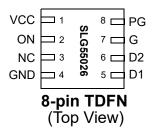


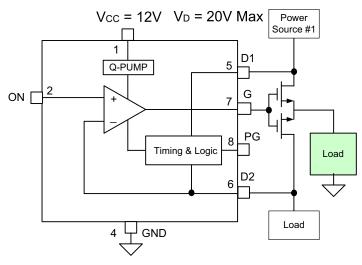
Dual Power High Voltage Gate Driver


Features

- 12 V Power supply
- Drain Voltage Range 1.0 V to 20 V
- Internal Gate Voltage Charge Pump
- Controlled Turn on Delay
- Controlled Turn on Slew Rate
- 2mm x 2mm TDFN-8 Package

Applications

- · Power Rail Switches
- · Hot Plugging Applications
- · Soft Switching
- · Personal computers and Servers
- · Data Communications Equipment


Pin Configuration

Environmental

- · Pb-Free / RoHS compliant
- · Halogen Free

Block Diagram

SLG55026 For N-MOSFETS with $8V < V_{GD2} < 16V$

SLG55026-200300V

Pin Description

Pin #	Pin Name	Туре	Pin Description
1	VCC	Power	Supply Voltage
2	ON	Input	CMOS Logic Level. High True
3	NC		No Connect.
4	GND	GND	Ground.
5	D1	Input	FET1 Drain Connection
6	D2	Input	FET2 Drain Connection
7	G	Output	FET Gate Drive
8	PG	Output	Output Open Drain - Power Good, indicates external FET fully on. Pull-up resistor greater than $300 k\Omega$ recommended.

Overview

The SLG55026-200300V N-Channel FET Gate Driver is used for controlling a delayed turn on and ramping slew rate of the source voltage on N-Channel FET switches from a CMOS logic level input. The gate driver exhibits a turn-on slew rate of 2 V/ms which, depending on load supplying source voltages in the range of 1.0 V to 20 V results in ramp times from 500 μ s to over 10 ms (see Application Section). Start up ramp delay is 250 μ s. A power good condition is output to indicate that the ramp-up slew of the source voltage is finished. The SLG55026 gate driver is packaged in an 8 pin TDFN package.

When used with external N-Channel FETs, the SLG55026 supports low transient, energy efficient switching of high current loads at source voltages ranging from 1.0 V to 20 V.

Ordering Information

Part Number	Туре
SLG55026-200300V	TDFN-8
SLG55026-200300VTR	TDFN-8 - Tape and Reel (3k units)

Configuration Options

- Configuration - Charles									
Code	Slew Rate (V/ms)	Delay (ms)	Discharge (Ω)						
200300	2.0	0.25	Open						

000-0055026-102 Page 2 of 8

Absolute Maximum Conditions

Parameter	Min.	Max.	Unit
V _{D1} or V _{D2} to GND	-0.3	40.0	V
Voltage at Logic Input pins	-0.3	6.5	V
Current at input pin	-1.0	1.0	mA
Storage temperature range	-65	150	°C
Operating temperature range	-55	125	°C
Junction temperature		150	°C
ESD Human Body Model		2000	V
ESD Machine Model		200	V

Electrical Characteristics (0°C to 70°C)

Symbol	Parameter	Condition/Note	Min.	Тур.	Max.	Unit
V _{CC}	Supply Voltage		11.5	12.0	12.5	V
T _{VCC_RAMP}	V _{CC} Ramp-up Rate	See Note 1	0.25			V/ms
	Quiescent Current	V _G not ramping FET = ON		50	80	μА
l _q	Quiescent Current	V _G not ramping FET = OFF		0.1	1	μА
V _{D1}	FET Drain Voltage		1.0		20	V
V_{D2}	Gate-Drain Voltage		8.0	11.5	16	V
C _G	FET Gate Capacitance		500		16000	pF
T _{DELAY}	Ramp Delay Range			0.25	0.325	ms
T _{SLEW}	FET Turn on Slew Rate	2.0V/ms config option	1.4	2.0	2.6	V/ms
I _{DISCHARGE}	Internal Discharge Resistor			Open		Ω
V _{IH}	HIGH-level input voltage	ON (200mV Hysteresis)	2.4		5.5	V
V _{IL}	LOW-level Input voltage	ON (200mV Hysteresis)			0.4	V
V _{OH}	HIGH-level output voltage	PG Open Drain			5.5	V
I _{OL_LOGIC}	Logic LOW level output	PG Sink Current (0.4V)		0.02		mA

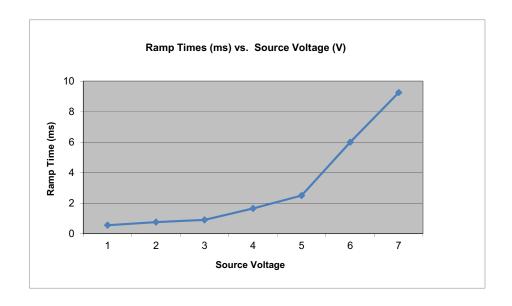
Note 1: If $T_{VCC_RAMP} > 5$ V/ms and ON is asserted, Gate charging will begin after 1 ms.

000-0055026-102 Page 3 of 8

Device Operation

In a typical application, de-asserting ON (low) turns off the external power N-FET. When ON is asserted (high), the device will not begin driving the gate of the external power FET unless the voltage at the drain of the device is at or above 1 V (e.g. $V_{D1} \ge 1$ V). Gate voltage is applied to the gate of the external power N-FET after T_{DELAY} then the gate drain (V_{GD2}) voltage is ramped up to 11.5V above the output voltage V_{D2} at a slew rate determined by the internal slew rate control circuit in SLG55026. Monotonic rise of V_{D2} is maintained even as ID increases dramatically after the load device turn on threshold voltage is reached. After the output voltage has ramped up to its maximum steady state value, the Open Drain PG (Power Good) signal is asserted. PG may be used as the ON control of a second SLG55026 thereby providing power on sequence control of a number of switched power rails, or used in a 'wired and' with other PG signals to indicate all switched power rails are in a power good condition.

If the ON signal has been asserted prior to the application of V_{CC} , the device will begin turning on the external power FET after V_{CC} ramps up


Delay Time and Slew Rates

The two components of controlling the application of FET source voltage to the load are a fixed time delay before beginning turn on of the FET (T_{DELAY}) and the Ramp Time of the output voltage. The Delay Time before gate voltage to the FET is applied is $250\mu s$, independent of FET drain voltage, source voltage or SLG55026 supply voltage.

During FET turn on, it is important to control transients (caused by dv/dt) by being able to control the Slew Rate of the FET's output voltage. A power FET, for example, switching a 5 V rail which has a total of $500~\mu\text{F}$ of decoupling, fully on in $10\mu\text{s}$ will generate a 250~A current surge which is very undesirable. If the FET turn on time can be stretched to 1ms, the current surge to charge the decoupling capacitors is reduced to 2.5~A. The SLG55026 controls slew rate of a FET's output voltage as it is turned on. Obviously, the time to fully slew the output voltage to fully on is a function of the drain supply voltage. The table and graph below shows output voltage ramp times for a 2~V/ms slew rate supported by the SLG55026 for a range of specific source voltages.

Slew Rate	Ramp Times (ms) vs. Source Voltages (V)							
(V/ms)	1.1 V	1.5 V	1.8 V	3.3 V	5.0 V	12 V	18.5 V	
2.00	0.56	0.76	0.90	1.66	2.50	6.00	9.26	

 $^{^{\}star}$ The minimum time that ON can be de-asserted between switching cycles is 100 $\mu s.$

000-0055026-102 Page 4 of 8

Package Top Marking System Definition For devices manufactured after 2021

PPP	Part Code
NNN	Serial Number
\circ R	Pin 1 Identifier + Revision Code

PPP - Part Code Field: Identifies the specific device Configuration

NNN - Serial Number Field: Serial number R - Revision Code Field: Device Revision

For devices manufactured before 2021

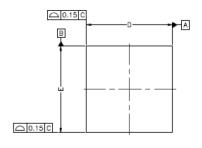
XXA	Part ID + Assembly Code
DDL	Date Code + Lot
\circ R	Pin 1 Identifier + Revision Code

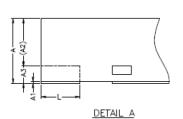
XX - Part ID Field: Identifies the specific device Configuration

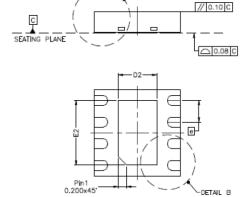
A - Assembly Code Field: Assembly Location of the device

DD - Date Code Field: Coded Date of Manufacture

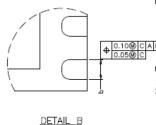
L - Lot Code: Designates Lot #
R - Revision Code: Device Revision


000-0055026-102 Page 5 of 8




SLG55026-200300V

Package Drawing and Dimensions

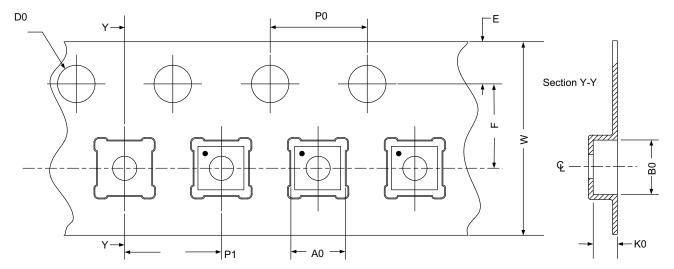

8 Lead TDFN Package JEDEC MO-229, Variation WCCD

-DETAIL A

DIMENSION DIMENSION SYMBOL (MM) (MIL) NOM. MAX. MIN. MAX. MIN. NOM. 0.70 0.75 0.80 28 30 31 Α1 0.00 0.02 0.05 0 2 A2 0 0.55 0.80 0 22 31 АЗ 0.20 8 0.18 0.25 0.30 10 12 b D 1.90 2.00 2.10 74 79 83 D1 D2 0.90 1.05 30 35 41 0.75 Ε 1.90 2.00 2.10 79 83 E1 E2 1.65 1.70 59 65 20 BSC 0.50 BSC е 0.25 0.30 0.35 10 12 14

NOTE :

- 1. REFER TO JEDEC STD: MO-229.
- Internion "b" Applies to metallized terminal and is measured Between 0.15mm and 0.30mm from the terminal tip. If the terminal HAS OPTIONAL RADIUS ON THE OTHER END OF THE TERMINAL, THE DIMENSION B SHOULD NOT BE MEASURED IN THAT RADIUS AREA.


000-0055026-102 Page 6 of 8

Tape and Reel Specifications

Dookogo	# of	Nominal	Max	Units	Reel &	Leader (min)		Trailer (min)		Tape	Part
	Pins	Package Size [mm]	per Reel	per Box	Hub Size [mm]	Pockets	Length [mm]	Pockets	Length [mm]	Width [mm]	Pitch [mm]
TDFN 8L Green	8	2 x 2 x 0.75	3,000	3,000	178 / 60	100	400	100	400	8	4

Carrier Tape Drawing and Dimensions

Package Type	PocketBTM Length	PocketBTM Width	Pocket Depth	Index Hole Pitch	Pocket Pitch	Index Hole Diameter	Index Hole to Tape Edge	Index Hole to Pocket Center	Tape Width
	A0	В0	K0	P0	P1	D0	E	F	w
TDFN 8L Green	2.3	2.3	1.05	4	4	1.55	1.75	3.5	8

Refer to EIA-481 specification

Recommended Reflow Soldering Profile

Please see IPC/JEDEC J-STD-020: latest revision for reflow profile based on package volume of $3.00~\text{mm}^3$ (nominal). More information can be found at www.jedec.org.

000-0055026-102 Page 7 of 8

SLG55026-200300V

Revision History

Date	Version	Change
6/8/2023	1.03	Updated Part Marking Definition
2/9/2022	1.02	Updated Company name and logo Fixed typos

000-0055026-102 Page 8 of 8

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD-PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers who are designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only to develop an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third-party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising from your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

(Disclaimer Rev.1.01)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit www.renesas.com/contact-us/.