
 Application Note

R01AN7491EJ0100 Rev.1.00 Page 1 of 54
Dec.4.24

RL78 Family
MIDI Performance Control Sample Software Using SIS

Introduction
This application note provides examples of using communication control with MIDI devices by using the

MIDI interface SIS (Software Integration System) module.

The LED matrix display is controlled in accordance with NoteOn messages (MIDI messages) generated by
hexadecimal keyboard input. MIDI messages can also be transferred to the sound module to play sounds by
using the MIDI interface SIS module.

The compliant standard is as follows.

• MIDI 1.0

For details on the MIDI standard, refer to the preceding specification.

Target Devices
RL78/G16

When applying the sample program covered in this application note to another microcomputer, modify
the program according to the specifications for the target microcomputer and conduct an extensive
evaluation of the modified program.

RL78 Family MIDI Performance Control Sample Software Using SIS

R01AN7491EJ0100 Rev.1.00 Page 2 of 54
Dec.4.24

Contents

1. Specification .. 4
1.1 Overview of Specification .. 4
1.1.1 Communication specifications ... 5
1.2 Operation Details ... 8

2. Hardware Description .. 13
2.1 Hardware Configuration .. 13
2.2 Pin Connection Diagrams .. 15
2.3 List of Used Pins .. 17

3. Software Description .. 18
3.1 Software Environment ... 18
3.2 Peripheral Function Settings ... 18
3.3 Setting of Option Byte ... 23
3.4 List of Macros .. 24
3.5 List of Constants .. 26
3.6 List of Variables ... 27
3.7 List of Functions .. 30
3.8 Function Specifications ... 31
3.9 Flowcharts ... 36
3.9.1 Main processing .. 36
3.9.2 Volume setting update processing .. 39
3.9.3 Processing to acquire volume switch input ... 40
3.9.4 LED matrix display processing .. 41
3.9.5 System timer acquisition processing ... 42
3.9.6 System timer count processing ... 42
3.9.7 LED matrix data transmission processing ... 43
3.9.8 Processing to check the end of LED matrix data transmission ... 44
3.9.9 TAU0_3 interrupt processing ... 44
3.9.10 AD conversion end interrupt processing ... 45
3.9.11 LED matrix data CSI transmission end processing ... 45
3.9.12 UART0 transmission end processing .. 46
3.9.13 UART0 reception end processing ... 46
3.9.14 Hexadecimal keyboard key input processing .. 47
3.9.15 Input processing for one column of the hexadecimal keyboard .. 48
3.9.16 Key input determination processing .. 49
3.9.17 Count processing for the key input confirmation timer .. 50
3.9.18 Processing to start the key input confirmation timer ... 51
3.9.19 Processing to acquire the key input confirmation timer count ... 51

4. Sample Code ... 52

5. Notes ... 52
5.1 Operation of the Hexadecimal Keyboard .. 52

RL78 Family MIDI Performance Control Sample Software Using SIS

R01AN7491EJ0100 Rev.1.00 Page 3 of 54
Dec.4.24

6. Reference Documents ... 52

Revision History .. 54

RL78 Family MIDI Performance Control Sample Software Using SIS

R01AN7491EJ0100 Rev.1.00 Page 4 of 54
Dec.4.24

1. Specification

1.1 Overview of Specification
This sample program provides examples of using the MIDI message output function by using the MIDI

interface SIS (Software Integration System) module.

The LED matrix display is controlled in accordance with NoteOn messages (MIDI messages) generated by
hexadecimal keyboard input. MIDI messages can be transferred from the MIDIOUT pin to the sound module
to play sounds by using the transmission function.

Table 1-1 lists the peripheral functions for use and their application. Figure 1-1 shows an overview of the
sample program operation.

Table 1-1 Peripheral Functions for Use and Their Application

Peripheral Function Application
Serial interface UART0
P03/TxD0

UART communication with MIDI devices

A/D converter
P05/ANI4

Volume switch input for volume selection

Serial interface CSI20
P13/SCK20, P16/GPIO, P15/SO20

SPI communication with the LED matrix module

P10/GPIO, P21/GPIO, P60/GPIO,
P61/GPIO,
P11/GPIO, P43/GPIO, P137/GPIO,
P12/GPIO

Key matrix input to the hexadecimal keyboard

RL78/G16

LED matrix
control

Key matrix input

MIDI message transmission
(Play sounds by the sound module)Volume switch

Figure 1-1 Overview of Sample Program Operation

RL78 Family MIDI Performance Control Sample Software Using SIS

R01AN7491EJ0100 Rev.1.00 Page 5 of 54
Dec.4.24

1.1.1 Communication specifications
The following describes the MIDI standard data configuration used in this sample program.

As shown in Figure 1-2, the MIDI data column is a bit column for unidirectional asynchronous
communication of 31.25 Kb/sec. Each byte to be sent consists of ten bits (one start bit, eight data bits, and
one stop bit).

START b0 b1 b2 b3 b4 b5 b6 b7 STOP

Figure 1-2 MIDI Data Column

As shown in Figure 1-3, a MIDI message consists of a status byte and data bytes, and is roughly
categorized as a channel message or a system message according to the status byte.

b7 b6 b5 b4 b3 b2 b1 b0

1 Type of msg Channel#

b7 b6 b5 b4 b3 b2 b1 b0

1 Type of msg1 1 1

Status byte
Channel Message Structure

System Message Structure

b7 b6 b5 b4 b3 b2 b1 b0

0 Data

Data byte

Figure 1-3 MIDI Data Structure

RL78 Family MIDI Performance Control Sample Software Using SIS

R01AN7491EJ0100 Rev.1.00 Page 6 of 54
Dec.4.24

The following describes the NoteOn (keystroke) message, which is a channel message used by this
sample program to control the LED matrix.

As shown in Figure 1-4, the NoteOn (keystroke) message consists of the status byte followed by two data
bytes.

The status byte contains the channel number (Channel#).

Data byte 1 contains the note number (Note#), indicating the note.

Data byte 2 contains “Velocity”, indicating the velocity of the sound.

b7 b6 b5 b4 b3 b2 b1 b0

1 Channel#

Status byte
Channel Message Structure

b7 b6 b5 b4 b3 b2 b1 b0

0 Note#

Data byte 1

b7 b6 b5 b4 b3 b2 b1 b0

0 Velocity

Data byte 2

0 0 1

Figure 1-4 NoteOn (Keystoke) Message

The following describes the program change message used to specify the tone for a MIDI channel.

As shown in Figure 1-5, the message consists of a status byte followed by one data byte.

The status byte contains the channel number (Channel#).

Data byte 1 contains the program number (Prog#), indicating the tone.

b7 b6 b5 b4 b3 b2 b1 b0

1 Channel#

Status byte
Channel Message Structure

b7 b6 b5 b4 b3 b2 b1 b0

0 Prog#

Data byte 1

b7 b6 b5 b4 b3 b2 b1 b0

0 Velocity

Data byte 2

1 0 0

Figure 1-5 Program Change Message

RL78 Family MIDI Performance Control Sample Software Using SIS

R01AN7491EJ0100 Rev.1.00 Page 7 of 54
Dec.4.24

The following describes the control change message used to expand the number of tones for a MIDI
channel.

The bank settings for MSB and LSB provide 16,384 choices for a program number specified in the
program change message.

As shown in Figure 1-6, the message consists of a status byte followed by two data bytes.

The status byte contains the channel number (Channel#).

Data byte 1 contains the controller number (Controller#), indicating the target bank.

The controller number must be set to 0 for Bank Select MSB and 32 for Bank Select LSB.

Data byte 2 contains the bank number (Bank#), indicating the bank set value.

b7 b6 b5 b4 b3 b2 b1 b0

1 Channel#

Status byte
Channel Message Structure

b7 b6 b5 b4 b3 b2 b1 b0

0 Controller#

Data byte 1

b7 b6 b5 b4 b3 b2 b1 b0

0 Bank#

Data byte 2

0 1 1

Figure 1-6 Control Change Message (Bank Select)

The following describes the control change message used to specify the volume for a MIDI channel.

As shown in Figure 1-7, the message consists of a status byte followed by two data bytes.

The status byte contains the channel number (Channel#).

Data byte 1 contains the controller number (Controller#), indicating the channel volume.

Specify 7 for the controller number.

Data byte 2 contains the volume (Volume#).

b7 b6 b5 b4 b3 b2 b1 b0

1 Channel#

Status byte
Channel Message Structure

b7 b6 b5 b4 b3 b2 b1 b0

0 Controller#

Data byte 1

b7 b6 b5 b4 b3 b2 b1 b0

0 Volume#

Data byte 2

0 1 1

Figure 1-7 Control Change Message (Channel Volume)

RL78 Family MIDI Performance Control Sample Software Using SIS

R01AN7491EJ0100 Rev.1.00 Page 8 of 54
Dec.4.24

1.2 Operation Details
This sample program assumes a hexadecimal keyboard as a piano keyboard and turns on the LED matrix

according to the key information generated by key input. When a key is pressed, the sample program sends
the NoteOn (keystroke) message of the note corresponding to the key to the sound module to play a sound.
While the key is held down, the LED stays lit and sounding might continue depending on the instrument
assigned to the MIDI channel. When the key is released, the LED is turned off and a NoteOff message is
sent to stop the sound.

(1) Input on the hexadecimal keyboard

• The hexadecimal keyboard is a keypad having 16 keys (0 to F). The keys are arranged in a matrix with 4
rows and 4 columns. Key pressing status is read in units of columns.

• This sample program is placed in melody mode immediately after a reset. In this mode, as shown in
Figure 1-8, notes are assigned to 0 to 9, F, and E keys as keyboard keys. Pressing a key turns on the
LED matrix and plays a sound from the MIDI sound source.

• Pressing the “A” key changes the mode between melody mode and MIDI channel change mode.
• Pressing the “C” or “D” key changes the pitch by one octave.

２

５

８

Ｆ

３

6

９

Ｅ

1

４

７

0

Ａ

Ｂ

Ｃ

Ｄ

Keyboard Change mode

Change pitch

Figure 1-8 Assignment on Hexadecimal Keyboard

RL78 Family MIDI Performance Control Sample Software Using SIS

R01AN7491EJ0100 Rev.1.00 Page 9 of 54
Dec.4.24

(2) Specifying and changing sound target MIDI channels

• The MIDI standard defines 1 to 16 channels (denoting “instruments”), which are referred to as MIDI
channels.

• One of the tones that are preset for each MIDI channel can be selected to play sounds.
• MIDI channels are changed by using the hexadecimal keyboard in MIDI channel change mode.
• Pressing the A key in melody mode, as shown in Figure 1-9, causes transition to MIDI channel change

mode.
• The current MIDI channel is displayed immediately after transition to MIDI channel change mode. This

display also waits for input of a tens place digit of the MIDI channel number, where the valid input value
is 0 or 1. When you enter a tens place digit, the display changes and waits for input of a ones place
digit. In this state, 0 to 9 are valid input values for the MIDI channel. Enter a ones place digit so that the
two digit number is within the range from 01 to 16.

• Pressing the “A” key in channel change mode returns to melody mode. If a two digit number is displayed
at this time, that number is set for the MIDI channel. If the display still waits for input of a ones place
digit, the current MIDI channel will be used without change.

• Figure 1-10 shows how the display target channels are displayed on the LED matrix. (Black is off. Red
and green are lit.)

[Waiting for input of
a ones place digit]

[Waiting for input of
a tens place digit]

Press a key so
that the entered
number is 01 to 16.

Press the 1 or 0 key.

[MIDI channel selection window]

Sol

La Ti

Do#

Re#

Fa# Sol#

La#

Do Re

Mi Fa

[Melody display window]

Press the
“A” key.

Press the
“A” key.

Figure 1-9 State Transition of Setting and Changing the Target MIDI Channel for Sound Output

RL78 Family MIDI Performance Control Sample Software Using SIS

R01AN7491EJ0100 Rev.1.00 Page 10 of 54
Dec.4.24

Figure 1-10 MIDI Channel Displays

(3) Specifying and changing the pitch

• The 4 × 4 hexadecimal keyboard can play sounds only in the range of one octave. However, the pitch can
be changed in the range from -5 to +5 by one octave, assuming that the pitch is set to ±0 immediately
after reset.

• The user can change the pitch by pressing the “C” or “D” key. (Change is possible even while sound is
being played.)

• Pressing the “C” key increments the current pitch by 1, and pressing the “D” key decrements the current
pitch by 1. In both cases, pitch information is displayed on the LED matrix for one second.

• Figure 1-11 shows how the pitch information is displayed on the LED matrix. (Black is off. Green is lit.)

Figure 1-11 Pitch Information Display

RL78 Family MIDI Performance Control Sample Software Using SIS

R01AN7491EJ0100 Rev.1.00 Page 11 of 54
Dec.4.24

(4) LED matrix display during melody display

• Assuming the hexadecimal keyboard as a piano keyboard, NoteOn (keystroke) messages are sent and
the LED matrix is turned on according to the scale information based on the positions of pressed keys.
That is, the LED matrix is turned on at the beginning of the sound.

• Figure 1-12 shows the correspondence between the hexadecimal keyboard and piano keyboard. Figure
1-13 shows the notes and LED matrix lighting positions.

Do

C

Re

D

Mi

E

Fa

F

So

G

La

A

Ti

B

Do♯

De

Re♭

Re♯

Ri

Mi♭

Fa♯

Fi

So♭

So♯

Sa

La♭

La♯

Chi

Ti♭

２ ４ ７ ９ Ｆ

１ ３ ５ ６ ８ ０ Ｅ

Figure 1-12 Correspondence Between the Hexadecimal Keyboard and Piano Keyboard

So

La Ti

Do＃

Re＃

Fa＃ So＃

La＃

Do Re

Mi Fa

Figure 1-13 Correspondence Between the Notes and LED Matrix Lighting Positions

RL78 Family MIDI Performance Control Sample Software Using SIS

R01AN7491EJ0100 Rev.1.00 Page 12 of 54
Dec.4.24

• Colors are assigned to each note (do, re, mi, fa, so, la, ti) as shown in Figure 1-14.As an example, for
piano keyboard, the received keystroke messages are shown in a single color for the white keys and in
two colors for the black keys.

• The LED stays lit while the key is held down. Also, sounding might continue depending on the instrument
assigned to the MIDI channel.

Do

C

Re

D

Mi

E

Fa

F

So

G

La

A

Ti

B

Do♯

De

Re♭

Re♯

Ri

Mi♭

Fa♯

Fi

So♭

So♯

Sa

La♭

La♯

Chi

Ti♭

２ ４ ７ ９ Ｆ

１ ３ ５ ６ ８ ０ Ｅ

Figure 1-14 Display Color for Each Note

(5) Specifying and changing the volume
• Setting values in the range from 1 to 127, excluding 0 (mute), are converted to eight volume levels.
• The user can change the volume by turning Volume(A0). (Change is possible even while sound is being

played.)
• When Volume(A0) is turned, volume information is displayed on the LED matrix for 1 second.
• The volume level is indicated by the width of the yellow band. The leftmost column is lit for minimum

(level 1), and all eight columns in a row are lit for maximum (level 8).
• Figure 1-15 shows how the volume information is displayed on the LED matrix. (Black is off. Red, blue,

green, and yellow are lit.)

Figure 1-15 Volume Information Display

RL78 Family MIDI Performance Control Sample Software Using SIS

R01AN7491EJ0100 Rev.1.00 Page 13 of 54
Dec.4.24

2. Hardware Description

2.1 Hardware Configuration
Table 2-1 describes the hardware used in this sample program.

Table 2-1 Hardware List

Hardware Application
Board used Manufactured by Renesas Electronics

RL78/G16 Fast Prototyping Board (RTK5RLG160C00000BJ)
MCU used RL78/G16 (R5F121BCAFP)
Operating frequency High-speed on-chip oscillator clock (fHOCO): 16 MHz
Operating voltage 5.0V
MIDI shield board SparkFun MIDI Shield
MIDI to MIDI (male-to-male) cable SANWA SUPPLY KB-MID01-18K
MIDI sound module Roland SOUND Canvas SC-88 Pro
LED matrix module 52pi EP-0075 RPI-RGB-LED-Matrix
Hexadecimal keyboard digilent Pmod KYPD 16-button Keypad

Figure 2-1 and Figure 2-2 show the configurations used in this application note.

MIDI Cable

SC-88 Pro
MIDI OUT

MIDI IN

USB Cable

MIDI Shield

PC

MATRIX-LED

RL78/G16 FPB

Connect to
shield connector

Connect to
PMOD1 connector

Headphones

Hexadecimal keyboard

Connect to
PMOD2 connector

Figure 2-1 Hardware Configuration

RL78 Family MIDI Performance Control Sample Software Using SIS

R01AN7491EJ0100 Rev.1.00 Page 14 of 54
Dec.4.24

123456

789101112

MATRIX-LED Backside Enlarged view

MIDI Shield

RL78/G16FPB
USB-TypeC

PMOD1

Enlarged

Figure 2-2 Wiring Between PMOD1 and MATRIX-LED

RL78 Family MIDI Performance Control Sample Software Using SIS

R01AN7491EJ0100 Rev.1.00 Page 15 of 54
Dec.4.24

2.2 Pin Connection Diagrams
Figure 2-3 shows a pin connection diagram between the RL78/G16 FPB and the MIDI Shield. Figure 2-4
shows a pin connection diagram between the RL78/G16 FPB and the MATRIX-LED. Figure 2-5 shows a pin
connection diagram between the RL78/G16 FPB and the hexadecimal keyboard.

Volume0

VCC

RL78/G16

P03/TxD0

P05/ANI4

J5.Pin2

J4.Pin1

RL78/G16 Fast Prototyping Board

J3.Pin5 5V

J3.Pin6,7 GND
VSS

VDD

GND

Arduino MIDI Shield

MIDI OUT

Figure 2-3 Pin Connection Diagram Between RL78/G16 FPB and MIDI Shield

MOSI

VCC

RL78/G16

P13/SCK20

P16/GPIO

P15/SO20

PMOD1.Pin1

PMOD1.Pin9

PMOD1.Pin10

RL78/G16 Fast Prototyping Board

PMOD1.Pin6,12 5V

PMOD1.Pin5,11 GND
VSS

VDD

GND

MATRIX-LED

CE

CLK

Figure 2-4 Pin Connection Diagram Between RL78/G16 FPB and MATRIX-LED

RL78 Family MIDI Performance Control Sample Software Using SIS

R01AN7491EJ0100 Rev.1.00 Page 16 of 54
Dec.4.24

COL2

VCC

RL78/G16

P10/GPIO

P21/GPIO

P60/GPIO

PMOD2.Pin1

PMOD2.Pin2

PMOD2.Pin3

RL78/G16 Fast Prototyping Board

PMOD2.Pin6,12 5V

PMOD2.Pin5,11 GND
VSS

VDD

GND

16進キーボード

COL3

COL4

COL1 P61/GPIO
PMOD2.Pin4

ROW2

P11/GPIO

P43/GPIO

P137/GPIO

PMOD2.Pin7

PMOD2.Pin8

PMOD2.Pin9

ROW3

ROW4

ROW1 P12/GPIO
PMOD2.Pin10

Figure 2-5 Pin Connection Diagram Between RL78/G16 FPB and Hexadecimal Keyboard

RL78 Family MIDI Performance Control Sample Software Using SIS

R01AN7491EJ0100 Rev.1.00 Page 17 of 54
Dec.4.24

2.3 List of Used Pins
Table 2-2 lists the used pins and their functions.

Table 2-2 Used Pins and Functions

Pin Name I/O Description
P03/TxD0 Output MIDI message transmission
P05/ANI4 Input Sound volume setting
P13/SCK20 Output MATRIX-LED SPI clock
P16/GPIO Output MATRIX-LED SPI chip selection
P15/SO20 Output MATRIX-LED SPI MOSI
P61/GPIO Output Hexadecimal keyboard COL1
P60/GPIO Output Hexadecimal keyboard COL2
P21/GPIO Output Hexadecimal keyboard COL3
P10/GPIO Output Hexadecimal keyboard COL4
P12/GPIO Input Hexadecimal keyboard ROW1
P137/GPIO Input Hexadecimal keyboard ROW2
P43/GPIO Input Hexadecimal keyboard ROW3
P11/GPIO Input Hexadecimal keyboard ROW4

Note: Only the used pins are connected in this application note. When creating a circuit, refer to section 2.3

Connection of Unused Pins in the RL78/G16 User’s Manual: Hardware (R01UH0980) and
appropriately handle the pins not used in this application note so that the circuit design satisfies the
electrical characteristics.

RL78 Family MIDI Performance Control Sample Software Using SIS

R01AN7491EJ0100 Rev.1.00 Page 18 of 54
Dec.4.24

3. Software Description

3.1 Software Environment
Table 3-1 shows the software used in this sample program.

Table 3-1 Software

Software Application
Integrated development environment Manufactured by Renesas Electronics

e2 studio 2024-07
C compiler Manufactured by Renesas Electronics

C Compiler Package for RL78 Family [CC-RL] V1.14.00
Smart Configurator (SC) Smart Configurator for RL78 V1.10.0
Board Support Package (BSP) Manufactured by Renesas Electronics

V1.70

3.2 Peripheral Function Settings
Figure 3-1 shows the settings of the 1-ms interval timer.

Figure 3-1 1-ms Interval Timer Settings

Change to “CK02”.

Change to “fCLK/2^6”.

Change to “ms”.Change to “1”.

RL78 Family MIDI Performance Control Sample Software Using SIS

R01AN7491EJ0100 Rev.1.00 Page 19 of 54
Dec.4.24

Figure 3-2 shows the A/D converter settings to select analog input channel 4 and specify 10-bit data for
conversion results.

Change to “ANI4”.

Figure 3-2 Analog Input Settings

RL78 Family MIDI Performance Control Sample Software Using SIS

R01AN7491EJ0100 Rev.1.00 Page 20 of 54
Dec.4.24

Figure 3-3 shows the SPI communication settings to specify MSB first for the data transfer direction and 4
Mbps for the communication speed.

Change to “MSB”.

Change to “4000000”.

Figure 3-3 SPI Communication Settings

RL78 Family MIDI Performance Control Sample Software Using SIS

R01AN7491EJ0100 Rev.1.00 Page 21 of 54
Dec.4.24

Figure 3-4 shows the communication settings for UART transmission that comply with the MIDI
communication standard.

Change to “31250”.

Change to “fCLK/2^5”.

Figure 3-4 Communication Settings for MIDI Transmission

RL78 Family MIDI Performance Control Sample Software Using SIS

R01AN7491EJ0100 Rev.1.00 Page 22 of 54
Dec.4.24

Figure 3-5 shows the communication settings for UART reception that comply with the MIDI
communication standard.

Change to “31250”.

Change to “fCLK/2^5”.

Change to “Level 2”.

Clear the check box.

Figure 3-5 Communication Settings for MIDI Reception

RL78 Family MIDI Performance Control Sample Software Using SIS

R01AN7491EJ0100 Rev.1.00 Page 23 of 54
Dec.4.24

3.3 Setting of Option Byte
 Table 3-2 shows the option byte settings.

Table 3-2 Setting of Option Byte

Address Setting Value Contents
000C0H 11101111B Disables the watchdog timer.

(Counting stopped after reset)
000C1H 11110111B SPOR operations (VSPOR)

At rising edge TYP. 2.90V (2.76 V ～ 3.02 V)
At falling edge TYP. 2.84V (2.70 V ～ 2.96 V)

000C2H 11111001B High-speed on-chip oscillator clock: 16MHz
000C3H 10000101B Enables on-chip debugging

RL78 Family MIDI Performance Control Sample Software Using SIS

R01AN7491EJ0100 Rev.1.00 Page 24 of 54
Dec.4.24

3.4 List of Macros
Table 3-3 lists the macros used in the sample program.

Table 3-3 Macros Used in Sample Program (1/2)

Macro Name Set
Value

Description

DEMO_MIDI_NOTE_MAX 127 Maximum MIDI note value
DEMO_MIDI_PITCH_NUM 12 Number of notes in one octave
DEMO_MIDI_DISPlAY_VOL_MAX 8 Maximum MIDI volume
DEMO_MIDI_CH_MAX 16 Maximum MIDI channel number
DEMO_MIDI_CH_MIN 1 Minimum MIDI channel number
DEMO_MIDI_MIDDLE_C 60 Medium MIDI note value
DEMO_MIDI_VELOCITY 127 Velocity in NoteOn messages
DEMO_ADC_DATA_DIVISION 1024 Volume switch input resolution
DEMO_ADC_BUFF_SIZE 4 Number of volume switch data buffers
DEMO_ADC_INPUT_DIFFERENCE 8 Volume switch input threshold
DEMO_DISPLAY_MODE_MELODY 0 Display information type: Note display
DEMO_DISPLAY_MODE_CH_SET 1 Display information type: Channel display
DEMO_DISPLAY_MODE_COLOR_VOL_SE
T 2 Display information type: Volume display

DEMO_DISPLAY_MODE_OCTAVE_SHIFT_
SET 3 Display information type: Pitch display

DEMO_DISPLAY_VOL_SET_TIME 1000 Volume display period [ms]
DEMO_DISPLAY_OCTAVE_SHIFT_SET_TI
ME

1000 Octave display period [ms]

DEMO_MATRIX_CATHODE_COLOR 3 Number of LED color elements: Red, Blue, Green
DEMO_MATRIX_DIGIT 8 Number of LED rows
DEMO_SOUND_VOLUME_PATTERN 8 Number of volume levels: 8
DEMO_KYPD_OCTAVE_SHIFT_NONE 5 Initial pitch adjustment value (±0)
DEMO_KYPD_OCTAVE_SHIFT_MIN 0 Minimum pitch adjustment value (-5)
DEMO_KYPD_OCTAVE_SHIFT_MAX 10 Maximum pitch adjustment value (+5)
KYPD_SET_MODE_OUTPUT 0 Mode register output mode set value
KYPD_SET_MODE_INPUT 1 Mode register input mode set value
DEMO_SYSTEM_TIMER_START_FUNC - Alias of R_Config_TAU0_3_Start
DEMO_MATRIX_LED_SPI_CSPIN - Alias of CSI20 chip selection (P1_bit.no6)
DEMO_MATRIX_LED_SPI_START_FUNC - Alias of

R_Config_CSI20_DEMO_MATRIX_LED_Start
DEMO_MATRIX_LED_SPI_SEND_FUNC - Alias of

R_Config_CSI20_DEMO_MATRIX_LED_Send
DEMO_ANALOG_VOLUME_INPUT_
START_FUNC -

Macro that sequentially calls
R_Config_ADC_DEMO_VOLUME_Set_OperationO
n() and R_Config_ADC_DEMO_VOLUME_Start() to
prepare for starting AD conversion

DEMO_KYPD_MATRIX_ROW1_PIN - Alias of key matrix input ROW1 (P1_bit.no2)
DEMO_KYPD_MATRIX_ROW2_PIN - Alias of key matrix input ROW2 (P13_bit.no7)

RL78 Family MIDI Performance Control Sample Software Using SIS

R01AN7491EJ0100 Rev.1.00 Page 25 of 54
Dec.4.24

Table 3-4 Macros Used in Sample Program (2/2)

マクロ名 Set
Value

Description

DEMO_KYPD_MATRIX_ROW3_PIN - Alias of key matrix input ROW3 (P4_bit.no3)
DEMO_KYPD_MATRIX_ROW4_PIN - Alias of key matrix input ROW4 (P1_bit.no1)
DEMO_KYPD_MATRIX_COL1_PIN - Alias of key matrix output COL1 (P6_bit.no1)
DEMO_KYPD_MATRIX_COL2_PIN - Alias of key matrix output COL2 (P6_bit.no0)
DEMO_KYPD_MATRIX_COL3_PIN - Alias of key matrix output COL3 (P2_bit.no1)
DEMO_KYPD_MATRIX_COL4_PIN - Alias of key matrix output COL4 (P1_bit.no0)
DEMO_KYPD_MATRIX_COL1_PINMODE - Alias of key matrix output COL1 mode register

(PM6_bit.no1)
DEMO_KYPD_MATRIX_COL2_PINMODE - Alias of key matrix output COL2 mode register

(PM6_bit.no0)
DEMO_KYPD_MATRIX_COL3_PINMODE - Alias of key matrix output COL3 mode register

(PM2_bit.no1)
DEMO_KYPD_MATRIX_COL4_PINMODE - Alias of key matrix output COL4 mode register

(PM1_bit.no0)

RL78 Family MIDI Performance Control Sample Software Using SIS

R01AN7491EJ0100 Rev.1.00 Page 26 of 54
Dec.4.24

3.5 List of Constants
Table 3-5 list global variables.

Table 3-5 Constants

Type Constant Name Description Used Functions
const uint8_t g_anti_blur Anti-blur LED data demo_display_main
const uint8_t g_disp_scale Scale data table by lighting

position for the LED matrix
demo_display_main

const uint8_t g_color_table_tone LED data table by note in
melody mode

demo_display_main

const uint8_t g_display_ch_graph LED data table to display
channel settings when
changing channels

demo_display_main

const uint8_t g_color_table_vol LED data table to display the
volume level when changing
the volume

demo_display_main

const uint8_t g_sound_volume_msk Mask data table to display the
volume level when changing
the volume

demo_display_main

const uint8_t g_display_octave_shift_graph LED data table to display the
pitch adjustment value when
changing the pitch

demo_display_main

const uint8_t g_kypd_tenkey Hexadecimal keyboard input
value table for MIDI channel
change mode

main

const uint8_t g_disp_volume Volume data table by volume
level

main

const
timbre_tone_t

g_demo_timbre Tone setting information table
by MIDI channel

main

RL78 Family MIDI Performance Control Sample Software Using SIS

R01AN7491EJ0100 Rev.1.00 Page 27 of 54
Dec.4.24

3.6 List of Variables
Table 3-6 through Table 3-8 list global variables.

Table 3-6 Global Variables (1/3)

Type Variable Name Description Used Functions
uint8_t g_demo_adc_finish Flag indicating

that AD
conversion with
the volume
switch ends

main、
r_Config_ADC_DEMO_
VOLUME_interrupt、
demo_volume_input

uint16_t g_demo_adc_data AD value of the
volume switch

main、
r_Config_ADC_DEMO_
VOLUME_interrupt、
demo_volume_input

uint16_t g_demo_adc_buff AD value buffer
of the volume
switch

main、
demo_volume_monitor_main、
demo_volume_input

uint16_t g_demo_adc_average Average AD
value of the
volume switch

main、
demo_volume_monitor_main

uint16_t g_demo_adc_average_bak Previous
average AD
value of the
volume switch

main、
demo_volume_monitor_main

uint8_t g_demo_adc_step State of AD
conversion
processing of
the volume
switch: 0
(conversion
stopped), 1
(conversion in
progress)

main、
demo_volume_monitor_main、
demo_volume_input

uint8_t g_demo_adc_input_index Index of the AD
value buffer of
the volume
switch

demo_volume_input

pitch_blink_t g_demo_matrix_ch_info Display
information by
note

main、
demo_display_main

uint8_t g_demo_kypd_buff Hexadecimal
keyboard input
status buffer

demo_kypd_matrix_main、
demo_display_main

uint8_t g_demo_spi_sending_flag Flag indicating
LED data
transmission in
progress: 0
(transmission
end), 1
(transmission
in progress)

main、
r_Config_CSI20_DEMO_MATRIX_
LED_callback_sendend、
demo_matrix_led_data_send、
demo_matrix_led_send_
busy_check

RL78 Family MIDI Performance Control Sample Software Using SIS

R01AN7491EJ0100 Rev.1.00 Page 28 of 54
Dec.4.24

Table 3-7 Global Variables (2/3)

Type Variable Name Description Used Functions
uint32_t g_demo_display_vol_start_tim

e
Volume display start time when
changing the volume

main、

uint32_t g_demo_display_octave_shift_
start_time

Pitch information display start
time when changing the pitch

main、
demo_display_main

uint8_t g_demo_display_mode LED display mode:
DEMO_DISPLAY_MODE_ME
LODY (Melody mode),
DEMO_DISPLAY_MODE_CH_
SET (MIDI channel change
mode),
DEMO_DISPLAY_MODE_CO
LOR_VOL_SET (Volume
change mode),
DEMO_DISPLAY_MODE_OC
TAVE_SHIFT_SET (Pitch
change mode)

main、
demo_display_main

uint8_t g_demo_last_display_mode Return destination LED display
mode: The LED display mode
to be resumed after a given
period since the volume
change mode or pitch change
mode was displayed. Either
DEMO_DISPLAY_MODE_ME
LODY (melody mode) or
DEMO_DISPLAY_MODE_CH_
SET (MIDI channel change
mode) can be specified.

main、
demo_display_main

uint8_t g_demo_display_ch Display target channel:
0 to 15 = Ch1 to Ch16, 16 =
Display “0”- and wait for entry
of the first digit, 17 = Display
“1-“ and wait for entry of the
first digit

main、
demo_display_main

uint8_t g_demo_current_ch Sound target channel:
0 to 15 = Ch1 to Ch16

main、
demo_volume_monitor_mai
n

uint8_t g_demo_display_vol Volume: 0 to 7 = Volume level
1 to 8

main、
demo_volume_monitor_mai
n 、
demo_display_main

uint32_t g_demo_timer System timer value of the
sample program [ms]

demo_time_now、
demo_timer_cycle

uint8_t g_demo_matrix_led_send_buff Buffer for sending LED display
data

demo_display_main

uint16_t g_digit_now Update target LED index demo_display_main
uint8_t g_demo_kypd_matrix_keys Confirmation information for

the input status for each key of
the hexadecimal keyboard

main

RL78 Family MIDI Performance Control Sample Software Using SIS

R01AN7491EJ0100 Rev.1.00 Page 29 of 54
Dec.4.24

Table 3-8 Global Variables (3/3)

Type Variable Name Description Used Functions
uint8_t g_demo_kypd_key_chg_timer Retention time of the status

change for each key of the
hexadecimal keyboard

demo_kypd_timer_cycle、
demo_kypd_start_key_chg
_timer、
demo_kypd_get_keys_chg_
timer_cnt、

uint8_t g_demo_octave_shift Pitch adjustment value main、
demo_display_main

RL78 Family MIDI Performance Control Sample Software Using SIS

R01AN7491EJ0100 Rev.1.00 Page 30 of 54
Dec.4.24

3.7 List of Functions
Table 3-9 lists the functions.

Table 3-9 Functions

Function Name Overview
demo_volume_monitor_main() Volume setting update processing
demo_volume_input() Processing to acquire the volume switch status
demo_display_main() LED data update processing
demo_time_now() Acquires the time elapsed from the start of the

program.
demo_timer_cycle() Called from a TAU0_3 periodic interrupt to update

the time elapsed from the start of the program.
demo_matrix_led_data_send() LED data transmission processing
demo_matrix_led_send_busy_check() Processing to monitor the end of LED data

transmission
R_Config_TAU0_3_Start() TAU0_3 timer start processing
r_Config_TAU0_3_interrupt() Callback processing for a TAU0_3 periodic

interrupt
R_Config_ADC_DEMO_VOLUME_Start() Clears the AD conversion end interrupt flag,

enables AD conversion end interrupts, and
enables AD conversion operation.

R_Config_ADC_DEMO_VOLUME_
Set_OperationOn()

Enables AD voltage comparator operations.

R_Config_ADC_DEMO_VOLUME_Get_Result_10bit() Processing to acquire AD conversion results
r_Config_ADC_DEMO_VOLUME_interrupt() Callback processing when INTAD AD conversion

ends
R_Config_CSI20_DEMO_MATRIX_LED_Start() CSI20 start processing
R_Config_CSI20_DEMO_MATRIX_LED_Send() CSI20 data transmission processing
r_Config_CSI20_DEMO_MATRIX_LED_
callback_sendend()

Callback processing when CSI20 transmission
ends

r_Config_CSI20_DEMO_MATRIX_LED_interrupt() CSI20 transfer end interrupt processing
R_Config_UART0_Send() UART0 transmission processing
R_Config_UART0_Receive() UART0 reception processing
r_Config_UART0_callback_sendend() UART0 transmission end processing
r_Config_UART0_callback_receiveend() UART0 reception end processing
r_Config_UART0_interrupt_send() UART0 transmission interrupt processing
r_Config_UART0_interrupt_receive() UART0 reception interrupt processing
r_Config_UART0_interrupt_error() Communication error interrupt processing in

UART0 reception
demo_kypd_timer_cycle() Called from a TAU0_3 periodic interrupt to update

the key input confirmation timer count for the
hexadecimal keyboard

demo_kypd_start_key_chg_timer() Processing to start the key input change
confirmation timer

demo_kypd_matrix_sense() Processing to determine the confirmed key input
status

demo_kypd_matrix_main() Main processing of hexadecimal keyboard input
demo_kypd_matrix_col_read() Processing to read the hexadecimal keyboard

column status
demo_kypd_get_keys_chg_timer_cnt() Processing to acquire the value of the key input

change confirmation timer

RL78 Family MIDI Performance Control Sample Software Using SIS

R01AN7491EJ0100 Rev.1.00 Page 31 of 54
Dec.4.24

3.8 Function Specifications
This section describes the function specifications of the sample program.

demo_volume_monitor_main()
Overview Volume setting update processing
Header -

Declaration uint8_t demo_volume_monitor_main(void);
Description This function updates the volume according to the change in the volume switch.
Arguments None

Return values 0: The volume is not changed.
1: The volume is changed.

demo_volume_input()

Overview Processing to acquire the status of the volume switch
Header -

Declaration uint8_t demo_volume_input(void);
Description This function acquires the status of the volume switch.
Arguments None

Return values 0: Volume switch input is being acquired.
1: Volume switch input is acquired.

demo_display_main()

Overview Processing to update the LED matrix display
Header -

Declaration void demo_display_main(void);
Description This function updates the contents of the LED matrix display.
Arguments None

Return values None

demo_time_now()

Overview Acquisition of the current time
Header -

Declaration uint32_t demo_time_now(void);
Description This function returns the time elapsed from the start of the sample program.
Arguments None

Return values uint32_t: Time elapsed from the start of the sample program

demo_timer_cycle()

Overview Time update
Header -

Declaration void demo_timer_cycle(void);

Description This function is called from within periodic interrupt processing to update the time
elapsed from the start of the sample program.

Arguments None
Return values None

RL78 Family MIDI Performance Control Sample Software Using SIS

R01AN7491EJ0100 Rev.1.00 Page 32 of 54
Dec.4.24

demo_matrix_led_data_send()
Overview LED data transmission
Header -

Declaration void demo_matrix_led_data_send(uint8_t * data, uint16_t len);
Description This function sends data to the LED matrix.

Arguments uint8_t * data: Send data address
uint16_t len: Send data size

Return values None

demo_matrix_led_send_busy_check()

Overview LED data transmission end monitoring
Header -

Declaration uint8_t demo_matrix_led_send_busy_check(void);

Description This function references the communication-in-progress flag
(g_demo_spi_sending_flag) and returns the transmission status.

Arguments None

Return values 0: Transmission end
1: Transmission in progress

r_Config_TAU0_3_interrupt()

Overview Interval timer interrupt processing
Header r_cg_macrodriver.h, r_cg_userdefine.h, Config_TAU0_3.h, r_midi_rl78_if.h

Declaration static void __near r_Config_TAU0_3_interrupt(void);

Description

This is a TAU0_3 count end interrupt function.
This function calls a MIDI 1-ms interval notification function.
It also calls a system timer count function.
It also calls a timer count function for hexadecimal keyboard input confirmation.

Arguments None
Return values None

r_Config_ADC_DEMO_VOLUME_interrupt()

Overview AD conversion end interrupt processing
Header r_cg_macrodriver.h, r_cg_userdefine.h, Config_ADC_DEMO_VOLUME.h

Declaration static void __near r_Config_ADC_DEMO_VOLUME_interrupt(void);

Description

This is an A/D conversion end interrupt function.
This function reads the AD conversion results and then saves them in the buffer
(g_demo_adc_data).
It sets the AD conversion end flag (g_demo_adc_finish).

Arguments None
Return values None

RL78 Family MIDI Performance Control Sample Software Using SIS

R01AN7491EJ0100 Rev.1.00 Page 33 of 54
Dec.4.24

r_Config_CSI20_DEMO_MATRIX_LED_callback_sendend()
Overview Callback processing when CSI20 transmission ends

Header r_cg_macrodriver.h, r_cg_userdefine.h, Config_CSI20_DEMO_MATRIX_LED.h,
midi_matrixled_demo.h

Declaration static void r_Config_CSI20_DEMO_MATRIX_LED_callback_sendend(void);

Description

This callback function is called when CSI20 transmission ends.
This function sets the SPI CS pin to High.
Then, this function resets the communication-in-progress flag
(g_demo_spi_sending_flag).

Arguments None
Return values None

r_Config_UART0_callback_sendend()

Overview UART0 transmission end callback processing
Header r_cg_macrodriver.h, r_cg_userdefine.h, Config_UART0.h, r_midi_rl78_if.h

Declaration static void r_Config_UART0_callback_ sendend(void);

Description

This function is called to perform callback processing when UART0 transmission
ends.
This function calls (R_MIDI_NotifyEvent) to notify the MIDI interface SIS (Software
Integration System) module of the end of transmission.

Arguments None
Return values None

r_Config_UART0_callback_receiveend()

Overview UART0 transmission end callback processing
Header r_cg_macrodriver.h、r_cg_userdefine.h、Config_UART0.h、r_midi_rl78_if.h

Declaration static void r_Config_UART0_callback_ sendend(void);

Description

This function is called to perform callback processing when UART0 transmission
ends.
This function calls (R_MIDI_NotifyEvent) to notify the MIDI interface SIS (Software
Integration System) module of the end of transmission.

Arguments None
Return values None

demo_kypd_timer_cycle()

Overview Update of the key input confirmation timer count
Header midi_matrixled_kypd_demo.h

Declaration void demo_kypd_timer_cycle(void);

Description This function is called from within periodic interrupt processing to update the key
input confirmation timer count.

Arguments None
Return values None

demo_kypd_start_key_chg_timer()

Overview Starting the input confirmation timer
Header midi_matrixled_kypd_demo.h

Declaration void demo_kypd_start_key_chg_timer(uint8_t index);

Description This function sets the time (10 ms) after which the change of the target key will be
confirmed.

Arguments Index of the target key
Return values None

RL78 Family MIDI Performance Control Sample Software Using SIS

R01AN7491EJ0100 Rev.1.00 Page 34 of 54
Dec.4.24

demo_kypd_matrix_sense()
Overview Processing to determine the confirmed key input status
Header midi_matrixled_kypd_demo.h

Declaration uint8_t demo_kypd_matrix_sense(uint8_t *key);

Description This function determines whether pressing or releasing of a specific key is
confirmed, and then returns the result.

Arguments Address of the key to be determined

Return values

0: No change in the key status
DEMO_KYPD_KEYMAK E: Key-pressing confirmed
DEMO_KYPD_KEYBREAK: Key-releasing confirmed
DEMO_KYPD_KEYMAKE + DEMO_KYPD_KEYBREAK: Key-pressing and key-
releasing confirmed

demo_kypd_matrix_main()

Overview Processing to update confirmation information of hexadecimal keyboard input
Header midi_matrixled_kypd_demo.h

Declaration void demo_kypd_matrix_main(uint8_t keys[][4]);

Description

A single call of this function updates input information for one column of the
hexadecimal keyboard.
If any change is found in the hexadecimal keyboard input, this function sets a
timer for how long the status must continue before confirmation.
If the key input status continues until the timer expires, the key input is confirmed
and a confirmation flag indicating that the key is pressed or released is set in
confirmation information.

Arguments Address of confirmation information of hexadecimal keyboard input
Return values None

demo_kypd_matrix_col_read()

Overview Input processing for one column of the hexadecimal keyboard
Header midi_matrixled_kypd_demo.h

Declaration uint8_t demo_kypd_matrix_col_read(uint8_t col);

Description

This function returns key pressing information for one column of the hexadecimal
keyboard.
Each bit In this information is set to 0 (key not pressed) or 1 (key pressed).
BIT3: Key pressing status of row 1
BIT2: Key pressing status of row 2
BIT1: Key pressing status of row 3
BIT0: Key pressing status of row 4

Arguments Column number
Return values Input status of the column of the hexadecimal keyboard specified by the argument

RL78 Family MIDI Performance Control Sample Software Using SIS

R01AN7491EJ0100 Rev.1.00 Page 35 of 54
Dec.4.24

demo_kypd_get_keys_chg_timer_cnt()
Overview Processing to acquire the count value of the key input confirmation timer
Header midi_matrixled_kypd_demo.h

Declaration uint8_t demo_kypd_get_keys_chg_timer_cnt(uint8_t index);

Description This function returns the count value of the input confirmation timer for the target
key

Arguments Index of the target key
Return values Count value of the key input confirmation timer

RL78 Family MIDI Performance Control Sample Software Using SIS

R01AN7491EJ0100 Rev.1.00 Page 36 of 54
Dec.4.24

3.9 Flowcharts
3.9.1 Main processing

Figure 3-6、Figure 3-7 and Figure 3-8 show the flowchart for the main processing.

main

Initial settings and startup processing of
the peripheral functions that operate in

the demo environment

Start MIDI module processing
R_MIDI_Open();

Start the timer at 1 ms intervals
R_Config_TAU0_3_Start();

Specify the through output setting
R_MIDI_SetThruFilterMode

(MIDI_THRU_Full);

Start MIDI module transmission/reception
R_MIDI_Begin

(MIDI_CHANNEL_OMNI);

Specify the initial settings of general-purpose ports of the LED
matrix and key matrix controlled by the demo program,

Start the 1-ms interval timer as the system timer.
Notification processing for the MIDI module is also
performed at 1 ms intervals by the callback function of this
feature.

Specify that all the received MIDI messages are passed
through and output to the MIDI OUT pin.

Start communication with the LED matrix
R_Config_CSI20_DEMO_MATRIX_

LED_Start();
Start operation of the SPI communication module for
sending display patterns to the LED matrix.

A

Specify the MIDI volume setting
R_MIDI_SendControlChange();

Specify the MIDI tone setting
R_MIDI_SendControlChange();

R_MIDI_SendProgramChange();

Specify the MIDI volume.

Specify the tone for each MIDI channel.

Figure 3-6 Main Processing (1/3)

RL78 Family MIDI Performance Control Sample Software Using SIS

R01AN7491EJ0100 Rev.1.00 Page 37 of 54
Dec.4.24

Check for message receipt notification
R_MIDI_Read();

(See right)

Mode changeover processing
mode = !mode;

(See right)

Increase the pitch adjustment value
g_demo_octave_shift++;

Determine whether the input key meets the following condition:
・Is the input key type pitch-up switch?

Yes

No

No

Yes

・If the pitch adjustment value is equal to or smaller than the upper
limit (+5), add 1 to the pitch adjustment value.

A

Check the key matrix input status
demo_kypd_matrix_main();

Determine whether the input key meets the following condition:
・Is the input key type mode changeover switch?

Use the mode changeover switch to change the mode between
melody mode and MIDI channel change mode.
・In melody mode, a NoteOff message is sent to the sound module to

turn off the LED light.
・In MIDI channel change mode, a control change message for the

changed MIDI channel is sent to set the volume.

(See right)

Decrease the pitch adjustment value
g_demo_octave_shift--;

Determine whether the input key meets the following condition:
・Is the input key type is pitch-down switch?

No

Yes

・If the pitch adjustment value is equal to or greater than the lower
limit (-5), subtract 1 from the pitch adjustment value.

B

Figure 3-7 Main Processing (2/3)

RL78 Family MIDI Performance Control Sample Software Using SIS

R01AN7491EJ0100 Rev.1.00 Page 38 of 54
Dec.4.24

(See right)

NoteOn message processing
R_MIDI_SendNoteOn();

(See right)

NoteOff message processing
R_MIDI_SendNoteOｆｆ();

Processing to set the volume in the
sound source module

demo_volume_monitor_main();

LED matrix display processing
demo_display_main();

A

Determine whether the input key meets the following condition:
・Is releasing of the key with a note assigned confirmed?

Yes

No

No

Yes

The volume level is displayed for 1 second immediately after
Volume0 is turned. The pitch adjustment value is displayed for 1
second immediately after the pitch-up or pitch-down switch is
pressed. In any other case, melody mode or MIDI channel change
mode is displayed according to the mode setting.

Acquire the A/D conversion value from Volume0 and determine the
volume to be set in the sound source module.

The sound stops when key-releasing is confirmed.
・The note number of the NoteOｆｆ message is the note number

specified for the NoteOn message.
・Specify the scale information used to turn off the LED matrix lights

corresponding to keys.

B

Determine whether the input key meets the following condition:
・Is pressing of the key with a note assigned confirmed?

A sound is played when key-pressing is confirmed.
・Add the pitch adjustment value to the note number of the NoteOn

message.
・Pitch adjustment values are given by one octave.
・Specify the scale information used to turn on the LED matrix lights

corresponding to keys.

(See right)

Create MIDI channel numbers
g_demo_display_ch;

Determine whether the input key meets the following condition:
・Is pressing of a numeric key confirmed?

No

Yes

Create MIDI channel numbers based on the order in which numeric
keys are pressed.
・In MIDI channel change mode, the mode changeover switch is also

used to confirm MIDI channels and updates channels if the entered
two-digit number is within the range from 01 to 16.

Melody mode? Determine whether the current mode is melody mode.
In melody mode, you can play music by using key input.

Yes

If the current mode is not melody mode, it must be MIDI channel
change mode.
In MIDI channel change mode, you can change MIDI channels by
using key input.

No

C

C

Figure 3-8 Main Processing (3/3)

RL78 Family MIDI Performance Control Sample Software Using SIS

R01AN7491EJ0100 Rev.1.00 Page 39 of 54
Dec.4.24

3.9.2 Volume setting update processing
Figure 3-9 shows the flowchart for volume setting update processing.

Is anything input?

Yes

Specify the provisional volume.

No

return(ret);

demo_volume_monitor_main

(See right)

Set the volume
g_demo_display_vol =
display_vol_current;

No

Set the previous volume switch
input value.

g_demo_adc_average_bak =
g_demo_adc_average;

Set the return value to 1.
ret = 1;

Yes

Check for input from
the volume switch

 demo_volume_input();

Specify the provisional volume from the volume switch
input value.
Volume = AD input value ÷ AD resolution ÷ number of
volume levels
display_vol_current = Volume

Determine whether the change in the volume switch input
value exceeded the threshold
(DEMO_ADC_INPUT_DIFFERENCE) from the last time
the volume was determined.

Update the volume
switch input value.

The average of the AD values of the nearest four points
is assumed as the volume switch input value.
g_demo_adc_average = Volume switch input value

The initial value of the return value is 0.
ret = 0;

The volume is displayed when the return value is 1.

Determine whether AD conversion has finished and the
AD value was updated.

(See right)

R_MIDI_SendControlChange();

Determine whether the provisional volume differs from
the previously specified volume.

Yes

Set the provisional volume in the sound source module
as the new volume.

No

Figure 3-9 Volume Setting Update Processing

RL78 Family MIDI Performance Control Sample Software Using SIS

R01AN7491EJ0100 Rev.1.00 Page 40 of 54
Dec.4.24

3.9.3 Processing to acquire volume switch input
Figure 3-10 shows the flowchart for processing to acquire volume switch input.

demo_volume_input

return(ret);

Start AD conversion
DEMO_ANALOG_VOLUME_INPUT_START_F

UNC();
g_demo_adc_step = 1;

0

g_demo_adc_step

Save the results in the buffer.
g_demo_adc_buff[] = g_demo_adc_data;

g_demo_adc_step = 0;
ret = 1;

Has AD conversion finished?
0 != g_demo_adc_finish

1 No

Yes

The initial value of the return value is 0.
ret = 0;

Figure 3-10 Processing to Acquire Volume Switch Input

RL78 Family MIDI Performance Control Sample Software Using SIS

R01AN7491EJ0100 Rev.1.00 Page 41 of 54
Dec.4.24

3.9.4 LED matrix display processing
Figure 3-11 shows the flowchart for LED matrix display processing.

Figure 3-11 LED Matrix Display Processing.

demo_display_main

What is the LED display mode?

Update the control target row of the LED matrix.
demo_matrix_led_data_send(g_demo_matrix_led_send_buff,

sizeof(g_demo_matrix_led_send_buff));

Display the MIDI channel.
Specify the color pattern of the display target MIDI channel.

DEMO_DISPLAY_MODE_CH_SET

DEMO_DISPLAY_MODE_MELODY

Determine the control target LED matrix.

Specify the color pattern in accordance with the scale.

Determine the target row in the display pattern table.
line = g_digit_now & 0x07;

return

Is the control target LED matrix lit?

Specify the off-display pattern.

Yes

No

Display the volume.
Specify the color pattern of the volume being set.

The display period is determined. After the display period expires,
the LED display mode returns to the previously displayed mode,

which is either melody mode or MIDI channel change mode.

DEMO_DISPLAY_MODE_COLOR_VOL_SET

Display the pitch.
Specify the color pattern of the pitch being set.

The display period is determined. After the display period expires,
the LED display mode returns to the previously displayed mode,

which is either melody mode or MIDI channel change mode.

DEMO_DISPLAY_MODE_OCTAVE_SHIFT_SET

The LED display mode is set to melody mode, MIDI
channel change mode, volume setting display mode,
or pitch setting display mode.

RL78 Family MIDI Performance Control Sample Software Using SIS

R01AN7491EJ0100 Rev.1.00 Page 42 of 54
Dec.4.24

3.9.5 System timer acquisition processing
Figure 3-12 shows the flowchart for system timer acquisition processing.

Note: This function simply returns a global variable that can be referenced from multiple locations. This
function is provided to clearly indicate that the same variable is being referenced.

demo_time_now

return(g_demo_timer)

Figure 3-12 System Timer Acquisition Processing

3.9.6 System timer count processing
Figure 3-13 shows the flowchart for system timer count processing.

demo_timer_cycle

return()

g_demo_timer++；

Figure 3-13 System Timer Count Processing

RL78 Family MIDI Performance Control Sample Software Using SIS

R01AN7491EJ0100 Rev.1.00 Page 43 of 54
Dec.4.24

3.9.7 LED matrix data transmission processing
Figure 3-14 shows the flowchart for LED matrix data transmission processing.

demo_matrix_led_data_send

Send data to the LED matrix
 R_Config_CSI20_DEMO_MATRIX_LED_Send(data, len);

return

Set the flag indicating SPI transmission in progress.
Reset the chip selection.

Figure 3-14 LED Matrix Data Transmission Processing

RL78 Family MIDI Performance Control Sample Software Using SIS

R01AN7491EJ0100 Rev.1.00 Page 44 of 54
Dec.4.24

3.9.8 Processing to check the end of LED matrix data transmission
Figure 3-15 shows the flowchart for processing to check the end of LED matrix data transmission.

demo_matrix_led_send_busy_check

return (0 != g_demo_spi_sending_flag)

Figure 3-15 Processing to Check the End of LED Matrix Data Transmission

3.9.9 TAU0_3 interrupt processing

Figure 3-16 shows the flowchart for TAU0_3 interrupt processing.

r_Config_TAU0_3_interrupt

return

System timer count processing
demo_timer_cycle();

MIDI notification processing at 1 ms intervals
R_MIDI_Notify1msCycle();

Figure 3-16 TAU0_3 Interrupt Processing

RL78 Family MIDI Performance Control Sample Software Using SIS

R01AN7491EJ0100 Rev.1.00 Page 45 of 54
Dec.4.24

3.9.10 AD conversion end interrupt processing
Figure 3-17 shows the flowchart for AD conversion end interrupt processing.

r_Config_ADC_DEMO_VOLUME_interrupt

return

Read AD conversion results
R_Config_ADC_DEMO_VOLUME_Get_Result_

10bit(&g_demo_adc_data);

g_demo_adc_finish = 1;

Figure 3-17 AD Conversion End Interrupt Processing

3.9.11 LED matrix data CSI transmission end processing

Figure 3-18 shows the flowchart for CSI transmission end processing for LED matrix data.

r_Config_CSI20_DEMO_MATRIX_LED_callback_sendend

return

Set the SPI CS pin to High.
Reset the flag indicating SPI transmission in progress.

Figure 3-18 LED Matrix Data CSI Transmission End Processing

RL78 Family MIDI Performance Control Sample Software Using SIS

R01AN7491EJ0100 Rev.1.00 Page 46 of 54
Dec.4.24

3.9.12 UART0 transmission end processing
Figure 3-19 shows the flowchart for UART0 transmission end processing.

r_Config_UART0_callback_sendend

return

Notify the MIDI interface module of the end of transmission
R_MIDI_NotifyEvent(g_midi_c0_instance.p_ctrl,

MIDI_EVENT_UART_SEND);

Figure 3-19 UART0 Transmission End Processing

3.9.13 UART0 reception end processing
Figure 3-20 shows the flowchart for UART0 reception end processing.

r_Config_UART0_callback_receiveend

return

Notify the MIDI interface module of the end of reception
R_MIDI_NotifyEvent(g_midi_c0_instance.p_ctrl,

MIDI_EVENT_UART_RECV);

Figure 3-20 UART0 Reception End Processing

RL78 Family MIDI Performance Control Sample Software Using SIS

R01AN7491EJ0100 Rev.1.00 Page 47 of 54
Dec.4.24

3.9.14 Hexadecimal keyboard key input processing
Figure 3-21 shows the flowchart for hexadecimal keyboard key input processing.

demo_kypd_matrix_main

Start the timer
demo_kypd_start_key_chg_timer();

Yes
(See right)

g_demo_kypd_buff[col] =
demo_kypd_matrix_col_read(); Acquire the input status for one column of the keyboard.

Check the current key input status against
the previously acquired input status. If any
change is found, start the timer to
measure the time elapsed until the status
is confirmed.

i = 0;

Does the keys[i][col] setting
indicate that the key is released?

If key-releasing is being confirmed and the
current key input status indicates that the
key is pressed, check the timer count.
If the timer count is set to 0, the system
assumes that the confirmation wait time
has elapsed and confirms that the key is
pressed.

(See right)

keys[i][col] | = Key-pressing confirmed;
keys[i][col] | = Key pressing;

Yes

Yes

(See right)

keys[i][col] | = Key-releasing confirmed;
keys[i][col] & = ~Key pressing;

Yes

i < DEMO_KYPD_ROWMAX

If key-pressing is being confirmed and the
current key input status indicates that the
key is released, check the timer count.
If the timer count is set to 0, the system
assumes that the confirmation wait time
has elapsed and confirms that the key is
released.

No

No

i++;

return

No

No

No

Yes

The acquired input status of each row in the column is determined by using
the following loop processing.

Is the key input status changed?

Is key-pressing confirmed by key input?

Is key-releasing confirmed by key input?

Figure 3-21 Hexadecimal Keyboard Input Processing

RL78 Family MIDI Performance Control Sample Software Using SIS

R01AN7491EJ0100 Rev.1.00 Page 48 of 54
Dec.4.24

3.9.15 Input processing for one column of the hexadecimal keyboard
Figure 3-22 shows the flowchart for input processing for one column of the hexadecimal keyboard.

demo_kypd_matrix_col_read

Yes
col == 1?

ret = DEMO_KYPD_MATRIX_ROW1_PIN;
ret = ((ret << 1) | DEMO_KYPD_MATRIX_ROW2_PIN);
ret = ((ret << 1) | DEMO_KYPD_MATRIX_ROW3_PIN);
ret = ((ret << 1) | DEMO_KYPD_MATRIX_ROW4_PIN);

col == 0?

return(ret);

No

Yes
PMOD2_KYPD_COL1_LO();

PMOD2_KYPD_COL2_LO();

Yes
col == 2? PMOD2_KYPD_COL3_LO();

Yes
col == 3? PMOD2_KYPD_COL4_LO();

No

No

No

PMOD2_KYPD_COL1_HI();

PMOD2_KYPD_COL2_HI();

PMOD2_KYPD_COL3_HI();

PMOD2_KYPD_COL4_HI();

Figure 3-22 Input Processing for One Column of the Hexadecimal Keyboard

RL78 Family MIDI Performance Control Sample Software Using SIS

R01AN7491EJ0100 Rev.1.00 Page 49 of 54
Dec.4.24

3.9.16 Key input determination processing
Figure 3-23 shows the flowchart for key input determination processing.

demo_kypd_matrix_sense

Yes

key & key-pressing confirmed ==
Is key-pressing confirmed?

return(ret);

No

Yes

key &= ~key-pressing confirmed;
ret |= Key-pressing confirmed;

No

ret = 0;

key & key-releasing confirmed ==
Is key-releasing confirmed?

key &= ~ key-releasing confirmed;
ret |= Key-releasing confirmed;

Figure 3-23 Key Input Determination Processing

RL78 Family MIDI Performance Control Sample Software Using SIS

R01AN7491EJ0100 Rev.1.00 Page 50 of 54
Dec.4.24

3.9.17 Count processing for the key input confirmation timer
Figure 3-24 shows the flowchart for count processing for the key input confirmation timer.

demo_kypd_timer_cycle

g_demo_kypd_key_chg_timer[i]--;

Yes
g_demo_kypd_key_chg_timer[i] > 0

i = 0;

i < (DEMO_KYPD_ROWMAX *
DEMO_KYPD_COLMAX)

i++;

return

No

No

Yes

Figure 3-24 Count Processing for the Key Input Confirmation Timer

RL78 Family MIDI Performance Control Sample Software Using SIS

R01AN7491EJ0100 Rev.1.00 Page 51 of 54
Dec.4.24

3.9.18 Processing to start the key input confirmation timer
Figure 3-25 shows the flowchart for processing to start the key input confirmation timer.

demo_kypd_start_key_chg_timer

g_demo_kypd_key_chg_timer[index] = 10msec;

return

Figure 3-25 Processing to Start the Key Input Confirmation Timer

3.9.19 Processing to acquire the key input confirmation timer count
Figure 3-26 shows the flowchart for processing to acquire the key input confirmation timer count.

demo_kypd_get_keys_chg_timer_cnt

return(g_demo_kypd_key_chg_timer[index]);

Figure 3-26 Processing to Acquire the Key Input Confirmation Timer Count

RL78 Family MIDI Performance Control Sample Software Using SIS

R01AN7491EJ0100 Rev.1.00 Page 52 of 54
Dec.4.24

4. Sample Code
Sample code can be downloaded from the Renesas Electronics website.

5. Notes

5.1 Operation of the Hexadecimal Keyboard
Due to the specifications of the hexadecimal keyboard used in this sample program, pressing two or more

keys at the same time might result in unexpected value input. To prevent problems, press one key at a time.

6. Reference Documents
RL78 Family MIDI Interface Module Software Integration System (R01AN7265E)
RL78 Family MIDI Linked Illumination Control Sample Software Using SIS (R01AN7463E)
RL78/G16 User’s Manual: Hardware (R01UH0980E)
RL78 family user's manual: software (R01US0015E)
RL78/G16 Fast Prototyping Board User’s Manual (R12UM0048E)
 (The latest versions can be downloaded from the Renesas Electronics website.)

Technical update
 (The latest versions can be downloaded from the Renesas Electronics website.)

MIDI Shield (SparkFun MIDI Shield)

https://www.sparkfun.com/products/12898

LED matrix

https://wiki.52pi.com/index.php?title=EP-0075

Hexadecimal keyboard

https://digilent.com/reference/pmod/pmodkypd/start

RL78 Family MIDI Performance Control Sample Software Using SIS

R01AN7491EJ0100 Rev.1.00 Page 53 of 54
Dec.4.24

All trademarks and registered trademarks are the property of their respective owners.

RL78 Family MIDI Performance Control Sample Software Using SIS

R01AN7491EJ0100 Rev.1.00 Page 54 of 54
Dec.4.24

Revision History

Rev. Date
Description

Page Summary
1.00 2024.12.04 ― First Edition

General Precautions in the Handling of Microprocessing Unit and Microcontroller
Unit Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the
products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Precaution against Electrostatic Discharge (ESD)

A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps

must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be

adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity.

Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and

measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor

devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.
2. Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of

register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset

pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins

in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power reaches the

level at which resetting is specified.
3. Input of signal during power-off state

Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O

pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal

elements. Follow the guideline for input signal during power-off state as described in your product documentation.
4. Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are

generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of

the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal

become possible.
5. Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program

execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator

during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal

produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.
6. Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL

(Max.) and VIH (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the

input level is fixed, and also in the transition period when the input level passes through the area between VIL (Max.) and VIH (Min.).
7. Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these

addresses as the correct operation of the LSI is not guaranteed.
8. Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems.

The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms

of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values,

operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-

evaluation test for the given product.

© 2024 Renesas Electronics Corporation. All rights reserved.

Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products

and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of
your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the
use of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights,
or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this
document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics
or others.

4. You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export,
manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.

5. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any
and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.

6. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for
each Renesas Electronics product depends on the product’s quality grade, as indicated below.
 "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home

electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key

financial terminal systems; safety control equipment; etc.
Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas
Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to
human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space
system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas
Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas
Electronics product that is inconsistent with any Renesas Electronics data sheet, user’s manual or other Renesas Electronics document.

7. No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics
hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but
not limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS
ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING
RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE,
HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION (“Vulnerability Issues”). RENESAS ELECTRONICS DISCLAIMS ANY AND
ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT
PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH
RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO
THE IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.

8. When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General Notes for
Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by
Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc.
Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products
outside of such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific
characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability
product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics
products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily
injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as
safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for
aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you
are responsible for evaluating the safety of the final products or systems manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas
Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of
controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these
applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance
with applicable laws and regulations.

11. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is
prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations
promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.

12. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or
transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

13. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
14. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas

Electronics products.

(Note1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled
subsidiaries.

(Note2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

(Rev.5.0-1 October 2020)

Corporate Headquarters Contact information
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

 For further information on a product, technology, the most up-to-date
version of a document, or your nearest sales office, please visit:
www.renesas.com/contact/.

Trademarks
Renesas and the Renesas logo are trademarks of Renesas Electronics
Corporation. All trademarks and registered trademarks are the property
of their respective owners.

https://www.renesas.com/
https://www.renesas.com/contact/

	1. Specification
	1.1 Overview of Specification
	1.1.1 Communication specifications

	1.2 Operation Details

	2. Hardware Description
	2.1 Hardware Configuration
	2.2 Pin Connection Diagrams
	2.3 List of Used Pins

	3. Software Description
	3.1 Software Environment
	3.2 Peripheral Function Settings
	3.3 Setting of Option Byte
	3.4 List of Macros
	3.5 List of Constants
	3.6 List of Variables
	3.7 List of Functions
	3.8 Function Specifications
	3.9 Flowcharts
	3.9.1 Main processing
	3.9.2 Volume setting update processing
	3.9.3 Processing to acquire volume switch input
	3.9.4 LED matrix display processing
	3.9.5 System timer acquisition processing
	3.9.6 System timer count processing
	3.9.7 LED matrix data transmission processing
	3.9.8 Processing to check the end of LED matrix data transmission
	3.9.9 TAU0_3 interrupt processing
	3.9.10 AD conversion end interrupt processing
	3.9.11 LED matrix data CSI transmission end processing
	3.9.12 UART0 transmission end processing
	3.9.13 UART0 reception end processing
	3.9.14 Hexadecimal keyboard key input processing
	3.9.15 Input processing for one column of the hexadecimal keyboard
	3.9.16 Key input determination processing
	3.9.17 Count processing for the key input confirmation timer
	3.9.18 Processing to start the key input confirmation timer
	3.9.19 Processing to acquire the key input confirmation timer count

	4. Sample Code
	5. Notes
	5.1 Operation of the Hexadecimal Keyboard

	6. Reference Documents
	General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products
	Notice

