

TP65H070G4RS

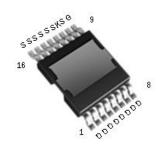
650V SuperGaN® GaN FET in PQFN (source tab)

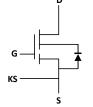
Description

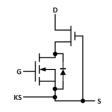
The TP65H070G4RS 650V, $72m\Omega$ Gallium Nitride (GaN) FET is a normally-off device. It combines state-ofthe-art high voltage GaN HEMT and low voltage silicon MOSFET technologies—offering superior reliability and performance.

The Gen IV SuperGaN® platform uses advanced epi and patented design technologies to simplify manufacturability while improving efficiency over silicon via lower gate charge, output capacitance, crossover loss, and reverse recovery charge

Related Literature


- Recommended External Circuitry for GaN FETs
- Printed Circuit Board Layout and Probing
- Paralleling GaN FETs
- Low cost driver solution


Ordering Information


Part Number	Package	Package Configuration	
TP65H070G4RS-TR	TOLT	Source	

* "-TR" suffix refers to tape and reel. Refer to ANOO12 for details.

TP65H070G4RS TOLT (Top view)

Cascode Schematic Symbol

Cascode Device Structure

Features

- Gen IV technology
- JEDEC-qualified GaN technology
- Dynamic R_{DS(on)eff} production tested
- Robust design, defined by
 - Wide gate safety margin
 - Transient over-voltage capability
- Very low QRR
- Reduced crossover loss
- RoHS compliant and Halogen-free packaging
- Top-side cooling

Benefits

- Achieves increased efficiency in both hard- and soft-switched circuits
 - Increased power density
 - Reduced system size and weight
 - Overall lower system cost
- Easy to drive with commonly-used gate drivers
- GSD pin layout improves high speed design

Applications

- Datacom
- Broad industrial
- PV inverter
- Servo motor
- Computing

Key Specifications			
V _{DSS} (V)	650		
V _{DSS(TR)} (V)	800		
$R_{DS(on)eff}(m\Omega)$ max*	85		
Q _{oss} (nC) typ	78		
Q _G (nC) typ	9		

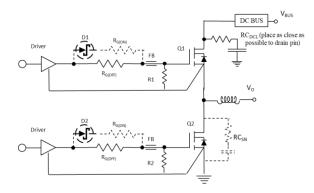
^{*} Dynamic on-resistance; see Figures 18 and 19

Absolute Maximum Ratings (T_c=25 °C unless otherwise stated.)

Symbol	Parameter	Limit Value	Unit	
V _{DSS}	Drain to source voltage (T _J = -55°C to	650		
V _{DSS(TR)}	Transient drain to source voltage (a)		800	V
V _{GSS}	Gate to source voltage		±20	
P _D	Maximum power dissipation @Tc=25°	96	W	
	Continuous drain current @Tc=25°C (b)		29	А
I _D	Continuous drain current @T _C =100°C (b)		18.4	А
I _{DM}	Pulsed drain current (pulse width: 10µs)		120	А
Tc	Operating temperature	Case	-55 to +150	°C
Tu	- Operating temperature	Junction	-55 to +150	°C
Ts	Storage temperature		-55 to +150	°C
T _{SOLD}	Soldering peak temperature (c)		260	°C

Notes:

Thermal Resistance


Symbol	Parameter	Typical	Unit
Rөлс	Junction-to-case	1	°C/W
Roja	Junction-to-ambient	62	°C/W

a. In off-state, spike duration < 30 μ s, non-repetitive.

b. For increased stability at high current operation, see Circuit Implementation on page ${\bf 3}$

c. For 10 sec., 1.6mm from the case

Circuit Implementation

Simplified Half-bridge Schematic (See also on Figure 15)

For additional gate driver options/configurations, please see Application Note <u>Recommended External Circuitry for GaN FETs</u>

Layout Recommendations for hard switching Gate Loop:

- Gate Driver: SiLab Si823x/Si827x
- Keep gate loop compact (using Kelvin source)
- Minimize coupling with power loop

Power loop:

- Minimize power loop path inductance
- Minimize switching node coupling with high and low power plane
- Add DC bus noise filter (RC_{DCL}) to reduce to voltage ringing
- Add Switching node snubber for high current operation

Parameter	Symbol	Value
Single Gate Resistor (d)	R _G (R _{G(OFF)} only)	45 Ω (D1/D2/R _{G(ON)} : NS)
Dual Gate Resistor (d)	R _{G(ON)} / R _{G(OFF)}	30 Ω / 45 Ω
Dual Gate Resistor (d)	Effective R _{G(ON)} / R _{G(OFF)}	18 Ω / 45 Ω
Operating frequency	F _{sw}	≤300 kHz
Gate Ferrite Bead	FB	$180-330~\Omega$ at $100 \text{MHz}^{(d)}$
Gate-to-source Resistor	R1/R2	10 kΩ
DC Link RC Noise Filter	RC_DCL	4.7 nF + 5Ω
Switching Node RC Snubber	RCsn	Not Necessary (e)
Gate Driver	Driver	Si823x/Si827x or similar

Note:

- d. For every design and layout, a range of ferrite beads (FB), R_G and DC link RC filter should be evaluated to help suppress any high frequency ringing and optimize performance
- e. RCsN (47pF + 15 Ω) is needed if
 - R_G is smaller than recommendations
 - Layout is not optimized
 - Requires high current operation

Electrical Parameter (T₂=25 °C unless otherwise stated)

Symbol	Parameter	Min	Тур	Max	Unit	Test Conditions
Forward Device Characteristics						
$V_{(BL)DSS}$	Drain-source voltage	650	_	_	V	V _{GS} =0V
$V_{\text{GS(th)}}$	Gate threshold voltage	3.3	4	4.8	V	V _{DS} =V _{GS} , I _D =0.7mA
Ъ	Duning source on variations (f)	_	72	85		V _{GS} =10V, I _D =18A,T _J =25°C
R _{DS(on)eff}	Drain-source on-resistance (f)	_	148	_	mΩ	V _{GS} =10V, I _D =18A, T _J =150°C
	Duain to accuracy leading a comment	_	1.2	12		V _{DS} =650V, V _{GS} =0V, T _J =25°C
I _{DSS}	Drain-to-source leakage current	_	8	_	μA	V _{DS} =650V, V _{GS} =0V, T _J =150°C
	Gate-to-source forward leakage current	_	_	100	ъ Л	V _{GS} =20V
I_{GSS}	Gate-to-source reverse leakage current	_	_	-100	nA	V _{GS} =-20V
Ciss	Input capacitance	_	638	_		V _{GS} =0V, V _{DS} =400V, <i>f</i> =1MHz
Coss	Output capacitance	_	72	_	pF	
C _{RSS}	Reverse transfer capacitance	_	2	_		
$C_{O(er)}$	Output capacitance, energy related (g)	_	105	_	pF	V _{GS} =0V, V _{DS} =0V to 400V
$C_{O(tr)}$	Output capacitance, time related (h)	_	194	_	рі	
Q_{G}	Total gate charge	_	9	_		V _{DS} =400V, V _{GS} =0V to 10V, I _D =18A
Q _{GS}	Gate-source charge	_	3.7	_	nC	
Q_{GD}	Gate-drain charge	_	2.4	_		
Qoss	Output charge	_	80	_	nC	V _{GS} =0V, V _{DS} =0V to 400V
$t_{\text{D(on)}}$	Turn-on delay	_	43.4	_		V _{DS} =400V, V _{GS} =0V to 12V,
t _R	Rise time	_	6.2	_	ns	
$t_{\text{D(off)}}$	Turn-off delay	_	56	_	113	I_D =18A, R_G =50 Ω
t _F	Fall time	_	7.2	_		

Notes:

f. Dynamic on-resistance; see Figures 19 and 20 for test circuit and conditions

g. Equivalent capacitance to give same stored energy as $V_{\mbox{\tiny DS}}$ rises from 0V to 400V

h. Equivalent capacitance to give same charging time as $V_{\mbox{\tiny DS}}$ rises from OV to 400V

Electrical Parameters (T₂=25 °C unless otherwise stated)

Symbol	Parameter	Min	Тур	Max	Unit	Test Conditions
Reverse D	Reverse Device Characteristics					
Is	Reverse current	_	_	18	А	V _{GS} =0V, T _C =100°C, ≤25% duty cycle
V	_ 2.4 _	_	V	V _{GS} =0V, I _S =18A		
V _{SD}	Reverse voltage (i)	_	1.7	_	V	V _{GS} =0V, I _S =9A
t _{RR}	Reverse recovery time	_	80	_	ns	I _S =18A, V _{DD} =400V,
Qrr	Reverse recovery charge ^(j)	_	0	_	nC	di/dt=1000A/ms

Notes:

i. Includes dynamic $R_{ exttt{DS}(on)}$ effect

j. Excludes Qoss

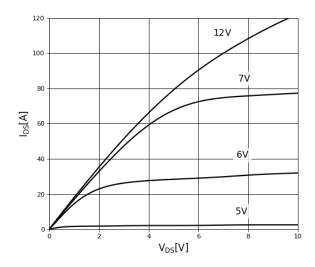


Figure 1. Typical Output Characteristics T_J=25 °C

Parameter: V_{GS}

Figure 2. Typical Output Characteristics T_J=150°C

Parameter: V_{GS}

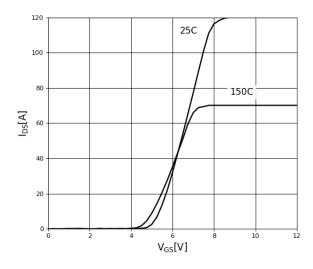
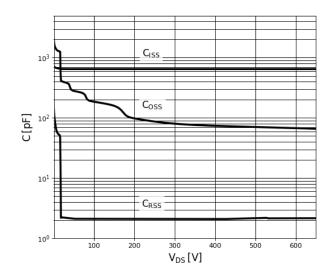



Figure 3. Typical Transfer Characteristics V_{DS}=10V, parameter: T_J

Figure 4. Normalized On-resistance $$I_D=18A,\,V_{GS}=10V$$

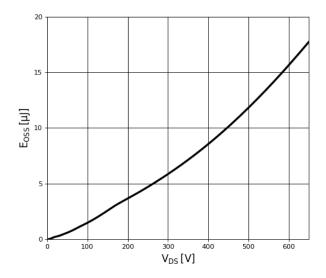
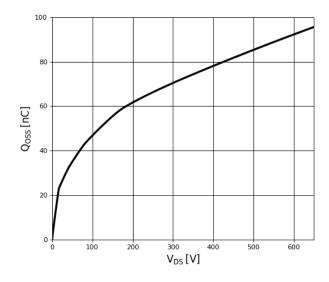



Figure 5. Typical Capacitance V_{GS} =0V, f=1MHz

Figure 6. Typical Coss Stored Energy

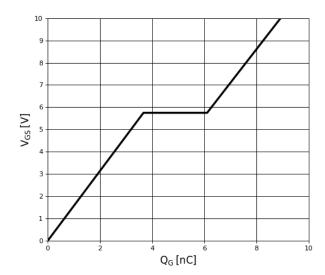
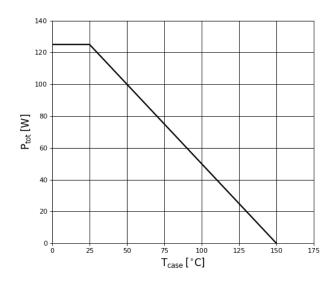



Figure 8. Typical Gate Charge

I_{DS}=18A, V_{DS}=400V

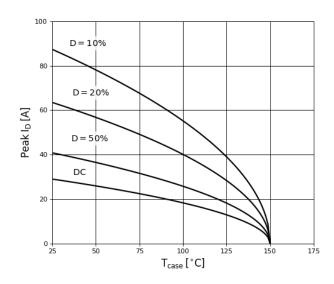
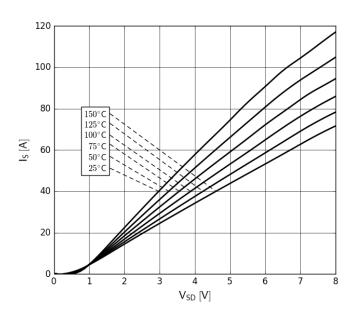
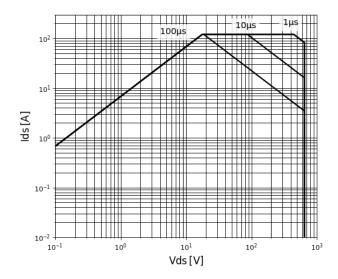



Figure 9. Power Dissipation

Figure 10. Current Derating


Pulse width \leq 10 μ s, $V_{GS} \geq$ 10V

10⁻²
10⁻⁶
10⁻⁵
10⁻⁴
10⁻³
10⁻²
10⁻¹
10⁻¹
10⁻⁰
10⁻¹
10⁻¹
10⁻⁰
10⁻¹
10⁻¹
10⁻⁰
10⁻¹

Figure 11. Forward Characteristics of Rev. Diode $I_S=f(V_{SD})$, parameter: T_J

Figure 12. Transient Thermal Resistance

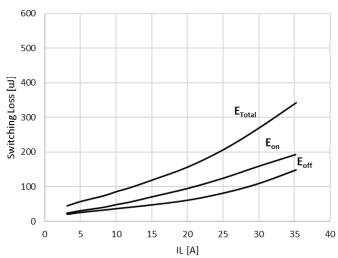


Figure 13. Safe Operating Area T_C=25°C

Figure 14. Inductive Switching Loss $T_c{=}25\,^{\circ}\,C$ $Rg{=}50\Omega,\,V_{DS}{=}400V$

Test Circuits and Waveforms

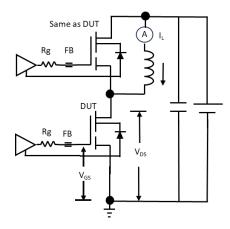


Figure 15. Switching Time Test Circuit

(see circuit implementation on page 3 for methods to ensure clean switching)

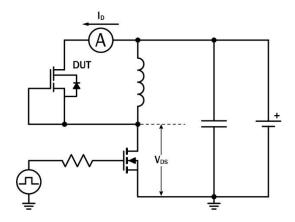


Figure 17. Diode Characteristics Test Circuit

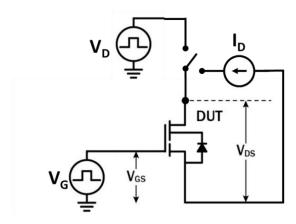


Figure 19. Dynamic RDS(on)eff Test Circuit

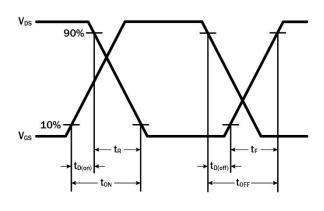


Figure 16. Switching Time Waveform

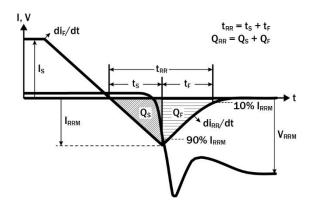


Figure 18. Diode Recovery Waveform

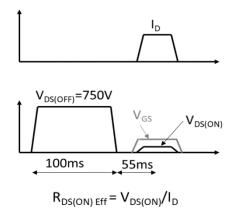
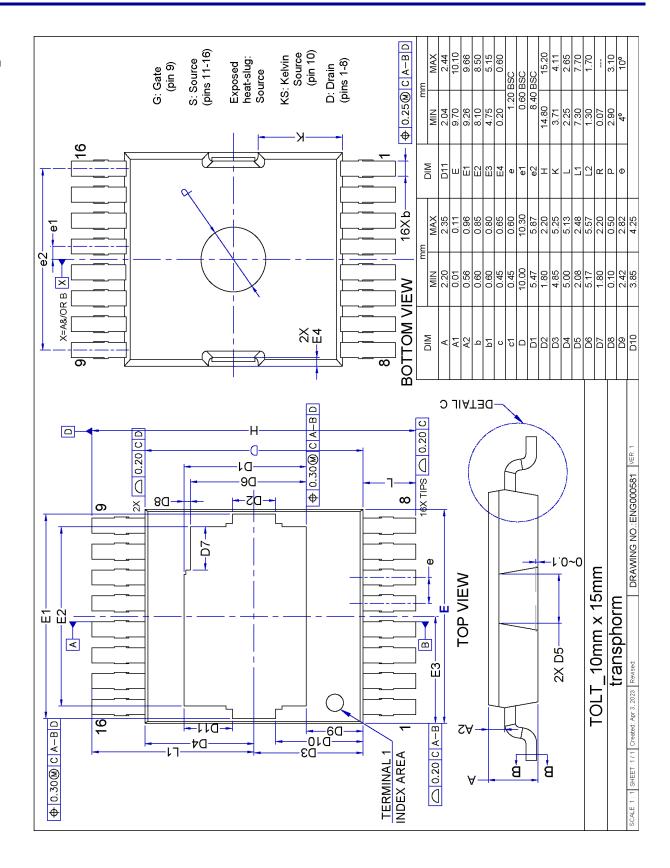


Figure 20. Dynamic R_{DS(on)eff} Waveform

Design Considerations

The fast switching of GaN devices reduces current-voltage crossover losses and enables high frequency operation while simultaneously achieving high efficiency. However, taking full advantage of the fast switching characteristics of GaN switches requires adherence to specific PCB layout guidelines and probing techniques.

Before evaluating Renesas GaN devices, see application note <u>Printed Circuit Board Layout and Probing for GaN Power Switches</u>. The table below provides some practical rules that should be followed during the evaluation.


When Evaluating Renesas GaN Devices:

DO	DO NOT
Minimize circuit inductance by keeping traces short,	Twist the pins of TO-220 or TO-247 to accommodate GDS
both in the drive and power loop	board layout
Minimize lead length of TO-220 and TO-247 package	Use long traces in drive circuit, long lead length of the
when mounting to the PCB	devices
Use shortest sense loop for probing; attach the probe	Use differential mode probe or probe ground clip with long
and its ground connection directly to the test points	wire
See Printed Circuit Board Layout and Probing	

GaN Design Resources

The complete technical library of GaN design tools can be found at Renesasusa.com/design:

- Reference designs
- Evaluation kits
- Application notes
- Design guides
- Simulation models
- Technical papers and presentations

