capacitor of Vcc is arranged near the LogicGND pin.
- \*15 In order to mitigate the surroundings lump by the VIF input, the balanced connection from a SAW filter to the VIF input pin of 37.38 recommends a putter which serves as a 1t coil by Tip C or the jumper.
- \*16-19 In order to stop digital beat which goes via the port output from Logic Vcc, bypass capacitor arranged near the port output pin.
- \*21 It is high impedance. keep away from VideodetOUT and EQ F/B pin.

### Notes about the handling of IC


- \*20 The direct power supply impression to Vt terminal is forbidden. When power supply impression is required, please impress through the resistance for current restrictions. Depending on the case, it is drive current from 31 pin, and excessive collector current flows and breaks to an external transistor.
  - Because there is a possibility of also destroying IC by the destruction.
- \* Since this IC is using the detailed process, be careful of serge enough. Especially careful 1,7,8,9,10,25,26,27,32,48 pins.



## **Application Board Example**



## **Package Dimensions**



Renesas Technology Corp. Sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

Keep safety first in your circuit designs!

1. Renesas Technology Corp. puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage.

Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or (iii) prevention against any malfunction or mishap.

### Notes regarding these materials

- Notes regarding these materials

  1. These materials are intended as a reference to assist our customers in the selection of the Renesas Technology Corp. product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Renesas Technology Corp. a third party.

  2. Renesas Technology Corp. assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials, and are subject to change by Renesas Technology Corp. without notice due to product improvements or other reasons. It is therefore recommended that customers contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor for the latest product information before purchasing a product listed herein.

  The information described here may contain technical inaccuracies or typographical errors.

  Renesas Technology Corp. assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors.

  Please also pay attention to information published by Renesas Technology Corp. by various means, including the Renesas Technology Corp. Semiconductor home page (http://www.renesas.com).

  4. When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Renesas Technology Corp. assumes no responsibility for any damage, liability or other loss resulting from the information contained herein.

  5. Renesas Technology Corp. semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Renesas Technology Corp. or an authorized Renesas Technology
- use.

  6. The prior written approval of Renesas Technology Corp. is necessary to reprint or reproduce in whole or in part these materials.

  7. If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination.

  Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited.

  8. Please contact Renesas Technology Corp. for further details on these materials or the products contained therein.



RENESAS SALES OFFICES

http://www.renesas.com

Refer to "http://www.renesas.com/en/network" for the latest and detailed information.

Renesas Technology America, Inc. 450 Holger Way, San Jose, CA 95134-1368, U.S.A Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501

Renesas Technology Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K. Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900

Renesas Technology Hong Kong Ltd.
7th Floor, North Tower, World Finance Centre, Harbour City, 1 Canton Road, Tsimshatsui, Kowloon, Hong Kong Tel: <852> 2265-6688, Fax: <852> 2730-6071

**Renesas Technology Taiwan Co., Ltd.** 10th Floor, No.99, Fushing North Road, Taipei, Taiwan Tel: <886> (2) 2715-2888, Fax: <886> (2) 2713-2999

Renesas Technology (Shanghai) Co., Ltd. Unit2607 Ruijing Building, No.205 Maoming Road (S), Shanghai 200020, China Tel: <86> (21) 6472-1001, Fax: <86> (21) 6415-2952

Renesas Technology Singapore Pte. Ltd.
1 Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632 Tel: <65> 6213-0200, Fax: <65> 6278-8001