

Introduction

The PL 3120 Power Line Smart Transceiver integrates a Neuron processor core with a power line transceiver, making it ideal for appliance, audio/video, lighting, heating/cooling, security, metering, and irrigation applications. A complete system-on-a-chip, the PL 3120 features a highly reliable narrow-band power line transceiver, an 8-bit Neuron processor core for running applications and managing network communications, on-board memory, and an extremely small form factor — all at a price that is compelling for even the most cost-sensitive consumer product applications.

A Global Product

Compliant with FCC, Industry Canada, Japan MPT, and European CENELEC EN50065-1 regulations, the PL 3120 Power Line Smart Transceiver can be used in applications worldwide.

The PL 3120 implements the CENELEC access protocol, which can be enabled or disabled by the user. This eliminates the need for users to develop the complex timing and access algorithms mandated under CENELEC EN50065-1.

Unmatched Performance

Intermittent noise sources, impedance changes, and attenuation make the power line a hostile signaling environment. The PL 3120 Power Line Smart Transceiver incorporates a variety of technical innovations to insure reliable operation:

 Unique dual carrier frequency feature automatically selects an alternate secondary communication frequency should the primary frequency be blocked by noise;

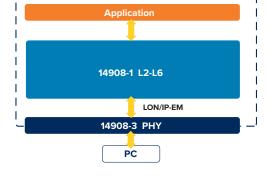


Figure 1. PL 3120 Firmware Protocol Stack

PL 3120 Smart Transceiver

Features

- Combines an ISO/IEC 14908-3 ANSI-709.2-compliant power line transceiver with an ISO/IEC 14908-1 Neuron 3120 processor core
- Designed to comply with FCC, Industry Canada, Japan MPT, and European CENELEC EN 50065-1 power line communications regulations
- Supports CENELEC A-band and C-band operation
- Dual carrier frequency mode and digital signal processing
- 4K bytes of embedded EEPROM for application code and configuration data
- 2K bytes of embedded RAM for buffering network data and network variables
- Full duplex hardware UART and SPI serial interfaces
- 12 I/O pins with 38 programmable standard I/O modes to minimize external interface circuitry
- -40°C to +85°C operating temperature range
- RoHS-compliant

www.adestotech.com

PRODUCT DESCRIPTION

- Highly efficient, patented, lowoverhead forward error correction (FEC) algorithm to overcome errors induced by noise;
- Sophisticated digital signal processing, noise cancellation, and distortion correction algorithms.
 These features correct for a wide variety of signaling impediments, including impulsive noise, continuous tone noise, and phase distortion;
- High output, low distortion external amplifier design that can deliver 1Ap-p into low impedance loads, eliminating the need for expensive phase couplers in typical residential applications.

The combination of these special features enable the PL 3120 to operate reliably in the presence of consumer electronics, power line intercoms, motor noise, electronic ballasts, dimmers, and other typical sources of interference. The PL 3120 can communicate over virtually any AC or DC power mains, as well as unpowered twisted pair, by way of a low-cost, external coupling circuit.

The PL 3120 is targeted at very low cost designs that require up to 4K bytes of application code, and an ultra-compact 38 TSSOP package. The chip includes 4K bytes of EEPROM and 2K bytes of RAM. The Neuron system firmware and software application libraries are contained in on-chip ROM.

The PL 3120 operates at either 6.5536MHz or 10.0MHz. The 6.5536MHz clock frequency enables the transceiver to communicate in the CENELEC A-band, which is used for metering and utility applications. The 10MHz clock frequency supports the

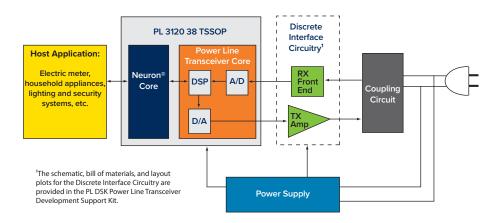


Figure 2. PL 3120 Power Line Transceiver Block Diagram

CENELEC C-band, which is used for general purpose signaling and all nonutility related applications.

Application programs stored in the embedded EEPROM may be updated over the power line network. This valuable feature enables products to be updated without physically accessing them, i.e., from a local PC with a power line interface or from a remote service center through a SmartServer IoT Edge Server. The embedded EEPROM may be written up to 10,000 times with no data loss. Data stored in the EEPROM will be retained for at least ten years.

Inexpensive Power Supply

The PL 3120 uses +8.5 to +18VDC and +5VDC power supplies and supports very low receive mode current consumption. The wide power supply range and very low receive power requirements allow the use of inexpensive power supplies.

Additionally, the transceiver incorporates a power management feature that constantly monitors the status of the device's power supply. If during transmission the power supply voltage falls to a level that is insufficient to ensure reliable

signaling, the transceiver stops transmitting until the power supply voltage rises to an acceptable level. This unique feature allows the use of a power supply with one-third the current capacity otherwise required. The net result is a reduction in the size, cost, and thermal dissipation of the power supply. Power management is especially useful for high volume, low-cost consumer products such as electrical switches, motion detectors, outlets, light sensors, and dim.

Flexible I/O, Simple Configuration

The PL 3120 provides 12 I/O pins which can be configured to operate in one or more of 38 predefined standard input/output modes.

Combining a wide range of I/O models with two on-board timer/ counters enables the PL 3120 to interface with application circuits using minimal external logic or software development. The transceiver also features a full duplex hardware UART supporting baud rates of up to 115kbps, and an SPI interface that operates up to 625kbps.

PRODUCT DESCRIPTION

External Components

Only a small number of inexpensive external components are required to create a complete PL 3120-based device (see the PL 3120 Power Line Smart Transceiver Block Diagram). These components include:

 Discrete interface circuitry comprised of roughly 50 components, primarily resistors and capacitors. This circuitry provides "front-end" filtering for the on-chip A/D, and implements the power amplifier that drives the on-chip D/A transmit signal onto the power line. Adesto offers a comprehensive Power Line Development Support Kit* (DSK) with which customers can implement this interface circuitry. Contact your salesperson for details about purchasing a PL DSK.

- Coupling circuit consisting of approximately ten components, mainly capacitors and inductors, which acts as a simple high-pass filter located between the PL 3120 and the power mains. This circuitry provides surge and line transient
- protection in addition to blocking the low frequency, 50Hz/60Hz AC mains signal. Detailed schematics are provided in the PL 3120 / PL 3150 Power Line Smart Transceiver Data Book.
- The RoHS compliant Revision B PL 3120 eliminates the need for an external inverter, thereby reducing the cost of external components.
 Circuits without an external inverter can only be used with Revision B parts (15311R-1000 PL 3120 Power Line Smart Transceiver).

PRODUCT SPECIFICATIONS

Function	Description
Emissions compliance	Designed to be compliant with FCC, Industry Canada, Japan MPT, and CENELEC EN50065 specification for low-voltage signaling
Bit rate	5.4kbps raw bit rate in CENELEC C-band and 3.6kbps in CENELEC A-band
Communication technique	Dual Frequency BPSK with DSP-enhanced receiver
Data Integrity	Forward error correction of up to 2 bit errors per packet; 18 bit packet CRC
Carrier frequencies	132kHz (primary) and 115kHz (secondary) in CENELEC C-band and 86kHz (primary) and 75kHz (secondary) in CENELEC A-band
RoHS Compliance	Compliant with European Directive2002/95/EC on Restriction of Hazardous Substances (RoHS) in electrical and electronic equipment

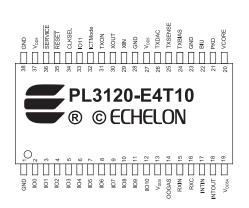


Figure 3. PL 3120 Power Line Smart Transceiver Pinout

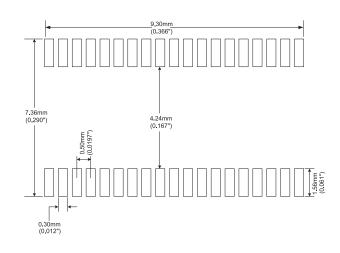


Figure 4. Recommended Footprint

PRODUCT SPECIFICATIONS

Power Line Smart Transceiver Pin Descriptions

Name	Pin Number	Туре	Pin Functions			
XIN	29	Input	Oscillator connection or external clock input			
XOUT	30	Output	Oscillator connection			
RESET	35	Digital I/O (Built-in Pull-up)	Reset pin (active LOW) Note: The maximum external capacitance is 1000pF			
SERVICE	36	Digital I/O (Built-in Configura	Service Pin (active LOW) ble Pull-up)			
CLKSEL	34	Digital Input	Tie to V _{DD5}			
100-103	2, 3, 4 ,5	Digital I/O	Large current-sink capacity (20mA); General purpose I/O; The output of timer/counter 1 may be routed to IOO; The output of timer/counter 2 may be routed to IO1			
IO4-107, IO11	6, 7, 8, 9, 33	Digital I/O	General purpose I/O; The input of timer/counter 1 may be one of IO4-IO7; The input of timer/counter 2 is IO4			
108	10	Digital I/O	General purpose I/O; UART RX; SPI slave clock input; SPI master clock input			
109	11	Digital I/O	General purpose I/O; SPI slave data output; SPI master data input			
IO10	12	Digital I/O	General purpose I/O; SPI slave data input; SPI master data output			
V_{DD5}	13, 27, 37	Power	Power input (5V nom); All V _{DD5} pins must be connected together externally			
V _{DD5A}	19	Power	Power input (5V nom); Supplies on-chip analog circuitry			
GND	1, 23, 28, 38	Power	Power input (0V, GND); All GND pins must be connected together externa			
ICTMode	32	Digital Input	In-circuit test mode control; Driving ICTMode high and RESET low will place all outputs in high impedance mode for in-circuit test. Tie to GND for normal operation.			
PKD	21	Digital Output	Packet Detect LED driver			
BIU	22	Digital Output	Band in Use LED driver			
RXIN	15	Analog Input	Receiver input			
INTIN, INTOUT	17, 18	Analog I/O	Integrator input and output			
RXC	16	Analog Input	Receive signal			
OOGAS	14	Analog Input	Comparator to detect when energy storage power supply lacks sufficient energy to transmit a packet; Tie to VCORE if not used			
VCORE	20	Power	Output of internal 1.8V regulator. Requires 0.1µF external capacitator			
TXON	31	Digital Output	High when transmitting; Used to drive LED to show packet transmission			
TXDAC	26	Analog Output	Transmit waveform DAC output			
TXSENSE	25	Analog Input	Transmit amplifier sense feedback			
TXBIAS	24	Analog Output	t Transmit amplifier bias generator			

Recommended Operating Conditions

Symbol	Parameter	Min	Тур.	Max	Unit
V_{DD5}	V _{DD5} Supply Voltage	4.75	5.00	5.25	V
$V_{\rm DD5A}$	V _{DD5} Supply Voltage	4.60	5.00	5.25	V
T_A	Ambient Temperature	-40	25	85	°C
F _{A-band}	XIN Frequency for A-band Operation (6.5536MHz±200ppm)	6.55232	6.5536	6.5549	MHz
F _{C-band}	XIN Frequency for C-band Operation (10.0000MHz±200ppm)	9.9980	10.0000	10.0020	MHZ

PRODUCT SPECIFICATIONS

Electrical Characteristics (over recommended operating conditions)

Symbol	Parameter	Min	Тур.	Max	Unit
V_{IL}	Digital Input Low-level Voltage			0.8	V
V_{IH}	Digital Input High-level Voltage	2.0			V
V _{OL}	Digital Output Low-level Voltage I_{out} <20 μ A I_{OUT} 004-IO11, A0-A14, D0-D7, R/W, E (I_{OL} = 1.4mA) I_{OU} 103, SERVICE, RESET (I_{OL} = 20mA)			0.1 0.4 0.8	V
	IOO-IO3, SERVICE, RESET (I _{OL} = 10mA) PKD, BIU, TXON (I _{OL} = 12mA)			0.4 0.5	
V _{OH}	$\begin{array}{ll} \text{Digital Output High-level Voltage} \\ \text{I}_{\text{out}} < 20 \mu\text{A} & \text{V}_{\text{DD5}} - 0.1 \\ \text{IO4-IO11, A0-A14, D0-D7, R/W, E (I}_{\text{OH}} = -1.4 \text{mA}) & \text{V}_{\text{DD5}} - 0.5 \\ \text{IO0-IO3, SERVICE, RESET (I}_{\text{OH}} = -1.4 \text{mA}) & \text{V}_{\text{DD5}} - 0.4 \\ \text{PKD, BIU, TXON (I}_{\text{OH}} = -12 \text{mA}) & \text{V}_{\text{DD5}} - 0.5 \\ \end{array}$.5 .4		V
V _{hys}	Digital Input Hysteresis	175			mV
in	Input Current (Excluding Pull-ups) ¹	-10		10	μΑ
I _{pu}	Pull-up Source Current (V _{out} =0, Output=High-Z) ¹			300	μΑ
I _{DD}	V _{DD5} + V _{DD5A} Supply Current (not including I/O or internal pull-up current)		9	13	mA
V_{LV1}	V _{DD5} LV1 Trip Point	4.0		4.45	V

Notes:

Recommended Operating Conditions for Power Line Smart Transceiver Discrete Interface Circuitry*

Symbol	Parameter	Min	Тур.	Max	Unit	
V _{ARX}	V _A Supply Voltage - Receive Mode ²	8.5	12.0	18.0	V	
V_{ATX}	V _S Supply Voltage - Transmit Mode ²	10.8	12.0	18.0	V	
T_A	Ambient Temperature	-40	25	85	°C	

Notes:

Where: VATXAVE = Average VA supply voltage while transmitting

TAMAX = Maximum ambient temperature (°C)

DMAX = Maximum transmit duty cycle of the device (expressed as decimal number)

Electrical Characteristics of Power Line Smart Transceiver Discrete Interface Circuitry* (over recommended operating conditions)

Parameter	Min	Тур.	Max	Unit
V _A Supply Current - Receive Mode		350	500	μΑ
V _S Supply Current - Transmit Mode			250	mA
Transmit Output Voltage		7		Vp-p
Transmit Output Current Limit		1.0		Ар-р
Input Impedance - Receive Mode (with recommended RXCOMP inductor)		500		Ω
Output Impedance - Transmit Mode		0.9		Ω
Power Management - Upper V _A Threshold	Power Management - Upper V _A Threshold 11.2		13.0	V
Power Management - Lower V_A Threshold	7.3	7.9	8.6	V
	V _A Supply Current - Receive Mode V _S Supply Current - Transmit Mode Transmit Output Voltage Transmit Output Current Limit Input Impedance - Receive Mode (with recommended RXCOMP inductor) Output Impedance - Transmit Mode Power Management - Upper V _A Threshold	V _A Supply Current - Receive Mode V _S Supply Current - Transmit Mode Transmit Output Voltage Transmit Output Current Limit Input Impedance - Receive Mode (with recommended RXCOMP inductor) Output Impedance - Transmit Mode Power Management - Upper V _A Threshold 11.2	V _A Supply Current - Receive Mode 350 V _S Supply Current - Transmit Mode 120 Transmit Output Voltage 7 Transmit Output Current Limit 1.0 Input Impedance - Receive Mode (with recommended RXCOMP inductor) 500 Output Impedance - Transmit Mode 0.9 Power Management - Upper V _A Threshold 11.2 12.1	V _A Supply Current - Receive Mode 350 500 V _S Supply Current - Transmit Mode 120 250 Transmit Output Voltage 7 7 Transmit Output Current Limit 1.0 1.0 Input Impedance - Receive Mode (with recommended RXCOMP inductor) 500 0.0 Output Impedance - Transmit Mode 0.9 0.9 Power Management - Upper V _A Threshold 11.2 12.1 13.0

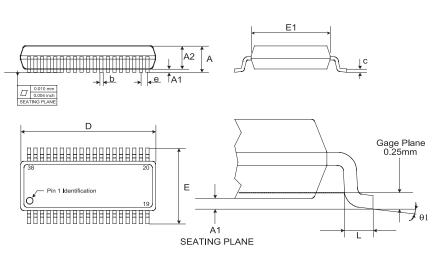
^{*}NOTE: The schematic, bill of materials, and layout plots for the Discrete Interface Circuitry are provided in the PL DSK Power Line Smart Transceiver Development Support Kit.

^{1.} IO4-IO7 and SERVICE pins have configurable pull ups; The RESET pin has a permanent pull-up

Minimum value can be 8.5V under certain conditions (refer to Data Book for details).
 Maximum value must also satisfy the following: VATXAVE < (150-TAMAX)/(8*DMAX);

SPECIFICATIONS AND ORDERING

Absolute Maximum Ratings


Stresses beyond these values may cause eermanent damage to the device; functional operation under these conditions is not implied

Ambient operating temperature	-40° to +85°C
Storage temperature	-55° to +125°C
Voltage on V _{DD5} and V _{DD5A} pins with respect to GND	-0.3 to 6.0V
Voltage on each pin with respect to GND ³	-0.3 to (V _{DD5} + 0.3V)
Voltage on TXBIAS, TXSENSE, OOGAS pins	-0.3 to 1.89V
Maximum voltage on VCORE pin with respect to GND	1.89V
V _{DD5,} V _{DD5A,} or GND current per pin	±50mA
Input clamp current, $I_{IK} (V_1 < 0 \text{ or } V_1 > V_{DD5})^3$	±10mA
Output clamp current, I _{OK} (V ₁ <0 or V ₁ >V _{DD5}) ³	±10mA
Output current per pin ³	±25mA
Power dissipation	250MW
Reflow soldering temperature profile	Refer to Joint Industry Standard document IPC/JEDED J-STD-020C (July 2004)
Reflow soldering temperature	235°C

Notes:

3. Applies to all pins except VDD5, VDD5A, VCORE, TXBIAS, TXSENSE and OOGAS

DIMENSIONS

	mm (prevailing dimensions)			inches		
	Min.	Nom.	Max.	Min.	Nom.	Max.
Α	-	-	1.20	-	-	0.047
A1	0.05	-	0.15	0.002	-	0.006
A2	0.80	1.00	1.05	.0.31	0.039	0.041
b	0.17	-	0.27	0.0067	-	0.011
С	0.09	-	0.20	0.0035	-	0.0079
D	9.60	9.70	9.80	0.378	0.381	0.385
Е	6.40 BSC			0	.252 BSC)
е	C).50 BSC	;	0.	.0197 BS0	2
E1	4.30	4.40	4.50	0.169	0.173	0.177
L	0.45	0.60	0.75	0.0711	0.023	0.030
01	0°	-	8°	0°	-	8°

Figure 5. PL 3120 Power Line Smart Transceiver Package Diagram

Model #	Product Name	Product Description
15310R-1000	PL 3120 Smart Transceiver	Tubes of 100, total quantity 1000

Disclaimer: Smart Transceivers, Neuron Chips, Twisted Pair Transceivers, and other OEM Products were not designed for use in equipment or systems which involve danger to human health or safety or a risk of property damage and Adesto assumes no responsibility or liability for use of the Smart Transceivers in such applications. ADESTO MAKES AND YOU RECEIVE NO WARRANTIES OR CONDITIONS, EXPRESS, IMPLIED, STATUTORY OR IN ANY COMMUNICATION WITH YOU, AND ADESTO SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Copyright ©2019 Adesto Technologies Corp. All rights reserved. Adesto, the Adesto logo, LON, Neuron, Echelon, and the Echelon logo are trademarks or registered trademarks of Adesto Technologies Corporation or its subsidiaries in the United States and other countries. Other company, product, and service names may be trademarks or service marks of others. Content subject to change without notice.

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD-PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers who are designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only to develop an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third-party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising from your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

(Disclaimer Rev.1.01)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit www.renesas.com/contact-us/.