

GreenPAK ™

RZ/G2I SMARC USB / Ethernet Logic

General Description

Pin Configuration

> STQFN-20 (Top View)

Renesas SLG7RN45315 is a low power and small form device. The SoC is housed in a 2mm x 3mm STQFN package which is optimal for using with small devices.

Features

- Low Power Consumption
- Pb Free / RoHS Compliant
- Halogen Free
- STQFN 20 Package

Output Summary

2 Outputs - Open Drain NMOS 1X 2 Outputs - Open Drain NMOS 2X 2 Outputs - Push Pull 1X 2 Outputs - Push Pull 2X


Pin name

Pin #	Pin name	Pin #	Pin name
1	VDD	11	GND
2	ET0_INT#	12	RZ_ET0_INT#
3	ET1_INT#	13	RZ_ET1_INT#
4	ET0_LED1#	14	VDD2
5	ET1_LED1#	15	USB0_VBUSEN
6	GBE0_LINK#	16	USB0_EN_OC#
7	GBE1_LINK#	17	USB0_OVRCUR#
8	NC	18	USB1_VBUSEN
9	NC	19	USB1_EN_OC#
10	NC	20	USB1_OVRCUR#

Block Diagram

Pin #	Pin Name	Туре	Pin Description	Internal Resistor
1	VDD	PWR	Supply Voltage	
2	ET0_INT#	Digital Input	Low Voltage Digital Input	floating
3	ET1_INT#	Digital Input	Low Voltage Digital Input	floating
4	ET0_LED1#	Digital Input	Low Voltage Digital Input	floating
5	ET1_LED1#	Digital Input	Low Voltage Digital Input	floating
6	GBE0_LINK#	Digital Output	Open Drain NMOS 2X	floating
7	GBE1_LINK#	Digital Output	Open Drain NMOS 2X	floating
8	NC		Keep Floating or Connect to GND	
9	NC		Keep Floating or Connect to GND	
10	NC		Keep Floating or Connect to GND	
11	GND	GND	Ground	
12	RZ_ET0_INT#	Digital Output	Push Pull 2X	floating
13	RZ_ET1_INT#	Digital Output	Push Pull 2X	floating
14	VDD2	PWR	Supply Voltage	
15	USB0_VBUSEN	Digital Input	Digital Input with Schmitt trigger	floating
16	USB0_EN_OC#	Bi-directional	Digital Input with Schmitt trigger / Open Drain NMOS 1X	10kΩ pullup
17	USB0_OVRCUR#	Digital Output	Push Pull 1X	floating
18	USB1_VBUSEN	Digital Input	Digital Input with Schmitt trigger	floating
19	USB1_EN_OC#	Bi-directional	Digital Input with Schmitt trigger / Open Drain NMOS 1X	10kΩ pullup
20	USB1_OVRCUR#	Digital Output	Push Pull 1X	floating

Ordering Information

Part Number	Package Type
SLG7RN45315V	20-pin STQFN - Tape and Reel (3k units)

RZ/G2I SMARC USB / Ethernet Logic

Absolute Maximum Conditions

Parameter	Min.	Max.	Unit	
Supply Voltage on VDD rela	-0.5	7	V	
Supply voltage on VDD2 rela	ative to GND	-0.5	VDD + 0.5	V
DC Input voltage	PINs 2, 3, 4, 5, 6, 7, 8, 9, 10	GND - 0.5	VDD + 0.5	V
	PINs 12, 13, 15, 16, 17, 18, 19, 20	GND - 0.5	VDD2 + 0.5	v
	Push-Pull 1x		11	
Maximum Average or DC Current	Push-Pull 2x		16	m۸
(Through pin)	OD 1x		11	mA
	OD 2x		21	
Current at Input P	Pin	-1.0	1.0	mA
Input leakage (Absolute	e Value)		1000	nA
Storage Temperature	Range	-65	150	°C
Junction Temperat		150	°C	
ESD Protection (Human B	2000		V	
ESD Protection (Charged D	500		V	
Moisture Sensitivity I	Level		1	

Electrical Characteristics

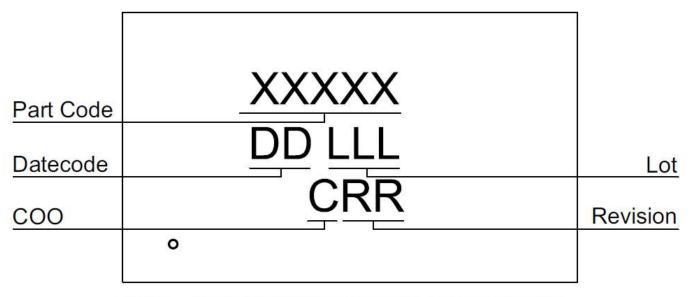
Symbol	Parameter	Condition/Note	Min.	Тур.	Max.	Unit
Vdd	Supply Voltage		4.7	5	5.5	V
V _{DD2}	Supply Voltage		3	3.3	3.6	V
TA	Operating Temperature		-40	25	85	°C
CVDD	Capacitor Value at VDD			0.1		μF
CIN	Input Capacitance			4		pF
lα	Quiescent Current	Static inputs and floating outputs. PINs 15 and18 are HIGH. PINs 2, 3, 4, 5 are LOW.		1.2		μA
Vo	Maximal Voltage Applied to any PIN in High-Impedance State				VDD	V
ססע	Maximum Average or DC Current Through VDD Pin	T _J = 85°C			45	mA
IVDD	(Per chip side, see Note 2)	T _J = 110°C			22	mA
GND	Maximum Average or DC Current Through GND Pin	T _J = 85°C			86	mA
IGND	(Per chip side, see Note 2)	T _J = 110°C			41	mA
VIH	HIGH-Level Input Voltage PINs 2, 3, 4, 5, 6, 7, 8, 9 and 10	Low-Level Logic Input at VDD=5.0V	1.15		VDD	V
V_{IH2}	HIGH-Level Input Voltage PINs 12, 13, 15, 16, 17, 18, 19, 20	Logic Input with Schmitt Trigger at VDD2=3.3V	2.14		VDD	V
VIL	LOW-Level Input Voltage PINs 2, 3, 4, 5, 6, 7, 8, 9 and 10	Low-Level Logic Input at VDD=5.0V	0		0.77	V
VIL2	LOW-Level Input Voltage PINs 12, 13, 15, 16, 17, 18, 19, 20	Logic Input with Schmitt Trigger at VDD2=3.3V	0		0.97	V
V _{OH2}	HIGH-Level Output Voltage PINs 12, 13, 15, 16, 17, 18, 19, 20	Push-Pull 1X, I _{OH} =3mA at VDD2=3.3V	2.74	3.12		V

RZ/G2I SMARC USB / Ethernet Logic

	Push-Pull 2X, I _{OH} =3mA at VDD2=3.3V	2.87	3.21		V
LOW-Level Output Voltage PINs 2, 3, 4, 5, 6, 7, 8, 9 and 10	Open Drain NMOS 2X, I _{OL} =5mA at VDD=5.0V		0.07	0.08	V
	Push-Pull 1X, Io∟=3mA at VDD2=3.3V		0.13	0.23	V
LOW-Level Output Voltage PINs 12, 13, 15, 16, 17, 18, 19, 20	Push-Pull 2X, IoL=3mA at VDD2=3.3V		0.06	0.11	V
	Open Drain NMOS 1X, IoL=3mA at VDD2=3.3V		0.08	0.15	V
HIGH-Level Output Current	Push-Pull 1X, V _{OH} =2.4V at VDD2=3.3V	6.05	12.08		mA
PINs 12, 13, 15, 16, 17, 18, 19, 20	Push-Pull 2X, V _{OH} =2.4V at VDD2=3.3V	11.54	24.16		m/
LOW-Level Output Current (see Note 1) PINs 2, 3, 4, 5, 6, 7, 8, 9 and 10	Open Drain NMOS 2X, V _{OL} =0.4V at VDD=5.0V	17.34	34.76		mA
	Push-Pull 1X, V _{0L} =0.4V at VDD2=3.3V	4.88	8.24		mA
(see Note 1)	Push-Pull 2X, V _{OL} =0.4V at VDD2=3.3V	9.75	16.49		mA
Fins 12, 13, 13, 10, 17, 10, 19, 20	Open Drain NMOS 1X, V _{OL} =0.4V at VDD2=3.3V	7.31	12.37		mA
Internal Pull Up Resistance	Pull up on PINs 16, 19		10		kΩ
Startup Time	From VDD rising past PONTHR	0.61	1.24	1.65	ms
Power On Threshold	V _{DD} Level Required to Start Up the Chip	1.41	1.54	1.66	V
Power Off Threshold	V _{DD} Level Required to Switch Off the Chip	1.00	1.15	1.31	V
	PINs 2, 3, 4, 5, 6, 7, 8, 9 and 10 LOW-Level Output Voltage PINs 12, 13, 15, 16, 17, 18, 19, 20 HIGH-Level Output Current (see Note 1) PINs 12, 13, 15, 16, 17, 18, 19, 20 LOW-Level Output Current (see Note 1) PINs 2, 3, 4, 5, 6, 7, 8, 9 and 10 LOW-Level Output Current (see Note 1) PINs 2, 3, 4, 5, 6, 7, 8, 9 and 10 LOW-Level Output Current (see Note 1) PINs 12, 13, 15, 16, 17, 18, 19, 20 Internal Pull Up Resistance Startup Time Power On Threshold	VDD2=3.3V LOW-Level Output Voltage PINs 2, 3, 4, 5, 6, 7, 8, 9 and 10 Open Drain NMOS 2X, IoL=5mA at VDD=5.0V Push-Pull 1X, IoL=3mA at VDD2=3.3V Push-Pull 1X, IoL=3mA at VDD2=3.3V LOW-Level Output Voltage PINs 12, 13, 15, 16, 17, 18, 19, 20 Push-Pull 2X, IoL=3mA at VDD2=3.3V HIGH-Level Output Current (see Note 1) PINs 12, 13, 15, 16, 17, 18, 19, 20 Push-Pull 1X, VoH=2.4V at VDD2=3.3V LOW-Level Output Current (see Note 1) PINs 2, 3, 4, 5, 6, 7, 8, 9 and 10 Push-Pull 2X, VoH=2.4V at VDD2=3.3V LOW-Level Output Current (see Note 1) PINs 2, 3, 4, 5, 6, 7, 8, 9 and 10 Open Drain NMOS 2X, VoL=0.4V at VDD=5.0V LOW-Level Output Current (see Note 1) PINs 12, 13, 15, 16, 17, 18, 19, 20 Open Drain NMOS 1X, VoL=0.4V at VDD2=3.3V Internal Pull Up Resistance Pull up on PINs 16, 19 Startup Time From VDD rising past PONTHR Vodd Level Required to Start Up the Chip Power On Threshold Vodd Level Required to Switch Off	VDD2=3.3V 2.67 LOW-Level Output Voltage PINs 2, 3, 4, 5, 6, 7, 8, 9 and 10 Open Drain NMOS 2X, IoL=5mA at VDD=5.0V LOW-Level Output Voltage PINs 12, 13, 15, 16, 17, 18, 19, 20 Push-Pull 1X, IoL=3mA at VDD2=3.3V HIGH-Level Output Current (see Note 1) PINs 12, 13, 15, 16, 17, 18, 19, 20 Push-Pull 1X, VoH=2.4V at VDD2=3.3V HUW-Level Output Current (see Note 1) PINs 2, 3, 4, 5, 6, 7, 8, 9 and 10 Push-Pull 2X, VoH=2.4V at VDD2=3.3V 6.05 LOW-Level Output Current (see Note 1) PINs 2, 3, 4, 5, 6, 7, 8, 9 and 10 Open Drain NMOS 2X, VoL=0.4V at VDD2=3.3V 11.54 LOW-Level Output Current (see Note 1) PINs 12, 13, 15, 16, 17, 18, 19, 20 Open Drain NMOS 2X, VoL=0.4V at VDD2=3.3V 17.34 LOW-Level Output Current (see Note 1) PINs 12, 13, 15, 16, 17, 18, 19, 20 Open Drain NMOS 1X, VoL=0.4V at VDD2=3.3V 9.75 PINs 12, 13, 15, 16, 17, 18, 19, 20 Push-Pull 1X, VoL=0.4V at VDD2=3.3V 9.75 PINs 12, 13, 15, 16, 17, 18, 19, 20 Open Drain NMOS 1X, VoL=0.4V at VDD2=3.3V 9.75 Open Drain NMOS 1X, VoL=0.4V at VDD2=3.3V 9.75 0pen Drain NMOS 1X, VoL=0.4V at VDD2=3.3V 1.31 Internal Pull Up Resistance Pull up on PINs 16, 19 - Startup Time From VDD rising p	VDD2=3.3V 2.87 3.21 LOW-Level Output Voltage PINs 2, 3, 4, 5, 6, 7, 8, 9 and 10 Open Drain NMOS 2X, IoL=5mA at VDD=5.0V 0.07 LOW-Level Output Voltage PINs 12, 13, 15, 16, 17, 18, 19, 20 Push-Pull 1X, IoL=3mA at VDD2=3.3V 0.13 HIGH-Level Output Current (see Note 1) PINs 12, 13, 15, 16, 17, 18, 19, 20 Push-Pull 2X, IoL=3mA at VDD2=3.3V 0.06 LOW-Level Output Current (see Note 1) PINs 2, 3, 4, 5, 6, 7, 8, 9 and 10 Push-Pull 1X, VoH=2.4V at VDD2=3.3V 6.05 12.08 LOW-Level Output Current (see Note 1) PINs 2, 3, 4, 5, 6, 7, 8, 9 and 10 Open Drain NMOS 2X, VoL=0.4V at VDD=5.0V 11.54 24.16 LOW-Level Output Current (see Note 1) PINs 12, 13, 15, 16, 17, 18, 19, 20 Open Drain NMOS 2X, VoL=0.4V at VDD2=3.3V 17.34 34.76 LOW-Level Output Current (see Note 1) PINs 12, 13, 15, 16, 17, 18, 19, 20 Push-Pull 1X, VoL=0.4V at VDD2=3.3V 9.75 16.49 VDD2=3.3V Push-Pull 2X, VoL=0.4V at VDD2=3.3V 9.75 16.49 PINs 12, 13, 15, 16, 17, 18, 19, 20 Push-Pull 2X, VoL=0.4V at VDD2=3.3V 9.75 16.49 PUNS 12, 13, 15, 16, 17, 18, 19, 20 Push-Pull 2X, VoL=0.4V at VDD2=3.3V 9.75 16.49 PUNS 12, 13, 15	VDD2=3.3V 2.87 3.21 LOW-Level Output Voltage PINs 2, 3, 4, 5, 6, 7, 8, 9 and 10 Open Drain NMOS 2X, IoL=5mA at VDD=5.0V 0.07 0.08 LOW-Level Output Voltage PINs 12, 13, 15, 16, 17, 18, 19, 20 Push-Pull 1X, IoL=3mA at VDD2=3.3V 0.13 0.23 HIGH-Level Output Current (see Note 1) PINs 12, 13, 15, 16, 17, 18, 19, 20 Push-Pull 1X, VoH=2.4V at VDD2=3.3V 0.08 0.15 LOW-Level Output Current (see Note 1) PINs 12, 13, 15, 16, 17, 18, 19, 20 Push-Pull 1X, VoH=2.4V at VDD2=3.3V 6.05 12.08 LOW-Level Output Current (see Note 1) PINs 2, 3, 4, 5, 6, 7, 8, 9 and 10 Open Drain NMOS 2X, VoH=0.4V at VDD2=3.3V 11.54 24.16 LOW-Level Output Current (see Note 1) PINs 12, 13, 15, 16, 17, 18, 19, 20 Open Drain NMOS 2X, VoL=0.4V at VDD2=3.3V 17.34 34.76 LOW-Level Output Current (see Note 1) Push-Pull 1X, VoL=0.4V at VDD2=3.3V 9.75 16.49 LOW-Level Output Current (see Note 1) Push-Pull 2X, VoL=0.4V at VDD2=3.3V 9.75 16.49 LOW-Level Output Current (see Note 1) Push-Pull 1X, VoL=0.4V at VDD2=3.3V 9.75 16.49

Note:

1. DC or average current through any pin should not exceed value given in Absolute Maximum Conditions.


2. The GreenPAK's power rails are divided in two sides. PINs 2, 3, 4, 5, 6, 7, 8, 9 and 10 are connected to one side, PINs 12, 13, 15, 16, 17, 18, 19, and 20 to another.

3. Guaranteed by Design.

Package Top Marking

XXXXX - Part ID Field: identifies the specific device configuration

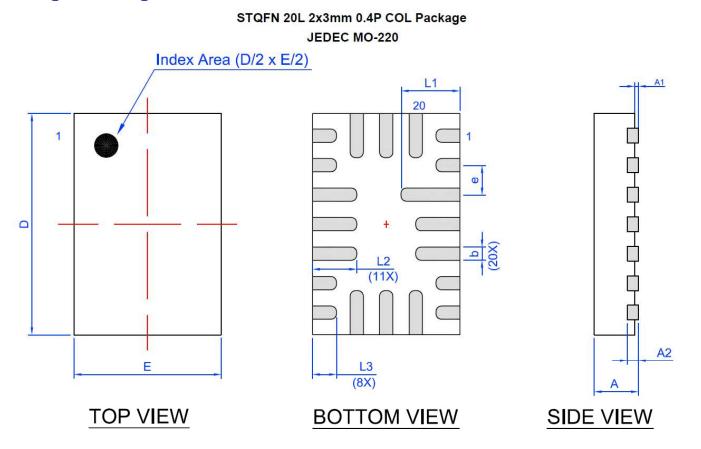
DD – Date Code Field: Coded date of manufacture

LLL – Lot Code: Designates Lot #

C – Assembly Site/COO: Specifies Assembly Site/Country of Origin

RR – Revision Code: Device Revision

Datasheet Revision	Programming Code Number	Lock Status	Checksum	Part Code	Revision	Date
0.13	002	U	0xD1CEC92D	45315	AA	07/12/2023

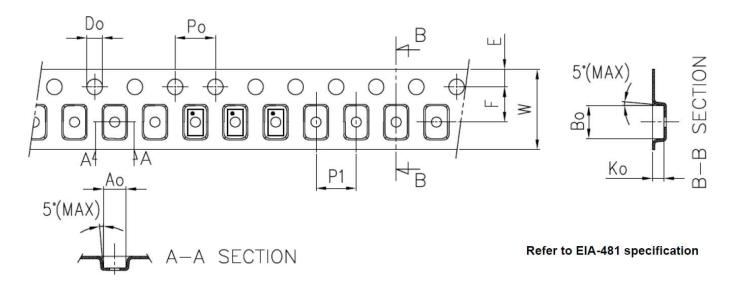

Lock coverage for this part is indicated by $\sqrt{}$, from one of the following options:

 Unlocked
Locked for read, bits <1535:0>
Locked for write, bits <1535:0>
Locked for write all bits
Locked for read and write bits <1535:0>
Locked for read bits <1535:0> and write of all bits

The IC security bit is locked/set for code security for production unless otherwise specified. The Programming Code Number is not changed based on the choice of locked vs. unlocked status.

Package Drawing and Dimensions

Unit: mn	า						
Symbol	Min	Nom.	Max	Symbol	Min	Nom.	Max
Α	0.50	0.55	0.60	D	2.95	3.00	3.05
A1	0.005		0.050	E	1.95	2.00	2.05
A2	0.10	0.15	0.20	L1	0.75	0.80	0.85
b	0.13	0.18	0.23	L2	0.55	0.60	0.65
е	().40 BSC	;	L3	0.275	0.325	0.375


RZ/G2I SMARC USB / Ethernet Logic

Tape and Reel Specification

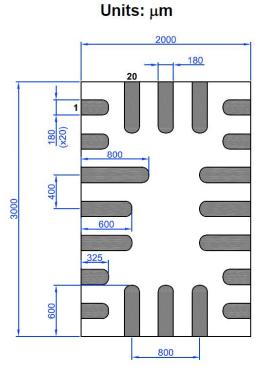
		Nominal	Nominal Max Units				Leader (min)		r (min)	Таре	Part
Package Type	# of Pins	Package Size [mm]	per Reel	per Box	Box Reel & Hub Size [mm]	Pockets	Length [mm]	Pockets	Length [mm]	Width [mm]	Pitch [mm]
STQFN 20L 2x3mm 0.4P COL	20	2x3x0.55	3000	3000	178/60	100	400	100	400	8	4

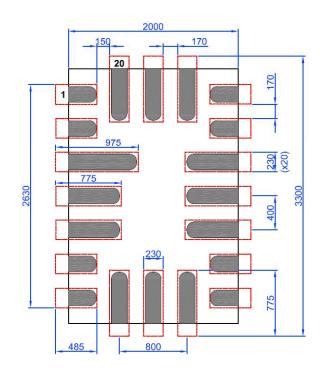
Carrier Tape Drawing and Dimensions

Package Type	Pocket BTM Length	Pocket BTM Width	Pocket Depth	Index Hole Pitch	Pocket Pitch	Index Hole Diameter	Index Hole to Tape Edge	Index Hole to Pocket Center	Tape Width
	A0	B0	K0	P0	P1	D0	E	F	w
STQFN 20L 2x3 mm 0.4P COL	2.2	3.15	0.76	4	4	1.5	1.75	3.5	8

Recommended Reflow Soldering Profile

Please see IPC/JEDEC J-STD-020: latest revision for reflow profile based on package volume of 3.30 mm³ (nominal). More information can be found at <u>www.jedec.org.</u>





Recommended Land Pattern

Recommended Land Pattern (Top View)

RZ/G2I SMARC USB / Ethernet Logic

Datasheet Revision History

Date	Version	Change				
10/13/2021	0.10	New design for SLG46538V chip				
10/29/2021	0.11	Updated some logic				
12/02/2021	0.12	Updated Device Revision Table				
07/12/2023	0.13	Moved to Renesas template				

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD-PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers who are designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only to develop an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third-party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising from your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

(Disclaimer Rev.1.01)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit <u>www.renesas.com/contact-us/</u>.