Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010 Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
 of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
 No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
 of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

M66258FP

8192 × 8-Bit Line Memory

REJ03F0252-0200 Rev.2.00 Sep 14, 2007

Description

The M66258FP is high speed line memory that uses high performance silicon gate CMOS process technology and adopts the FIFO (First In First Out) structure consisting of $8192 \text{ words} \times 8 \text{ bits}$.

The M66258FP, performing reading and writing operations at different cycles independently and asynchronously, is optimal for buffer memory to be used between equipment of different data processing speeds.

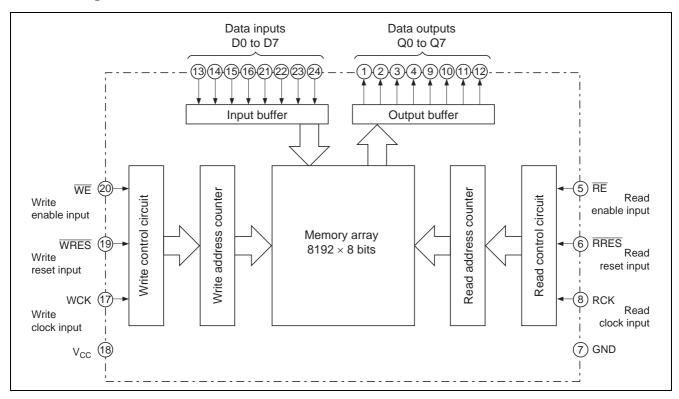
Features

Memory configuration: 8192 words × 8 bits configuration

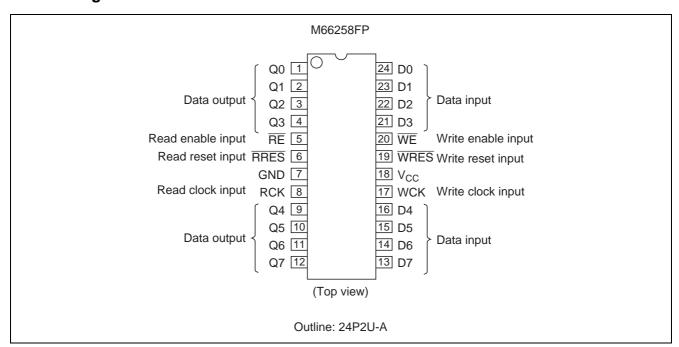
High speed cycle: 20 ns (Min)
High speed access: 16 ns (Max)
Output hold: 3 ns (Min)

Reading and writing operations can be completely carried out independently and asynchronously

• Variable length delay bit


• Input/output: TTL direct connection allowable

• Output: 3 states


Application

Digital copying machine, laser beam printer, high speed facsimile, etc.

Block Diagram

Pin Arrangement

Absolute Maximum Ratings

(Ta = 0 to 70°C, unless otherwise noted)

Item	Symbol	Ratings	Unit	Conditions
Supply voltage	V _{CC}	−0.5 to +6.0	V	Value based on the GND pin
Input voltage	VI	-0.5 to V_{CC} + 0.5	V	
Output voltage	Vo	-0.5 to V_{CC} + 0.5	V	
Power dissipation	Pd	825	mW	Ta = 25°C
Storage temperature	Tstg	-65 to 150	°C	

Recommended Operating Conditions

Item	Symbol	Min	Тур	Max	Unit
Supply voltage	V _{CC}	4.5	5.0	5.5	V
Supply voltage	GND	_	0	_	V
Operating temperature	Topr		0 to 70		°C

Electrical Characteristics

(Ta = 0 to 70°C, $V_{CC} = 5 \text{ V} \pm 10\%$, GND = 0 V, unless otherwise noted)

Item	Symbol	Min	Тур	Max	Unit	Test Conditions	
High-level input voltage	V _{IH}	2.0	_	_	V		
Low-level input voltage	V _{IL}	_	_	0.8	V		
High-level output voltage	V _{OH}	V _{CC} – 0.8	_		V	$I_{OH} = -4 \text{ m}$	A
Low-level output voltage	V _{OL}	_	_	0.55	V	$I_{OL} = 4 \text{ mA}$	
High-level input current	Іін	_	_	1.0	μΑ	V _I = V _{CC}	WE, WRES, WCK, RE, RRES, RCK, D0 to D7
Low-level input current	l _{IL}	_	_	-1.0	μА	V _I = GND	WE, WRES, WCK, RE, RRES, RCK, D0 to D7
Off-state high-level output current	I _{OZH}	_	_	5.0	μΑ	$V_{O} = V_{CC}$	
Off-state low-level output current	I _{OZL}	_	_	-5.0	μΑ	V _O = GND	
Average supply current during	Icc	_	_	150	mA	V _I = V _{CC} , GND, Output open	
operation						t_{WCK} , $t_{RCK} = 20 \text{ ns}$	
Input capacitance	Cı	_	_	10	pF	f = 1 MHz	
Off-time output capacitance	Co	_		15	pF	f = 1 MHz	

Function

When write enable input \overline{WE} is set to "L", the contents of data inputs D0 to D7 are read in synchronization with a rising edge of write clock input WCK to perform writing operation. When this is the case, the write address counter is also incremented simultaneously.

When \overline{WE} is set to "H", the writing operation is inhibited and the write address counter stops.

When write reset input WRES is set to "L", the write address counter is initialized.

When read enable input \overline{RE} is set to "L", the contents of memory are output to data outputs Q0 to Q7 in synchronization with a rising edge of read clock input RCK to perform reading operation. When this is the case, the read address counter is incremented simultaneously.

When \overline{RE} is set to "H", the reading operation is inhibited and the read address counter stops. The outputs are placed in a high impedance state.

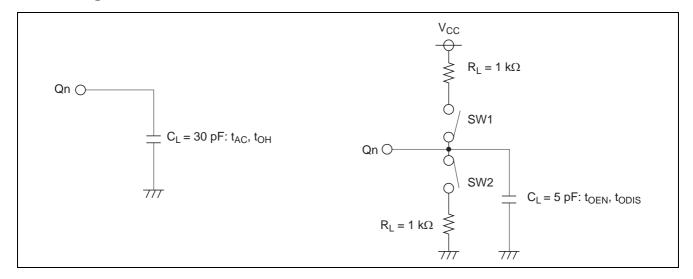
When read reset input RRES is set to "L", the read address counter is initialized.

Switching Characteristics

(Ta = 0 to 70°C, V_{CC} = 5 V \pm 10%, GND = 0 V, unless otherwise noted)

Item	Symbol	Min	Тур	Max	Unit
Access time	t _{AC}	_		16	ns
Output hold time	t _{OH}	3		_	ns
Output enable time	t _{OEN}	3		16	ns
Output disable time	todis	3		16	ns

Timing Requirements


(Ta = 0 to 70°C, V_{CC} = 5 V \pm 10%, GND = 0 V, unless otherwise noted)

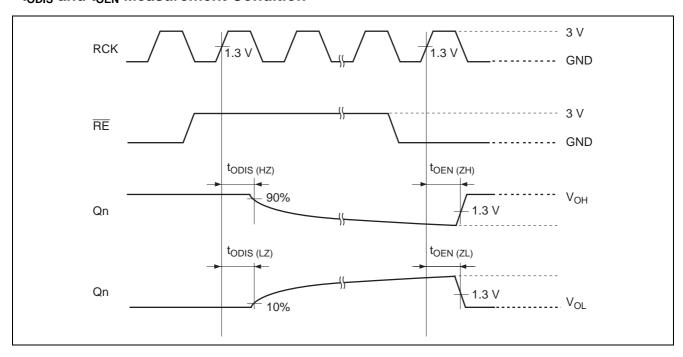
Item	Symbol	Min	Тур	Max	Unit
Write clock (WCK) cycle	t _{WCK}	20	_	_	ns
Write clock (WCK) "H" pulse width	t _{WCKH}	8	_	_	ns
Write clock (WCK) "L" pulse width	t _{WCKL}	8	_	_	ns
Read clock (RCK) cycle	t _{RCK}	20	_	_	ns
Read clock (RCK) "H" pulse width	t _{RCKH}	8	_	_	ns
Read clock (RCK) "L" pulse width	t _{RCKL}	8	_		ns
Input data setup time for WCK	t _{DS}	4	_	_	ns
Input data hold time for WCK	t _{DH}	3	_		ns
Reset setup time for WCK/RCK	t _{RESS}	4	_	_	ns
Reset hold time for WCK/RCK	t _{RESH}	3	_		ns
Reset non-selection setup time for WCK/RCK	t _{NRESS}	4		_	ns
Reset non-selection hold time for WCK/RCK	t _{NRESH}	3	_		ns
WE setup time for WCK	t _{WES}	4		_	ns
WE hold time for WCK	t _{WEH}	3	_		ns
WE non-selection setup time for WCK	t _{NWES}	4		_	ns
WE non-selection hold time for WCK	t _{NWEH}	3	_		ns
RE setup time for RCK	t _{RES}	4		_	ns
RE hold time for RCK	t _{REH}	3	_		ns
RE non-selection setup time for RCK	t _{NRES}	4	_	_	ns
RE non-selection hold time for RCK	t _{NREH}	3	_	_	ns
Input pulse up/down time	tr, tf		_	20	ns
Data hold time*	t _H	_	_	20	ms

Notes: Perform reset operation after turning on power supply.

^{*} For 1 line access, the following conditions must be satisfied: $\overline{\text{WE}}$ high-level period \leq 20 ms - 8192 • t_{WCK} - $\overline{\text{WRES}}$ low-level period $\overline{\text{RE}}$ high-level period \leq 20 ms - 8192 • t_{RCK} - $\overline{\text{RRES}}$ low-level period

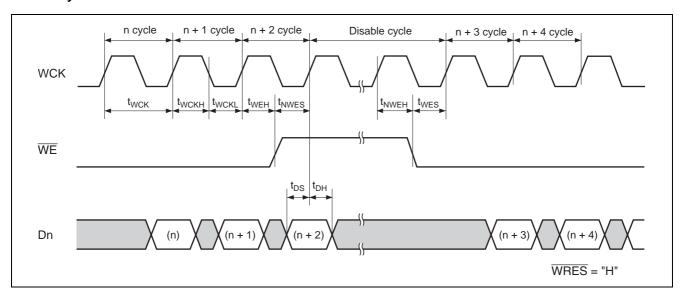
Switching Characteristics Measurement Circuit

Input pulse level: 0 to 3 V
Input pulse up/down time: 3 ns
Judging voltage Input: 1.3 V

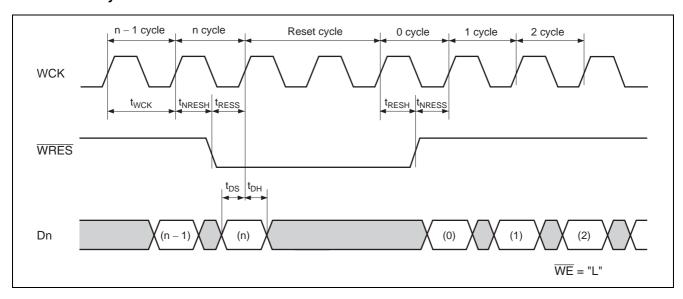

Output: 1.3 V (However, $t_{ODIS\,(LZ)}$ is judged with 10% of the output amplitude, while $t_{ODIS\,(HZ)}$ is

judged with 90% of the output amplitude)

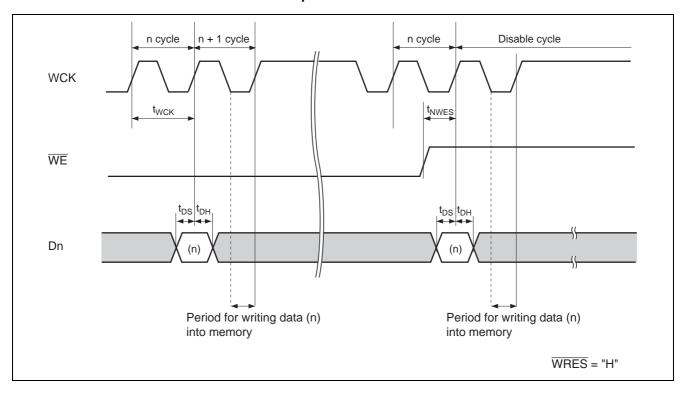
Load capacitance C_L includes the floating capacity of connected lines and input capacitance of probe.


Item	SW1	SW2
todis (LZ)	Close	Open
todis (HZ)	Open	Close
t _{OEN (ZL)}	Close	Open
t _{OEN (ZH)}	Open	Close

todis and toen Measurement Condition

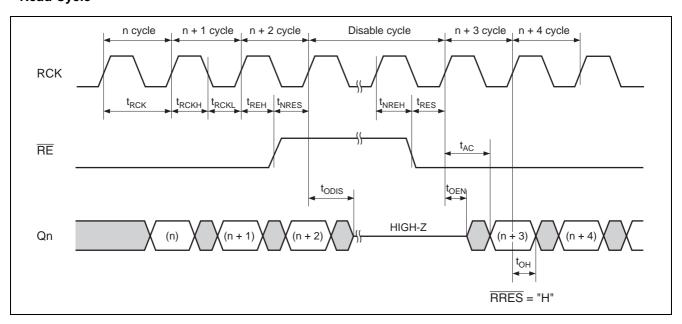


Operation Timing

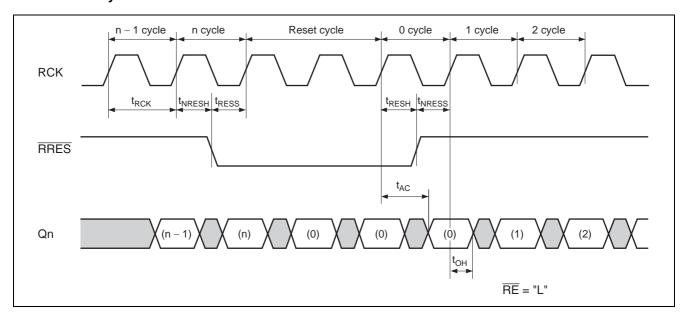

Write Cycle

Write Reset Cycle

Matters that Needs Attention when WCK Stops

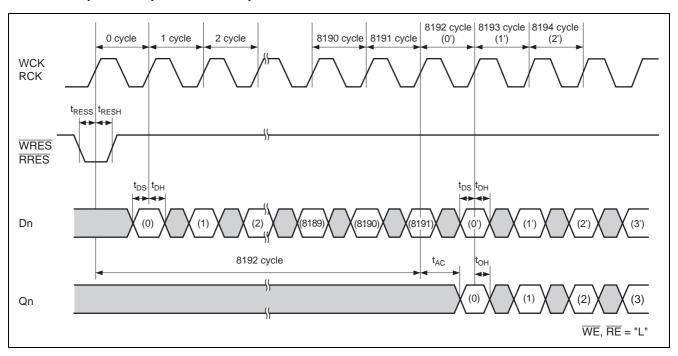


Input data of n cycle is read at the rising edge after WCK of n cycle and writing operation starts in the WCK low-level period of n + 1 cycle. The writing operation is complete at the falling edge after n + 1 cycle.

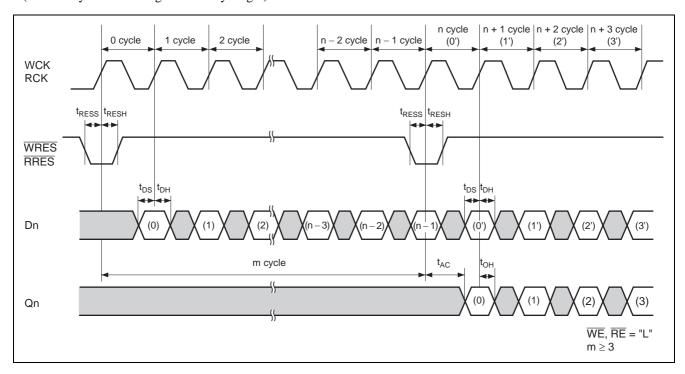

To stop reading write data at n cycle, enter WCK before the rising edge after n+1 cycle.

When the cycle next to n cycle is a disable cycle, WCK for a cycle requires to be entered after the disable cycle as well.

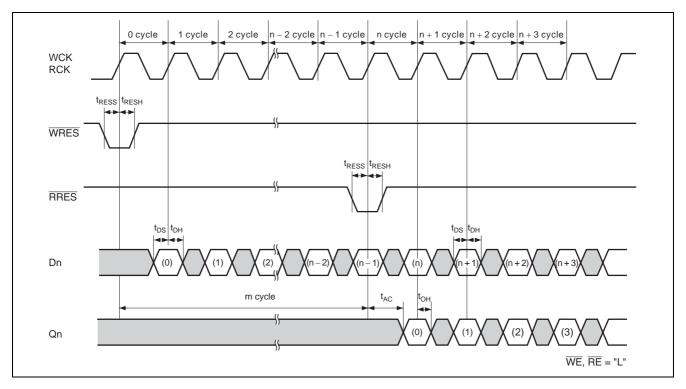
Read Cycle


Read Reset Cycle

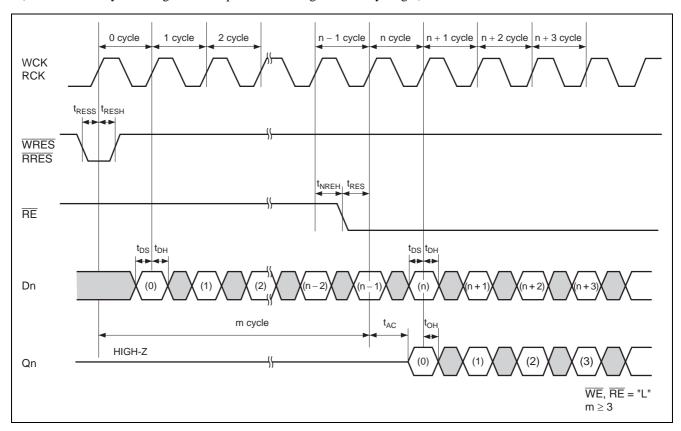
Variable Length Delay Bit


1 Line (8192 Bits) Delay

Input data can be written at the rising edge of WCK after write cycle and output data is read at the rising edge of RCK before read cycle to easily make 1 line delay.


n-bit Delay Bit

(Reset at cycles according to the delay length)


n-bit Delay 2

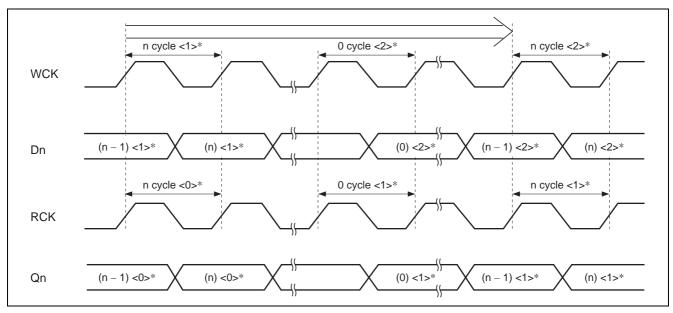
(Slides input timings of WRES and RRES at cycles according to the delay length)

n-bit Delay 3

(Slides address by disabling \overline{RE} in the period according to the delay length)

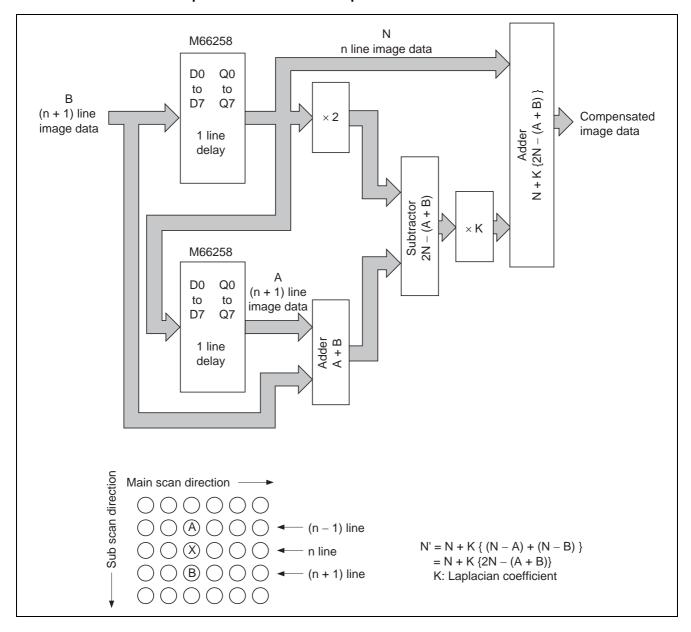
Reading Shortest n-cycle Write Data "n"

(Reading side n - 1 cycle starts after the end of writing side n - 1 cycle)


When the reading side n-1 cycle starts before the end of the writing side n+1 cycle, output Qn of n cycle is made invalid. In the following diagram, reading operation of n-1 cycle is invalid.

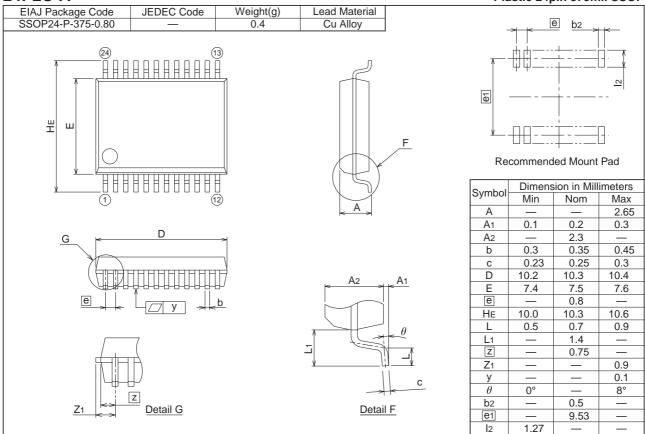
Reading Longest n-cycle Write Data "n": 1 Line Delay

(When writing side n-cycle <2>* starts, reading side n cycle <1>* then starts)


Output Qn of n cycle <1>* can be read until the start of reading side n cycle <1> and the start of writing side n cycle <2>* overlap each other.

Note: <0>*, <1>* and <2>* indicate value of lines.

Application Example


Sub Scan Resolution Compensation Circuit with Laplacian Filter

Package Dimensions

24P2U-A

Plastic 24pin 375mil SSOP

Renesas Technology Corp. sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

- Renesas lechnology Corp. Sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan Notes:

 1. This document is provided for reference purposes only so that Renesas customers may select the appropriate Renesas products for their use. Renesas neither makes warrantes or representations with respect to the accuracy or completeness of the information in this document nor grants any license to any intellectual property girbs to any other rights of representations with respect to the information in this document in this document of the purpose of the responsibility of the responsibility of the use of any information in this document, including, but not limited to, product data, diagrams, charts, programs, algorithms, and application circuit examples.

 3. You should not use the products of the technology described in this document for the purpose of military use. When exporting the products or technology described in this document entoring the products or the technology described in this document in the same destruction or for the purpose of any other military use. When exporting the products or technology described herein, you should follow the applicable export control laws and regulations, and procedures required by such laws and resultance in the such as a such reasonable active in compiling the information included in this document, and the such as a such as the described of the date this document. In this document, the such as a such as the disclosed through our website, (http://www.renesas.com)

 3. Renesas has as used reasonable care in compiling the information included in this document. Dut Renesas an

RENESAS SALES OFFICES

http://www.renesas.com

Refer to "http://www.renesas.com/en/network" for the latest and detailed information.

Renesas Technology America, Inc.

450 Holger Way, San Jose, CA 95134-1368, U.S.A Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501

Renesas Technology Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K.
Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900

Renesas Technology (Shanghai) Co., Ltd.
Unit 204, 205, AZIACenter, No.1233 Lujiazui Ring Rd, Pudong District, Shanghai, China 200120 Tel: <86> (21) 5877-1818, Fax: <86> (21) 6887-7898

Renesas Technology Hong Kong Ltd.
7th Floor, North Tower, World Finance Centre, Harbour City, 1 Canton Road, Tsimshatsui, Kowloon, Hong Kong Tel: <852> 2265-6688, Fax: <852> 2730-6071

Renesas Technology Taiwan Co., Ltd. 10th Floor, No.99, Fushing North Road, Taipei, Taiwan Tel: <886> (2) 2715-2888, Fax: <886> (2) 2713-2999

Renesas Technology Singapore Pte. Ltd.
1 Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632 Tel: <65> 6213-0200, Fax: <65> 6278-8001

Renesas Technology Korea Co., Ltd. Kukje Center Bldg. 18th Fl., 191, 2-ka, Hangang-ro, Yongsan-ku, Seoul 140-702, Korea Tel: <82> (2) 796-3115, Fax: <82> (2) 796-2145

Renesas Technology Malaysia Sdn. Bhd
Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No.18, Jalan Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: <603> 7955-9390, Fax: <603> 7955-9510