
 Application Note

R01AN7174EU0140 Rev.1.40 Page 1 of 124

Nov.21.24

RX Family

US159-DA14531EVZ BLE Control Module Using Firmware Integration
Technology

Introduction

This application note describes the usage of the US159-DA14531EVZ BLE control module, which conforms
to the Firmware Integration Technology (FIT) standard.

In the following pages, the US159-DA14531EVZ BLE control module software is referred to collectively as
“the DA14531 BLE FIT module” or “the FIT module.”

The FIT module supports the following BLE module:

• DA14531MOD (US159-DA14531EVZ)

• DA14535MOD

In the following pages, the DA14531MOD and DA14535MOD are referred to as “the BLE module”.

Target Devices

• RX65N Group

When using this application note with other Renesas MCUs, careful evaluation is recommended after making
modifications to comply with the alternate MCU.

Target Compilers

• Renesas Electronics C/C++ Compiler Package for RX Family

Related Documents

[1] Firmware Integration Technology User’s Manual (R01AN1833)

[2] RX Family Board Support Package Module Using Firmware Integration Technology (R01AN1685)

[3] RX Smart Configurator User’s Guide: e² studio (R20AN0451)

[4] RX Family SCI Module Using Firmware Integration Technology (R01AN1815)

[5] RX Family BYTEQ Module Using Firmware Integration Technology (R01AN1683)

[6] CK-RX65N v1 – User's Manual (R20UT5100)

RX Family US159-DA14531EVZ BLE Control Module Using Firmware Integration Technology

R01AN7174EU0140 Rev.1.40 Page 2 of 124

Nov.21.24

Contents

1. Overview ... 5

1.1. DA14531 FIT Module .. 5

1.2. Overview of the DA14531 BLE FIT Module .. 5

1.2.1. Connection with DA14531 BLE ... 5

1.2.2. Software configuration ... 6

1.3. Features .. 7

1.4. API Overview ... 8

1.5. Status Transitions .. 11

2. API Information .. 12

2.1. Hardware Requirements ... 12

2.2. Software Requirements ... 12

2.3. Support Toolchain ... 12

2.4. Interrupt Vector .. 12

2.5. Header Files .. 12

2.6. Integer Types .. 12

2.7. Compile Settings ... 13

2.8. Code Size .. 14

2.9. Return values .. 15

2.10. Parameter .. 18

2.11. Adding the FIT Module to Your Project ... 23

2.12. “for”, “while” and “do while” Statements .. 23

2.13. Usage Notes .. 24

2.13.1 Getting Started Guide .. 24

2.13.2 Addresses ... 24

2.13.3 Heap Requirements .. 24

2.13.4 Module Firmware Compatibility ... 24

2.13.5 Limitations ... 24

3. API Function .. 26

3.1. R_BLE_Open() .. 26

3.2. R_BLE_Close() ... 27

3.3. R_BLE_Execute() .. 28

3.4. R_BLE_IsTaskFree() ... 29

3.5. R_BLE_GetVersion() ... 30

3.6. R_BLE_GAP_Init() .. 31

3.7. R_BLE_GAP_Terminate() ... 32

3.8. R_BLE_GAP_UpdConn() .. 33

3.9. R_BLE_GAP_SetDataLen() .. 35

3.10. R_BLE_GAP_Disconnect() ... 36

RX Family US159-DA14531EVZ BLE Control Module Using Firmware Integration Technology

R01AN7174EU0140 Rev.1.40 Page 3 of 124

Nov.21.24

3.11. R_BLE_GAP_GetVerInfo() .. 37

3.12. R_BLE_GAP_ReadRssi() ... 38

3.13. R_BLE_GAP_ReadChMap() ... 39

3.14. R_BLE_GAP_SetAdvParam() ... 40

3.15. R_BLE_GAP_SetAdvSresData() .. 42

3.16. R_BLE_GAP_StartAdv() ... 44

3.17. R_BLE_GAP_StopAdv() ... 45

3.18. R_BLE_GAP_GetRemainAdvBufSize() .. 46

3.19. R_BLE_GAP_GetRemDevInfo() ... 47

3.20. R_BLE_GAP_SetPairingParams() .. 48

3.21. R_BLE_GAP_StartPairing() .. 49

3.22. R_BLE_GAP_ReplyPairing()... 50

3.23. R_BLE_GAP_ReplyPasskeyEntry() .. 51

3.24. R_BLE_GAP_ReplyExKeyInfoReq() ... 52

3.25. R_BLE_GAP_ReplyLtkReq() .. 53

3.26. R_BLE_GATT_GetMtu() ... 55

3.27. R_BLE_GATTS_SetDbInst() ... 56

3.28. R_BLE_GATTS_RegisterCb()... 57

3.29. R_BLE_GATTS_DeregisterCb() ... 58

3.30. R_BLE_GATTS_Notification() ... 59

3.31. R_BLE_GATTS_Indication() ... 60

3.32. R_BLE_GATTS_GetAttr() ... 61

3.33. R_BLE_GATTS_SetAttr() .. 63

3.34. R_BLE_GATTC_RegisterCb() .. 65

3.35. R_BLE_GATTC_DeregisterCb() ... 66

3.36. R_BLE_GATTC_ReqExMtu().. 67

3.37. R_BLE_GATTC_DiscAllPrimServ() .. 68

3.38. R_BLE_GATTC_DiscPrimServ()... 69

3.39. R_BLE_GATTC_DiscIncServ() ... 71

3.40. R_BLE_GATTC_DiscAllChar().. 72

3.41. R_BLE_GATTC_DiscCharByUuid() .. 73

3.42. R_BLE_GATTC_DiscAllCharDesc() ... 75

3.43. R_BLE_GATTC_ReadChar() .. 76

3.44. R_BLE_GATTC_ReadCharUsingUuid() ... 77

3.45. R_BLE_GATTC_ReadLongChar() .. 79

3.46. R_BLE_GATTC_ReadMultiChar() .. 80

3.47. R_BLE_GATTC_WriteCharWithoutRsp() ... 81

3.48. R_BLE_GATTC_SignedWriteChar() ... 82

3.49. R_BLE_GATTC_WriteChar() .. 83

3.50. R_BLE_GATTC_WriteLongChar() .. 84

3.51. R_BLE_GATTC_ReliableWrites() ... 86

RX Family US159-DA14531EVZ BLE Control Module Using Firmware Integration Technology

R01AN7174EU0140 Rev.1.40 Page 4 of 124

Nov.21.24

3.52. R_BLE_GATTC_ExecWrite() .. 88

3.53. R_BLE_L2CAP_RegisterCfPsm() ... 90

3.54. R_BLE_L2CAP_DeregisterCfPsm() .. 92

3.55. R_BLE_L2CAP_ReqCfConn() .. 93

3.56. R_BLE_L2CAP_DisconnetCf().. 94

3.57. R_BLE_L2CAP_SendCfCredit() ... 95

3.58. R_BLE_L2CAP_SendCfData().. 96

3.59. R_BLE_VS_Init() ... 98

3.60. R_BLE_VS_SetTxPower() .. 99

3.61. R_BLE_VS_GetTxPower() .. 101

3.62. R_BLE_VS_GetBdAddr() .. 102

3.63. R_BLE_VS_SetBdAddr() .. 103

3.64. R_BLE_VS_GetRand() ... 105

4. Abstraction API for Renesas QE for BLE ... 106

4.1 RM_BLE_ABS_Open() .. 106

4.2 RM_BLE_ABS_Close() ... 107

4.3 RM_BLE_ABS_StartLegacyAdvertising() ... 108

5. Demo Project ... 109

5.1 BLE DA1453x Demo Projects ... 109

5.1.1 Prerequisites ... 109

5.1.2 Import the Demo Project ... 110

5.1.3 Hardware Setup .. 110

5.1.4 Software Setup .. 111

5.1.5 How to Run the Demo ... 113

5.2 Creating a New BLE DA1453x project .. 118

5.3 Adding a Demo to a Workspace ... 118

5.4 Downloading Demo Projects ... 118

6. Appendix ... 119

6.1. Confirmed Operation Environment .. 119

6.2. Troubleshooting ... 121

7. Reference Documents ... 122

Revision History .. 123

RX Family US159-DA14531EVZ BLE Control Module Using Firmware Integration Technology

R01AN7174EU0140 Rev.1.40 Page 5 of 124

Nov.21.24

1. Overview

1.1. DA14531 FIT Module

The FIT module is designed to be added to user projects as an API. For instruction on adding the FIT
module, refer to 2.11 Adding the FIT Module to Your Project.

1.2. Overview of the DA14531 BLE FIT Module

The DA14531 is an ultra-low power SoC integrating a 2.4 GHz transceiver and an Arm® Cortex-M0+
microcontroller with a RAM of 48 kB and a One-Time Programmable (OTP) memory of 32 kB. It can be used
as a standalone application processor or as a data pump in hosted systems.

The Bluetooth® LE firmware includes the L2CAP service layer protocols, Security Manager (SM), Attribute
Protocol (ATT), the Generic Attribute Profile (GATT), and the Generic Access Profile (GAP). All profiles
published by the Bluetooth® SIG as well as custom profiles are supported.

1.2.1. Connection with DA14531 BLE

Examples of connection to the DA14531 BLE are shown below.

Figure 1.1 Example Connection to the DA14531 Module

RX Family US159-DA14531EVZ BLE Control Module Using Firmware Integration Technology

R01AN7174EU0140 Rev.1.40 Page 6 of 124

Nov.21.24

1.2.2. Software configuration

Figure 1.2 shows the software configuration.

Figure 1.2 Software Configuration Diagram

1. DA14531 BLE FIT module

The FIT module. This software is used to control the BLE module.

2. SCI FIT module
Implements communication between the BLE module and the MCU. A sample program is available.
Refer to “Related Documents” on page 1 and obtain the software.

3. BYTEQ FIT module
Implements circular buffers used by the SCI FIT module. A sample programs is available.
Refer to “Related Documents” on page 1 and obtain the software.

4. BSP FIT module
The Board Support Package module. A sample programs is available.
Refer to “Related Documents” on page 1 and obtain the software.

5. RTOS
The RTOS manages the system overall. Operation of the FIT module has been verified
using FreeRTOS or AzureRTOS or Bare metal by BSP_CFG_RTOS_USED.

RX Family US159-DA14531EVZ BLE Control Module Using Firmware Integration Technology

R01AN7174EU0140 Rev.1.40 Page 7 of 124

Nov.21.24

1.3. Features

The Bluetooth Low Energy Abstraction module with GTL supports the following features:

• Common functionality

o Boot from host for DA14531/DA14535 module

o Use the 1-wire (default) or the 2-wire UART for booting

▪ Note: The 2-wire UART booting only supports DA14535.

o Open/Close the BLE protocol stack

• The following GAP Role support

o Peripheral: The device that accepts a connection request from Central and establishes a
connection

• GAP functionality

o Initialize the Host stack

o Setting address

o Start/Stop Advertising

o Connect/Disconnect a link

• GATT Common functionality

o Get MTU Size

• GATT Server functionality

o Initialization of GATT Server

o Loading of Profile definition

o Notification of characteristics modification

o Read/Write of GATT Profile from host

• Security functionality (DA14531/DA14535 module acting as Peripheral)

o Legacy Pairing supporting Just works functionality

o Legacy Pairing supporting Passkey functionality

o Initiate security request procedure from Peripheral as well

RX Family US159-DA14531EVZ BLE Control Module Using Firmware Integration Technology

R01AN7174EU0140 Rev.1.40 Page 8 of 124

Nov.21.24

1.4. API Overview

Table 1.1 lists the API functions included in the FIT module. The required memory size are listed in 2.8 Code
Size.

Table 1.1 API Functions

Function Function Description

BLE Common Interface

R_BLE_Open() Open the BLE protocol stack.

R_BLE_Close() Close the BLE protocol stack.

R_BLE_Execute() Execute the BLE task.

R_BLE_IsTaskFree() Check if the BLE task queue is free or not.

R_BLE_GetVersion() Get the BLE FIT module version.

BLE GAP Interface

R_BLE_GAP_Init() Initialize the Host Stack.

R_BLE_GAP_Terminate() Terminate the Host Stack.

R_BLE_GAP_UpdConn() Update the connection parameters.

R_BLE_GAP_SetDataLen() Update the packet size and the packet transmit time.

R_BLE_GAP_Disconnect() Disconnect the link.

R_BLE_GAP_GetVerInfo() Get the version number of the Controller and the host stack.

R_BLE_GAP_ReadRssi() Get RSSI.

R_BLE_GAP_ReadChMap() Get the Channel Map.

R_BLE_GAP_SetAdvParam() Set advertising parameters.

R_BLE_GAP_SetAdvSresData() Set advertising data/scan response data/periodic advertising
data.

R_BLE_GAP_StartAdv() Start advertising.

R_BLE_GAP_StopAdv() Stop advertising.

R_BLE_GAP_GetRemainAdvBufSize() Get buffer size for advertising data/scan response
data/periodic advertising data in the Controller.

R_BLE_GAP_GetRemDevInfo() Get the information about remote device.

R_BLE_GAP_SetPairingParams() Set the parameters using pairing.

R_BLE_GAP_StartPairing() Start pairing.

R_BLE_GAP_ReplyPairing() Reply the pairing request from a remote device.

R_BLE_GAP_ReplyPasskeyEntry() Reply the passkey entry request.

R_BLE_GAP_ReplyExKeyInfoReq() Distribute the keys of local device.

R_BLE_GAP_ReplyLtkReq() Reply the LTK request from a remote device.

BLE GATT Common Interface

R_BLE_GATT_GetMtu() Gets the current MTU used in GATT communication.

BLE GATT Server Interface

R_BLE_GATTS_SetDbInst() Sets GATT Database to host stack.

R_BLE_GATTS_RegisterCb() Registers a callback for GATT Server event.

RX Family US159-DA14531EVZ BLE Control Module Using Firmware Integration Technology

R01AN7174EU0140 Rev.1.40 Page 9 of 124

Nov.21.24

R_BLE_GATTS_DeregisterCb() Deregisters the callback function for GATT Server event.

R_BLE_GATTS_Notification() Sends a notification of an attribute's value.

R_BLE_GATTS_Indication() Sends an indication of an attribute's value.

R_BLE_GATTS_GetAttr() Gets an attribute value from the GATT Database.

R_BLE_GATTS_SetAttr() Sets an attribute value to the GATT Database.

BLE GATT Client Interface

R_BLE_GATTC_RegisterCb() Registers a callback function for GATT Client event.

R_BLE_GATTC_DeregisterCb() Deregisters the callback function for GATT Client event.

R_BLE_GATTC_ReqExMtu() Sends a MTU Exchange Request PDU to a GATT Server in
order to change the current MTU.

R_BLE_GATTC_DiscAllPrimServ() Discovers all Primary Services in a GATT Server.

R_BLE_GATTC_DiscPrimServ() Discovers Primary Service specified by p_uuid in a GATT
Server.

R_BLE_GATTC_DiscIncServ() Discovers Included Services within the specified attribute
handle range in a GATT Server.

R_BLE_GATTC_DiscAllChar() Discovers Characteristic within the specified attribute handle
range in a GATT Server.

R_BLE_GATTC_DiscCharByUuid() Discovers Characteristic specified by uuid within the specified
attribute handle range in a GATT Server.

R_BLE_GATTC_DiscAllCharDesc() Discovers Characteristic Descriptor within the specified
attribute handle range in a GATT Server.

R_BLE_GATTC_ReadChar() Reads a Characteristic/Characteristic Descriptor in a GATT
Server.

R_BLE_GATTC_ReadCharUsingUuid() Reads a Characteristic in a GATT Server using a specified
UUID.

R_BLE_GATTC_ReadLongChar() Reads a Long Characteristic in a GATT Server.

R_BLE_GATTC_ReadMultiChar() Reads multiple Characteristics in a GATT Server.

R_BLE_GATTC_WriteCharWithoutRsp() Writes a Characteristic in a GATT Server without response.

R_BLE_GATTC_SignedWriteChar() Writes Signed Data to a Characteristic in a GATT Server
without response.

R_BLE_GATTC_WriteChar() Writes a Characteristic in a GATT Server.

R_BLE_GATTC_WriteLongChar() Writes a Long Characteristic in a GATT Server.

R_BLE_GATTC_ReliableWrites() Performs the Reliable Writes procedure described in GATT
Specification.

R_BLE_GATTC_ExecWrite() Executes a write to Characteristic.

BLE L2CAP Interface

R_BLE_L2CAP_RegisterCfPsm() Registers PSM that uses L2CAP CBFC Channel and a
callback for L2CAP event.

R_BLE_L2CAP_DeregisterCfPsm() Stops the use of the L2CAP CBFC Channel specified by the
psm parameter and deregisters the callback function for
L2CAP event.

R_BLE_L2CAP_ReqCfConn() Sends a connection request for L2CAP CBFC Channel.

R_BLE_L2CAP_DisconnetCf() Sends a disconnection request for L2CAP CBFC Channel.

RX Family US159-DA14531EVZ BLE Control Module Using Firmware Integration Technology

R01AN7174EU0140 Rev.1.40 Page 10 of 124

Nov.21.24

R_BLE_L2CAP_SendCfCredit() Sends credit to a remote device.

R_BLE_L2CAP_SendCfData() Sends the data to a remote device via L2CAP CBFC
Channel.

BLE Vendor Specific (VS) Interface

R_BLE_VS_Init() Initializes Vendor Specific API and registers a callback
function for Vendor Specific Event.

R_BLE_VS_SetTxPower() Configures transmit power.

R_BLE_VS_GetTxPower() Gets transmit power.

R_BLE_VS_GetBdAddr() Sets public/random address of local device to the area
specified by the parameter.

R_BLE_VS_SetBdAddr() Gets currently configured public/random address.

R_BLE_VS_GetRand() Generates 4-16 bytes of random number used in creating
keys.

Abstraction API for Renesas QE for BLE

RM_BLE_ABS_Open() Host stack is initialized with this function.

RM_BLE_ABS_Close() Close the BLE channel.

RM_BLE_ABS_StartLegacyAdvertising() Start Legacy Advertising after setting advertising parameters,
advertising data and scan response data.

RX Family US159-DA14531EVZ BLE Control Module Using Firmware Integration Technology

R01AN7174EU0140 Rev.1.40 Page 11 of 124

Nov.21.24

1.5. Status Transitions

 Figure 1.1 shows the status transitions of the FIT module up to communication status.

Figure 1.1 Status Transitions

RX Family US159-DA14531EVZ BLE Control Module Using Firmware Integration Technology

R01AN7174EU0140 Rev.1.40 Page 12 of 124

Nov.21.24

2. API Information

The FIT module has been confirmed to operate under the following conditions.

2.1. Hardware Requirements

The MCU used must support the following functions:

o Serial communication

o I/O ports

2.2. Software Requirements

The driver is dependent upon the following FIT module:

r_bsp
r_sci_rx
r_byteq_rx
FreeRTOS
AzureRTOS

2.3. Support Toolchain

The FIT module has been confirmed to work with the toolchain listed in 6.1 Confirmed Operation
Environment.

2.4. Interrupt Vector

None

2.5. Header Files

All API calls and their supporting interface definitions are in r_ble_da14531_if.h.

2.6. Integer Types

This project uses ANSI C99. These types are defined in stdint.h.

RX Family US159-DA14531EVZ BLE Control Module Using Firmware Integration Technology

R01AN7174EU0140 Rev.1.40 Page 13 of 124

Nov.21.24

2.7. Compile Settings

The configuration option settings of the FIT module are contained in r_ble_da14531_config.h.
The names of the options and their setting values are listed in the table below.

Table 2.1 Configuration Options (r_ble_da14531_config.h)

Configuration Options in r_ble_da14531_config.h

BLE_CFG_PARAM_CHECKING_ENABLE
Note: The default is System Default

Parameter checking.

BLE_CFG_SCI_CHANNEL
Note: The default is 6

SCI channel for DA1453x GTL command
communication.

BLE_CFG_SCI_INTERRUPT_LEVEL
Note: The default is 3

Interrupt Level for BLE_CFG_SCI_CHANNEL.

BLE_CFG_RESET_PORT
Note: The default is 5

General-purpose port PDR register connected to the
DA1453x reset port.

BLE_CFG_RESET_PIN
Note: The default is 5

General-purpose port PODR register connected to
the DA1453x reset pin.

BLE_CFG_SCK_PORT
Note: The default is 0

General-purpose port PDR register connected to the
DA1453x SCK port.

BLE_CFG_SCK_PIN
Note: The default is 2

General-purpose port PODR register connected to
the DA1453x SCK pin.

BLE_CFG_RESET_POLARITY
Note: The default is 0

Reset Polarity.

BLE_CFG_HOST_BOOT_MODE
Note: The default is 0.

Boot SDK download from host MCU.
When using this feature via 1-Wire UART or 2-Wire
UART, please refer to 2.13.5 Limitations

BLE_CFG_DA1453x_DEVICE
Note: The default is DA14531_DEVICE

Select PMOD device: Either DA14531PMOD or
DA14535PMOD.

Table 2.2 Configuration Options (r_sci_rx_config.h)

Configuration Options in r_ sci_rx_config.h

#define SCI_CFG_CHx_INCLUDED
Notes: 1. CHx = CH0 to CH12
 2. The default values are as follows: CH0
CH2 to CH12: 0, CH1: 1

Each channel has resources such as transmit and
receive buffers, counters, interrupts, other programs,
and RAM. Setting this option to 1 assigns related
resources to the specified channel.

#define SCI_CFG_CHx_TX_BUFSIZ
Notes: 1. CHx = CH0 to CH12
 2. The default value is 80 for all channels.

Specifies the transmit buffer size of an individual
channel. The buffer size of the channel specified by
BLE_CFG_SCI_CHANNEL should be set to 4096.

#define SCI_CFG_CHx_RX_BUFSIZ
Notes: 1. CHx = CH0 to CH12
 2. The default value is 80 for all channels.

Specifies the receive buffer size of an individual
channel. The buffer size of the channel specified by
BLE_CFG_SCI_CHANNEL should be set to 4096.

#define SCI_CFG_TEI_INCLUDED
Note: The default is 0.

Enables the transmit end interrupt for serial
transmissions. This option should be set to 1.

Table 2.3 Configuration Options (r_bsp_config.h)

Configuration Options in r_ bsp_config.h

#define BSP_CFG_RTOS_USED

Note: The default is 0.

Specifies the type of real-time OS.

When using this FIT module, set the following.

Bare metal: 0, FreeRTOS:1, AzureRTOS: 5

RX Family US159-DA14531EVZ BLE Control Module Using Firmware Integration Technology

R01AN7174EU0140 Rev.1.40 Page 14 of 124

Nov.21.24

2.8. Code Size

Typical code sizes associated with this module are listed below.
The ROM (code and constants) and RAM (global data) sizes are determined by the build-time configuration
options described in 2.7 Compile Settings. The table lists reference values when the C compiler’s compile
options are set to their default values, as described in 2.3 Support Toolchain. The compile option default
values are optimization level: 2, optimization type: for size, and data endianness: little-endian. The code size
varies depending on the C compiler version and compile options.

The values in the table below are confirmed under the following conditions.
Module Revision: r_ble_da14531_rx rev1.40.
Compiler Version: Renesas Electronics C/C++ Compiler Package for RX Family V3.06.00

(The option of “-lang=c99” is added to the default settings of the integrated
development environment.)

Configuration Options: Default settings.

Table 2.4 Memory Sizes

Device RTOS Category Memory usage

Renesas Compiler

RX65N

FreeRTOS (*1) (*2)
ROM 49106 bytes

RAM 6382 bytes

AzureRTOS(*2)
ROM 23815 bytes

RAM 23660 bytes

Bare metal (*1) (*2)
ROM 41028 bytes

RAM 6131 bytes

Notes:

(*1) ROM usage included 13KB (13517 bytes) of DA14531 Boot image.
(*2) ROM usage included the QE module, which is generated based on the sample app.

RX Family US159-DA14531EVZ BLE Control Module Using Firmware Integration Technology

R01AN7174EU0140 Rev.1.40 Page 15 of 124

Nov.21.24

2.9. Return values

The error codes returned by API functions are listed below. The enumerated types of return values and API
function declarations are contained in r_ble_api.h.
typedef uint16_t ble_status_t;

enum RBLE_STATUS_enum

{

 BLE_SUCCESS = 0x0000,

 /* common error code */

 BLE_ERR_INVALID_PTR = 0x0001,

 BLE_ERR_INVALID_DATA = 0x0002,

 BLE_ERR_INVALID_ARG = 0x0003,

 BLE_ERR_INVALID_FUNC = 0x0004,

 BLE_ERR_INVALID_CHAN = 0x0005,

 BLE_ERR_INVALID_MODE = 0x0006,

 BLE_ERR_UNSUPPORTED = 0x0007,

 BLE_ERR_INVALID_STATE = 0x0008,

 BLE_ERR_INVALID_OPERATION = 0x0009,

 BLE_ERR_ALREADY_IN_PROGRESS = 0x000A,

 BLE_ERR_CONTEXT_FULL = 0x000B,

 BLE_ERR_MEM_ALLOC_FAILED = 0x000C,

 BLE_ERR_NOT_FOUND = 0x000D,

 BLE_ERR_INVALID_HDL = 0x000E,

 BLE_ERR_DISCONNECTED = 0x000F,

 BLE_ERR_LIMIT_EXCEEDED = 0x0010,

 BLE_ERR_RSP_TIMEOUT = 0x0011,

 BLE_ERR_NOT_YET_READY = 0x0012,

 BLE_ERR_UNSPECIFIED = 0x0013,

 BLE_ERR_ALREADY_INITIALIZED = 0x0014,

 /* HCI Spec Error */

 BLE_ERR_HC_UNKNOWN_HCI_CMD = 0x1001,

 BLE_ERR_HC_NO_CONN = 0x1002,

 BLE_ERR_HC_HW_FAIL = 0x1003,

 BLE_ERR_HC_PAGE_TO = 0x1004,

 BLE_ERR_HC_AUTH_FAIL = 0x1005,

 BLE_ERR_HC_KEY_MISSING = 0x1006,

 BLE_ERR_HC_MEM_FULL = 0x1007,

 BLE_ERR_HC_CONN_TO = 0x1008,

 BLE_ERR_HC_MAX_NUM_OF_CONN = 0x1009,

 BLE_ERR_HC_MAX_NUM_OF_SCO_CONN = 0x100A,

 BLE_ERR_HC_ACL_CONN_ALREADY_EXISTS = 0x100B,

 BLE_ERR_HC_CMD_DISALLOWED = 0x100C,

 BLE_ERR_HC_HOST_REJ_LIMITED_RESRC = 0x100D,

 BLE_ERR_HC_HOST_REJ_SEC_REASONS = 0x100E,

 BLE_ERR_HC_HOST_REJ_PERSONAL_DEV = 0x100F,

 BLE_ERR_HC_HOST_TO = 0x1010,

 BLE_ERR_HC_UNSPRT_FEAT_OR_PARAM = 0x1011,

 BLE_ERR_HC_INVALID_HCI_CMD_PARAM = 0x1012,

 BLE_ERR_HC_OTHER_END_TERM_USER = 0x1013,

 BLE_ERR_HC_OTHER_END_TERM_LOW_RESRC = 0x1014,

 BLE_ERR_HC_OTHER_END_TERM_PW_OFF = 0x1015,

 BLE_ERR_HC_CONN_TERM_BY_LOCAL_HOST = 0x1016,

 BLE_ERR_HC_REPEATED_ATTEMPTS = 0x1017,

 BLE_ERR_HC_PAIRING_NOT_ALLOWED = 0x1018,

 BLE_ERR_HC_UNKNOWN_LMP_PDU = 0x1019,

 BLE_ERR_HC_UNSPRT_REM_FEAT = 0x101A,

 BLE_ERR_HC_SCO_OFFSET_REJ = 0x101B,

 BLE_ERR_HC_SCO_INTERVAL_REJ = 0x101C,

RX Family US159-DA14531EVZ BLE Control Module Using Firmware Integration Technology

R01AN7174EU0140 Rev.1.40 Page 16 of 124

Nov.21.24

 BLE_ERR_HC_SCO_AIR_MODE_REJ = 0x101D,

 BLE_ERR_HC_INVALID_LMP_PARAM = 0x101E,

 BLE_ERR_HC_UNSPECIFIED_ERR = 0x101F,

 BLE_ERR_HC_UNSPRT_LMP_PARAM_VAL = 0x1020,

 BLE_ERR_HC_ROLE_CHANGE_NOT_ALLOWED = 0x1021,

 BLE_ERR_HC_LMP_RSP_TO = 0x1022,

 BLE_ERR_HC_LMP_ERR_TX_COLLISION = 0x1023,

 BLE_ERR_HC_LMP_PDU_NOT_ALLOWED = 0x1024,

 BLE_ERR_HC_ENC_MODE_NOT_ACCEPTABLE = 0x1025,

 BLE_ERR_HC_UNIT_KEY_USED = 0x1026,

 BLE_ERR_HC_QOS_IS_NOT_SPRT = 0x1027,

 BLE_ERR_HC_INSTANT_PASSED = 0x1028,

 BLE_ERR_HC_PAIRING_UNIT_KEY_NOT_SPRT = 0x1029,

 BLE_ERR_HC_DIFF_TRANSACTION_COLLISION = 0x102A,

 BLE_ERR_HC_QOS_UNACCEPTABLE_PARAM = 0x102C,

 BLE_ERR_HC_QOS_REJ = 0x102D,

 BLE_ERR_HC_CH_CLASSIFICATION_NOT_SPRT = 0x102E,

 BLE_ERR_HC_INSUFFICIENT_SEC = 0x102F,

 BLE_ERR_HC_PARAM_OUT_OF_MANDATORY_RANGE = 0x1030,

 BLE_ERR_HC_ROLE_SWITCH_PENDING = 0x1032,

 BLE_ERR_HC_RESERVED_SLOT_VIOLATION = 0x1034,

 BLE_ERR_HC_ROLE_SWITCH_FAIL = 0x1035,

 BLE_ERR_HC_EXT_INQUIRY_RSP_TOO_LARGE = 0x1036,

 BLE_ERR_HC_SSP_NOT_SPRT_BY_HOST = 0x1037,

 BLE_ERR_HC_HOST_BUSY_PAIRING = 0x1038,

 BLE_ERR_HC_CONN_REJ_NO_SUIT_CH_FOUND = 0x1039,

 BLE_ERR_HC_CTRL_BUSY = 0x103A,

 BLE_ERR_HC_UNACCEPTEBALE_CONN_INTERVAL = 0x103B,

 BLE_ERR_HC_ADV_TO = 0x103C,

 BLE_ERR_HC_CONN_TREM_DUE_TO_MIC_FAIL = 0x103D,

 BLE_ERR_HC_CONN_FAIL_TO_BE_EST = 0x103E,

 BLE_ERR_HC_MAC_CONN_FAIL = 0x103F,

 BLE_ERR_HC_COARSE_CLK_ADJUST_REJ = 0x1040,

 BLE_ERR_HC_TYPE0_SUBMAP_NOT_DEFINED = 0x1041,

 BLE_ERR_HC_UNKNOWN_ADV_ID = 0x1042,

 BLE_ERR_HC_LIMIT_REACHED = 0x1043,

 BLE_ERR_HC_OP_CANCELLED_BY_HOST = 0x1044,

 /* SMP Spec Error */

 BLE_ERR_SMP_LE_PASSKEY_ENTRY_FAIL = 0x2001,

 BLE_ERR_SMP_LE_OOB_DATA_NOT_AVAILABLE = 0x2002,

 BLE_ERR_SMP_LE_AUTH_REQ_NOT_MET = 0x2003,

 BLE_ERR_SMP_LE_CONFIRM_VAL_NOT_MATCH = 0x2004,

 BLE_ERR_SMP_LE_PAIRING_NOT_SPRT = 0x2005,

 BLE_ERR_SMP_LE_INSUFFICIENT_ENC_KEY_SIZE = 0x2006,

 BLE_ERR_SMP_LE_CMD_NOT_SPRT = 0x2007,

 BLE_ERR_SMP_LE_UNSPECIFIED_REASON = 0x2008,

 BLE_ERR_SMP_LE_REPEATED_ATTEMPTS = 0x2009,

 BLE_ERR_SMP_LE_INVALID_PARAM = 0x200A,

 BLE_ERR_SMP_LE_DHKEY_CHECK_FAIL = 0x200B,

 BLE_ERR_SMP_LE_NUM_COMP_FAIL = 0x200C,

 BLE_ERR_SMP_LE_BREDR_PAIRING_IN_PROGRESS = 0x200D,

 BLE_ERR_SMP_LE_CT_KEY_GEN_NOT_ALLOWED = 0x200E,

 BLE_ERR_SMP_LE_DISCONNECTED = 0x200F,

 BLE_ERR_SMP_LE_TO = 0x2011,

 BLE_ERR_SMP_LE_LOC_KEY_MISSING = 0x2014,

 /* GATT Spec Error */

 BLE_ERR_GATT_INVALID_HANDLE = 0x3001,

 BLE_ERR_GATT_READ_NOT_PERMITTED = 0x3002,

 BLE_ERR_GATT_WRITE_NOT_PERMITTED = 0x3003,

RX Family US159-DA14531EVZ BLE Control Module Using Firmware Integration Technology

R01AN7174EU0140 Rev.1.40 Page 17 of 124

Nov.21.24

 BLE_ERR_GATT_INVALID_PDU = 0x3004,

 BLE_ERR_GATT_INSUFFICIENT_AUTHENTICATION = 0x3005,

 BLE_ERR_GATT_REQUEST_NOT_SUPPORTED = 0x3006,

 BLE_ERR_GATT_INVALID_OFFSET = 0x3007,

 BLE_ERR_GATT_INSUFFICIENT_AUTHORIZATION = 0x3008,

 BLE_ERR_GATT_PREPARE_WRITE_QUEUE_FULL = 0x3009,

 BLE_ERR_GATT_ATTRIBUTE_NOT_FOUND = 0x300A,

 BLE_ERR_GATT_ATTRIBUTE_NOT_LONG = 0x300B,

 BLE_ERR_GATT_INSUFFICIENT_ENC_KEY_SIZE = 0x300C,

 BLE_ERR_GATT_INVALID_ATTRIBUTE_LEN = 0x300D,

 BLE_ERR_GATT_UNLIKELY_ERROR = 0x300E,

 BLE_ERR_GATT_INSUFFICIENT_ENCRYPTION = 0x300F,

 BLE_ERR_GATT_UNSUPPORTED_GROUP_TYPE = 0x3010,

 BLE_ERR_GATT_INSUFFICIENT_RESOURCES = 0x3011,

 /* defined in CSS */

 BLE_ERR_GATT_WRITE_REQ_REJECTED = 0x30FC,

 BLE_ERR_GATT_CCCD_IMPROPERLY_CFG = 0x30FD,

 BLE_ERR_GATT_PROC_ALREADY_IN_PROGRESS = 0x30FE,

 BLE_ERR_GATT_OUT_OF_RANGE = 0x30FF,

 /* L2CAP Spec Error */

 BLE_ERR_L2CAP_PSM_NOT_SUPPORTED = 0x4002,

 BLE_ERR_L2CAP_NO_RESOURCE = 0x4004,

 BLE_ERR_L2CAP_INSUF_AUTHEN = 0x4005,

 BLE_ERR_L2CAP_INSUF_AUTHOR = 0x4006,

 BLE_ERR_L2CAP_INSUF_ENC_KEY_SIZE = 0x4007,

 BLE_ERR_L2CAP_REFUSE_INSUF_ENC = 0x4008,

 BLE_ERR_L2CAP_REFUSE_INVALID_SCID = 0x4009,

 BLE_ERR_L2CAP_REFUSE_SCID_ALREADY_ALLOC = 0x400A,

 BLE_ERR_L2CAP_REFUSE_UNACCEPTABLE_PARAM = 0x400B,

};

RX Family US159-DA14531EVZ BLE Control Module Using Firmware Integration Technology

R01AN7174EU0140 Rev.1.40 Page 18 of 124

Nov.21.24

2.10. Parameter

/* Application callback event types */

#define R_BLE_GTL_CB_EVT_TYPE_MASK 0xF000U

#define R_BLE_GTL_CB_EVT_TYPE_GAP 0x1000U

#define R_BLE_GTL_CB_EVT_TYPE_GATTS 0x3000U

#define R_BLE_GTL_CB_EVT_TYPE_GATTC 0x4000U

#define R_BLE_GTL_CB_EVT_TYPE_L2CAP 0x5000U

#define R_BLE_GTL_CB_EVT_TYPE_VS 0x8000U

/* GTL Task ID's */

#define R_BLE_GTL_TASK_ID_GATTM 0x000B

#define R_BLE_GTL_TASK_ID_GATTC 0x000C

#define R_BLE_GTL_TASK_ID_GAPM 0x000D

#define R_BLE_GTL_TASK_ID_GAPC 0x000E

#define R_BLE_GTL_TASK_ID_GTL 0x0010

/* GTL GATTM Command ID's */

#define R_BLE_GTL_GATTM_ADD_SVC_REQ 0x0B00

#define R_BLE_GTL_GATTM_ADD_SVC_RSP 0x0B01

#define R_BLE_GTL_GATTM_ATT_GET_VALUE_REQ 0x0B0A

#define R_BLE_GTL_GATTM_ATT_GET_VALUE_RSP 0x0B0B

#define R_BLE_GTL_GATTM_ATT_SET_VALUE_REQ 0x0B0C

#define R_BLE_GTL_GATTM_ATT_SET_VALUE_RSP 0x0B0D

/* GTL GATTC Command ID's */

#define R_BLE_GTL_GATTC_CMP_EVT 0x0C00

#define R_BLE_GTL_GATTC_EXC_MTU_CMD 0x0C01

#define R_BLE_GTL_GATTC_MTU_CHANGED_IND 0x0C02

#define R_BLE_GTL_GATTC_DISC_CMD 0x0C03

#define R_BLE_GTL_GATTC_DISC_SVC_IND 0x0C04

#define R_BLE_GTL_GATTC_DISC_CHAR_IND 0x0C06

#define R_BLE_GTL_GATTC_DISC_CHAR_DESC_IND 0x0C07

#define R_BLE_GTL_GATTC_READ_CMD 0x0C08

#define R_BLE_GTL_GATTC_READ_IND 0x0C09

#define R_BLE_GTL_GATTC_SEND_EVT_CMD 0x0C10

#define R_BLE_GTL_GATTC_WRITE_CMD 0x0C0A

#define R_BLE_GTL_GATTC_WRITE_EXECUTE_CMD 0x0C0B

#define R_BLE_GTL_GATTC_READ_REQ_IND 0x0C13

#define R_BLE_GTL_GATTC_READ_CFM 0x0C14

#define R_BLE_GTL_GATTC_WRITE_REQ_IND 0x0C15

#define R_BLE_GTL_GATTC_WRITE_CFM 0x0C16

/* GTL GAPM Command ID's */

#define R_BLE_GTL_GAPM_CMP_EVT 0x0D00

#define R_BLE_GTL_GAPM_DEVICE_READY_IND 0x0D01

#define R_BLE_GTL_GAPM_RESET_CMD 0x0D02

#define R_BLE_GTL_GAPM_CANCEL_CMD 0x0D03

#define R_BLE_GTL_GAPM_SET_DEV_CONFIG_CMD 0x0D04

#define R_BLE_GTL_GAPM_GET_DEV_INFO_CMD 0x0D06

#define R_BLE_GTL_GAPM_DEV_VERSION_IND 0x0D07

#define R_BLE_GTL_GAPM_DEV_BDADDR_IND 0x0D08

#define R_BLE_GTL_GAPM_GEN_RAND_ADDR_CMD 0x0D16

#define R_BLE_GTL_GAPM_GEN_RAND_NB_CMD 0x0D19

#define R_BLE_GTL_GAPM_GEN_RAND_NB_IND 0x0D1A

#define R_BLE_GTL_GAPM_UNKNOWN_TASK_IND 0x0D1D

#define R_BLE_GTL_GAPM_START_ADVERTISE_CMD 0x0D0D

/* GTL GAPC Command ID's */

#define R_BLE_GTL_GAPC_CMP_EVT 0x0E00

#define R_BLE_GTL_GAPC_CONNECTION_REQ_IND 0x0E01

RX Family US159-DA14531EVZ BLE Control Module Using Firmware Integration Technology

R01AN7174EU0140 Rev.1.40 Page 19 of 124

Nov.21.24

#define R_BLE_GTL_GAPC_CONNECTION_CFM 0x0E02

#define R_BLE_GTL_GAPC_DISCONNECT_IND 0x0E03

#define R_BLE_GTL_GAPC_DISCONNECT_CMD 0x0E04

#define R_BLE_GTL_GAPC_GET_INFO_CMD 0x0E05

#define R_BLE_GTL_GAPC_PEER_VERSION_IND 0x0E07

#define R_BLE_GTL_GAPC_PEER_FEATURES_IND 0x0E08

#define R_BLE_GTL_GAPC_CON_RSSI_IND 0x0E09

#define R_BLE_GTL_GAPC_GET_DEV_INFO_REQ_IND 0x0E0A

#define R_BLE_GTL_GAPC_GET_DEV_INFO_CFM 0x0E0B

#define R_BLE_GTL_GAPC_PARAM_UPDATE_CMD 0x0E0E

#define R_BLE_GTL_GAPC_PARAM_UPDATE_REQ_IND 0x0E0F

#define R_BLE_GTL_GAPC_PARAM_UPDATE_CFM 0x0E10

#define R_BLE_GTL_GAPC_PARAM_UPDATED_IND 0x0E11

#define R_BLE_GTL_GAPC_CON_CHANNEL_MAP_IND 0x0E1D

#define R_BLE_GTL_GAPC_LECB_CONNECT_CMD 0x0E20

#define R_BLE_GTL_GAPC_LECB_ADD_CMD 0x0E24

#define R_BLE_GTL_GAPC_LECB_SEND_CMD 0x0E25

#define R_BLE_GTL_GAPC_LECB_DISCONNECT_CMD 0x0E26

#define R_BLE_GTL_GAPC_SET_LE_PKT_SIZE_CMD 0x0E2B

#define R_BLE_GTL_GAPC_LE_PKT_SIZE_IND 0x0E2C

/* GTL Auxiliary Command ID's */

#define R_BLE_GTL_AUX_SET_TX_POWER_CMD 0xA005

#define R_BLE_GTL_AUX_SET_TX_POWER_CMP_EVT 0xA006

#define R_BLE_GTL_AUX_GET_TX_POWER_CMD 0xA007

#define R_BLE_GTL_AUX_GET_TX_POWER_RSP 0xA008

#define R_BLE_GTL_PERIPHERAL_ROLE 0x0A

#define R_BLE_GTL_ADV_FLAG_FIELD_LEN 3

#define R_BLE_GTL_ADV_DATA_LEN_MAX 31

#define R_BLE_GTL_ADV_DATA_TYPE_FLAGS 0x01

#define R_BLE_GTL_SCAN_RSP_DATA_LEN_MAX 31

#define R_BLE_GTL_KEY_LEN 0x10

#define R_BLE_GTL_GET_RAND_SIZE_MAX 8

#define R_BLE_GTL_DATA_LEN_TX_OCTETS_MAX 251

#define R_BLE_GTL_DATA_LEN_TX_TIME_MAX 2120

#define R_BLE_GTL_GAP_NON_DISCOVERABLE 0x00

#define R_BLE_GTL_GAP_GEN_DISCOVERABLE 0x01

#define R_BLE_GTL_GAP_LIM_DISCOVERABLE 0x02

#define R_BLE_GTL_GAP_BROADCASTER_MODE 0x03

/* Attribute permissions defined in QE profile */

#define R_BLE_GTL_QE_ATT_PERM_READ 0x01

#define R_BLE_GTL_QE_ATT_PERM_WRITE 0x02

#define R_BLE_GTL_QE_ATT_PERM_NOTIFY 0x10

#define R_BLE_GTL_QE_ATT_PERM_INDICATE 0x20

/* Attribute permissions defined in GTL message(s) */

#define R_BLE_GTL_ATT_PERM_READ_ENABLE 0x00000001UL

#define R_BLE_GTL_ATT_PERM_WRITE_ENABLE 0x00000008UL

#define R_BLE_GTL_ATT_PERM_INDICATE_ENABLE 0x00000040UL

#define R_BLE_GTL_ATT_PERM_NOIFY_ENABLE 0x00000200UL

#define R_BLE_GTL_ATT_PERM_WRITE_REQ_ACCEPTED 0x00020000UL

#define R_BLE_GTL_ATT_PERM_UUID_LEN_128 0x00080000UL

#define R_BLE_GTL_SVC_GAP_UUID 0x1800

#define R_BLE_GTL_SVC_GATT_UUID 0x1801

#define R_BLE_GTL_ATT_PRIMARY_SVC_DECL 0x2800

#define R_BLE_GTL_ATT_SECONDARY_SVC_DECL 0x2801

#define R_BLE_GTL_CHAR_DECLARATION 0x2803

#define R_BLE_GTL_CHAR_USER_DESC 0x2901

RX Family US159-DA14531EVZ BLE Control Module Using Firmware Integration Technology

R01AN7174EU0140 Rev.1.40 Page 20 of 124

Nov.21.24

#define R_BLE_GTL_CHAR_DEVICE_NAME 0x2A00

#define R_BLE_GTL_CHAR_APPEARANCE 0x2A01

/* The first two bits of a non-public (random) address must be binary ones */

#define R_BLE_GTL_PUBLIC_BD_ADDR_MASK 0xC0

#define R_BLE_GTL_MS_PER_SECOND 1000UL

#define R_BLE_GTL_ADV_TIMER_TICKS_PER_SECOND 100UL

/* Service permissions defined in GTL messages(s), can be or'd together */

#define R_BLE_GTL_SVC_PERM_ENABLE 0x04

#define R_BLE_GTL_SVC_PERM_UUID_LEN_128 0x40

#define R_BLE_GTL_SVC_PERM_PRIMARY 0x80

/* "RBLE" in ASCII. Used to determine if the control block is open. */

#define R_BLE_GTL_OPEN 0x52424C45U

/* Mutex give/take defines */

#define R_BLE_GTL_MUTEX_TX (1UL << 0)

#define R_BLE_GTL_MUTEX_RX (1UL << 1)

#define R_BLE_GTL_MUTEX_TEI (1UL << 2)

/* UART boot protocol message types */

#define R_BLE_GTL_BOOT_STX 0x02

#define R_BLE_GTL_BOOT_SOH 0x01

#define R_BLE_GTL_BOOT_ACK 0x06

#define R_BLE_GTL_BOOT_NACK 0x15

/* Defines for host DB */

#define DB_INVALID_INDEX 0xFFFF

#define DB_VALID_INDEX 0x0000

#define BLE_SERV_CCC_UUID 0x2902

typedef enum e_r_ble_gtl_rx_msg_parser_state

{

 R_BLE_GTL_RX_MSG_PARSER_STATE_IDLE = 0,

 R_BLE_GTL_RX_MSG_PARSER_STATE_RX_HEADER,

 R_BLE_GTL_RX_MSG_PARSER_STATE_RX_PARAM

} r_ble_gtl_rx_msg_parser_state_t;

typedef enum e_r_ble_gtl_gapm_operation

{

 R_BLE_GTL_GAPM_OP_NONE = 0x00,

 R_BLE_GTL_GAPM_OP_RESET,

 R_BLE_GTL_GAPM_OP_CANCEL,

 R_BLE_GTL_GAPM_OP_SET_DEV_CONFIG,

 R_BLE_GTL_GAPM_OP_SET_CHANNEL_MAP,

 R_BLE_GTL_GAPM_OP_GET_DEV_VERSION,

 R_BLE_GTL_GAPM_OP_GET_DEV_BDADDR,

 R_BLE_GTL_GAPM_OP_GET_DEV_ADV_TX_POWER,

 R_BLE_GTL_GAPM_OP_GET_WLIST_SIZE,

 R_BLE_GTL_GAPM_OP_ADD_DEV_IN_WLIST,

 R_BLE_GTL_GAPM_OP_RMV_DEV_FRM_WLIST,

 R_BLE_GTL_GAPM_OP_CLEAR_WLIST,

 R_BLE_GTL_GAPM_OP_ADV_NON_CONN,

 R_BLE_GTL_GAPM_OP_ADV_UNDIRECT,

 R_BLE_GTL_GAPM_OP_ADV_DIRECT,

 R_BLE_GTL_GAPM_OP_ADV_DIRECT_LDC,

 R_BLE_GTL_GAPM_OP_UPDATE_ADVERTISE_DATA,

 R_BLE_GTL_GAPM_OP_SCAN_ACTIVE,

 R_BLE_GTL_GAPM_OP_SCAN_PASSIVE,

RX Family US159-DA14531EVZ BLE Control Module Using Firmware Integration Technology

R01AN7174EU0140 Rev.1.40 Page 21 of 124

Nov.21.24

 R_BLE_GTL_GAPM_OP_CONNECTION_DIRECT,

 R_BLE_GTL_GAPM_OP_CONNECTION_AUTO,

 R_BLE_GTL_GAPM_OP_CONNECTION_SELECTIVE,

 R_BLE_GTL_GAPM_OP_CONNECTION_NAME_REQUEST,

 R_BLE_GTL_GAPM_OP_RESOLV_ADDR,

 R_BLE_GTL_GAPM_OP_GEN_RAND_ADDR,

 R_BLE_GTL_GAPM_OP_USE_ENC_BLOCK,

 R_BLE_GTL_GAPM_OP_GEN_RAND_NB,

 R_BLE_GTL_GAPM_OP_PROFILE_TASK_ADD,

 R_BLE_GTL_GAPM_OP_DBG_GET_MEM_INFO,

 R_BLE_GTL_GAPM_OP_PLF_RESET,

 R_BLE_GTL_GAPM_OP_SET_SUGGESTED_DFLT_LE_DATA_LEN,

 R_BLE_GTL_GAPM_OP_GET_SUGGESTED_DFLT_LE_DATA_LEN,

 R_BLE_GTL_GAPM_OP_GET_MAX_LE_DATA_LEN,

 R_BLE_GTL_GAPM_OP_GET_RAL_SIZE,

 R_BLE_GTL_GAPM_OP_GET_RAL_LOC_ADDR,

 R_BLE_GTL_GAPM_OP_GET_RAL_PEER_ADDR,

 R_BLE_GTL_GAPM_OP_ADD_DEV_IN_RAL,

 R_BLE_GTL_GAPM_OP_RMV_DEV_FRM_RAL,

 R_BLE_GTL_GAPM_OP_CLEAR_RAL,

 R_BLE_GTL_GAPM_OP_USE_P256_BLOCK,

 R_BLE_GTL_GAPM_OP_NETWORK_MODE_RAL,

 R_BLE_GTL_GAPM_OP_DEVICE_MODE_RAL,

 R_BLE_GTL_GAPM_OP_KEY_RENEW,

 R_BLE_GTL_GAPM_OP_GEN_P256_KEY = R_BLE_GTL_GAPM_OP_KEY_RENEW,

 R_BLE_GTL_GAPM_OP_LAST

} r_ble_gtl_gapm_operation_t;

typedef enum e_r_ble_gtl_gapc_operation

{

 R_BLE_GTL_GAPC_OP_NONE = 0x00,

 R_BLE_GTL_GAPC_OP_DISCONNECT,

 R_BLE_GTL_GAPC_OP_GET_PEER_NAME,

 R_BLE_GTL_GAPC_OP_GET_PEER_VERSION,

 R_BLE_GTL_GAPC_OP_GET_PEER_FEATURES,

 R_BLE_GTL_GAPC_OP_GET_PEER_APPEARANCE,

 R_BLE_GTL_GAPC_OP_GET_PEER_SLV_PREF_PARAMS,

 R_BLE_GTL_GAPC_OP_GET_CON_RSSI,

 R_BLE_GTL_GAPC_OP_GET_CON_CHANNEL_MAP,

 R_BLE_GTL_GAPC_OP_UPDATE_PARAMS,

 R_BLE_GTL_GAPC_OP_BOND,

 R_BLE_GTL_GAPC_OP_ENCRYPT,

 R_BLE_GTL_GAPC_OP_SECURITY_REQ,

 R_BLE_GTL_GAPC_OP_LE_CB_CREATE,

 R_BLE_GTL_GAPC_OP_LE_CB_DESTROY,

 R_BLE_GTL_GAPC_OP_LE_CB_CONNECTION,

 R_BLE_GTL_GAPC_OP_LE_CB_DISCONNECTION,

 R_BLE_GTL_GAPC_OP_LE_CB_ADDITION,

 R_BLE_GTL_GAPC_OP_GET_LE_PING_TO,

 R_BLE_GTL_GAPC_OP_SET_LE_PING_TO,

 R_BLE_GTL_GAPC_OP_SET_LE_PKT_SIZE,

 R_BLE_GTL_GAPC_OP_GET_PEER_CENTRAL_RPA,

 R_BLE_GTL_GAPC_OP_GET_PEER_RPA_ONLY,

 R_BLE_GTL_GAPC_OP_LE_CB_SEND,

} r_ble_gtl_gapc_operation_t;

RX Family US159-DA14531EVZ BLE Control Module Using Firmware Integration Technology

R01AN7174EU0140 Rev.1.40 Page 22 of 124

Nov.21.24

typedef enum e_r_ble_gtl_gattc_operation

{

 R_BLE_GTL_GATTC_OP_NONE = 0x00,

 R_BLE_GTL_GATTC_OP_MTU_EXCH,

 R_BLE_GTL_GATTC_OP_DISC_ALL_SVC,

 R_BLE_GTL_GATTC_OP_DISC_BY_UUID_SVC,

 R_BLE_GTL_GATTC_OP_DISC_INCLUDED_SVC,

 R_BLE_GTL_GATTC_OP_DISC_ALL_CHAR,

 R_BLE_GTL_GATTC_OP_DISC_BY_UUID_CHAR,

 R_BLE_GTL_GATTC_OP_DISC_DESC_CHAR,

 R_BLE_GTL_GATTC_OP_READ,

 R_BLE_GTL_GATTC_OP_READ_LONG,

 R_BLE_GTL_GATTC_OP_READ_BY_UUID,

 R_BLE_GTL_GATTC_OP_READ_MULTIPLE,

 R_BLE_GTL_GATTC_OP_WRITE,

 R_BLE_GTL_GATTC_OP_WRITE_NO_RESPONSE,

 R_BLE_GTL_GATTC_OP_WRITE_SIGNED,

 R_BLE_GTL_GATTC_OP_EXEC_WRITE,

 R_BLE_GTL_GATTC_OP_REGISTER,

 R_BLE_GTL_GATTC_OP_UNREGISTER,

 R_BLE_GTL_GATTC_OP_NOTIFY,

 R_BLE_GTL_GATTC_OP_INDICATE,

} r_ble_gtl_gattc_operation_t;

typedef enum e_r_ble_gtl_aux_operation

{

 R_BLE_GTL_AUX_OP_NONE = 0x00,

 R_BLE_GTL_AUX_SET_TX_POWER = 0x06,

} r_ble_gtl_aux_operation_t;

typedef enum e_r_ble_gtl_host_error_code

{

 R_BLE_GTL_GAP_ERR_NO_ERROR = 0x00,

 R_BLE_GTL_ATT_ERR_INVALID_HANDLE,

 R_BLE_GTL_ATT_ERR_READ_NOT_PERMITTED,

 R_BLE_GTL_ATT_ERR_REQUEST_NOT_SUPPORTED = 0x06,

 R_BLE_GTL_GAP_ERR_CANCELED = 0x44

} r_ble_gtl_host_error_code_t;

typedef enum e_r_ble_gtl_gapc_device_info

{

 R_BLE_GTL_GAPC_DEV_NAME = 0x00,

 R_BLE_GTL_GAPC_DEV_APPEARANCE,

 R_BLE_GTL_GAPC_DEV_SLV_PREF_PARAMS,

 R_BLE_GTL_GAPC_DEV_CENTRAL_RPA,

 R_BLE_GTL_GAPC_DEV_RPA_ONLY,

} r_ble_gtl_gapc_device_info_t;

typedef enum e_r_ble_gtl_device_state

{

 R_BLE_GTL_DEV_STATE_IDLE = 0x00,

 R_BLE_GTL_DEV_STATE_ADVERTISING,

 R_BLE_GTL_DEV_STATE_CONNECTED,

} r_ble_gtl_device_state_t;

RX Family US159-DA14531EVZ BLE Control Module Using Firmware Integration Technology

R01AN7174EU0140 Rev.1.40 Page 23 of 124

Nov.21.24

2.11. Adding the FIT Module to Your Project

The FIT module must be added to each project in which it is used. Renesas recommends the method using
the Smart Configurator described in (1) below. However, the Smart Configurator only supports some RX
devices. Please use the methods of (2) for RX devices that are not supported by the Smart Configurator.

1) Adding the FIT module to your project using the Smart Configurator in e2 studio. By using the Smart
Configurator in e2 studio, the FIT module is automatically added to your project. Refer to “RX Smart
Configurator User’s Guide: e2 studio (R20AN0451)” for details.

2) Adding the FIT module to your project using the FIT Configurator in e2 studio. By using the FIT
Configurator in e2 studio, the FIT module is automatically added to your project. Refer to “RX Family
Adding Firmware Integration Technology Modules to Projects (R01AN1723)” for details.

2.12. “for”, “while” and “do while” Statements

In FIT module, “for”, “while” and “do while” statements (loop processing) are used in processing to wait for
register to be reflected and so on. For these loop processing, comments with “WAIT_LOOP” as a keyword
are described. Therefore, if user incorporates fail-safe processing into loop processing, user can search the
corresponding processing with “WAIT_LOOP”.

This FIT module does not have any WAIT_LOOP. But others might have. Please take care for this
WAIT_LOOP.

RX Family US159-DA14531EVZ BLE Control Module Using Firmware Integration Technology

R01AN7174EU0140 Rev.1.40 Page 24 of 124

Nov.21.24

2.13. Usage Notes

2.13.1 Getting Started Guide

The below guide walks users through building a fully working solution in order to run a BLE
application from the RX MCU using the GTL interface.

UM-B-177: Getting started with DA1453x and RX BLE Framework on Renesas Microcontrollers —
Getting started with DA14531 and FSP BLE Framework

2.13.2 Addresses

When using a public BD address the address pre-programmed into the DA14531 will be used and
can't be overridden. A random address can be set by calling the R_BLE_VS_SetBdAddr function
before the R_BLE_GAP_Init function is called.

2.13.3 Heap Requirements

Ensure the BSP heap size is set to at least 2K bytes.
When using FreeRTOS ensure the heap 4 size is set to a minimum of 2K bytes.

2.13.4 Module Firmware Compatibility

This middleware module is compatible with GTL binary version 6.0.22 and later. You must ensure
that the DA14531/DA14535 Module (or PMOD) you are using contains this version (or later)
firmware or that you use the boot from host feature and have the host MCU load the binary into the
DA14531/DA14535. Note that DA14531 and DA14535 are not firmware compatible even though the
GTL API is the same.

Instructions detailing how to upgrade the firmware in a DA14531 Module can be found here:

https://lpccs-docs.renesas.com/US159-DA14531EVZ_Firmware_Upgrade/index.html

The GTL binary file can be downloaded using the tool described in the above instructions, or by
using the following link:

https://www.renesas.com/us/en/document/swo/fsp-gtl-binary-us159-da14531evz-pmod-
programming?r=1564826

2.13.5 Limitations

Developers should be aware of the following limitations when using the BLE_ABS:

- Following a power on reset, the R_BLE_VS_GetRand function always returns the same number.
Subsequent calls to this function produce random numbers.

- Service and characteristic write callback functions, created when using the QE Tool are not
supported.

- The boot from host feature currently support 1-wire UART & 2-wire UART:

• When using a 1-wire boot from host with DA14531/DA14535, the UART RX and TX
pins on the host RX MCU must be connected together using a 1K ohm resistor to
boot which resistor can remain in place after the boot operation is completed.

• When using a 2-wire boot from host with DA14535MOD, the 1K ohm resistor is not
required to initiate the process, as it has already been written with a second
bootloader supported in its memory.

• Boot from host using 2-wire UART is not supported when using a DA14531MOD
module because not all the required pins are exposed.

- Some code-generated setting with the custom profile generation feature do not work in combination
with FIT for the DA14531 module. Also, be sure to perform sufficient test on the generated code.

• Workaround: Please refer to FIT documents about details of functional restriction.

- Notes on arguments for R_BLE_GATTS_GetAttr functions (1): In the case of DA14531 modules,
add code to allocate memory for the members of the structure to be passed to the third argument at
the call of the R_BLE_GATTS_GettAttr function in the code generated by QE for BLEAPI Functions.

https://lpccs-docs.renesas.com/DA1453x-RX_BLE_Framework/UM-B-177/index.html
https://lpccs-docs.renesas.com/DA1453x-RX_BLE_Framework/UM-B-177/index.html
https://www.renesas.com/us/en/document/swo/fsp-gtl-binary-us159-da14531evz-pmod-programming?r=1564826
https://www.renesas.com/us/en/document/swo/fsp-gtl-binary-us159-da14531evz-pmod-programming?r=1564826

RX Family US159-DA14531EVZ BLE Control Module Using Firmware Integration Technology

R01AN7174EU0140 Rev.1.40 Page 25 of 124

Nov.21.24

• Please note that if you use QE for BLE to generate code again, the changes will be
removed.

- Notes on Notification and Client Characteristic Configuration Descriptor (2): In the case of
DA14531 modules, the value of the Client Characteristic Configuration Descriptor cannot be
obtained from the R_BLE_SERVS_GetDesc function. As a result, calling
R_BLE_<Service>_Notify<Characteristic> function generated by QE for BLE does not issue a Notify.

• To issue a Notify, comment out the part where getting the value of the Client
Characteristic Configuration Descriptor and set the value of cccd appropriately.

• Also, please note that if you use QE for BLE to generate code again, the changes
will be removed.

Example Notes (1), (2) above can be found here: QE for BLE[RA,RE,RX] V1.7.0 Release Note
(renesas.com)

https://www.renesas.com/us/en/document/rln/qe-blerarerx-v170-release-note?r=488926
https://www.renesas.com/us/en/document/rln/qe-blerarerx-v170-release-note?r=488926

RX Family US159-DA14531EVZ BLE Control Module Using Firmware Integration Technology

R01AN7174EU0140 Rev.1.40 Page 26 of 124

Nov.21.24

3. API Function

3.1. R_BLE_Open()

Open the BLE protocol stack.

Format

ble_status_t R_BLE_Open (

void

)

Parameters

None

Return values

BLE_SUCCESS Success

Properties

Prototype declarations are contained in r_ble_api.h.

Description

This function should be called once before using the BLE protocol stack.

Reentrant

No

Example

R_BLE_Open();

Special Notes:

None.

RX Family US159-DA14531EVZ BLE Control Module Using Firmware Integration Technology

R01AN7174EU0140 Rev.1.40 Page 27 of 124

Nov.21.24

3.2. R_BLE_Close()

Close the BLE protocol stack.

Format

ble_status_t R_BLE_Close (

void

)

Parameters

None

Return values

BLE_SUCCESS Success

Properties

Prototype declarations are contained in r_ble_api.h.

Description

This function should be called once to close the BLE protocol stack.

Reentrant

No

Example

R_BLE_Close();

Special Notes:

None

RX Family US159-DA14531EVZ BLE Control Module Using Firmware Integration Technology

R01AN7174EU0140 Rev.1.40 Page 28 of 124

Nov.21.24

3.3. R_BLE_Execute()

Execute the BLE task.

Format

ble_status_t R_BLE_Execute (

void

)

Parameters

None

Return values

BLE_SUCCESS Success

Properties

Prototype declarations are contained in r_ble_api.h.

Description

This handles all the task queued in the BLE protocol stack internal task queue and return. This function
should be called repeatedly in the main loop.

Reentrant

No

Example

R_BLE_Open();

while (1)

{

 R_BLE_Execute();

}

Special Notes:

None

RX Family US159-DA14531EVZ BLE Control Module Using Firmware Integration Technology

R01AN7174EU0140 Rev.1.40 Page 29 of 124

Nov.21.24

3.4. R_BLE_IsTaskFree()

Check if the BLE task queue is free or not.

Format

uint32_t R_BLE_IsTaskFree(

void

)

Parameters

None

Return values

0x0 BLE task queue is not free.

0x1 BLE task queue is free.

Properties

Prototype declarations are contained in r_ble_api.h.

Description

This function returns the BLE task queue free status.

When this function returns 0x0, call R_BLE_Execute() to execute the BLE task.

Example

R_BLE_Open();

while (1)

{

 R_BLE_Execute();

 if(0 != R_BLE_IsTaskFree())

 {

 xEventGroupWaitBits();

 }

}

Special Notes:

None

RX Family US159-DA14531EVZ BLE Control Module Using Firmware Integration Technology

R01AN7174EU0140 Rev.1.40 Page 30 of 124

Nov.21.24

3.5. R_BLE_GetVersion()

Get the BLE FIT module version.

Format

uint32_t R_BLE_GetVersion(

void

)

Parameters

None

Return values

Version number

Properties

Prototype declarations are contained in r_ble_api.h.

Description

This function returns the BLE FIT module version.

The major version(BLE_VERSION_MAJOR) is contained in the two most significant bytes, and the minor
version(BLE_VERSION_MINOR) occupies the remaining two bytes.

Example

uint32_t version;

version = R_BLE_GetVersion();

Special Notes:

None

RX Family US159-DA14531EVZ BLE Control Module Using Firmware Integration Technology

R01AN7174EU0140 Rev.1.40 Page 31 of 124

Nov.21.24

3.6. R_BLE_GAP_Init()

Initialize the Host Stack.

Format

ble_status_t R_BLE_GAP_Init (

ble_gap_app_cb_t gap_cb

)

Parameters

gap_cb A callback function registered with this function.

Return values

BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_PTR(0x0001) gap_cb is specified as NULL.

BLE_ERR_INVALID_STATE(0x0008) The reason for this error is as follows:

- Host Stack was already initialized.

- The task for host stack is not running.

BLE_ERR_MEM_ALLOC_FAILED(0x000C) Insufficient memory is needed to generate this function.

Properties

Prototype declarations are contained in r_ble_api.h.

Description

Host stack is initialized with this function. Before using All the R_BLE APIs, it's necessary to call this function.
A callback function is registered with this function. In order to receive the GAP event, it's necessary to
register a callback function.

The result of this API call is notified in BLE_GAP_EVENT_STACK_ON event.

Reentrant

No

Example

None

Special Notes:

None

RX Family US159-DA14531EVZ BLE Control Module Using Firmware Integration Technology

R01AN7174EU0140 Rev.1.40 Page 32 of 124

Nov.21.24

3.7. R_BLE_GAP_Terminate()

Terminate the Host Stack.

Format

ble_status_t R_BLE_GAP_Terminate(

void

)

Parameters

None

Return values

BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_STATE(0x0008) Host stack hasn't been initialized.

Properties

Prototype declarations are contained in r_ble_api.h.

Description

The host stack is terminated with this function.

In order to reset all the Bluetooth functions, it's necessary to call this function.

The result of this API call is notified in BLE_GAP_EVENT_STACK_OFF event.

Reentrant

No

Example

None

Special Notes:

None

RX Family US159-DA14531EVZ BLE Control Module Using Firmware Integration Technology

R01AN7174EU0140 Rev.1.40 Page 33 of 124

Nov.21.24

3.8. R_BLE_GAP_UpdConn()

Update the connection parameters.

Format

ble_status_t R_BLE_GAP_UpdConn(

uint16_t conn_hdl,

uint8_t mode,

uint16_t accept,

st_ble_gap_conn_param_t * p_conn_updt_param

)

Parameters

conn_hdl Connection handle identifying the link to be updated.

mode Connection parameter update request or response.

macro description

BLE_GAP_CONN_UPD_MODE_REQ (0x01) Request for updating the connection
parameters.

BLE_GAP_CONN_UPD_MODE_RSP (0x02) Reply a connection parameter update
request.

accept When mode is BLE_GAP_CONN_UPD_MODE_RSP, accept or reject the
connection parameters update request. If mode is
BLE_GAP_CONN_UPD_MODE_REQ, accept is ignored.

macro description

BLE_GAP_CONN_UPD_ACCEPT (0x0000) Accept the update request.

BLE_GAP_CONN_UPD_REJECT (0x0001) Reject the update request.

p_conn_updt_param Connection parameters to be updated. When mode is
BLE_GAP_CONN_UPD_MODE_RSP and accept is
BLE_GAP_CONN_UPD_REJECT, p_conn_updt_param is ignored.

Return values

BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_PTR(0x0001) When accept is BLE_GAP_CONN_UPD_ACCEPT,
p_conn_updt_param is specified as NULL.

BLE_ERR_INVALID_ARG(0x0003) The following is out of range.

• mode

• accept

• conn_intv_min field in p_conn_updt_param

• conn_intv_max field in p_conn_updt_param

• conn_latency in p_conn_updt_param

• sup_to in p_conn_updt_param

• conn_hdl

BLE_ERR_INVALID_STATE(0x0008) Not connected with the remote device.

BLE_ERR_CONTEXT_FULL(0x000B) Sending a L2CAP command, an error occurred.

RX Family US159-DA14531EVZ BLE Control Module Using Firmware Integration Technology

R01AN7174EU0140 Rev.1.40 Page 34 of 124

Nov.21.24

BLE_ERR_MEM_ALLOC_FAILED(0x000C) Insufficient memory is needed to generate this
function.

BLE_ERR_INVALID_HDL(0x000E) The remote device specified by conn_hdl is not
found.

Properties

Prototype declarations are contained in r_ble_api.h.

Description

This function updates the connection parameters or replies to a request for updating connection parameters
notified by BLE_GAP_EVENT_CONN_PARAM_UPD_REQ event. When the connection parameters have
been updated, BLE_GAP_EVENT_CONN_PARAM_UPD_COMP event is notified to the application layer.

Reentrant

No

Example

None

Special Notes:

None

RX Family US159-DA14531EVZ BLE Control Module Using Firmware Integration Technology

R01AN7174EU0140 Rev.1.40 Page 35 of 124

Nov.21.24

3.9. R_BLE_GAP_SetDataLen()

Update the packet size and the packet transmit time.

Format

ble_status_t R_BLE_GAP_SetDataLen(

uint16_t conn_hdl,

uint16_t tx_octets,

uint16_t tx_time

)

Parameters

conn_hdl Connection handle identifying the link whose the transmission packet size or the transmission
time to be changed.

tx_octets Maximum transmission packet size. Valid range is 0x001B - 0x00FB.

tx_time Maximum transmission time(us). Valid range is 0x0148 - 0x4290.

Return values

BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_STATE(0x0008) The task for host stack is not running.

BLE_ERR_MEM_ALLOC_FAILED(0x000C) Insufficient memory is needed to generate this function.

Properties

Prototype declarations are contained in r_ble_api.h.

Description

This function requests for changing the maximum transmission packet size and the maximum packet
transmission time. When Controller has received the request from host stack,
BLE_GAP_EVENT_SET_DATA_LEN_COMP event is notified to the application layer. When the
transmission packet size or the transmission time has been changed, BLE_GAP_EVENT_DATA_LEN_CHG
event is notified to the application layer.

Reentrant

No

Example

None

Special Notes:

None

RX Family US159-DA14531EVZ BLE Control Module Using Firmware Integration Technology

R01AN7174EU0140 Rev.1.40 Page 36 of 124

Nov.21.24

3.10. R_BLE_GAP_Disconnect()

Disconnect the link.

Format

ble_status_t R_BLE_GAP_Disconnect (

uint16_t conn_hdl,

uint8_t reason

)

Parameters

conn_hdl Connection handle identifying the link to be disconnected.

reason The reason for disconnection. Usually, set 0x13 which indicates that a user disconnects the
link. If setting other than 0x13, refer the error code described in Core Specification Vol.2 Part
D ,"2 Error Code Descriptions".

Return values

BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_ARG(0x0003) conn_hdl is out of range.

BLE_ERR_INVALID_STATE(0x0008) The task for host stack is not running.

BLE_ERR_MEM_ALLOC_FAILED(0x000C) Insufficient memory is needed to generate this function.

BLE_ERR_INVALID_HDL(0x000E) The remote device specified by conn_hdl is not found.

Properties

Prototype declarations are contained in r_ble_api.h.

Description

This function disconnects a link. When the link has disconnected, BLE_GAP_EVENT_DISCONN_IND event
is notified to the application layer.

Reentrant

No

Example

None

Special Notes:

None

RX Family US159-DA14531EVZ BLE Control Module Using Firmware Integration Technology

R01AN7174EU0140 Rev.1.40 Page 37 of 124

Nov.21.24

3.11. R_BLE_GAP_GetVerInfo()

Get the version number of the Controller and the host stack.

Format

ble_status_t R_BLE_GAP_GetVerInfo (

void

)

Parameters

None

Return values

BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_STATE(0x0008) The task for host stack is not running.

BLE_ERR_MEM_ALLOC_FAILED(0x000C) Insufficient memory is needed to generate this function.

Properties

Prototype declarations are contained in r_ble_api.h.

Description

This function retrieves the version information of local device. The result of this API call is notified in
BLE_GAP_EVENT_LOC_VER_INFO event.

Reentrant

No

Example

None

Special Notes:

None

RX Family US159-DA14531EVZ BLE Control Module Using Firmware Integration Technology

R01AN7174EU0140 Rev.1.40 Page 38 of 124

Nov.21.24

3.12. R_BLE_GAP_ReadRssi()

Get RSSI.

Format

ble_status_t R_BLE_GAP_ReadRssi (

uint16_t conn_hdl

)

Parameters

conn_hdl Connection handle identifying the link whose RSSI to be retrieved.

Return values

BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_ARG(0x0003) conn_hdl is out of range.

BLE_ERR_INVALID_STATE(0x0008) The task for host stack is not running.

BLE_ERR_MEM_ALLOC_FAILED(0x000C) Insufficient memory is needed to generate this function.

Properties

Prototype declarations are contained in r_ble_api.h.

Description

This function retrieves RSSI. The result of this API call is notified in BLE_GAP_EVENT_RSSI_RD_COMP
event.

Reentrant

No

Example

None

Special Notes:

None

RX Family US159-DA14531EVZ BLE Control Module Using Firmware Integration Technology

R01AN7174EU0140 Rev.1.40 Page 39 of 124

Nov.21.24

3.13. R_BLE_GAP_ReadChMap()

Get the Channel Map.

Format

ble_status_t R_BLE_GAP_ReadChMap (

uint16_t conn_hdl

)

Parameters

conn_hdl Connection handle identifying the link whose channel map to be retrieved.

Return values

BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_ARG(0x0003) conn_hdl is out of range.

BLE_ERR_INVALID_STATE(0x0008) The task for host stack is not running.

BLE_ERR_MEM_ALLOC_FAILED(0x000C) Insufficient memory is needed to generate this function.

Properties

Prototype declarations are contained in r_ble_api.h.

Description

This function retrieves the channel map. The result of this API call is notified in
BLE_GAP_EVENT_CH_MAP_RD_COMP event.

Reentrant

No

Example

None

Special Notes:

None

RX Family US159-DA14531EVZ BLE Control Module Using Firmware Integration Technology

R01AN7174EU0140 Rev.1.40 Page 40 of 124

Nov.21.24

3.14. R_BLE_GAP_SetAdvParam()

Set advertising parameters.

Format

ble_status_t R_BLE_GAP_SetAdvParam (

st_ble_gap_adv_param_t * p_adv_param

)

Parameters

p_adv_param Advertising parameters.

Return values

BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_PTR(0x0001) p_adv_param is specified as NULL.

BLE_ERR_INVALID_ARG(0x0003) The below p_adv_param field value is out of range.

• adv_handle

• adv_intv_min/adv_intv_max

• adv_ch_map

• o_addr_type

• p_addr_type

• adv_phy

• sec_adv_phy

• scan_req_ntf_flag

BLE_ERR_INVALID_STATE(0x0008) The task for host stack is not running.

BLE_ERR_MEM_ALLOC_FAILED(0x000C) Insufficient memory is needed to generate this function.

Properties

Prototype declarations are contained in r_ble_api.h.

Description

This function sets advertising parameters. It's possible to do advertising where the advertising parameters
are different every each advertising set. The number of advertising set in the Controller is defined as
BLE_MAX_NO_OF_ADV_SETS_SUPPORTED. Each advertising set is identified with advertising handle
(0x00-0x03). Create an advertising set with this function before start advertising, setting periodic advertising
parameters, start periodic advertising, setting advertising data/scan response data/periodic advertising data.
The result of this API call is notified in BLE_GAP_EVENT_ADV_PARAM_SET_COMP event.

Reentrant

No

Example

None

RX Family US159-DA14531EVZ BLE Control Module Using Firmware Integration Technology

R01AN7174EU0140 Rev.1.40 Page 41 of 124

Nov.21.24

Special Notes:

None

RX Family US159-DA14531EVZ BLE Control Module Using Firmware Integration Technology

R01AN7174EU0140 Rev.1.40 Page 42 of 124

Nov.21.24

3.15. R_BLE_GAP_SetAdvSresData()

Set advertising data/scan response data/periodic advertising data.

Format

ble_status_t R_BLE_GAP_SetAdvSresData (

st_ble_gap_adv_data_t * p_adv_srsp_data

)

Parameters

p_adv_srsp_data Advertising data/scan response data/periodic advertising data.

Return values

BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_PTR(0x0001) The reason for this error is as follows:

• p_adv_srsp_data is specified as NULL.

• data_length field in p_adv_srsp_data parameter is not
0 and p_data field is specified as NULL.

BLE_ERR_INVALID_ARG(0x0003) The following field in p_adv_srsp_data parameter is out of
range.

• adv_hdl

• data_type

• data_length

• zero_length_flag

BLE_ERR_INVALID_STATE(0x0008) The task for host stack is not running.

BLE_ERR_MEM_ALLOC_FAILED(0x000C) Insufficient memory is needed to generate this function.

Properties

Prototype declarations are contained in r_ble_api.h.

Description

This function sets advertising data/scan response data/periodic advertising data to the advertising set. It is
necessary to create an advertising set by R_BLE_GAP_SetAdvParam(), before calling this function. Set
advertising data/scan response data/periodic advertising data, after allocating the memory for the data. The
following shall be applied regarding the adv_prop_type field and the data_type field in
st_ble_gap_adv_param_t parameter specified in R_BLE_GAP_SetAdvParam().

Reentrant

No

Example

None

RX Family US159-DA14531EVZ BLE Control Module Using Firmware Integration Technology

R01AN7174EU0140 Rev.1.40 Page 43 of 124

Nov.21.24

Special Notes:

None

RX Family US159-DA14531EVZ BLE Control Module Using Firmware Integration Technology

R01AN7174EU0140 Rev.1.40 Page 44 of 124

Nov.21.24

3.16. R_BLE_GAP_StartAdv()

Start advertising.

Format

ble_status_t R_BLE_GAP_StartAdv (

uint8_t adv_hdl,

uint16_t duration,

uint8_t max_extd_adv_evts

)

Parameters

adv_hdl The advertising handle pointing to the advertising set which starts advertising. The
valid range is 0x00 - 0x03.

duration The duration for which the advertising set identified by adv_hdl is enabled. Time =
duration * 10ms. When the duration expires, BLE_GAP_EVENT_ADV_OFF event
notifies that advertising is stopped. The valid range is 0x0000 - 0xFFFF. The duration
parameter is ignored when the value is set to 0x0000.

max_extd_adv_evts The maximum number of advertising events that be sent during advertising. When all
the advertising events(max_extd_adv_evts) have been sent,
BLE_GAP_EVENT_ADV_OFF event notifies that advertising is stopped. The
max_extd_adv_evts parameter is ignored when the value is set to 0x00.

Return values

BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_ARG(0x0003) adv_hdl is out of range.

BLE_ERR_INVALID_STATE(0x0008) The task for host stack is not running.

BLE_ERR_MEM_ALLOC_FAILED(0x000C) Insufficient memory is needed to generate this function.

Properties

Prototype declarations are contained in r_ble_api.h.

Description

This function starts advertising. Create the advertising set specified with adv_hdl by
R_BLE_GAP_SetAdvParam(), before calling this function. The result of this API call is notified in
BLE_GAP_EVENT_ADV_ON event.

Reentrant

No

Example

None

Special Notes:

None

RX Family US159-DA14531EVZ BLE Control Module Using Firmware Integration Technology

R01AN7174EU0140 Rev.1.40 Page 45 of 124

Nov.21.24

3.17. R_BLE_GAP_StopAdv()

Stop advertising.

Format

ble_status_t R_BLE_GAP_StopAdv (

uint8_t adv_hdl

)

Parameters

adv_hdl The advertising handle pointing to the advertising set which stops advertising. The valid range is
0x00 - 0x03.

Return values

BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_ARG(0x0003) adv_hdl is out of range.

BLE_ERR_INVALID_STATE(0x0008) The task for host stack is not running.

BLE_ERR_MEM_ALLOC_FAILED(0x000C) Insufficient memory is needed to generate this function.

Properties

Prototype declarations are contained in r_ble_api.h.

Description

This function stops advertising. The result of this API call is notified in BLE_GAP_EVENT_ADV_OFF event.

Reentrant

No

Example

None

Special Notes:

None

RX Family US159-DA14531EVZ BLE Control Module Using Firmware Integration Technology

R01AN7174EU0140 Rev.1.40 Page 46 of 124

Nov.21.24

3.18. R_BLE_GAP_GetRemainAdvBufSize()

Get buffer size for advertising data/scan response data/periodic advertising data in the Controller.

Format

ble_status_t R_BLE_GAP_GetRemainAdvBufSize (

uint16_t * p_remain_adv_data_size,

uint16_t * p_remain_perd_adv_data_size

)

Parameters

p_remain_adv_data_size The free buffer size of Controller to which advertising data/scan response
data can be currently set.

p_remain_perd_adv_data_size The free buffer size of Controller to which periodic advertising data can be
currently set.

Return values

BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_PTR(0x0001) p_remain_adv_data_size or p_remain_perd_adv_data_size is
specified as NULL.

Properties

Prototype declarations are contained in r_ble_api.h.

Description

This function gets the total size of advertising data/scan response data/periodic advertising data which can
be currently set to Controller(all of the advertising sets). The application layer gets the data sizes via the
parameters. By this API function call, no events occur.

Reentrant

No

Example

None

Special Notes:

None

RX Family US159-DA14531EVZ BLE Control Module Using Firmware Integration Technology

R01AN7174EU0140 Rev.1.40 Page 47 of 124

Nov.21.24

3.19. R_BLE_GAP_GetRemDevInfo()

Get the information about remote device.

Format

ble_status_t R_BLE_GAP_GetRemDevInfo (

uint16_t conn_hdl

)

Parameters

conn_hdl Connection handle identifying the remote device whose information to be retrieved.

Return values

BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_STATE(0x0008) The task for host stack is not running.

BLE_ERR_MEM_ALLOC_FAILED(0x000C) Insufficient memory is needed to generate this function.

Properties

Prototype declarations are contained in r_ble_api.h.

Description

This function retrieves information about the remote device. The information includes BD_ADDR, the version
number and LE features. The result of this API call is notified in BLE_GAP_EVENT_GET_REM_DEV_INFO
event.

Reentrant

No

Example

None

Special Notes:

None

RX Family US159-DA14531EVZ BLE Control Module Using Firmware Integration Technology

R01AN7174EU0140 Rev.1.40 Page 48 of 124

Nov.21.24

3.20. R_BLE_GAP_SetPairingParams()

Set the parameters using pairing.

Format

ble_status_t R_BLE_GAP_SetPairingParams(

st_ble_gap_pairing_param_t * p_pair_param

)

Parameters

p_pair_param Pairing parameters.

Return values

BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_ARG(0x0003) The following field in p_pair_param is out of range.

• iocap

• max_key_size

• mitm

• boding

• key_notf

• sec_conn_only

Properties

Prototype declarations are contained in r_ble_api.h.

Description

This function sets the parameters used in pairing.

Reentrant

No

Example

None

Special Notes:

None

RX Family US159-DA14531EVZ BLE Control Module Using Firmware Integration Technology

R01AN7174EU0140 Rev.1.40 Page 49 of 124

Nov.21.24

3.21. R_BLE_GAP_StartPairing()

Start pairing.

Format

ble_status_t R_BLE_GAP_StartPairing(

uint16_t conn_hdl

)

Parameters

conn_hdl Connection handle identifying the remote device which local device starts pairing with.

Return values

BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_STATE(0x0008) While generating OOB data, this function was called.

BLE_ERR_CONTEXT_FULL(0x000B) While pairing, this function was called.

BLE_ERR_INVALID_HDL(0x000E) The remote device specified by conn_hdl is not found.

Properties

Prototype declarations are contained in r_ble_api.h.

Description

This function starts pairing with a remote device. The result of this API call is returned by a return value. The
result of pairing is notified in BLE_GAP_EVENT_PAIRING_COMP event.

Reentrant

No

Example

None

Special Notes:

None

RX Family US159-DA14531EVZ BLE Control Module Using Firmware Integration Technology

R01AN7174EU0140 Rev.1.40 Page 50 of 124

Nov.21.24

3.22. R_BLE_GAP_ReplyPairing()

Reply the pairing request from a remote device.

Format

ble_status_t R_BLE_GAP_ReplyPairing(

uint16_t conn_hdl,

uint8_t response

)

Parameters

conn_hdl Connection handle identifying the remote device which local device starts pairing with.

response Accept or reject the pairing request from the remote device.

macro description

BLE_GAP_PAIRING_ACCEPT(0x00) Accept the pairing request

BLE_GAP_PAIRING_REJECT(0x01) Reject the pairing request

Return values

BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_ARG(0x0003) Response is out of range.

BLE_ERR_INVALID_STATE(0x0008) While generating OOB data, this function was called.

BLE_ERR_INVALID_HDL(0x000E) The remote device specified by conn_hdl is not found.

BLE_ERR_NOT_YET_READY(0x0012) When this function was called, host stack has not yet

 received BLE_GAP_EVENT_PAIRING_REQ event.

Properties

Prototype declarations are contained in r_ble_api.h.

Description

This function replies to the pairing request from the remote device. The pairing request from the remote
device is notified in BLE_GAP_EVENT_PAIRING_REQ event. The result of this API call is returned by a
return value. The result of pairing is notified in BLE_GAP_EVENT_PAIRING_COMP event.

Reentrant

No

Example

None

Special Notes:

None

RX Family US159-DA14531EVZ BLE Control Module Using Firmware Integration Technology

R01AN7174EU0140 Rev.1.40 Page 51 of 124

Nov.21.24

3.23. R_BLE_GAP_ReplyPasskeyEntry()

Reply the passkey entry request.

Format

ble_status_t R_BLE_GAP_ReplyPasskeyEntry(

uint16_t conn_hdl,

 uint32_t passkey,

 uint8_t response

)

Parameters

conn_hdl Connection handle identifying the remote device which the reply to passkey entry is sent.

passkey Passkey. The valid range is 000000 - 999999 in decimal.

response Active or negative reply to passkey entry.

macro description

BLE_GAP_PAIRING_ACCEPT(0x00) Accept the passkey entry pairing

BLE_GAP_PAIRING_REJECT(0x01) Reject the passkey entry pairing

Return values

BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_ARG(0x0003) Passkey or response is out of range.

BLE_ERR_INVALID_HDL(0x000E) The remote device specified by conn_hdl is not found.

BLE_ERR_NOT_YET_READY(0x0012) When this function was called, pairing has not yet started.

Properties

Prototype declarations are contained in r_ble_api.h.

Description

When BLE_GAP_EVENT_PASSKEY_ENTRY_REQ event is notified, the response to passkey entry is sent
by this function. The result of this API call is returned by a return value.

Reentrant

No

Example

None

Special Notes:

None

RX Family US159-DA14531EVZ BLE Control Module Using Firmware Integration Technology

R01AN7174EU0140 Rev.1.40 Page 52 of 124

Nov.21.24

3.24. R_BLE_GAP_ReplyExKeyInfoReq()

Distribute the keys of local device.

Format

ble_status_t R_BLE_GAP_SetPairingParams(

st_ble_gap_pairing_param_t * p_pair_param

)

Parameters

conn_hdl Connection handle identifying the remote device to which the key is distributed.

Return values

BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_HDL(0x000E) The remote device specified by conn_hdl is not found.

BLE_ERR_NOT_YET_READY(0x0012) When this function was called, pairing has not yet started.

Properties

Prototype declarations are contained in r_ble_api.h.

Description

When key exchange request is notified by BLE_GAP_EVENT_EX_KEY_REQ event at pairing, keys of the
local device are distributed. The result is returned from this API.

Reentrant

No

Example

None

Special Notes:

None

RX Family US159-DA14531EVZ BLE Control Module Using Firmware Integration Technology

R01AN7174EU0140 Rev.1.40 Page 53 of 124

Nov.21.24

3.25. R_BLE_GAP_ReplyLtkReq()

Reply the LTK request from a remote device.

Format

ble_status_t R_BLE_GAP_ReplyLtkReq(

uint16_t conn_hdl,

uint16_t ediv,

uint8_t *p_peer_rand,

uint8_t response

)

Parameters

conn_hdl Connection handle identifying the remote device which sent the LTK request.

ediv Ediv notified in BLE_GAP_EVENT_LTK_REQ event.

p_peer_rand Rand notified in BLE_GAP_EVENT_LTK_REQ event.

response Response to the LTK request. If "BLE_GAP_LTK_REQ_ACCEPT" is specified, when no

 LTK has been exchanged in pairing, reject the LTK request.

macro description

BLE_GAP_LTK_REQ_ACCEPT(0x00) Reply for the LTK request

BLE_GAP_LTK_REQ_DENY(0x01) Reject the LTK request

Return values

BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_PTR(0x0001) p_peer_rand is specified as NULL in case of legacy pairing.

BLE_ERR_INVALID_ARG(0x0003) response is out of range.

BLE_ERR_INVALID_STATE(0x0008) The task for host stack is not running.

BLE_ERR_MEM_ALLOC_FAILED(0x000C) Insufficient memory is needed to generate this function.

BLE_ERR_INVALID_HDL(0x000E) The remote device specified by conn_hdl is not found.

Properties

Prototype declarations are contained in r_ble_api.h.

Description

This function replies to the LTK request in BLE_GAP_EVENT_LTK_REQ event from a remote device. The
result of the LTK reply is returned in BLE_GAP_EVENT_LTK_RSP_COMP event. When the link encryption
has completed, BLE_GAP_EVENT_ENC_CHG event is notified.

Reentrant

No

RX Family US159-DA14531EVZ BLE Control Module Using Firmware Integration Technology

R01AN7174EU0140 Rev.1.40 Page 54 of 124

Nov.21.24

Example

None

Special Notes:

None

RX Family US159-DA14531EVZ BLE Control Module Using Firmware Integration Technology

R01AN7174EU0140 Rev.1.40 Page 55 of 124

Nov.21.24

3.26. R_BLE_GATT_GetMtu()

This function gets the current MTU used in GATT communication.

Format

ble_status_t R_BLE_GATT_GetMtu (

uint16_t conn_hdl,

uint16_t * p_mtu

)

Parameters

conn_hdl Connection handle identifying the GATT Server or the GATT Client.

p_mtu The Current MTU. Before MTU exchange, this parameter is 23 bytes.

After MTU exchange, this parameter is the negotiated MTU.

Return values

BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_PTR(0x0001) The mtu parameter is NULL.

BLE_ERR_INVALID_HDL(0x000E) The GATT Server or the GATT Client specified by conn_hdl was not
found.

Properties

Prototype declarations are contained in r_ble_api.h.

Description

Both GATT server and GATT Client can use this function.

The result of this API call is returned by a return value.

Reentrant

No

Example

None

Special Notes:

None

RX Family US159-DA14531EVZ BLE Control Module Using Firmware Integration Technology

R01AN7174EU0140 Rev.1.40 Page 56 of 124

Nov.21.24

3.27. R_BLE_GATTS_SetDbInst()

This function sets GATT Database to host stack.

Format

ble_status_t R_BLE_GATTS_SetDbInst (

st_ble_gatts_db_cfg_t * p_db_inst

)

Parameters

p_db_inst GATT Database to be set.

Return values

BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_PTR(0x0001) The reason for this error is as follows.

• The db_inst parameter is specified as NULL.

• The array in the db_inst is specified as NULL.

Properties

Prototype declarations are contained in r_ble_api.h.

Description

The result of this API call is returned by a return value.

Reentrant

No

Example

None

Special Notes:

None

RX Family US159-DA14531EVZ BLE Control Module Using Firmware Integration Technology

R01AN7174EU0140 Rev.1.40 Page 57 of 124

Nov.21.24

3.28. R_BLE_GATTS_RegisterCb()

This function registers a callback for GATT Server event.

Format

ble_status_t R_BLE_GATTS_RegisterCb (

ble_gatts_app_cb_t cb,

uint8_t priority

)

Parameters

cb Callback function for GATT Server event.

priority The priority of the callback function.

Valid range is 1 <= priority <= BLE_GATTS_MAX_CB.

A lower priority number means a higher priority level.

Return values

BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_PTR(0x0001) The cb parameter is specified as NULL.

BLE_ERR_INVALID_ARG(0x0003) The priority parameter is out of range.

BLE_ERR_CONTEXT_FULL(0x000B) Host stack has already registered the maximum number of
callbacks.

Properties

Prototype declarations are contained in r_ble_api.h.

Description

The number of the callback that may be registered by this function is the value specified by
R_BLE_GATTS_Init().

The result of this API call is returned by a return value.

Reentrant

No

Example

None

Special Notes:

None

RX Family US159-DA14531EVZ BLE Control Module Using Firmware Integration Technology

R01AN7174EU0140 Rev.1.40 Page 58 of 124

Nov.21.24

3.29. R_BLE_GATTS_DeregisterCb()

This function deregisters the callback function for GATT Server event.

Format

ble_status_t R_BLE_GATTS_DeregisterCb (

ble_gatts_app_cb_t cb

)

Parameters

cb Callback function for GATT Server event.

Return values

BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_PTR(0x0001) The cb parameter is specified as NULL.

BLE_ERR_NOT_FOUND(0x000D) The callback has not been registered.

Properties

Prototype declarations are contained in r_ble_api.h.

Description

The result of this API call is returned by a return value.

Reentrant

No

Example

None

Special Notes:

None

RX Family US159-DA14531EVZ BLE Control Module Using Firmware Integration Technology

R01AN7174EU0140 Rev.1.40 Page 59 of 124

Nov.21.24

3.30. R_BLE_GATTS_Notification()

This function sends a notification of an attribute's value.

Format

ble_status_t R_BLE_GATTS_Notification (

uint16_t conn_hdl,

st_ble_gatt_hdl_value_pair_t * p_ntf_data

)

Parameters

conn_hdl Connection handle identifying the remote device to be sent the notification.

p_ntf_data The attribute value to send.

Return values

BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_PTR(0x0001) The p_ntf_data parameter or the value field in the value field
in the p_ntf_data parameter is NULL.

BLE_ERR_INVALID_ARG(0x0003) The value_len field in the value field in the p_ntf_data
parameter is 0 or the attr_hdl field in the p_ntf_data
parameters is 0.

BLE_ERR_INVALID_OPERATION(0x0009) This function was called while processing other request.

BLE_ERR_MEM_ALLOC_FAILED(0x000C) Insufficient memory is needed to generate this function.

BLE_ERR_INVALID_HDL(0x000E) The remote device specified by conn_hdl was not found.

Properties

Prototype declarations are contained in r_ble_api.h.

Description

The maximum length of the attribute value that can be sent with notification is MTU-3.

The result of this API call is returned by a return value.

Reentrant

No

Example

None

Special Notes:

None

RX Family US159-DA14531EVZ BLE Control Module Using Firmware Integration Technology

R01AN7174EU0140 Rev.1.40 Page 60 of 124

Nov.21.24

3.31. R_BLE_GATTS_Indication()

This function sends an indication of an attribute's value.

Format

ble_status_t R_BLE_GATTS_Indication (

uint16_t conn_hdl,

st_ble_gatt_hdl_value_pair_t * p_ind_data

)

Parameters

conn_hdl Connection handle identifying the remote device to be sent the indication.

p_ind_data The attribute value to send.

Return values

BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_PTR(0x0001) The p_ind_data parameter or the value field in the value field
in the p_ind_data parameter is NULL.

BLE_ERR_INVALID_ARG(0x0003) The value_len field in the value field in the p_ind_data
parameter is 0 or the attr_hdl field in the p_ind_data
parameters is 0.

BLE_ERR_INVALID_OPERATION(0x0009) This function was called while processing other request.

BLE_ERR_MEM_ALLOC_FAILED(0x000C) Insufficient memory is needed to generate this function.

BLE_ERR_INVALID_HDL(0x000E) The remote device specified by conn_hdl was not found.

Properties

Prototype declarations are contained in r_ble_api.h.

Description

The maximum length of the attribute value that can be sent with indication is MTU-3.

The result of this API call is returned by a return value.

The remote device that receives a indication sends a confirmation.

BLE_GATTS_EVENT_HDL_VAL_CNF event notifies the application layer that the confirmation has been
received.

Reentrant

No

Example

None

RX Family US159-DA14531EVZ BLE Control Module Using Firmware Integration Technology

R01AN7174EU0140 Rev.1.40 Page 61 of 124

Nov.21.24

3.32. R_BLE_GATTS_GetAttr()

This function gets an attribute value from the GATT Database.

Format

ble_status_t R_BLE_GATTS_GetAttr (

uint16_t conn_hdl,

uint16_t attr_hdl,

st_ble_gatt_value_t * p_value

)

Parameters

conn_hdl If the attribute value that has information about the remote device is retrieved, specify the remote
device with the conn_hdl parameter. When information about the remote device is not required,
set the conn_hdl parameter to BLE_GAP_INVALID_CONN_HDL.

attr_hdl The attribute handle of the attribute value to be retrieved.

p_value The attribute value to be retrieved.

Return values

BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_PTR(0x0001) The p_value parameter is specified as NULL.

BLE_ERR_INVALID_ARG(0x0003) The attr_hdl parameter is 0 or larger than the last attribute
handle of GATT Database.

BLE_ERR_INVALID_STATE(0x0008) The attribute is not in a state to be read.

BLE_ERR_INVALID_OPERATION(0x0009) The attribute cannot be read.

BLE_ERR_NOT_FOUND(0x000D) The attribute specified by the attr_hdl parameter is not
belonging to any services or characteristics.

BLE_ERR_INVALID_HDL(0x000E) The remote device specified by the conn_hdl parameter was
not found.

Properties

Prototype declarations are contained in r_ble_api.h.

Description

The result of this API call is returned by a return value.

Reentrant

No

Example

None

RX Family US159-DA14531EVZ BLE Control Module Using Firmware Integration Technology

R01AN7174EU0140 Rev.1.40 Page 62 of 124

Nov.21.24

Special Notes:

None

RX Family US159-DA14531EVZ BLE Control Module Using Firmware Integration Technology

R01AN7174EU0140 Rev.1.40 Page 63 of 124

Nov.21.24

3.33. R_BLE_GATTS_SetAttr()

This function sets an attribute value to the GATT Database event.

Format

ble_status_t R_BLE_GATTS_SetAttr (

uint16_t conn_hdl,

uint16_t attr_hdl,

st_ble_gatt_value_t * p_value

)

Parameters

conn_hdl If the attribute value that has information about the remote device is retrieved, specify the
remote device with the conn_hdl parameter. When information about the remote device is not
required, set the conn_hdl parameter to BLE_GAP_INVALID_CONN_HDL.

attr_hdl The attribute handle of the attribute value to be set.

p_value The attribute value to be set.

Return values

BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_PTR(0x0001) The p_value parameter is specified as NULL.

BLE_ERR_INVALID_DATA(0x0002) The write size is larger than the length of the attribute value.

BLE_ERR_INVALID_ARG(0x0003) The attr_hdl parameter is 0 or larger than the last attribute
handle of GATT Database.

BLE_ERR_INVALID_STATE(0x0008) The attribute is not in a state to be written.

BLE_ERR_INVALID_OPERATION(0x0009) The attribute cannot be written.

BLE_ERR_NOT_FOUND(0x000D) The attribute specified by the attr_hdl parameter is not
belonging to any services or characteristics.

BLE_ERR_INVALID_HDL(0x000E) The remote device specified by the conn_hdl parameter was
not found.

Properties

Prototype declarations are contained in r_ble_api.h.

Description

The result of this API call is returned by a return value.

Reentrant

No

Example

None

RX Family US159-DA14531EVZ BLE Control Module Using Firmware Integration Technology

R01AN7174EU0140 Rev.1.40 Page 64 of 124

Nov.21.24

Special Notes:

None

RX Family US159-DA14531EVZ BLE Control Module Using Firmware Integration Technology

R01AN7174EU0140 Rev.1.40 Page 65 of 124

Nov.21.24

3.34. R_BLE_GATTC_RegisterCb()

This function registers a callback function for GATT Client event.

Format

ble_status_t R_BLE_GATTC_RegisterCb (

ble_gattc_app_cb_t cb,

uint8_t priority

)

Parameters

cb Callback function for GATT Client event.

priority The priority of the callback function.

Valid range is 1 <= priority <= BLE_GATTC_MAX_CB.

A lower priority number means a higher priority level.

Return values

BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_PTR(0x0001) The cb parameter is specified as NULL.

BLE_ERR_INVALID_ARG(0x0003) The priority parameter is out of range.

BLE_ERR_CONTEXT_FULL(0x000B) Host stack has already registered the maximum number of
callbacks.

Properties

Prototype declarations are contained in r_ble_api.h.

Description

The result of this API call is returned by a return value.

Reentrant

No

Example

None

Special Notes:

None

RX Family US159-DA14531EVZ BLE Control Module Using Firmware Integration Technology

R01AN7174EU0140 Rev.1.40 Page 66 of 124

Nov.21.24

3.35. R_BLE_GATTC_DeregisterCb()

This function deregisters the callback function for GATT Client event.

Format

ble_status_t R_BLE_GATTC_DeregisterCb (

ble_gattc_app_cb_t cb

)

Parameters

cb The callback function to be deregistered.

Return values

BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_PTR(0x0001) The cb parameter is specified as NULL.

BLE_ERR_NOT_FOUND(0x000D) The callback has not been registered.

Properties

Prototype declarations are contained in r_ble_api.h.

Description

The result of this API call is returned by a return value.

Reentrant

No

Example

None

Special Notes:

None

RX Family US159-DA14531EVZ BLE Control Module Using Firmware Integration Technology

R01AN7174EU0140 Rev.1.40 Page 67 of 124

Nov.21.24

3.36. R_BLE_GATTC_ReqExMtu()

This function sends a MTU Exchange Request PDU to a GATT Server in order to change the current MTU.

Format

ble_status_t R_BLE_GATTC_ReqExMtu (

uint16_t conn_hdl,

uint16_t mtu

)

Parameters

conn_hdl Connection handle identifying the GATT Server to be sent.

mtu The maximum size(in bytes) of the GATT PDU that GATT Client can receive.

Valid range is 23 <= mtu <= 247.

Return values

BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_ARG(0x0003) The mtu parameter is out of range.

BLE_ERR_INVALID_OPERATION(0x0009) While processing other request, this function was called.

BLE_ERR_MEM_ALLOC_FAILED(0x000C) Insufficient memory is needed to generate this function.

BLE_ERR_INVALID_HDL(0x000E) The GATT Server specified by conn_hdl was not found.

Properties

Prototype declarations are contained in r_ble_api.h.

Description

MTU Exchange Response is notified by BLE_GATTC_EVENT_EX_MTU_RSP event.

The new MTU is the minimum value of the mtu parameter specified by this function and the mtu field in
BLE_GATTC_EVENT_EX_MTU_RSP event. Default MTU size is 23 bytes.

The result of this API call is returned by a return value.

Reentrant

No

Example

None

Special Notes:

None

RX Family US159-DA14531EVZ BLE Control Module Using Firmware Integration Technology

R01AN7174EU0140 Rev.1.40 Page 68 of 124

Nov.21.24

3.37. R_BLE_GATTC_DiscAllPrimServ()

This function discovers all Primary Services in a GATT Server.

Format

ble_status_t R_BLE_GATTC_DiscAllPrimServ (

uint16_t conn_hdl

)

Parameters

conn_hdl Connection handle identifying the GATT Server to be discovered.

Return values

BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_OPERATION(0x0009) This function was called while processing other requests.

BLE_ERR_MEM_ALLOC_FAILED(0x000C) Insufficient memory is needed to generate this function.

BLE_ERR_INVALID_HDL(0x000E) The GATT Server specified by conn_hdl was not found.

Properties

Prototype declarations are contained in r_ble_api.h.

Description

When 16-bit UUID Primary Service has been discovered,
BLE_GATTC_EVENT_PRIM_SERV_16_DISC_IND event is notified to the application layer.

When 128-bit UUID Primary Service has been discovered,
BLE_GATTC_EVENT_PRIM_SERV_128_DISC_IND event is notified to the application layer.

When the Primary Service discovery has been completed,
BLE_GATTC_EVENT_ALL_PRIM_SERV_DISC_COMP event is notified to the application layer.

Reentrant

No

Example

None

Special Notes:

None

RX Family US159-DA14531EVZ BLE Control Module Using Firmware Integration Technology

R01AN7174EU0140 Rev.1.40 Page 69 of 124

Nov.21.24

3.38. R_BLE_GATTC_DiscPrimServ()

This function discovers Primary Service specified by p_uuid in a GATT Server.

Format

ble_status_t R_BLE_GATTC_DiscPrimServ (

uint16_t conn_hdl,

uint8_t * p_uuid,

uint8_t uuid_type

)

Parameters

conn_hdl Connection handle identifying the GATT Server to be discovered.

p_uuid UUID of Primary Service to be discovered.

uuid_type UUID type(16-bit or 128-bit).

macro description

BLE_GATT_16_BIT_UUID_FORMAT(0x01) 16-bit UUID

BLE_GATT_128_BIT_UUID_FORMAT(0x02) 128-bit UUID

Return values

BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_PTR(0x0001) The p_uuid parameter is specified as NULL.

BLE_ERR_INVALID_ARG(0x0003) The uuid_type parameter is out of range.

BLE_ERR_INVALID_OPERATION(0x0009) While processing other request, this function was called.

BLE_ERR_MEM_ALLOC_FAILED(0x000C) Insufficient memory is needed to generate this function.

BLE_ERR_INVALID_HDL(0x000E) The GATT Server specified by conn_hdl was not found.

Properties

Prototype declarations are contained in r_ble_api.h.

Description

When Primary Service whose uuid is the same as the specified uuid has been discovered,
BLE_GATTC_EVENT_PRIM_SERV_16_DISC_IND event or
BLE_GATTC_EVENT_PRIM_SERV_128_DISC_IND event is notified to the application layer.

When the Primary Service discovery has been completed,
BLE_GATTC_EVENT_PRIM_SERV_DISC_COMP event is notified to the application layer.

Reentrant

No

Example

None

RX Family US159-DA14531EVZ BLE Control Module Using Firmware Integration Technology

R01AN7174EU0140 Rev.1.40 Page 70 of 124

Nov.21.24

Special Notes:

None

RX Family US159-DA14531EVZ BLE Control Module Using Firmware Integration Technology

R01AN7174EU0140 Rev.1.40 Page 71 of 124

Nov.21.24

3.39. R_BLE_GATTC_DiscIncServ()

This function discovers Included Services within the specified attribute handle range in a GATT Server.

Format

ble_status_t R_BLE_GATTC_DiscIncServ (

uint16_t conn_hdl,

st_ble_gatt_hdl_range_t * p_range

)

Parameters

conn_hdl Connection handle identifying the GATT Server to be discovered.

p_range Retrieval range of Included Service.

Return values

BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_PTR(0x0001) The p_range parameter is specified as NULL.

BLE_ERR_INVALID_OPERATION(0x0009) While processing other request, this function was called.

BLE_ERR_MEM_ALLOC_FAILED(0x000C) Insufficient memory is needed to generate this function.

BLE_ERR_INVALID_HDL(0x000E) The GATT Server specified by conn_hdl was not found.

Properties

Prototype declarations are contained in r_ble_api.h.

Description

When Included Service that includes 16-bit UUID Service has been discovered,
BLE_GATTC_EVENT_INC_SERV_16_DISC_IND event is notified to the application layer.

When Included Service that includes 128-bit UUID Service has been discovered,
BLE_GATTC_EVENT_INC_SERV_128_DISC_IND event is notified to the application layer.

When the Included Service discovery has been completed, BLE_GATTC_EVENT_INC_SERV_DISC_COMP
event is notified to the application layer.

Reentrant

No

Example

None

Special Notes:

None

RX Family US159-DA14531EVZ BLE Control Module Using Firmware Integration Technology

R01AN7174EU0140 Rev.1.40 Page 72 of 124

Nov.21.24

3.40. R_BLE_GATTC_DiscAllChar()

This function discovers Characteristic within the specified attribute handle range in a GATT Server.

Format

ble_status_t R_BLE_GATTC_DiscAllChar (

 uint16_t conn_hdl,

 st_ble_gatt_hdl_range_t * p_range

)

Parameters

conn_hdl Connection handle identifying the GATT Server to be discovered.

p_range Retrieval range of Characteristic.

Return values

BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_PTR(0x0001) The p_range parameter is specified as NULL.

BLE_ERR_INVALID_OPERATION(0x0009) While processing other request, this function was called.

BLE_ERR_MEM_ALLOC_FAILED(0x000C) Insufficient memory is needed to generate this function.

BLE_ERR_INVALID_HDL(0x000E) The GATT Server specified by conn_hdl was not found.

Properties

Prototype declarations are contained in r_ble_api.h.

Description

When 16-bit UUID Characteristic has been discovered, BLE_GATTC_EVENT_CHAR_16_DISC_IND event
is notified to the application layer.

When 128-bit UUID Characteristic has been discovered, BLE_GATTC_EVENT_CHAR_128_DISC_IND
event is notified to the application layer.

When the Characteristic discovery has been completed, BLE_GATTC_EVENT_ALL_CHAR_DISC_COMP
event is notified to the application layer.

Reentrant

No

Example

None

Special Notes:

None

RX Family US159-DA14531EVZ BLE Control Module Using Firmware Integration Technology

R01AN7174EU0140 Rev.1.40 Page 73 of 124

Nov.21.24

3.41. R_BLE_GATTC_DiscCharByUuid()

This function discovers Characteristic specified by uuid within the specified attribute handle range in a GATT
Server.

Format

ble_status_t R_BLE_GATTC_DiscCharByUuid (

 uint16_t conn_hdl,

 uint8_t * p_uuid,

 uint8_t uuid_type,

 st_ble_gatt_hdl_range_t * p_range

)

Parameters

conn_hdl Connection handle identifying the GATT Server to be discovered.

p_uuid UUID of Characteristic to be discovered.

uuid_type UUID type of Characteristic to be discovered.

macro description

BLE_GATT_16_BIT_UUID_FORMAT(0x01) The p_uuid parameter is 16-bit UUID.

BLE_GATT_128_BIT_UUID_FORMAT(0x02) The p_uuid parameter is 128-bit UUID.

p_range Retrieval range of Characteristic.

Return values

BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_PTR(0x0001) The p_uuid parameter or the p_range parameter is specified
as NULL.

BLE_ERR_INVALID_ARG(0x0003) The uuid_type parameter is out of range.

BLE_ERR_INVALID_OPERATION(0x0009) While processing other request, this function was called.

BLE_ERR_MEM_ALLOC_FAILED(0x000C) Insufficient memory is needed to generate this function.

BLE_ERR_INVALID_HDL(0x000E) The GATT Server specified by conn_hdl was not found.

Properties

Prototype declarations are contained in r_ble_api.h.

Description

When 16-bit UUID Characteristic has been discovered, BLE_GATTC_EVENT_CHAR_16_DISC_IND event
is notified to the application layer.

When 128-bit UUID Characteristic has been discovered, BLE_GATTC_EVENT_CHAR_128_DISC_IND
event is notified to the application layer.

When the Characteristic discovery has been completed, BLE_GATTC_EVENT_CHAR_DISC_COMP event
is notified to the application layer.

Reentrant

RX Family US159-DA14531EVZ BLE Control Module Using Firmware Integration Technology

R01AN7174EU0140 Rev.1.40 Page 74 of 124

Nov.21.24

No

Example

None

Special Notes:

None

RX Family US159-DA14531EVZ BLE Control Module Using Firmware Integration Technology

R01AN7174EU0140 Rev.1.40 Page 75 of 124

Nov.21.24

3.42. R_BLE_GATTC_DiscAllCharDesc()

This function discovers Characteristic Descriptor within the specified attribute handle range in a GATT
Server.

Format

ble_status_t R_BLE_GATTC_DiscAllChar (

 uint16_t conn_hdl,

 st_ble_gatt_hdl_range_t * p_range

)

Parameters

conn_hdl Connection handle identifying the GATT Server to be discovered.

p_range Retrieval range of Characteristic Descriptor.

Return values

BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_PTR(0x0001) The p_range parameter is specified as NULL.

BLE_ERR_INVALID_OPERATION(0x0009) While processing other request, this function was called.

BLE_ERR_MEM_ALLOC_FAILED(0x000C) Insufficient memory is needed to generate this function.

BLE_ERR_INVALID_HDL(0x000E) The GATT Server specified by conn_hdl was not found.

Properties

Prototype declarations are contained in r_ble_api.h.

Description

When 16-bit UUID Characteristic Descriptor has been discovered,
BLE_GATTC_EVENT_CHAR_DESC_16_DISC_IND event is notified to the application layer.

When 128-bit UUID Characteristic Descriptor has been discovered,
BLE_GATTC_EVENT_CHAR_DESC_128_DISC_IND event is notified to the application layer.

When the Characteristic Descriptor discovery has been completed,
BLE_GATTC_EVENT_ALL_CHAR_DESC_DISC_COMP event is notified to the application layer.

Reentrant

No

Example

None

Special Notes:

None

RX Family US159-DA14531EVZ BLE Control Module Using Firmware Integration Technology

R01AN7174EU0140 Rev.1.40 Page 76 of 124

Nov.21.24

3.43. R_BLE_GATTC_ReadChar()

This function reads a Characteristic/Characteristic Descriptor in a GATT Server.

Format

ble_status_t R_BLE_GATTC_ReadChar (

uint16_t conn_hdl,

uint16_t value_hdl

)

Parameters

conn_hdl Connection handle identifying the GATT Server to be read.

value_hdl Value handle of the Characteristic/Characteristic Descriptor to be read.

Return values

BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_ARG(0x0003) 0 is specified in the value_hdl parameter.

BLE_ERR_INVALID_OPERATION(0x0009) While processing other request, this function was called.

BLE_ERR_MEM_ALLOC_FAILED(0x000C) Insufficient memory is needed to generate this function.

BLE_ERR_INVALID_HDL(0x000E) The GATT Server specified by conn_hdl was not found.

Properties

Prototype declarations are contained in r_ble_api.h.

Description

The result of the read is notified in BLE_GATTC_EVENT_CHAR_READ_RSP event.

Reentrant

No

Example

None

Special Notes:

None

RX Family US159-DA14531EVZ BLE Control Module Using Firmware Integration Technology

R01AN7174EU0140 Rev.1.40 Page 77 of 124

Nov.21.24

3.44. R_BLE_GATTC_ReadCharUsingUuid()

This function reads a Characteristic in a GATT Server using a specified UUID.

Format

ble_status_t R_BLE_GATTC_ReadCharUsingUuid (

 uint16_t conn_hdl,

 uint8_t * p_uuid,

 uint8_t uuid_type,

 st_ble_gatt_hdl_range_t * p_range

)

Parameters

conn_hdl Connection handle that identifies Characteristic to be read to GATT Server.

p_uuid UUID of the Characteristic to be read.

uuid_type UUID type of the Characteristic to be read.

macro description

BLE_GATT_16_BIT_UUID_FORMAT(0x01) The p_uuid parameter is 16-bit UUID.

BLE_GATT_128_BIT_UUID_FORMAT(0x02) The p_uuid parameter is 128-bit UUID.

p_range Retrieval range of Characteristic.

Return values

BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_PTR(0x0001) The p_uuid parameter or the p_range parameter is specified
as NULL.

BLE_ERR_INVALID_ARG(0x0003) The uuid_type parameter is out of range.

BLE_ERR_INVALID_OPERATION(0x0009) While processing other request, this function was called.

BLE_ERR_MEM_ALLOC_FAILED(0x000C) Insufficient memory is needed to generate this function.

BLE_ERR_INVALID_HDL(0x000E) The GATT Server specified by conn_hdl was not found.

Properties

Prototype declarations are contained in r_ble_api.h.

Description

The result of the read is notified in BLE_GATTC_EVENT_CHAR_READ_BY_UUID_RSP event.

Reentrant

No

Example

None

RX Family US159-DA14531EVZ BLE Control Module Using Firmware Integration Technology

R01AN7174EU0140 Rev.1.40 Page 78 of 124

Nov.21.24

Special Notes:

None

RX Family US159-DA14531EVZ BLE Control Module Using Firmware Integration Technology

R01AN7174EU0140 Rev.1.40 Page 79 of 124

Nov.21.24

3.45. R_BLE_GATTC_ReadLongChar()

This function reads a Long Characteristic in a GATT Server.

Format

ble_status_t R_BLE_GATTC_ReadLongChar (

 uint16_t conn_hdl,

 uint16_t value_hdl,

 uint16_t offset

)

Parameters

conn_hdl Connection handle identifying the GATT Server to be read.

value_hdl Value handle of the Long Characteristic to be read.

offset Offset that indicates the location to be read.

Normally, set 0 to this parameter.

Return values

BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_ARG(0x0003) 0 is specified in the value_hdl parameter.

BLE_ERR_INVALID_OPERATION(0x0009) While processing other request, this function was called.

BLE_ERR_MEM_ALLOC_FAILED(0x000C) Insufficient memory is needed to generate this function.

BLE_ERR_INVALID_HDL(0x000E) The GATT Server specified by conn_hdl was not found.

Properties

Prototype declarations are contained in r_ble_api.h.

Description

The contents of the Long Characteristic that has been read is notified every MTU-1 bytes to the application
layer by BLE_GATTC_EVENT_CHAR_READ_RSP event.

When all of the contents has been received in GATT Client,
BLE_GATTC_EVENT_LONG_CHAR_READ_COMP event is notified to the application layer.

Reentrant

No

Example

None

Special Notes:

None

RX Family US159-DA14531EVZ BLE Control Module Using Firmware Integration Technology

R01AN7174EU0140 Rev.1.40 Page 80 of 124

Nov.21.24

3.46. R_BLE_GATTC_ReadMultiChar()

This function reads multiple Characteristics in a GATT Server.

Format

ble_status_t R_BLE_GATTC_ReadMultiChar (

 uint16_t conn_hdl,

 st_ble_gattc_rd_multi_req_param_t * p_list

)

Parameters

conn_hdl Connection handle that identifies Characteristic to be read to GATT Server.

p_list List of Value Handles that point the Characteristics to be read.

Return values

BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_PTR(0x0001) The p_list parameter or the p_hdl_list field in the p_list
parameter is specified as NULL.

BLE_ERR_INVALID_ARG(0x0003) 0 is specified in the value_hdl parameter.

BLE_ERR_INVALID_OPERATION(0x0009) While processing other request, this function was called.

BLE_ERR_MEM_ALLOC_FAILED(0x000C) Insufficient memory is needed to generate this function.

BLE_ERR_INVALID_HDL(0x000E) The GATT Server specified by conn_hdl was not found.

Properties

Prototype declarations are contained in r_ble_api.h.

Description

The contents of the multiple Characteristics that has been read is notified to the application layer by
BLE_GATTC_EVENT_MULTI_CHAR_READ_RSP event.

Reentrant

No

Example

None

Special Notes:

None

RX Family US159-DA14531EVZ BLE Control Module Using Firmware Integration Technology

R01AN7174EU0140 Rev.1.40 Page 81 of 124

Nov.21.24

3.47. R_BLE_GATTC_WriteCharWithoutRsp()

This function writes a Characteristic in a GATT Server without response.

Format

ble_status_t R_BLE_GATTC_WriteCharWithoutRsp (

uint16_t conn_hdl,

st_ble_gatt_hdl_value_pair_t * p_write_data

)

Parameters

conn_hdl Connection handle that identifies Characteristic to be read to GATT Server.

p_write_data Value to be written to the Characteristic.

Return values

BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_PTR(0x0001) The p_write_data parameter or the p_value field in the value
field in the p_write_data parameter is specified as NULL.

BLE_ERR_INVALID_ARG(0x0003) The reason for this error is as follows:

• 0 is specified in the value_len field in the p_value field
in the p_write_data parameter.

• 0 is specified in the attr_hdl field in the p_write_data
parameter.

BLE_ERR_INVALID_OPERATION(0x0009) While processing other request, this function was called.

BLE_ERR_MEM_ALLOC_FAILED(0x000C) Insufficient memory is needed to generate this function.

BLE_ERR_INVALID_HDL(0x000E) The GATT Server specified by conn_hdl was not found.

Properties

Prototype declarations are contained in r_ble_api.h.

Description

The result is returned from the API.

Reentrant

No

Example

None

Special Notes:

None

RX Family US159-DA14531EVZ BLE Control Module Using Firmware Integration Technology

R01AN7174EU0140 Rev.1.40 Page 82 of 124

Nov.21.24

3.48. R_BLE_GATTC_SignedWriteChar()

This function writes Signed Data to a Characteristic in a GATT Server without response.

Format

ble_status_t R_BLE_GATTC_SignedWriteChar (

uint16_t conn_hdl,

st_ble_gatt_hdl_value_pair_t * p_write_data

)

Parameters

conn_hdl Connection handle identifying the GATT Server to be written.

p_write_data Signed Data to be written to the Characteristic.

Return values

BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_PTR(0x0001) The p_write_data parameter or the p_value field in the value
field in the p_write_data parameter is specified as NULL.

BLE_ERR_INVALID_ARG(0x0003) The reason for this error is as follows:

• 0 is specified in the value_len field in the value field in
the p_write_data parameter.

• 0 is specified in the attr_hdl field in the p_write_data
parameter.

BLE_ERR_INVALID_OPERATION(0x0009) While processing other request, this function was called.

BLE_ERR_MEM_ALLOC_FAILED(0x000C) Insufficient memory is needed to generate this function.

BLE_ERR_INVALID_HDL(0x000E) The GATT Server specified by conn_hdl was not found.

Properties

Prototype declarations are contained in r_ble_api.h.

Description

The result of this API call is returned by a return value.

Reentrant

No

Example

None

Special Notes:

None

RX Family US159-DA14531EVZ BLE Control Module Using Firmware Integration Technology

R01AN7174EU0140 Rev.1.40 Page 83 of 124

Nov.21.24

3.49. R_BLE_GATTC_WriteChar()

This function writes a Characteristic in a GATT Server.

Format

ble_status_t R_BLE_GATTC_WriteChar (

uint16_t conn_hdl,

st_ble_gatt_hdl_value_pair_t * p_write_data

)

Parameters

conn_hdl Connection handle identifying the GATT Server to be written.

p_write_data Signed Data to be written to the Characteristic.

Return values

BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_PTR(0x0001) The p_write_data parameter or the p_value field in the value
field in the p_write_data parameter is specified as NULL.

BLE_ERR_INVALID_ARG(0x0003) The reason for this error is as follows:

• 0 is specified in the value_len field in the value field in
the p_write_data parameter.

• 0 is specified in the attr_hdl field in the p_write_data
parameter.

BLE_ERR_INVALID_OPERATION(0x0009) While processing other request, this function was called.

BLE_ERR_MEM_ALLOC_FAILED(0x000C) Insufficient memory is needed to generate this function.

BLE_ERR_INVALID_HDL(0x000E) The GATT Server specified by conn_hdl was not found.

Properties

Prototype declarations are contained in r_ble_api.h.

Description

The result of the write is notified in BLE_GATTC_EVENT_CHAR_WRITE_RSP event.

Reentrant

No

Example

None

Special Notes:

None

RX Family US159-DA14531EVZ BLE Control Module Using Firmware Integration Technology

R01AN7174EU0140 Rev.1.40 Page 84 of 124

Nov.21.24

3.50. R_BLE_GATTC_WriteLongChar()

This function writes a Long Characteristic in a GATT Server.

Format

ble_status_t R_BLE_GATTC_WriteLongChar (

uint16_t conn_hdl,

st_ble_gatt_hdl_value_pair_t * p_write_data,

uint16_t offset

)

Parameters

conn_hdl Connection handle identifying the GATT Server to be written.

p_write_data Value to be written to the Long Characteristic.

offset Offset that indicates the location to be written. Normally, set 0 to this parameter.

If this parameter sets to a value other than 0, adjust the offset parameter and the length of
the value to be written not to exceed the length of the Long Characteristic.

Return values

BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_PTR(0x0001) The p_write_data parameter or the p_value field in the value
field in the p_write_data parameter is specified as NULL.

BLE_ERR_INVALID_ARG(0x0003) The reason for this error is as follows:

• The value_len field in the value field in the
p_write_data parameter is 0.

• The sum of the value_len field in the value field in the
p_write_data parameter and the offset parameter
larger than 512.

• The attr_hdl field in the p_write_data parameter is 0.

BLE_ERR_INVALID_OPERATION(0x0009) While processing other request, this function was called.

BLE_ERR_MEM_ALLOC_FAILED(0x000C) Insufficient memory is needed to generate this function.

BLE_ERR_INVALID_HDL(0x000E) The GATT Server specified by conn_hdl was not found.

Properties

Prototype declarations are contained in r_ble_api.h.

Description

The result of a write that has been done every segmentation is notified to the application layer in
BLE_GATTC_EVENT_CHAR_PART_WRITE_RSP event.

The maximum writable size to a Long Characteristic with this function is 512 bytes.

When all of the contents has been written to the Long Characteristic,
BLE_GATTC_EVENT_LONG_CHAR_WRITE_COMP event is notified to the application layer.

Reentrant

RX Family US159-DA14531EVZ BLE Control Module Using Firmware Integration Technology

R01AN7174EU0140 Rev.1.40 Page 85 of 124

Nov.21.24

No

Example

None

Special Notes:

None

RX Family US159-DA14531EVZ BLE Control Module Using Firmware Integration Technology

R01AN7174EU0140 Rev.1.40 Page 86 of 124

Nov.21.24

3.51. R_BLE_GATTC_ReliableWrites()

This function performs the Reliable Writes procedure described in GATT Specification.

Format

ble_status_t R_BLE_GATTC_ReliableWrites (

 uint16_t conn_hdl,

 st_ble_gattc_reliable_writes_char_pair_t * p_char_pair,

 uint8_t pair_num,

 uint8_t auto_flag

)

Parameters

conn_hdl Connection handle identifying the GATT Server to be written.

p_char_pair Pair of Characteristic Value and Characteristic Value Handle identifying the Characteristic to
be written by Reliable Writes.

pair_num The number of the pairs specified by the p_char_pair parameter.

Valid range is 0 < pair_num <= BLE_GATTC_RELIABLE_WRITES_MAX_CHAR_PAIR.

auto_flag The flag that indicates whether auto execution or not.

macro description

BLE_GATTC_EXEC_AUTO(0x01) Auto execution.

BLE_GATTC_EXEC_NOT_AUTO (0x02) Not auto execution.

Return values

BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_PTR(0x0001) The reason for this error is as follows:

• The p_char_pair parameter is specified as NULL.

• The p_value field in the value field in the write_data
field in the p_char_pair parameter is specified as
NULL.

BLE_ERR_INVALID_ARG(0x0003) The reason for this error is as follows:

• The pair_num parameter or the auto_flag parameter
is out of range.

• The value_len field in the value field in the write_data
field in the p_char_pair parameter is 0.

BLE_ERR_INVALID_OPERATION(0x0009) While processing other request, this function was called.

BLE_ERR_MEM_ALLOC_FAILED(0x000C) Insufficient memory is needed to generate this function or to
store the temporary write data.

BLE_ERR_INVALID_HDL(0x000E) The GATT Server specified by conn_hdl was not found.

Properties

Prototype declarations are contained in r_ble_api.h.

RX Family US159-DA14531EVZ BLE Control Module Using Firmware Integration Technology

R01AN7174EU0140 Rev.1.40 Page 87 of 124

Nov.21.24

Description

When the data written to the Characteristic has been transmitted,
BLE_GATTC_EVENT_CHAR_PART_WRITE_RSP event is notified to the application layer.

If the data included in the event is different from the data that GATT Client has sent, host stack automatically
cancels the Reliable Writes.

After all of the contents has been sent to the GATT Server, if the auto_flag parameter has been set to
BLE_GATTC_EXEC_AUTO, the GATT Server automatically writes the data to the Characteristic.

If the auto_flag parameter has been set to BLE_GATTC_EXEC_NOT_AUTO,
BLE_GATTC_EVENT_RELIABLE_WRITES_TX_COMP event notifies the application layer in GATT Client
that all of the contents has been sent to the GATT Server. Then GATT Client requests for writing the data to
the Characteristic to the GATT Server with R_BLE_GATTC_ExecWrite().

When the write has been done, BLE_GATTC_EVENT_RELIABLE_WRITES_COMP event is notified to the
application layer.

Reentrant

No

Example

None

Special Notes:

None

RX Family US159-DA14531EVZ BLE Control Module Using Firmware Integration Technology

R01AN7174EU0140 Rev.1.40 Page 88 of 124

Nov.21.24

3.52. R_BLE_GATTC_ExecWrite()

This function is used to execute a write to Characteristic.

Format

ble_status_t R_BLE_GATTC_ExecWrite (

uint16_t conn_hdl,

uint8_t exe_flag

)

Parameters

conn_hdl Connection handle identifying the target GATT Server.

exe_flag The flag that indicates whether execution or cancellation.

macro description

BLE_GATTC_EXECUTE_WRITE_CANCEL_FLAG(0x00) Execute the write.

BLE_GATTC_EXECUTE_WRITE_EXEC_FLAG(0x01) Cancel the write.

Return values

BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_ARG(0x0003) The exe_flag parameter is out of range.

BLE_ERR_INVALID_OPERATION(0x0009) The reason for this error is as follows:

• GATT Client has not requested for Reliable Writes by
R_BLE_GATTC_ReliableWrites().

• Although auto execution has been specified by
R_BLE_GATTC_ReliableWrites(), this function was
called.

BLE_ERR_MEM_ALLOC_FAILED(0x000C) Insufficient memory is needed to generate this function.

BLE_ERR_INVALID_HDL(0x000E) The GATT Server specified by conn_hdl was not found.

Properties

Prototype declarations are contained in r_ble_api.h.

Description

When all of the contents has been sent to the GATT Server,
BLE_GATTC_EVENT_RELIABLE_WRITES_TX_COMP event notifies the application layer.

After this event has been received, execute the write by this function.

The result of the write is notified by BLE_GATTC_EVENT_RELIABLE_WRITES_COMP event.

Reentrant

No

Example

None

RX Family US159-DA14531EVZ BLE Control Module Using Firmware Integration Technology

R01AN7174EU0140 Rev.1.40 Page 89 of 124

Nov.21.24

Special Notes:

None

RX Family US159-DA14531EVZ BLE Control Module Using Firmware Integration Technology

R01AN7174EU0140 Rev.1.40 Page 90 of 124

Nov.21.24

3.53. R_BLE_L2CAP_RegisterCfPsm()

This function registers PSM that uses L2CAP CBFC Channel and a callback for L2CAP event.

Format

ble_status_t R_BLE_L2CAP_RegisterCfPsm (

 ble_l2cap_cf_app_cb_t cb,

 uint16_t psm,

 uint16_t lwm

)

Parameters

cb Callback function for L2CAP event.

psm Identifier indicating the protocol/profile that uses L2CAP CBFC Channel.

type range description

Fixed, SIG
assigned

0x0001 -
0x007F

PSM defined by SIG. For more information on PSM, refer Bluetooth
SIG Assigned Number.

(https://www.bluetooth.com/specifications/assigned-numbers).

Dynamic 0x0080 -
0x00FF

Statically allocated PSM by custom protocol or dynamically allocated
PSM by GATT Service.

lwm Low Water Mark that indicates the LE-Frame numbers that the local device can receive.

Return values

BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_PTR(0x0001) The cb parameter is specified as NULL.

BLE_ERR_INVALID_ARG(0x0003) The psm parameter is out of range.

BLE_ERR_CONTEXT_FULL(0x000B) More than BLE_L2CAP_MAX_CBFC_PSM+1 PSMs, callbacks has
been registered.

Properties

Prototype declarations are contained in r_ble_api.h.

Description

Only one callback is available per PSM. Configure in each PSM the Low Water Mark of the LE-Frames that
the local device can receive.

When the number of the credit reaches the Low Water Mark,
BLE_L2CAP_EVENT_CF_LOW_RX_CRD_IND event is notified to the application layer.

The number of PSM is defined as BLE_L2CAP_MAX_CBFC_PSM.

The result of this API call is returned by a return value.

Reentrant

No

https://www.bluetooth.com/specifications/assigned-numbers

RX Family US159-DA14531EVZ BLE Control Module Using Firmware Integration Technology

R01AN7174EU0140 Rev.1.40 Page 91 of 124

Nov.21.24

Example

None

Special Notes:

None

RX Family US159-DA14531EVZ BLE Control Module Using Firmware Integration Technology

R01AN7174EU0140 Rev.1.40 Page 92 of 124

Nov.21.24

3.54. R_BLE_L2CAP_DeregisterCfPsm()

This function stops the use of the L2CAP CBFC Channel specified by the psm parameter and deregisters
the callback function for L2CAP event.

Format

ble_status_t R_BLE_L2CAP_DeregisterCfPsm (

 uint16_t psm

)

Parameters

psm PSM that is to be stopped to use the L2CAP CBFC Channel.

Set the PSM registered by R_BLE_VS_Init().

Return values

BLE_SUCCESS(0x0000) Success

BLE_ERR_NOT_FOUND(0x000D) The callback function allocated by the psm parameter is not found.

Properties

Prototype declarations are contained in r_ble_api.h.

Description

The result of this API call is returned by a return value.

Reentrant

No

Example

None

Special Notes:

None

RX Family US159-DA14531EVZ BLE Control Module Using Firmware Integration Technology

R01AN7174EU0140 Rev.1.40 Page 93 of 124

Nov.21.24

3.55. R_BLE_L2CAP_ReqCfConn()

This function sends a connection request for L2CAP CBFC Channel.

Format

ble_status_t R_BLE_L2CAP_ReqCfConn (

 uint16_t conn_hdl,

 st_ble_l2cap_conn_req_param_t * p_conn_req_param

)

Parameters

conn_hdl Connection handle identifying the remote device that the connection request is sent to.

p_conn_req_param Connection request parameters.

Return values

BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_PTR(0x0001) The p_conn_req_param parameter is specified as NULL.

BLE_ERR_INVALID_ARG(0x0003) The mtu parameter or the mps parameter is out of range.

BLE_ERR_INVALID_STATE(0x0008) CF Channel connection has not been established.

BLE_ERR_CONTEXT_FULL(0x000B) New CF Channel can not be registered or other L2CAP
Command is processing.

BLE_ERR_MEM_ALLOC_FAILED(0x000C) Insufficient memory is needed to generate this function.

BLE_ERR_INVALID_HDL(0x000E) The remote device specified by conn_hdl is not found.

BLE_ERR_NOT_YET_READY(0x0012) The psm parameter is not registered.

Properties

Prototype declarations are contained in r_ble_api.h.

Description

The connection response is notified by BLE_L2CAP_EVENT_CF_CONN_CNF event.

The result of this API call is returned by a return value.

Reentrant

No

Example

None

Special Notes:

None

RX Family US159-DA14531EVZ BLE Control Module Using Firmware Integration Technology

R01AN7174EU0140 Rev.1.40 Page 94 of 124

Nov.21.24

3.56. R_BLE_L2CAP_DisconnetCf()

This function sends a disconnection request for L2CAP CBFC Channel.

Format

ble_status_t R_BLE_L2CAP_DisconnectCf (

 uint16_t lcid

)

Parameters

lcid CID identifying the L2CAP CBFC Channel that has been disconnected.

The valid range is 0x40 - (0x40 + BLE_L2CAP_MAX_CBFC_PSM - 1).

Return values

BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_OPERATION(0x0009) CF Channel connection has not been established.

BLE_ERR_CONTEXT_FULL(0x000B) This function was called while processing other L2CAP
command.

BLE_ERR_MEM_ALLOC_FAILED(0x000C) There are no memories for L2CAP Command.

BLE_ERR_NOT_FOUND(0x000D) CID specified the lcid parameter is not found.

Properties

Prototype declarations are contained in r_ble_api.h.

Description

When L2CAP CBFC Channel has been disconnected, BLE_L2CAP_EVENT_CF_DISCONN_CNF event is
notified to the application layer.

Reentrant

No

Example

None

Special Notes:

None

RX Family US159-DA14531EVZ BLE Control Module Using Firmware Integration Technology

R01AN7174EU0140 Rev.1.40 Page 95 of 124

Nov.21.24

3.57. R_BLE_L2CAP_SendCfCredit()

This function sends credit to a remote device.

Format

ble_status_t R_BLE_L2CAP_SendCfCredit (

 uint16_t lcid,

 uint16_t credit

)

Parameters

lcid CID identifying the L2CAP CBFC Channel on local device that sends credit.

credit Credit to be sent to the remote device.

Return values

BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_ARG(0x0003) The credit parameter is set to 0.

BLE_ERR_CONTEXT_FULL(0x000B) This function was called while processing other L2CAP
command.

BLE_ERR_MEM_ALLOC_FAILED(0x000C) There are no memories for L2CAP Command.

Properties

Prototype declarations are contained in r_ble_api.h.

Description

In L2CAP CBFC communication, if credit is 0, the remote device stops data transmission.

Therefore when processing the received data has been completed and local device affords to receive data,
the remote device is notified of the number of LE-Frame that local device can receive by this function and
local device can continue to receive data from the remote device.

The result of this API call is returned by a return value.

Reentrant

No

Example

None

Special Notes:

None

RX Family US159-DA14531EVZ BLE Control Module Using Firmware Integration Technology

R01AN7174EU0140 Rev.1.40 Page 96 of 124

Nov.21.24

3.58. R_BLE_L2CAP_SendCfData()

This function sends the data to a remote device via L2CAP CBFC Channel.

Format

ble_status_t R_BLE_L2CAP_SendCfData (

 uint16_t conn_hdl,

 uint16_t lcid,

 uint16_t data_len,

 uint8_t * p_sdu

)

Parameters

conn_hdl Connection handle identifying the remote device to be sent the data.

lcid CID identifying the L2CAP CBFC Channel on local device used in the data
transmission.

data_len Length of the data.

p_sdu Service Data Unit.

Input the data length specified by the data_len parameter to the first 2 bytes (Little
Endian).

Return values

BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_PTR(0x0001) The p_data parameter is specified as NULL.

BLE_ERR_INVALID_ARG(0x0003) The length parameter is out of range.

BLE_ERR_INVALID_STATE(0x0008) CF Channel connection has not been established or the
data whose length exceeds the MTU has been sent.

BLE_ERR_ALREADY_IN_PROGRESS(0x000A) Data transmission has been already started.

BLE_ERR_CONTEXT_FULL(0x000B) L2CAP task queue is full.

BLE_ERR_MEM_ALLOC_FAILED(0x000C) There are no memories for L2CAP Command.

BLE_ERR_NOT_FOUND(0x000D) CID specified the lcid parameter is not found.

BLE_ERR_INVALID_HDL(0x000E) The remote device specified by the conn_hdl parameter
is not found.

Properties

Prototype declarations are contained in r_ble_api.h.

Description

When the data transmission to Controller has been completed, BLE_L2CAP_EVENT_CF_TX_DATA_CNF
event is notified to the application layer.

Reentrant

No

RX Family US159-DA14531EVZ BLE Control Module Using Firmware Integration Technology

R01AN7174EU0140 Rev.1.40 Page 97 of 124

Nov.21.24

Example

None

Special Notes:

None

RX Family US159-DA14531EVZ BLE Control Module Using Firmware Integration Technology

R01AN7174EU0140 Rev.1.40 Page 98 of 124

Nov.21.24

3.59. R_BLE_VS_Init()

This function initializes Vendor Specific API and registers a callback function for Vendor Specific Event.

Format

ble_status_t R_BLE_VS_Init (

ble_vs_app_cb_t vs_cb

)

Parameters

vs_cb Callback function to be registered.

Return values

BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_PTR(0x0001) The vs_cb parameter is specified as NULL.

BLE_ERR_CONTEXT_FULL(0x000B) Callback function has already been registered.

Properties

Prototype declarations are contained in r_ble_api.h.

Description

The result of this API call is returned by a return value.

Reentrant

No

Example

None

Special Notes:

None

RX Family US159-DA14531EVZ BLE Control Module Using Firmware Integration Technology

R01AN7174EU0140 Rev.1.40 Page 99 of 124

Nov.21.24

3.60. R_BLE_VS_SetTxPower()

This function configures transmit power.

Format

ble_status_t R_BLE_VS_SetTxPower (

uint16_t conn_hdl,

uint8_t tx_power

)

Parameters

conn_hdl Connection handle identifying the link whose transmit power to be configured.

tx_power Transmission power. Select one of the following.

macro description

BLE_VS_TX_POWER_HIGH High power level with address 0x00

BLE_VS_TX_POWER_MID Middle power level with address 0x01

BLE_VS_TX_POWER_LOW Low power level with address 0x02

Return values

BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_STATE(0x0008) The task for host stack is not running.

BLE_ERR_MEM_ALLOC_FAILED(0x000C) There are no memories for Vendor Specific Command.

Properties

Prototype declarations are contained in r_ble_api.h.

Description

This function configures the following transmit power.

• The transmit power used in sending advertising PDU, scan request PDU, connection request PDU
(in not connected state)

• The transmit power used in sending PDU in connected state. When configuring the transmit power
used in not connected state, set the conn_hdl parameter to BLE_GAP_INIT_CONN_HDL(0xFFFF).

When the transmit power used in connected state is configured, set the conn_hdl parameter to the
connection handle of the link.

Select one of the following transmit power levels.

• High

• Middle

• Low

Max transmit power of "High" is dependent on the configuration of the firmware.

The result of this API call is notified in BLE_VS_EVENT_SET_TX_POWER event.

RX Family US159-DA14531EVZ BLE Control Module Using Firmware Integration Technology

R01AN7174EU0140 Rev.1.40 Page 100 of 124

Nov.21.24

Reentrant

No

Example

None

Special Notes:

None

RX Family US159-DA14531EVZ BLE Control Module Using Firmware Integration Technology

R01AN7174EU0140 Rev.1.40 Page 101 of 124

Nov.21.24

3.61. R_BLE_VS_GetTxPower()

This function gets transmit power.

Format

ble_status_t R_BLE_VS_GetTxPower (

uint16_t conn_hdl

)

Parameters

conn_hdl Connection handle identifying the link whose transmit power to be retrieved.

Return values

BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_STATE(0x0008) The task for host stack is not running.

BLE_ERR_MEM_ALLOC_FAILED(0x000C) There are no memories for Vendor Specific Command.

Properties

Prototype declarations are contained in r_ble_api.h.

Description

This function gets the following transmit power.

• The transmit power used in sending advertising PDU, scan request PDU, connection request PDU
(in not connected state)

• The transmit power used in sending PDU in connected state. When getting the transmit power used
in not connected state, set the conn_hdl parameter to BLE_GAP_INIT_CONN_HDL(0xFFFF).

When the transmit power used in connected state is retrieved, set the conn_hdl parameter to the
connection handle of the link.

The result of this API call is notified in BLE_VS_EVENT_GET_TX_POWER event.

Reentrant

No

Example

None

Special Notes:

None

RX Family US159-DA14531EVZ BLE Control Module Using Firmware Integration Technology

R01AN7174EU0140 Rev.1.40 Page 102 of 124

Nov.21.24

3.62. R_BLE_VS_GetBdAddr()

This function gets currently configured public/random address.

Format

ble_status_t R_BLE_VS_GetBdAddr (

uint8_t area,

uint8_t addr_type

)

Parameters

area The area that the address is to be retrieved.

Select one of the following.

macro description

BLE_VS_ADDR_AREA_REG(0x00) Retrieve the address in register.

BLE_VS_ADDR_AREA_DATA_FLASH(0x01) Retrieve the address in DataFlash area.

addr_type The address type that is type of the address to be retrieved.

macro description

BLE_GAP_ADDR_PUBLIC(0x00) Public address.

BLE_GAP_ADDR_RAND(0x01) Random address.

Return values

BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_STATE(0x0008) The task for host stack is not running.

BLE_ERR_MEM_ALLOC_FAILED(0x000C) There are no memories for Vendor Specific Command.

Properties

Prototype declarations are contained in r_ble_api.h.

Description

The area parameter specifies the place where this function retrieves public/random address.

The result of this API call is notified in BLE_VS_EVENT_GET_ADDR_COMP event.

Reentrant

No

Example

None

Special Notes:

None

RX Family US159-DA14531EVZ BLE Control Module Using Firmware Integration Technology

R01AN7174EU0140 Rev.1.40 Page 103 of 124

Nov.21.24

3.63. R_BLE_VS_SetBdAddr()

This function sets public/random address of local device to the area specified by the parameter.

Format

ble_status_t R_BLE_VS_SetBdAddr (

uint8_t area,

st_ble_dev_addr_t * p_addr

)

Parameters

area The area that the address is to be written in.

Select one of the following.

macro description

BLE_VS_ADDR_AREA_REG(0x00) Address writing to non-volatile area is not
performed.

Only the address in register is written.

BLE_VS_ADDR_AREA_DATA_FLASH(0x01) Address wiring to DataFlash area is performed.

p_addr The address to be set to the area. Set BLE_GAP_ADDR_PUBLIC(0x00) or
BLE_GAP_ADDR_RAND(0x01) to the type field in the p_addr parameter.

Return values

BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_PTR(0x0001) The p_addr parameter is specified as NULL.

BLE_ERR_INVALID_STATE(0x0008) The task for host stack is not running.

BLE_ERR_MEM_ALLOC_FAILED(0x000C) There are no memories for Vendor Specific Command.

Properties

Prototype declarations are contained in r_ble_api.h.

Description

If the address is written in non-volatile area, the address is used as default address on the next MCU reset.

For more information on the random address, refer to Core Specification Vol 6, PartB, "1.3.2 Random Device
Address".

The result of this API call is notified in BLE_VS_EVENT_SET_ADDR_COMP event.

Reentrant

No

Example

None

RX Family US159-DA14531EVZ BLE Control Module Using Firmware Integration Technology

R01AN7174EU0140 Rev.1.40 Page 104 of 124

Nov.21.24

Special Notes:

None

RX Family US159-DA14531EVZ BLE Control Module Using Firmware Integration Technology

R01AN7174EU0140 Rev.1.40 Page 105 of 124

Nov.21.24

3.64. R_BLE_VS_GetRand()

This function generates 4-16 bytes of random number used in creating keys.

Format

ble_status_t R_BLE_VS_GetRand (

uint8_t rand_size

)

Parameters

rand_size Length of the random number (byte).

The valid range is 4<=rand_size<=16.

Return values

BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_STATE(0x0008) The task for host stack is not running.

BLE_ERR_MEM_ALLOC_FAILED(0x000C) There are no memories for Vendor Specific Command.

Properties

Prototype declarations are contained in r_ble_api.h.

Description

The result of this API call is notified in BLE_VS_EVENT_GET_RAND event.

Reentrant

No

Example

None

Special Notes:

None

RX Family US159-DA14531EVZ BLE Control Module Using Firmware Integration Technology

R01AN7174EU0140 Rev.1.40 Page 106 of 124

Nov.21.24

4. Abstraction API for Renesas QE for BLE

4.1 RM_BLE_ABS_Open()

Host stack is initialized with this function.

Format

fsp_err_t RM_BLE_ABS_Open (

ble_abs_ctrl_t * const p_ctrl,

ble_abs_cfg_t * p_cfg

)

Parameters

p_ctrl Pointer to control structure.

p_cfg Pointer to the configuration structure for this instance.

Return values

FSP_SUCCESS Channel opened successfully.

FSP_ERR_ASSERTION Null pointer presented.

FSP_ERR_ALREADY_OPEN Requested channel is already open in a different configuration.

FSP_ERR_INVALID_ARGUMENT Invalid input parameter.

FSP_ERR_INVALID_MODE Invalid mode during open call.

Properties

Prototype declarations are contained in rm_ble_abs.h.

Description

Before using All the R_BLE APIs, it's necessary to call this function. A callback functions are registered with
this function. In order to receive the GAP, GATT, Vendor specific event, it's necessary to register a callback
function. The result of this API call is notified in BLE_GAP_EVENT_STACK_ON event. Implements
ble_abs_api_t::open.

Reentrant

No

Example

/* Open the module. */

err = RM_BLE_ABS_Open(&g_ble_abs0_ctrl, &g_ble_abs0_cfg);

Special Notes:

None

RX Family US159-DA14531EVZ BLE Control Module Using Firmware Integration Technology

R01AN7174EU0140 Rev.1.40 Page 107 of 124

Nov.21.24

4.2 RM_BLE_ABS_Close()

Close the BLE channel.

Format

fsp_err_t RM_BLE_ABS_Close (

ble_abs_ctrl_t * const p_ctrl

)

Parameters

p_ctrl Pointer to control structure.

Return values

FSP_SUCCESS Channel closed successfully.

FSP_ERR_ASSERTION Null pointer presented.

FSP_ERR_NOT_OPEN Control block not open.

Properties

Prototype declarations are contained in rm_ble_abs.h.

Description

Implements ble_abs_api_t::close.

Reentrant

No

Example

/* Close BLE driver */

err = RM_BLE_ABS_Close(&g_ble_abs0_ctrl);

Special Notes:

None

RX Family US159-DA14531EVZ BLE Control Module Using Firmware Integration Technology

R01AN7174EU0140 Rev.1.40 Page 108 of 124

Nov.21.24

4.3 RM_BLE_ABS_StartLegacyAdvertising()

Start Legacy Advertising after setting advertising parameters, advertising data and scan response data.

Format

fsp_err_t RM_BLE_ABS_StartLegacyAdvertising (

ble_abs_ctrl_t * const p_ctrl,

ble_abs_legacy_advertising_parameter_t const * const p_advertising_parameter

)

Parameters

p_ctrl Pointer to control structure.

p_advertising_parameter Pointer to Advertising parameters for Legacy Advertising.

Return values

FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION p_instance_ctrl is specified as NULL.

FSP_ERR_NOT_OPEN Control block not open.

FSP_ERR_INVALID_STATE Host stack hasn't been initialized.

FSP_ERR_INVALID_POINTER p_advertising_parameter is specified as NULL.

FSP_ERR_INVALID_ARGUMENT The advertising parameter is out of range.

Properties

Prototype declarations are contained in rm_ble_abs.h.

Description

Legacy advertising uses the advertising set whose advertising handle is 0. The advertising type is
connectable and scannable (ADV_IND). The address type of local device is Public Identity Address or RPA
(If the resolving list contains no matching entry, use the public address.). Scan request event
(BLE_GAP_EVENT_SCAN_REQ_RECV) is not notified. Implements ble_abs_api_t::startLegacyAdvertising.

Reentrant

No

Example

/* Start advertising. */

err = RM_BLE_ABS_StartLegacyAdvertising(&g_ble_abs0_ctrl,

&legacy_advertising_parameter);

Special Notes:

None

RX Family US159-DA14531EVZ BLE Control Module Using Firmware Integration Technology

R01AN7174EU0140 Rev.1.40 Page 109 of 124

Nov.21.24

5. Demo Project

5.1 BLE DA1453x Demo Projects

5.1.1 Prerequisites

• Hardware requirements:
o CK-RX65N: Renesas CK-RX65N Cloud Kit v1 (Product no.: RTK5CK65N0S04000BE).
o PC running Windows® 10.
o Micro-USB cables for Power supply and for on-board debugging (included as part of the kit.

See CK-RX65N v1 – User's Manual at “Related Documents” on page 1).
o US159-DA14531EVZ BLE Pmod

• Software requirements for Windows 10 PC:
o IDE: e2 studio 2024-04 (24.4.0) or later.
o Compiler: Renesas Electronics C/C++ Compiler for RX Family V3.06.00.
o QE for BLE Tool version 1.7.0 or later.

Figure 5.1 iOS Renesas GATT Browser

Figure 5.2 Android Renesas GATT Browser

https://www.renesas.com/us/en/products/wireless-connectivity/bluetooth-low-energy/us159-da14531evz-low-power-bluetooth-pmod-board-renesas-quickconnect-iot
https://www.renesas.com/us/en/software-tool/qe-ble-development-assistance-tool-bluetooth-low-energy

RX Family US159-DA14531EVZ BLE Control Module Using Firmware Integration Technology

R01AN7174EU0140 Rev.1.40 Page 110 of 124

Nov.21.24

5.1.2 Import the Demo Project

Users can import the demo project by adding the demo to their e2 studio workspace (see section 5.3 Adding
a Demo to a Workspace) or by downloading the demo project (see section 5.4 Downloading Demo Projects).

• Import “ck_rx65n_da14531_ble_baremetal” for Bare metal application.
• Import “ck_rx65n_da14531_ble_freertos” for FreeRTOS application.
• Import “ck_rx65n_da14531_ble_azurertos” for AzureRTOS application.

5.1.3 Hardware Setup

• Connect the DA14531 Pmod module to the CK-RX65N PMOD1 connector.

• Connect the micro-USB cable from PC to CK-RX65N micro-USB connector (J14) for Power supply.

• Connect the micro-USB cable from PC to CK-RX65N micro-USB connector (J20) for logging output.

• Set the jumper of J16 to “Debug”.

Figure 5.3 Operating Enviroment

RX Family US159-DA14531EVZ BLE Control Module Using Firmware Integration Technology

R01AN7174EU0140 Rev.1.40 Page 111 of 124

Nov.21.24

5.1.4 Software Setup

a) Folder Structure

The following table lists the file structure of the Bare metal sample program.

Table 5.1 File Structure of the Bare Metal Sample Program

Folder name, file name Explanation
ck_rx65n_da14531_ble_baremetal Project folder

├qe_gen Generated by QE tool

└src Program storage folder

 ├smc_gen Smart Configurator generator folder
 | ├general

 | ├r_ble_da14531_rx

 | ├r_bsp

 | ├r_byteq

 | ├r_config

 | ├r_gpio_rx

 | ├r_pincfg

 | └r_sci_rx

 └ ck_rx65n_da14531_ble_baremetal.c Main processing source file

The following table lists the file structure of the FreeRTOS sample program.

Table 5.2 File Structure of the FreeRTOS Sample Program

Folder name, file name Explanation
ck_rx65n_da14531_ble_freertos Project folder

├qe_gen Generated by QE tool

└src Program storage folder

 ├FreeRTOS FreeRTOS kernel source code

 ├frtos_config FreeRTOS configuration files

 ├frtos_skeleton Template files for FreeRTOS tasks

 ├frtos_startup FreeRTOS startup files

 ├smc_gen Smart Configurator generator folder
 | ├general

 | ├r_ble_da14531_rx

 | ├r_bsp

 | ├r_byteq

 | ├r_config

 | ├r_gpio_rx

 | ├r_pincfg

 | └r_sci_rx

 └ ck_rx65n_da14531_ble_freertos.c Main processing source file

RX Family US159-DA14531EVZ BLE Control Module Using Firmware Integration Technology

R01AN7174EU0140 Rev.1.40 Page 112 of 124

Nov.21.24

The following table lists the file structure of the AzureRTOS sample program.

Table 5.3 File Structure of the AzureRTOS Sample Program

Folder name, file name Explanation
ck_rx65n_da14531_ble_azurertos Project folder

├libs Contain source AzureRTOS ThreadX

├qe_gen Generated by QE tool

└src Program storage folder

 ├rtos_config Contain Azurertos init file

 ├rtos_skeleton Main processing source file

 | └ble_thread_entry.c

 ├smc_gen Smart Configurator generator folder
 | ├general

 | ├r_ble_da14531_rx

 | ├r_bsp

 | ├r_byteq

 | ├r_config

 | ├r_gpio_rx

 | ├r_pincfg

 | └r_sci_rx

 ├demo_threadx.c Example ThreadX kernel

 ├hardware_setup.c Hardware setup file

 └hardware_setup.h

b) Project Settings

Open the Project Settings, go to Tool Settings -> Compiler -> Source, and make sure that all folders
and directories have been added before build project.

RX Family US159-DA14531EVZ BLE Control Module Using Firmware Integration Technology

R01AN7174EU0140 Rev.1.40 Page 113 of 124

Nov.21.24

5.1.5 How to Run the Demo

a) Select Device and PMOD Setting
Use the Smart Configurator to configure
Open the Smart Configurator as shown in the image below, select the appropriate device and PMOD.

Figure 5.4 Device and PMOD Setting

▪ “DA143x_DEVICE”: Allows to choose between two devices, DA14531 and DA14535.
▪ “BLE_CFG_HOST_BOOT_MODE”: The default for this macro is currently disabled. Please

select “1-wire UART” if you want to run the demo with the DA14531/DA14535 device. In case
you use “2-wire UART”, make sure that “DA143x_DEVICE” is selected with the DA14535
device. Other cases are not supported at the moment.

▪ The PMOD pins are configured as shown in the table below:

Table 5.4 Configuration PMOD

 PMOD1 PMOD2

Reset port 5 A

Reset pin 5 1

SCK port 0 3

SCK pin 2 4

b) QE Custom profile Setting
The configurations for this section are thoroughly detailed. It will show how to configure it in section
2.13.1 Getting Started Guide. However, if the Notification feature is to be used, it is necessary to
follow the instructions as shown in the image below.

RX Family US159-DA14531EVZ BLE Control Module Using Firmware Integration Technology

R01AN7174EU0140 Rev.1.40 Page 114 of 124

Nov.21.24

Figure 5.5 Notification Setting

▪ In the Characteristic section, it is necessary to tick the Notify and Indicate checkboxes which
Notification feature is to be supported.

▪ Ensure that after pressing the generate button, the qe_gen folder, as mentioned in section 5.1.4
Software Setup, will appearance.

c) Legacy Paring Settings
With the Legacy Pairing feature, it supports two connection methods as below:

• Just works functionality

• Passkey functionality
Click on qe_gen > ble > app_main.c at the location of the GAP API callback function (gap_cb), and
select iocap as BLE_GAP_IOCAP_NOINPUT_NOOUTPUT to enable legacy pairing feature to
operate in Just works mode. Alternatively, select iocap as BLE_GAP_IOCAP_DISPLAY_YESNO to
enable it in Passkey mode.

d) Building & Debugging the Demo Project
Refer to the 2.13.1 Getting Started Guide or following section “4.5. Building and running the
application” at UM-B-177: Getting started with DA1453x and RX BLE Framework on Renesas
Microcontrollers — Getting started with DA14531 and FSP BLE Framework

e) Connect to the application from Renesas GATT Browser
The GATT Server demo works as below.

• After starting, it starts advertising and waits for a command.

• By scanning from a remote device, it is detected by the device name configured in
“Peripheral > Local Name” through the QE tool introduced in guide 2.13.1 Getting Started
Guide.

https://lpccs-docs.renesas.com/DA1453x-RX_BLE_Framework/UM-B-177/index.html
https://lpccs-docs.renesas.com/DA1453x-RX_BLE_Framework/UM-B-177/index.html

RX Family US159-DA14531EVZ BLE Control Module Using Firmware Integration Technology

R01AN7174EU0140 Rev.1.40 Page 115 of 124

Nov.21.24

Figure 5.6 Determine the Device Name

• When connected, it stops advertising.

Figure 5.7 Connect Device

• By writing a number to the LED Control characteristic, the LED turns on by writing the
number (0x01~0xFF) to the characteristic. The LED turns off by writing zero to the
characteristic.

• When the notification button is enabled, the status value number after writing will be
displayed on the app interface. Furthermore, the Read button allows users to easily
check the current value status.

• When disconnected, it restarts advertising.

RX Family US159-DA14531EVZ BLE Control Module Using Firmware Integration Technology

R01AN7174EU0140 Rev.1.40 Page 116 of 124

Nov.21.24

The GAP Service for Legacy Pairing works as below.

• After the remote device successfully connects to GATT, click on the three dots in the
top-left corner of the GATT browser app and select “Create bond” to proceed with
pairing.

Figure 5.8 Start Pairing

• When clicking on “Create Bond”, a notification appears to pair with the device.

Figure 5.9 Legacy Pairing with Just Works mode

RX Family US159-DA14531EVZ BLE Control Module Using Firmware Integration Technology

R01AN7174EU0140 Rev.1.40 Page 117 of 124

Nov.21.24

• In Passkey mode, the default password is "123456".

Figure 5.10 Legacy Pairing with Passkey mode

• After bonding is successfully completed, Security Establishment will be automatically
triggered when the remote device disconnects from GATT and reconnects.

• The main role of Security Establishment is to ensure that the encrypted link between
previously paired devices is securely re-established without the need for pairing again.

• The LED will turn on to indicate that security is activated and will turn off upon
disconnection.

RX Family US159-DA14531EVZ BLE Control Module Using Firmware Integration Technology

R01AN7174EU0140 Rev.1.40 Page 118 of 124

Nov.21.24

5.2 Creating a New BLE DA1453x project

Refer to “Getting Started Guide” from section 2.13.1 Getting Started Guide

5.3 Adding a Demo to a Workspace

Demo projects are found in the FITDemos subdirectory of the distribution file for this application note. To add
a demo project to a workspace, select File >> Import >> General >> Existing Projects into Workspace, then
click “Next”. From the Import Projects dialog, choose the “Select archive file” radio button. “Browse” to the
FITDemos subdirectory, select the desired demo zip file, then click “Finish”.

5.4 Downloading Demo Projects

Demo projects are not included in the RX Driver Package. When using the demo project, the FIT module
needs to be downloaded. To download the FIT module, right click on this application note and select
“Sample Code (download)” from the context menu in the Smart Brower >> Application Notes tab.

RX Family US159-DA14531EVZ BLE Control Module Using Firmware Integration Technology

R01AN7174EU0140 Rev.1.40 Page 119 of 124

Nov.21.24

6. Appendix

6.1. Confirmed Operation Environment

This section describes confirmed operation environment for the FIT module.

Table 6.1 Confirmed Operation Environment (Ver. 1.00)

Item Contents

Integrated development
environment

Renesas Electronics e2 studio 2023.01

C compiler Renesas Electronics C/C++ Compiler for RX Family V3.05.00

Compiler option: The following option is added to the default settings
of the integrated development environment.
 -lang = c99

Endian order Big endian / little endian

Revision of the module Rev.1.00

Board used Renesas CK-RX65N Cloud Kit (Product no.: RTK5CK65N0S04000BE)

Table 6.2 Confirmed Operation Environment (Ver. 1.20)

Item Contents

Integrated development
environment

Renesas Electronics e2 studio 2023.07

C compiler Renesas Electronics C/C++ Compiler for RX Family V3.05.00

Compiler option: The following option is added to the default settings of
the integrated development environment.
 -lang = c99

Endian order Big endian / little endian

Revision of the module Rev.1.20

Board used Renesas CK-RX65N Cloud Kit (Product no.: RTK5CK65N0S04000BE)

Table 6.3 Confirmed Operation Environment (Ver. 1.30)

Item Contents

Integrated development
environment

Renesas Electronics e2 studio 2024.04

C compiler Renesas Electronics C/C++ Compiler for RX Family V3.06.00
Compiler option: The following option is added to the default settings of
the integrated development environment.
-lang = c99

Endian order Big endian / little endian

Revision of the module Rev.1.30

Board used Renesas CK-RX65N Cloud Kit (Product no.: RTK5CK65N0S04000BE)

RX Family US159-DA14531EVZ BLE Control Module Using Firmware Integration Technology

R01AN7174EU0140 Rev.1.40 Page 120 of 124

Nov.21.24

Table 6.4 Confirmed Operation Environment (Ver. 1.40)

Item Contents

Integrated development
environment

Renesas Electronics e2 studio 2024.10

C compiler Renesas Electronics C/C++ Compiler for RX Family V3.06.00
Compiler option: The following option is added to the default settings of
the integrated development environment.
-lang = c99

Endian order Big endian / little endian

Revision of the module Rev.1.40

Board used Renesas CK-RX65N Cloud Kit (Product no.: RTK5CK65N0S04000BE)

RX Family US159-DA14531EVZ BLE Control Module Using Firmware Integration Technology

R01AN7174EU0140 Rev.1.40 Page 121 of 124

Nov.21.24

6.2. Troubleshooting

(1) Q: I have added the FIT module to the project and built it. Then I got an error: Could not open-source file
"platform.h".

A: The FIT module may not be added to the project properly. Check if the method for adding FIT modules
is correct with the following document:

For e2 studio, Application note "Adding Firmware Integration Technology Modules to Projects
(R01AN1723)".

When using this FIT module, the board support package FIT module (BSP module) must also be
added to the project. Refer to the application note "Board Support Package Module Using Firmware
Integration Technology (R01AN1685)".

(2) Q: I have added the FIT module to the project and built it. Then I got an error of wrong setting
configuration.

A: The setting in the file “r_ble_da14531_config.h” may be wrong. Check the file
"r_ble_da14531_config.h". If there is a wrong setting, set the correct value for that. Refer to 2.7
Compile Settings for details.

(3) Q: The pin setting is supposed to be done, but it doesn’t look like that.

A: The pin setting may not be performed correctly. When using this FIT module, the pin setting must be
performed. Refer to 2.7 Compile Settings for details.

RX Family US159-DA14531EVZ BLE Control Module Using Firmware Integration Technology

R01AN7174EU0140 Rev.1.40 Page 122 of 124

Nov.21.24

7. Reference Documents

User’s Manual: Hardware
(The latest versions can be downloaded from the Renesas Electronics website.)

Technical Update/Technical News

(The latest information can be downloaded from the Renesas Electronics website.)

User’s Manual: Development Tools

RX Family CC-RX Compiler User’s Manual (R20UT3248)
(The latest versions can be downloaded from the Renesas Electronics website.)

RX Family US159-DA14531EVZ BLE Control Module Using Firmware Integration Technology

R01AN7174EU0140 Rev.1.40 Page 123 of 124

Nov.21.24

Revision History

Rev.

Date

 Revision History

Page Summary

1.00 Jun. 30, 2023 - First edition issued

1.10 Sep. 18, 2023 6 Add support AzureRTOS

7-9 Update Table 1.1 API functions

11 Update Table 2.1 and Table 2.3

16 Update data of some parameters

19-93 Update description of API functions

94-105 Add Sample Code Generation using QE for BLE

106 Update Revision of Table 5.1

1.20 Feb. 23, 2024 - Update document format

5 Update Figure 1.1 to update the connection with BLE
DA14531 module

6 Update description of RTOS in Software Configuration Section

7 Add 1.3 Features

8, 27 Add R_BLE_GetVersion()

11 Add 1.5 Status Transitions

12 Add 1.6 Usage Notes

14 Update Table 2.1

16 Update Table Memory Usage in 2.8 Code Size

20-21 Add new parameters about UART boot protocol message
types

96-108 Update 5. Sample Code Generation Using QE BLE

109 Update 6.1 Limitations

109 Add Table 6.2

1.30 Sep. 30, 2024 - Update document format

1 Top page Update related documents with RX board manual.

5 Section 1.2.1 Update diagram

6 Section 1.2.2 Add description.

7 Section 1.3 Update new feature for DA14535.

9 Section 1.4 Add new function & description for
R_BLE_VS_SetTxPower() & R_BLE_VS_SetTxPower()

15 Section 2.8 Update new description & note

20 Section 2.10 Add new macro of GTL Auxiliary Command ID's

23 Add section 2.12 “for”, “while” and “do while”

24 Update section 2.13 Usage Notes

24 - 25 Section 2 add new section 2.13.1, 2.13.2, 2.13.3, 2.13.4,
2.13.5

92 - 93 Section 3.54 Add new function & description for
R_BLE_VS_SetTxPower()

94 Section 3.55 Add new function & description for
R_BLE_VS_SetTxPower()

102 - 109 Update section 5 Demo Project

110 Section 6.1 Add new table for latest version (v1.30)

1.40

Nov. 21, 2024 - Update document format

7 Section 1.3 Update new features for Legacy Pairing

8 Section 1.4 Update new function support Legacy Pairing

13 Section 2.7 Update Table 2.1 Configuration Options
(r_ble_da14531_config.h)

14 Section 2.8 Update Module revision & memory usage

20, 22 Section 2.10 Update new macro Mutex give/take defines,
Defines for host DB

48 - 54 Section 3. API function: Add new function
3.20. R_BLE_GAP_SetPairingParams()
3.21. R_BLE_GAP_StartPairing()
3.22. R_BLE_GAP_ReplyPairing()

RX Family US159-DA14531EVZ BLE Control Module Using Firmware Integration Technology

R01AN7174EU0140 Rev.1.40 Page 124 of 124

Nov.21.24

3.23.R_BLE_GAP_ReplyPasskeyEntry()
3.24. R_BLE_GAP_ReplyExKeyInfoReq()
3.25. R_BLE_GAP_ReplyLtkReq()

111 - 112 Section 5.1.4 Modified file structure in software setup

114,
116 - 117

Section 5.1.5 Update Legacy Pairing Settings

120 Section 6.1 Add table 6.4 Confirmed Operation Environment
(Ver. 1.40)

General Precautions in the Handling of Microprocessing Unit and Microcontroller
Unit Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the
products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Precaution against Electrostatic Discharge (ESD)

A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps

must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be

adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity.

Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and

measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor

devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.

2. Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of

register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset

pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins

in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power reaches the

level at which resetting is specified.

3. Input of signal during power-off state

Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O

pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal

elements. Follow the guideline for input signal during power-off state as described in your product documentation.

4. Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are

generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of

the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal

become possible.

5. Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program

execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator

during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal

produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.

6. Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL

(Max.) and VIH (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the

input level is fixed, and also in the transition period when the input level passes through the area between VIL (Max.) and VIH (Min.).

7. Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these

addresses as the correct operation of the LSI is not guaranteed.

8. Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems.

The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms

of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values,

operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-

evaluation test for the given product.

© 2023 Renesas Electronics Corporation. All rights reserved.

Notice

1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products

and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your

product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use

of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights,

or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this

document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics

or others.

4. You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export,

manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.

5. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any

and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.

6. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for

each Renesas Electronics product depends on the product’s quality grade, as indicated below.

 "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home

electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.

 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key

financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas

Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to

human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space

system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics

disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product

that is inconsistent with any Renesas Electronics data sheet, user’s manual or other Renesas Electronics document.

7. No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics

hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but

not limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS

ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING

RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE,

HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION (“Vulnerability Issues”). RENESAS ELECTRONICS DISCLAIMS ANY AND

ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT

PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH

RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO

THE IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.

8. When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General Notes for

Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by

Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas

Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such

specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific

characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability

product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics

products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily

injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as

safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for

aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are

responsible for evaluating the safety of the final products or systems manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas

Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of

controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these

applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance

with applicable laws and regulations.

11. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is

prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations

promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.

12. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or

transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

13. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

14. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas

Electronics products.

(Note1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled

subsidiaries.

(Note2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

(Rev.5.0-1 October 2020)

Corporate Headquarters Contact information

TOYOSU FORESIA, 3-2-24 Toyosu,

Koto-ku, Tokyo 135-0061, Japan

www.renesas.com

 For further information on a product, technology, the most up-to-date

version of a document, or your nearest sales office, please visit:

www.renesas.com/contact/.

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics

Corporation. All trademarks and registered trademarks are the property

of their respective owners.

https://www.renesas.com/
https://www.renesas.com/contact/

	1. Overview
	1.1. DA14531 FIT Module
	1.2. Overview of the DA14531 BLE FIT Module
	1.2.1. Connection with DA14531 BLE
	1.2.2. Software configuration

	1.3. Features
	1.4. API Overview
	1.5. Status Transitions

	2. API Information
	2.1. Hardware Requirements
	2.2. Software Requirements
	2.3. Support Toolchain
	2.4. Interrupt Vector
	2.5. Header Files
	2.6. Integer Types
	2.7. Compile Settings
	2.8. Code Size
	2.9. Return values
	2.10. Parameter
	2.11. Adding the FIT Module to Your Project
	2.12. “for”, “while” and “do while” Statements
	2.13. Usage Notes
	2.13.1 Getting Started Guide
	2.13.2 Addresses
	2.13.3 Heap Requirements
	2.13.4 Module Firmware Compatibility
	2.13.5 Limitations

	3. API Function
	3.1. R_BLE_Open()
	3.2. R_BLE_Close()
	3.3. R_BLE_Execute()
	3.4. R_BLE_IsTaskFree()
	3.5. R_BLE_GetVersion()
	3.6. R_BLE_GAP_Init()
	3.7. R_BLE_GAP_Terminate()
	3.8. R_BLE_GAP_UpdConn()
	3.9. R_BLE_GAP_SetDataLen()
	3.10. R_BLE_GAP_Disconnect()
	3.11. R_BLE_GAP_GetVerInfo()
	3.12. R_BLE_GAP_ReadRssi()
	3.13. R_BLE_GAP_ReadChMap()
	3.14. R_BLE_GAP_SetAdvParam()
	3.15. R_BLE_GAP_SetAdvSresData()
	3.16. R_BLE_GAP_StartAdv()
	3.17. R_BLE_GAP_StopAdv()
	3.18. R_BLE_GAP_GetRemainAdvBufSize()
	3.19. R_BLE_GAP_GetRemDevInfo()
	3.20. R_BLE_GAP_SetPairingParams()
	3.21. R_BLE_GAP_StartPairing()
	3.22. R_BLE_GAP_ReplyPairing()
	3.23. R_BLE_GAP_ReplyPasskeyEntry()
	3.24. R_BLE_GAP_ReplyExKeyInfoReq()
	3.25. R_BLE_GAP_ReplyLtkReq()
	3.26. R_BLE_GATT_GetMtu()
	3.27. R_BLE_GATTS_SetDbInst()
	3.28. R_BLE_GATTS_RegisterCb()
	3.29. R_BLE_GATTS_DeregisterCb()
	3.30. R_BLE_GATTS_Notification()
	3.31. R_BLE_GATTS_Indication()
	3.32. R_BLE_GATTS_GetAttr()
	3.33. R_BLE_GATTS_SetAttr()
	3.34. R_BLE_GATTC_RegisterCb()
	3.35. R_BLE_GATTC_DeregisterCb()
	3.36. R_BLE_GATTC_ReqExMtu()
	3.37. R_BLE_GATTC_DiscAllPrimServ()
	3.38. R_BLE_GATTC_DiscPrimServ()
	3.39. R_BLE_GATTC_DiscIncServ()
	3.40. R_BLE_GATTC_DiscAllChar()
	3.41. R_BLE_GATTC_DiscCharByUuid()
	3.42. R_BLE_GATTC_DiscAllCharDesc()
	3.43. R_BLE_GATTC_ReadChar()
	3.44. R_BLE_GATTC_ReadCharUsingUuid()
	3.45. R_BLE_GATTC_ReadLongChar()
	3.46. R_BLE_GATTC_ReadMultiChar()
	3.47. R_BLE_GATTC_WriteCharWithoutRsp()
	3.48. R_BLE_GATTC_SignedWriteChar()
	3.49. R_BLE_GATTC_WriteChar()
	3.50. R_BLE_GATTC_WriteLongChar()
	3.51. R_BLE_GATTC_ReliableWrites()
	3.52. R_BLE_GATTC_ExecWrite()
	3.53. R_BLE_L2CAP_RegisterCfPsm()
	3.54. R_BLE_L2CAP_DeregisterCfPsm()
	3.55. R_BLE_L2CAP_ReqCfConn()
	3.56. R_BLE_L2CAP_DisconnetCf()
	3.57. R_BLE_L2CAP_SendCfCredit()
	3.58. R_BLE_L2CAP_SendCfData()
	3.59. R_BLE_VS_Init()
	3.60. R_BLE_VS_SetTxPower()
	3.61. R_BLE_VS_GetTxPower()
	3.62. R_BLE_VS_GetBdAddr()
	3.63. R_BLE_VS_SetBdAddr()
	3.64. R_BLE_VS_GetRand()

	4. Abstraction API for Renesas QE for BLE
	4.1 RM_BLE_ABS_Open()
	4.2 RM_BLE_ABS_Close()
	4.3 RM_BLE_ABS_StartLegacyAdvertising()

	5. Demo Project
	5.1 BLE DA1453x Demo Projects
	5.1.1 Prerequisites
	5.1.2 Import the Demo Project
	5.1.3 Hardware Setup
	5.1.4 Software Setup
	5.1.5 How to Run the Demo

	5.2 Creating a New BLE DA1453x project
	5.3 Adding a Demo to a Workspace
	5.4 Downloading Demo Projects

	6. Appendix
	6.1. Confirmed Operation Environment
	6.2. Troubleshooting

	7. Reference Documents
	Revision History
	General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products
	Notice

