

Ultra-small 19 m Ω 2.0 A Load Switch

General Description

The SLG59M1618V is a 19 m Ω 2.0 A single-channel load switch that is able to switch 0.85 V to 5 V power rails. The product is packaged in an ultra-small 1.0 x 1.4 mm package.

Features

- 1.0 x 1.4 mm STDFN, 0.4 mm pin pitch package
- Logic level ON pin capable of supporting 0.85 V CMOS Logic
- · User selectable ramp rate with external capacitor
- 19 m Ω RDS_{ON} while supporting 2.0 A
- Over Temperature Protection
- Pb-Free / Halogen-Free / RoHS compliant
- Operating Temperature: -40 °C to 85°C
- Operating Voltage: 2.5 V to 5.5 V

Pin Configuration

6-pin STDFN (Top View)

Applications

- Notebook Power Rail Switching
- Tablet Power Rail Switching
- Smartphone Power Rail Switching

Block Diagram

Pin Description

Pin #	Pin Name	Туре	Pin Description
1	VDD	Power	With an internal 1.9 V UVLO threshold, VDD supplies the power for the operation of the load switch and internal control circuitry. Bypass the VDD pin to GND with a 0.1 μ F (or larger) capacitor.
2	ON	Input	A low-to-high transition on this pin initiates the operation of the SLG59M1618V's state machine. ON is an asserted HIGH, level-sensitive CMOS input with V _{IL} < 0.3 V and V _{IH} > 0.85V. While there is an internal pull-down circuit to GND (~4 MΩ), connect this pin directly to a general-purpose output (GPO) of a microcontroller, an application processor, or a system controller – do not allow this pin to be open-circuited.
3	D	MOSFET	Drain terminal connection of the n-channel FET. Connect a 10 μ F (or larger) low-ESR capacitor from this pin to ground. Capacitors used at D should be rated at 10 V or higher.
4	S	MOSFET	Source terminal connection of the n-channel FET. Connect a 10 μ F (or larger) low-ESR capacitor from this pin to ground. Capacitors used at S should be rated at 10 V or higher.
5	САР	Output	A low-ESR, stable dielectric, ceramic surface-mount capacitor connected from CAP pin to GND sets the V _S slew rate and overall turn-on time of the SLG59M1618V. For best performance, the range for C _{SLEW} values are 1 nF \leq C _{SLEW} \leq 22 nF. Capacitors used at CAP should be rated at 10 V or higher.
6	GND	GND	Ground connection. Connect this pin to system analog or power ground plane.

Ordering Information

Part Number	Туре	Production Flow
SLG59M1618V	STDFN 6L	Industrial, -40 °C to 85 °C
SLG59M1618VTR	STDFN 6L (Tape and Reel)	Industrial, -40 °C to 85 °C

Absolute Maximum Ratings

Parameter	Description	Conditions	Min.	Тур.	Max.	Unit
V _{DD}	Power Supply			-	6	V
T _S	Storage Temperature		-65	-	150	°C
ESD _{HBM}	ESD Protection	Human Body Model	2000	-		V
ESD _{CDM}	ESD Protection	Charged Device Model	1000	-		V
MSL	Moisture Sensitivity Level				1	
θ_{JA}	Thermal Resistance	$1.0 \times 1.4 \text{ mm } 6L \text{ STDFN}; \text{Determined using 1 in}^2$, 1 oz. copper pads under VD and VS terminals and FR4 pcb material		72		°C/W
W _{DIS}	Package Power Dissipation			-	0.4	W
MOSFET IDS _{PK}	Peak Current from Drain to Source	Maximum pulsed switch current, pulse width < 1ms, 1% duty cycle			3	А
Note: Stresses gre	eater than those listed under "Absolute N	/aximum Ratings" may cause permanent damag	ge to the d	levice. Th	is is a stre	ess rating

Note: Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

Electrical Characteristics

 $T_A = -40$ °C to 85 °C (unless otherwise stated)

Parameter	Description	Conditions	Min.	Тур.	Max.	Unit
V _{DD}	Power Supply Voltage	-40 °C to 85 °C	2.5		5.5	V
V _{DD(UVLO)}	V _{DD} Undervoltage Lockout Threshold		1.6	1.9	2.2	V
I	Power Supply Current (PIN 1)	when OFF			1	μA
'DD		when ON, No load		100	120	μA
RDS	Static Drain to Source	T _A 25°C @ 100 mA		19	22	mΩ
RESON	ON Resistance	T _A 85°C @ 100 mA		20	25	mΩ
MOSFET IDS	Current from Drain to Source	Continuous			2.0	Α
VD	Drain Voltage		0.85		V_{DD}	V
T _{ON_Delay}	ON pin Delay Time	50% ON to Ramp Begin		400	600	μs
		50% ON to 90% V _S	C	onfigurable	• ¹	ms
T _{Total_ON}	Total Turn On Time	Example: $C_{SLEW} = 4 \text{ nF}$; $V_{DD} = V_D = 5 \text{ V}$, $C_{LOAD} = 10 \mu\text{F}$, $R_{LOAD} = 20 \Omega$		1.80		ms
		10% $V_{\rm S}$ to 90% $V_{\rm S}$	C	onfigurable	1	V/ms
V _{S(SR)}	V _S Slew Rate	Example: $C_{SLEW} = 4 \text{ nF};$ $V_{DD} = V_D = 5 \text{ V}, C_{LOAD} = 10 \mu\text{F},$ $R_{LOAD} = 20 \Omega$		3		V/ms
C _{LOAD}	Output Load Capacitance	C_{LOAD} connected from S to GND			500	μF
ON_V _{IH}	High Input Voltage on ON pin		0.85		V_{DD}	V
ON_V _{IL}	Low Input Voltage on ON pin		-0.3	0	0.3	V
THERMON	Thermal shutoff turn-on temperature			130		°C
THERMOFF	Thermal shutoff turn-off temperature			100		°C
THERM	Thermal shutoff time				1	ms
T _{OFF_Delay}	OFF Delay Time	50% ON to V _S Fall, V _{DD} = V _D = 5 V, R _{LOAD} = 20 Ω , no C _{LOAD}		2.0		μs

Electrical Characteristics (continued)

 $T_A = -40$ °C to 85 °C (unless otherwise stated)

Parameter	Description	Conditions	Min.	Тур.	Max.	Unit		
T _{FALL}	V _S Fall Time	90% V _S to 10% V _S , V _{DD} = V _D = 5 V, R _{LOAD} = 20 Ω , no C _{LOAD}		0.25		μs		
Notes: 1. Refer to ta	Notes: 1. Refer to table for configuration details.							

* Rise and Fall times of the ON signal are 100 ns

Typical Performance Characteristics

RDS_{ON} vs. V_{DD} and Temperature

RDS_{ON} vs. V_{D} and V_{DD}

 V_S Slew Rate vs. Temperature, $V_{DD},\,V_D,\,and\,C_{SLEW}$

Typical Turn-on Waveforms

Figure 1. Typical Turn ON operation waveform for V_D = 5 V, C_{SLEW} = 4 nF, C_{LOAD} = 10 μ F. R_{LOAD} = 20 Ω

Figure 2. Typical Turn ON operation waveform for V_D = 5 V, C_{SLEW} = 12 nF, C_{LOAD} = 10 μ F. R_{LOAD} = 20 Ω

Typical Turn-off Waveforms

Figure 3. Typical Turn OFF operation waveform for V_D = 5 V, C_{SLEW} = 4 nF, no C_{LOAD}. R_{LOAD} = 20 Ω

Figure 4. Typical Turn OFF operation waveform for V_D = 5 V, C_{SLEW} = 4 nF, C_{LOAD} = 10 μ F. R_{LOAD} = 20 Ω

SLG59M1618V Power-Up/Power-Down Sequence Considerations

To ensure glitch-free power-up under all conditions, apply V_{DD} first, followed by V_D after V_{DD} exceeds 1.9 V. Then allow V_D to reach 90% of its max value before toggling the ON pin from Low-to-High. Likewise, power-down in reverse order.

If V_{DD} and V_D need to be powered up simultaneously, glitching can be minimized by having a suitable load capacitor. A 10 μ F C_{LOAD} will prevent glitches for rise times of V_{DD} and V_D higher than 2 ms.

If the ON pin is toggled HIGH before V_{DD} and V_D have reached their steady-state values, the load switch timing parameters may differ from datasheet specifications.

The slew rate of output V_S follows a linear ramp set by a capacitor connected to the CAP pin. A larger capacitor value at the CAP pin produces a slower ramp, reducing inrush current from capacitive loads.

SLG59M1618V Thermal Shutdown Operation

If a load-current overload condition persists where the die temperature rises because of the increased FET resistance, the load switch's internal Thermal Shutdown Protection circuit can be activated. If the die temperature exceeds the listed THERM_{ON} specification, the FET is shut OFF completely, thereby allowing the die to cool. When the die cools to the listed THERM_{OFF} temperature threshold, the FET is allowed to turn back on. This process may repeat as long as the output current overload condition persists.

For more information on GreenFET load switch features, please visit our website and see App Note "AN-1068 GreenFET and High Voltage GreenFET Load Switch Basics.

Package Top Marking System Definition

ABC - Part Serial Number Field each A, B, and C character can be A-Z and 0-9

Package Drawing and Dimensions

6 Lead STDFN Package 1.0 x 1.4 mm

Unit: mm

Symbol	Min	Nom.	Max	Symbol	Min	Nom.	Max
Α	0.50	0.55	0.60	D	1.35	1.40	1.45
A1	0.005	-	0.060	E	0.95	1.00	1.05
A2	0.10	0.15	0.20	L	0.35	0.40	0.45
b	0.13	0.18	0.23	е	(0.40 BSC	,

Tape and Reel Specifications

Backage	# of	Nominal	Max Units		Reel & Leader (min)		Trailer (min)		Таре	Part	
Туре	# of Pins	Package Size [mm]	per Reel	per Box	Hub Size [mm]	Pockets	Length [mm]	Pockets	Length [mm]	Width [mm]	Pitch [mm]
STDFN 6L 1x1.4mm 0.4P FC Green	6	1.0 x 1.4 x 0.55	3,000	3,000	178 / 60	100	400	100	400	8	4

Carrier Tape Drawing and Dimensions

Package Type	PocketBTM Length	PocketBTM Width	Pocket Depth	Index Hole Pitch	Pocket Pitch	Index Hole Diameter	Index Hole to Tape Edge	Index Hole to Pocket Center	Tape Width
	A0	В0	K0	P0	P1	D0	Е	F	w
STDFN 6L 1x1.4mm 0.4P FC Green	1.21	1.62	0.75	4	4	1.5	1.75	3.5	8

Recommended Reflow Soldering Profile

Please see IPC/JEDEC J-STD-020: latest revision for reflow profile based on package volume of 0.77 mm³ (nominal). More information can be found at www.jedec.org.

Revision History

Date	Version	Change
2/14/2022	1.01	Renesas rebranding Fixed typos
2/23/2017	1.00	Production Release

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD-PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers who are designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only to develop an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third-party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising from your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

(Disclaimer Rev.1.01)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit <u>www.renesas.com/contact-us/</u>.