カタログ等資料中の旧社名の扱いについて

2010年4月1日を以ってNECエレクトロニクス株式会社及び株式会社ルネサステクノロジが合併し、両社の全ての事業が当社に承継されております。従いまして、本資料中には旧社名での表記が残っておりますが、当社の資料として有効ですので、ご理解の程宜しくお願い申し上げます。

ルネサスエレクトロニクス ホームページ (http://www.renesas.com)

2010年4月1日 ルネサスエレクトロニクス株式会社

【発行】ルネサスエレクトロニクス株式会社 (http://www.renesas.com)

【問い合わせ先】http://japan.renesas.com/inquiry

ご注意書き

- 1. 本資料に記載されている内容は本資料発行時点のものであり、予告なく変更することがあります。当社製品のご購入およびご使用にあたりましては、事前に当社営業窓口で最新の情報をご確認いただきますとともに、当社ホームページなどを通じて公開される情報に常にご注意ください。
- 2. 本資料に記載された当社製品および技術情報の使用に関連し発生した第三者の特許権、著作権その他の知的財産権の侵害等に関し、当社は、一切その責任を負いません。当社は、本資料に基づき当社または第三者の特許権、著作権その他の知的財産権を何ら許諾するものではありません。
- 3. 当社製品を改造、改変、複製等しないでください。
- 4. 本資料に記載された回路、ソフトウェアおよびこれらに関連する情報は、半導体製品の動作例、応用例を説明するものです。お客様の機器の設計において、回路、ソフトウェアおよびこれらに関連する情報を使用する場合には、お客様の責任において行ってください。これらの使用に起因しお客様または第三者に生じた損害に関し、当社は、一切その責任を負いません。
- 5. 輸出に際しては、「外国為替及び外国貿易法」その他輸出関連法令を遵守し、かかる法令の定めるところにより必要な手続を行ってください。本資料に記載されている当社製品および技術を大量破壊兵器の開発等の目的、軍事利用の目的その他軍事用途の目的で使用しないでください。また、当社製品および技術を国内外の法令および規則により製造・使用・販売を禁止されている機器に使用することができません。
- 6. 本資料に記載されている情報は、正確を期すため慎重に作成したものですが、誤りがないことを保証するものではありません。万一、本資料に記載されている情報の誤りに起因する損害がお客様に生じた場合においても、当社は、一切その責任を負いません。
- 7. 当社は、当社製品の品質水準を「標準水準」、「高品質水準」および「特定水準」に分類しております。また、各品質水準は、以下に示す用途に製品が使われることを意図しておりますので、当社製品の品質水準をご確認ください。お客様は、当社の文書による事前の承諾を得ることなく、「特定水準」に分類された用途に当社製品を使用することができません。また、お客様は、当社の文書による事前の承諾を得ることなく、意図されていない用途に当社製品を使用することができません。当社の文書による事前の承諾を得ることなく、「特定水準」に分類された用途または意図されていない用途に当社製品を使用したことによりお客様または第三者に生じた損害等に関し、当社は、一切その責任を負いません。なお、当社製品のデータ・シート、データ・ブック等の資料で特に品質水準の表示がない場合は、標準水準製品であることを表します。

標準水準: コンピュータ、OA 機器、通信機器、計測機器、AV 機器、家電、工作機械、パーソナル機器、 産業用ロボット

高品質水準: 輸送機器(自動車、電車、船舶等)、交通用信号機器、防災・防犯装置、各種安全装置、生命 維持を目的として設計されていない医療機器(厚生労働省定義の管理医療機器に相当)

特定水準: 航空機器、航空宇宙機器、海底中継機器、原子力制御システム、生命維持のための医療機器(生命維持装置、人体に埋め込み使用するもの、治療行為(患部切り出し等)を行うもの、その他直接人命に影響を与えるもの)(厚生労働省定義の高度管理医療機器に相当)またはシステム

- 8. 本資料に記載された当社製品のご使用につき、特に、最大定格、動作電源電圧範囲、放熱特性、実装条件その他諸条件につきましては、当社保証範囲内でご使用ください。当社保証範囲を超えて当社製品をご使用された場合の故障および事故につきましては、当社は、一切その責任を負いません。
- 9. 当社は、当社製品の品質および信頼性の向上に努めておりますが、半導体製品はある確率で故障が発生したり、使用条件によっては誤動作したりする場合があります。また、当社製品は耐放射線設計については行っておりません。当社製品の故障または誤動作が生じた場合も、人身事故、火災事故、社会的損害などを生じさせないようお客様の責任において冗長設計、延焼対策設計、誤動作防止設計等の安全設計およびエージング処理等、機器またはシステムとしての出荷保証をお願いいたします。特に、マイコンソフトウェアは、単独での検証は困難なため、お客様が製造された最終の機器・システムとしての安全検証をお願いいたします。
- 10. 当社製品の環境適合性等、詳細につきましては製品個別に必ず当社営業窓口までお問合せください。ご使用に際しては、特定の物質の含有・使用を規制する RoHS 指令等、適用される環境関連法令を十分調査のうえ、かかる法令に適合するようご使用ください。お客様がかかる法令を遵守しないことにより生じた損害に関して、当社は、一切その責任を負いません。
- 11. 本資料の全部または一部を当社の文書による事前の承諾を得ることなく転載または複製することを固くお断りいたします。
- 12. 本資料に関する詳細についてのお問い合わせその他お気付きの点等がございましたら当社営業窓口までご 照会ください。
- 注 1. 本資料において使用されている「当社」とは、ルネサスエレクトロニクス株式会社およびルネサスエレクトロニクス株式会社がその総株主の議決権の過半数を直接または間接に保有する会社をいいます。
- 注 2. 本資料において使用されている「当社製品」とは、注 1 において定義された当社の開発、製造製品をいいます。

MOS集積回路 MOS Integrated Circuit

μ PD784935A,784936A,784937A,784938A

16ビット・シングルチップ・マイクロコンピュータ

 μ PD784935A, 784936A, 784937A, 784938Aは, 78K/ シリーズの中の μ PD784938Aサブシリーズの製品です。 μ PD784908サブシリーズをベースに内部ROM, RAM容量を拡大し, ROMコレクション機能を追加したものです。 また,マスクROM製品と同じ電源電圧範囲で,動作可能なフラッシュ・メモリ内蔵製品 μ PD78F4938Aや各種開発ツールも用意しております。

詳しい機能説明などは次のユーザーズ・マニュアルに記載しております。設計の際には必ずお読みください。

 μ PD784938Aサプシリーズ ユーザーズ・マニュアル ハードウエア編 : U13987J 78K/ シリーズ ユーザーズ・マニュアル 命令編 : U10905J

特徵

78/ シリーズ

最小命令実行時間: 320 ns (fxx = 6.29 MHz動作時)

160 ns (fxx = 12.5 MHz動作時)

I/Oポート:80本 タイマ / カウンタ

> : 16ビット・タイマ / イベント・カウンタ×1ユニット 8/16ビット・タイマ / イベント・カウンタ×2ユニット

> > :2チャネル

8/16ビット・タイマ×1ユニット

シリアル・インタフェース : 4チャネル \cdot UART/IOE (3線式シリアルI/O) : 2チャネル

PWM出力:2出力 スタンバイ機能

HALT/STOP/IDLE ₹ - F

CSI(3線式シリアルI/O)

クロック分周機能

応用分野

カー・オーディオなど

外部拡張機能

ROMコレクション機能内蔵

ウォッチドッグ・タイマ:1チャネル

クロック出力機能:

fclk, fclk/2, fclk/4, fclk/8, fclk/16から選択

A/Dコンバータ:8ビット分解能×8チャネル

IEBus™コントローラ内蔵

時計用タイマ

低消費電力

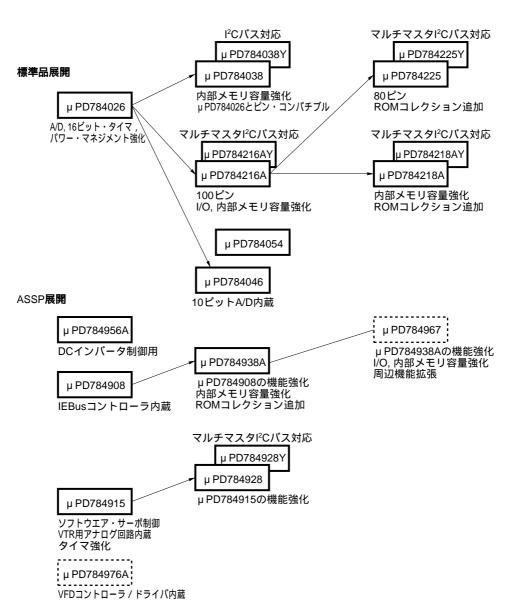
電源電圧

・VDD = 4.0~5.5 V (12.58 MHz動作時)

・VDD = 3.0~5.5 V (6.29 MHz動作時)

この資料では,特に断りがないかぎりµPD784938Aを代表製品として説明しています。

本資料の内容は、予告なく変更することがありますので、最新のものであることをご確認の上ご使用ください。


オーダ情報

オーダ名称	パッケージ	内部ROM(バイト)	内部RAM (バイト)
μ PD784935AGF- × × × -3BA	100ピン・プラスチックQFP(14×20)	96 Kバイト	5120バイト
μ PD784936AGF- × × × -3BA	100ピン・プラスチックQFP(14×20)	128 Kバイト	6656バイト
μ PD784937AGF- x x x -3BA	100ピン・プラスチックQFP(14×20)	192 Kバイト	8192バイト
μ PD784938AGF- × × × -3BA	100ピン・プラスチックQFP(14×20)	256 Kバイト	10496バイト

備考 ×××はROMコード番号です。

★ 78K/ シリーズ製品展開図

備考 蛍光表示管の一般的な英語名称はVFD (Vacuum Fluorescent Display) ですが , ドキュメントによってはFIP® (Fluorescent Indicator Panel) と記述しているものがあります。VFDとFIPは同等の機能です。

機能一覧

(1/2)

		1			(1/2		
	品名	μ PD784935A	μ PD784936A	μ PD784937A	μ PD784938A		
項目							
基本命令(二モ	ニック)数	113					
汎用レジスタ		•	×8バンク,または16ビ		ク(メモリ・マップ)		
最小命令実行時	間	· ·	s/2.54 µ s(6.29 MHz動作				
		†	/1.27 μ s(12.58 MHz動作		1		
内部メモリ	ROM	96 Kバイト	128 Kバイト	192 Kバイト	256 Kバイト		
	RAM	5120バイト	6656バイト	8192バイト	10496バイト		
メモリ空間		プログラム / データあ	5わせて1 Mバイト				
I/Oポート	合 計	80本					
	入力	8本					
	入出力	72本					
	LEDダイレクト・	24本					
き端子 ^注	ドライブ出力						
	トランジスタ・						
	ダイレクト・ド						
	ライブ						
	N-chオープン・	4本					
	ドレーン						
リアルタイム出	力ポート	4ビット×2,または8ビット×1					
IEBusコントロ	ーラ	内蔵(簡易版)					
タイマ / カウン	' タ	タイマ / イベント・カウンタ0:タイマ・カウンタ×1 パルス出力可					
		(16ビット) キャプチャ・レジスタ×1 ・トグル出力					
			コンペア・レ		VM/PPG出力		
					ンショット・パルス出力		
]ウンタ1:タイマ・カウ 		タイム出力ポート		
		(16ビット)	キャプチャ・				
				ペア・レジスタ×1			
			コンペア・レ				
			Jウンタ2:タイマ・カウ 				
		(16ビット)	_		グル出力		
				ペア・レジスタ×1・PV	VIVI/PPG出力		
		タイマ3	コンペア・レ				
		タ1 マ3 (16ビット)	: タイマ・カウ:				
 時計用タイマ			コンペア・レ				
1寸百 1 円 ブイ く		0.5秒間隔で割り込み要求発生(時計クロック発振回路を内蔵) 入力クロックは,メイン・クロック(12.58 MHz)と時計クロック(32.768 kHz)の選択可能					
フロック田/バ PWM出力		fclк, fclк/2, fclк/4, fclк/8, fclк/16から選択(1ビット出力ポートとしても使用可能) 12ビット分解能×2チャネル					
-vvivi山/リ シリアル・イン	<u></u>	•		 (ボー・レート・ジェウ	しータ内蔵)		
ンツァル・イン	フノエース	UART/IOE(3線式シリアルI/O):2チャネル(ボー・レート・ジェネレータ内蔵) CSI(3線式シリアルI/O) : 2チャネル					
		1					
Δ/ロコンバータ		8ビット分解能×8チャネル					
A/Dコンバータ ウォッチドック	・ タイフ	1チャネル	177				

注 付加機能付き端子は,I/O端子の中に含まれています。

(2/2)

	品名	μ PD784935A	μ PD784936A	μ PD784937A	μ PD784938A		
項 目							
外部拡張機能	能	あり (1 Mバイトまで可)				
スタンバイ		HALT/STOP/IDLE = -	*				
割り込み	ハードウエア要因	27(内部20,外部7(サ	ンプリング・クロック可	变入力:1))			
	ソフトウエア要因	BRK命令, BRKCS命令	RK命令,BRKCS命令,オペランド・エラー				
	ノンマスカブル	内部:1,外部:1					
	マスカブル	内部:19,外部:6					
		4レベルのプログラマブル・プライオリティ					
3種類の処理形態:ベクタ割り込み/マクロ・サービス/コンテキスト・スイッチン					スイッチング		
電源電圧		・V _{DD} = 4.0~5.5 V(12.58 MHz動作時)					
・V _{DD} = 3.0~5.5 V(6.29 MHz動作時)							
パッケージ		・100ピン・プラスチッ	クQFP (14×20)				

目 次

1.	μ PD784938A サブシリーズ製品間の違い 8
2.	μ PD784908サプシリーズ, μ PD784038サプシリーズ, μ PD78098サプシリーズとの主な違い 9
3.	端子接続図(Top View) 10
4.	システム構成例(車載オーディオ(チューナ・デッキ部)) 12
5.	プロック図 13
6.	端子機能 14
	6.1 ポート端子 14
	6.2 ポート以外の端子 16
	6.3 端子の入出力回路と未使用端子の処理 18
7.	CPU アーキテクチャ 22
	7.1 メモリ空間 22
	7.2 CPUレジスタ 27
	7. 2. 1 汎用レジスタ 27
	7. 2. 2 制御レジスタ 28
	7. 2. 3 特殊機能レジスタ(SFR) 29
8.	周辺ハードウエア機能 34
	8.1 ポート 34
	8.2 クロック発生回路 36
	8.3 リアルタイム出力ポート 39
	8.4 タイマ/カウンタ 40
	8.5 時計用タイマ 42
	8.6 PWM出力 (PWM0, PWM1) 43
	8.7 A/Dコンバータ 44
	8.8 シリアル・インタフェース 45
	8. 8. 1 アシンクロナス・シリアル・インタフェース / 3線式シリアルI/O(UART/IOE) 46
	8. 8. 2 クロック同期式シリアル・インタフェース(CSI) 48
	8.9 クロック出力機能 49
	8. 10 エッジ検出機能 50
	8. 11 ウォッチドッグ・タイマ 50
	8. 12 簡易版IEBusコントローラ 51
9.	割り込み機能 54
	9.1 割り込み要因 54

9.2 ベクタ割り込み ... 56

- 9.3 コンテキスト・スイッチング ... 57
- 9.4 マクロ・サービス ... 57
- 9.5 マクロ・サービスの応用例 ... 58
- 10. ローカル・パス・インタフェース ... 60
 - 10.1 メモリ拡張 ... 60
 - 10.2 メモリ空間 ... 61
 - 10.3 プログラマブル・ウエイト ... 62
 - 10.4 疑似スタティックRAMリフレッシュ機能 ... 62
 - 10.5 バス・ホールド機能 ... 62
- 11. スタンパイ機能 ... 63
- 12. リセット機能 ... 64
- 13. **レギュレータ** ... 65
- 14. ROMコレクション ... 66
- 15. 命令セット ... 67
- 16. 電気的特性 ... 72
- 17. 外形図 ... 92
- 18. **半田付け推奨条件** ... 93
- 付録A. 開発ツール ... 94
- **付録**B. **関連資料** ... 97

1. μ PD784938A**サブシリーズ製品間の違い**

μ PD784935A, 784936A, 784937A, 784938Aは, 内部メモリ容量が異なるだけです。

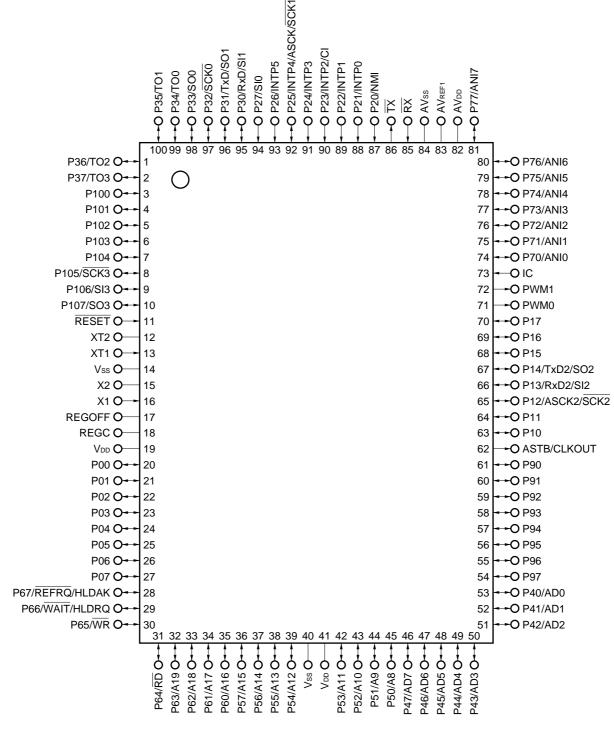
 μ PD78F4938Aは,上記製品のマスクROMを256 Kバイトのフラッシュ・メモリに置き換えた製品です。相違点を表1 - 1に示します。

表1 - 1 μ PD784938A**サブシリーズ製品間の違い**

品名	μ PD784935A	μ PD784936A	μ PD784937A	μ PD784938A	μ PD78F4938A	
項目						
内部ROM	96 Kバイト	128 Kバイト	192 Kバイト	256 Kバイト		
	マスクROM				フラッシュ・メモリ	
内部RAM	5120バイト	6656バイト	8192バイト	10496バイト		
レギュレータ	あり	なし				
電気的特性	個別の製品のデータ	個別の製品のデータ・シートを参照してください。				
内部メモリ・サイズ切り	なし	なし				
替えレジスタ ^注						
IC端子	あり	なし				
Vpp端子	なし				あり	

注 内部メモリ・サイズ切り替えレジスタ (IMS) により,内蔵フラッシュ・メモリ容量,内部RAM容量の変更可能。

2. μ PD784908サプシリーズ , μ PD784038サプシリーズ , μ PD78098サプシリーズとの主な違い


	シリーズ名	μPD784938Aサブシリーズ	μPD784908サブシリーズ	μPD784038サブシリーズ	μPD78098サブシリーズ
項目					
基本命令	(ニモニック)数	113			63
最小命令到	実行時間	160 ns		125 ns	480 ns
		(内部12.5 MHz動作時)		(32 MHz動作時)	(6.29 MHz動作時)
メモリ空間		1 Mバイト			60 Kバイト
(プログラ	ム・データ)				
タイマ / フ	カウンタ	16ビット・タイマ / イベ	ベント・カウンタ×1	16ビット・タイマ / イベ	16ビット・タイマ / イベ
		8/16ビット・タイマノイ	ベント・カウンタ×2	ント・カウンタ×1	ント・カウンタ×1
		8/16ビット・タイマ×1		8/16ビット・タイマ / イ	8ビット・タイマ / イベン
		時計用タイマ		ベント・カウンタ×2	ト・カウンタ×2
				8/16ビット・タイマ×1	時計用タイマ
		シングル・クロック		シングル・クロック	デュアル・クロック
		時計動作用に時計クロッ	ッ クあり		
シリアル	・インタフェース	UART/IOE(3線式シリ	アルI/O):2チャネル	UART/IOE(3線式シリ	UART (3線式シリアル
		(ボー・レート・ジェネ	レータ内蔵)	アルI/O): 2チャネル	I/O):1チャネル
		CSI(3線式シリアルI/O):2チャネル	CSI(3線式シリアルI/O,	CSI/SBI(3線式シリア
				2線式シリアルI/O):	ルI/O):1チャネル
				1チャネル	CSI(3線式シリアル
					I/O):1チャネル
PWM出力		12ビット分解能×2チャ	ネル		なし
D/Aコンハ	、 ータ	なし		8ビット分解能×2チャネ	ネル
割り込み	ハードウエア要因	27本		24本	23本(テスト・フラグ2本)
	内部	20本		17本	14本
	外部	7本		7本	7本
外部拡張	幾能	あり(1 Mバイトまで可)		なし
IEBusコン	·トロ ー ラ	内蔵(簡易版)		内蔵しない	内蔵 (完全ハードウエア)
ROMコレ	クション	内蔵(4ポイント設定可)	内蔵しない		
電源電圧		V _{DD} = 4.0 ~ 5.5 V	V _{DD} = 3.5 ~ 5.5 V	V _{DD} = 2.7 ~ 5.5 V	V _{DD} = 2.7 ~ 6.0 V
			(マスクROM品)		
			V _{DD} = 4.0 ~ 5.5 V		
			(PROM品)		
パッケーシ	ブ	100ピン・プラスチッ	100ピン・プラスチッ	80ピン・プラスチック	80ピン・プラスチック
		クQFP (14×20)	クQFP (14×20)	QFP (14 x 14)	TQFP(ファインピッ
				80ピン・プラスチック	チ) (14×14)
				TQFP (ファインピッ	80ピン・プラスチック
				チ) (14×14)	WQFN (14×14):
				80ピン・プラスチック	μ PD78P098Aのみ
1				WQFN (14×14):	

注 付加機能付き端子は,I/O端子の中に含まれています。

3. **端子接続図(**Top View**)**

```
・100ピン・プラスチックQFP (14×20)
```

```
\mu PD784935AGF- \times \times \times -3BA \mu PD784936AGF- \times \times \times -3BA \mu PD784937AGF- \times \times \times -3BA \mu PD784938AGF- \times \times -3BA
```


注意1. IC (Internally Connected) 端子はVssに直接接続してください。

- 2. AVpp端子はVppに直接接続してください。
- 3. AVss端子はVssに直接接続してください。

A8-A19 : Address Bus

AD0-AD7 : Address/Data Bus

ANI0-ANI7 : Analog Input

ASCK, ASCK2: Asynchronous Serial Clock

ASTB : Address Strobe

AV_{DD} : Analog Power Supply

AVREF1 : Reference Voltage

AVss : Analog Ground

CI : Clock Input
CLKOUT : Clock Output

HLDAK : Hold Acknowledge

HLDRQ : Hold Request

IC : Internally Connected

INTP0-INTP5 : Interrupt from Peripherals

NMI : Non-maskable Interrupt

P00-P07 : Port0

P10-P17 : Port1

P20-P27 : Port2

P30-P37 : Port3

P40-P47 : Port4

P50-P57 : Port5

P60-P67 : Port6

P70-P77 : Port7

P90-P97 : Port9

P100-P107 : Port10

PWM0, PWM1 : Pulse Width Modulation Output

RD : Read Strobe

REFRQ : Refresh Request

REGC : Regulator Capacitance

REGOFF : Regulator Off

RESET : Reset

RX : IEBus Receive Data

RxD, RxD2 : Receive Data

SCK0-SCK3 : Serial Clock

SI0-SI3 : Serial Input

SO0-SO3 : Serial Output

TO0-TO3 : Timer Output

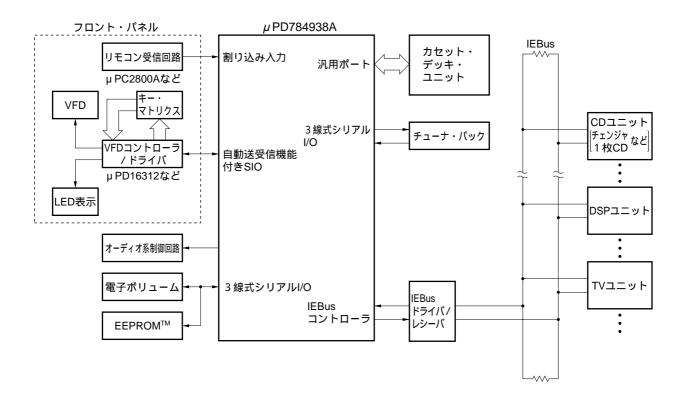
TX : IEBus Transmit Data

TxD, TxD2 : Transmit Data

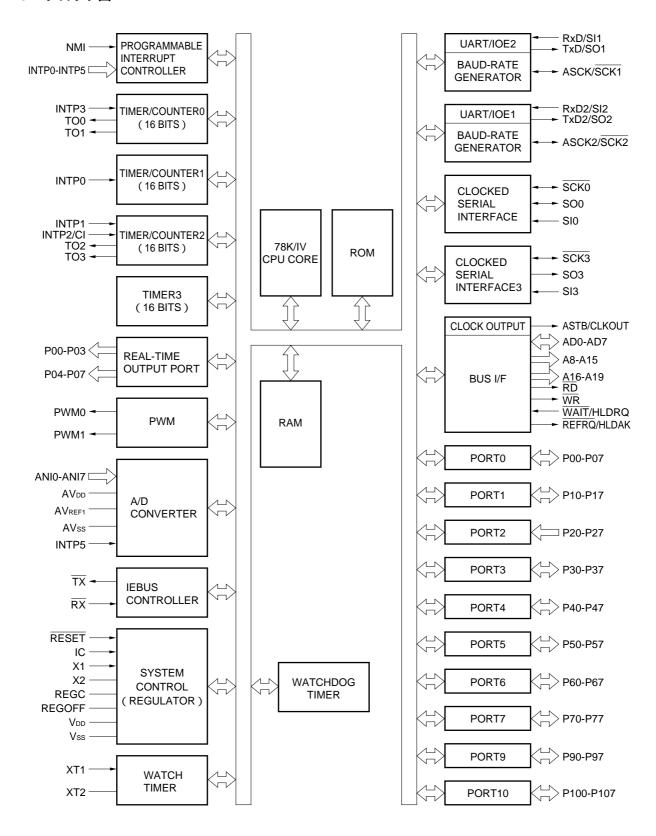
V_{DD} : Power Supply

Vss : Ground

WAIT : Wait


WR : Write Strobe

X1, X2 : Crystal (Main System Clock)


XT1, XT2 : Crystal (Watch)

4. システム構成例(車載オーディオ(チューナ・デッキ部))

5. **ブロック図**

備考 内部ROM, RAM容量は製品によって異なります。

6. 端子機能

6.1 **ポート端子(**1/2)

端子名称	入出力	兼用端子	機能
P00-P07	入出力	-	ポート0(P0):
			・8ビット入出力ポート
			・リアルタイム出力ポート(4ビット×2)として使用可能
			・1ビット単位に入力 / 出力の指定可能
			・入力モードの端子について,ソフトウエアで一括して内蔵プルアップ抵抗の
			接続の指定可能
			・トランジスタ駆動可能
P10	入出力	-	ポート1(P1):
P11		-	・8ビット入出力ポート
P12		ASCK2/SCK2	・1ビット単位に入力/出力の指定可能
P13		RxD2/SI2	・入力モードの端子について,ソフトウエアで一括して内蔵プルアップ抵抗の
P14		TxD2/SO2	接続の指定可能
P15-P17		-	・LED駆動可能
P20	入力	NMI	ポート2(P2):
P21		INTP0	・8ビット入力専用ポート
P22		INTP1	・P20は汎用ポートとしては使用不可(ノンマスカブル割り込み)。ただし,
P23		INTP2/CI	割り込みルーチンにおいて,入力レベルの確認可能
P24		INTP3	・P22-P27は6ビット単位でソフトウエアによる内蔵プルアップ抵抗の接続の
P25		INTP4/ASCK/SCK1	指定可能
P26		INTP5	・P25/INTP4/ASCK/SCK1端子は,CSIM1の指定により,SCK1入出力端子と
P27		SIO	して動作
P30	入出力	RxD/SI1	ポート3(P3):
P31	=	TxD/SO1	・8ビット入出力ポート
P32		SCK0	・1ビット単位に入力 / 出力の指定可能
P33		SO0	・ ・入力モードの端子について,ソフトウエアで一括して内蔵プルアップ抵抗の
P34-P37		TO0-TO3	接続の指定可能
			・P32, P33は,N-chオープン・ドレーン接続の指定可能
P40-P47	入出力	AD0-AD7	ポート4 (P4):
			・8ビット入出力ポート
			・1ビット単位に入力/出力の指定可能
			・入力モードの端子について,ソフトウエアで一括して内蔵プルアップ抵抗の
			接続の指定可能
			・LED駆動可能
P50-P57	入出力	A8-A15	ポート5(P5):
			・8ビット入出力ポート
			・1ビット単位に入力/出力の指定可能
			 ・入力モードの端子について,ソフトウエアで一括して内蔵プルアップ抵抗の
			接続の指定可能
			│ ・LED駆動可能

6.1 ポート端子(2/2)

端子名称	入出力	兼用端子	機能
P60-P63	入出力	A16-A19	ポート6(P6):
P64		RD	・8ビット入出力ポート
P65		WR	・1ビット単位に入力/出力の指定可能
P66		WAIT/HLDRQ	・入力モードの端子について,ソフトウエアで一括して内蔵プルアップ抵抗の
P67		REFRQ/HLDAK	接続の指定可能
P70-P77	入出力	ANI0-ANI7	ポート7(P7):
			・8ビット入出力ポート
			・1ビット単位に入力/出力の指定可能
P90-P97	入出力	-	ポート9(P9):
			・8ビット入出力ポート
			・1ビット単位に入力/出力の指定可能
			・入力モードの端子について,ソフトウエアで一括して内蔵プルアップ抵抗の
			接続可能
P100-P104	入出力	-	ポート10 (P10):
P105	-	SCK3	・8ビット入出力ポート
P105		SCK3	・1ビット単位に入力/出力の指定可能
P106		SI3	・入力モードの端子について,ソフトウエアで一括して内蔵プルアップ抵抗の
D407	-	000	接続可能
P107		SO3	・P105, P107は,N-chオープン・ドレーン接続の指定可能

6.2 ポート以外の端子(1/2)

端子名称	入出力	兼用端子	機能		
TO0-TO3	出力	P34-P37	タイマ出力		
CI	入力	P23/INTP2	タイマ / カウンタ2へのカウント・クロック入力		
RxD	入力	P30/SI1	シリアル・データ入力(UARTO)		
RxD2		P13/SI2	シリアル・データ入力(UART2)		
TxD	出力	P31/SO1	シリアル・データ出力(UARTO)		
TxD2		P14/SO2	シリアル・データ出力(UART2)		
ASCK	入力	P25/INTP4/SCK1	ボー・レート・クロック入力(UARTO)		
ASCK2		P12/SCK2	ボー・レート・クロック入力(UART2)		
SI0	入力	P27	シリアル・データ入力 (3線式シリアルI/O0)		
SI1		P30/RxD	シリアル・データ入力 (3線式シリアルI/O1)		
SI2		P13/RxD2	シリアル・データ入力 (3線式シリアルI/O2)		
SI3		P106	シリアル・データ入力 (3線式シリアルI/O3)		
SO0	出力	P33	シリアル・データ出力(3線式シリアルI/O0)		
SO1		P31/TxD	シリアル・データ出力(3線式シリアルI/O1)		
SO2		P14/TxD2	シリアル・データ出力 (3線式シリアルI/O2)		
SO3		P107	シリアル・データ出力(3線式シリアルI/O3)		
SCK0	入出力	P32	シリアル・クロック入力 / 出力 (3線式シリアルI/O0)		
SCK1		P25/INTP4/ASCK	シリアル・クロック入力 / 出力(3線式シリアルI/O1)		
SCK2		P12/ASCK2	シリアル・クロック入力 / 出力 (3線式シリアルI/O2)		
SCK3		P105	シリアル・クロック入力 / 出力(3線式シリアルI/O3)		
NMI	入力	P20	外部割り込み要求 -		
INTP0		P21	・タイマ / カウンタ1へのカウント・クロック入力		
			・CR11またはCR12のキャプチャ・トリガ信号		
INTP1		P22	・タイマ / カウンタ2へのカウント・クロック入力		
			・CR22のキャプチャ・トリガ信号		
INTP2		P23/CI	・タイマ / カウンタ2へのカウント・クロック入力		
			・CR21のキャプチャ・トリガ信号		
INTP3		P24	・タイマ / カウンタ0へのカウント・クロック入力		
			・CR02のキャプチャ・トリガ信号		
INTP4		P25/ASCK/SCK1	-		
INTP5		P26	A/Dコンバータの変換スタート・トリガ入力		
AD0-AD7	入出力	P40-P47	時分割アドレス / データ・バス (外部メモリ接続)		
A8-A15	出力	P50-P57	上位アドレス・バス(外部メモリ接続)		
A16-A19	出力	P60-P63	アドレス拡張時の上位アドレス(外部メモリ接続)		
RD	出力	P64	外部メモリへのリード・ストロープ		
WR	出力	P65	外部メモリへのライト・ストローブ		
WAIT	入力	P66/HLDRQ	ウエイト挿入		
REFRQ	出力	P67/HLDAK	外部疑似スタティック・メモリへのリフレッシュ・パルス出力		
HLDRQ	入力	P66/WAIT	バス・ホールド要求入力		
HLDAK	出力	P67/REFRQ	バス・ホールド応答出力		
ASTB	出力	CLKOUT	時分割アドレス(A0-A7)のラッチ・タイミング出力(外部メモリ・アクセス時)		
CLKOUT	出力	ASTB	クロック出力		
PWM0	出力	-	PWM出力0		

6.2 ポート以外の端子(2/2)

端子名称	入出力	兼用端子	機能
PWM1	出力	-	PWM出力1
RX	入力	-	データ入力 (IEBus)
TX	出力	-	データ出力(IEBus)
REGC	-	-	レギュレータ出力安定用容量接続 / レギュレータ停止時の電源
REGOFF	-	-	レギュレータ動作指定信号
RESET	入力	-	チップ・リセット
X1	入力	-	システム・クロック発振用クリスタル接続 (X1にクロック入力も可能)
X2	-		
XT1	入力	-	時計クロック接続
XT2	-	-	
ANI0-ANI7	入力	P70-P77	A/Dコンバータ用アナログ電圧入力
AV _{REF1}	-	-	A/Dコンバータ用基準電圧印加
AVDD			A/Dコンバータ用正電源
AVss			A/Dコンバータ用GND
V _{DD}			正電源
Vss			GND
IC	入力		内部接続されています。Vssと直接接続してください(ICテスト用の端子です)。

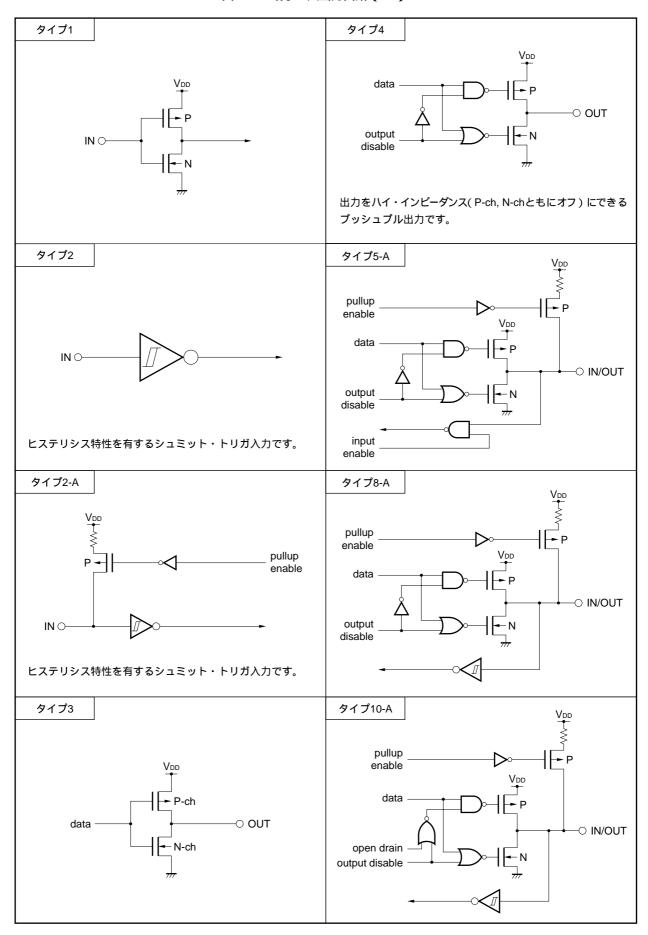
6.3 端子の入出力回路と未使用端子の処理

各端子の入出力回路タイプと,未使用端子の処理を表6-1に示します。 また,各タイプの入出力回路については図6-1を参照してください。

表6-1 各端子の入出力回路タイプと未使用端子の処理(1/2)

端子名称	入出力回路タイプ	入出力	未使用時の推奨接続方法
P00-P07	5-A	入出力	入力時:Vppに接続してください。
P10, P11			出力時:オープンにしてください。
P12/ASCK2/SCK2	8-A	1	
P13/RxD2/SI2	5-A	1	
P14/TxD2/SO2			
P15-P17			
P20/NMI	2	入力	VpoまたはVssに接続してください。
P21/INTP0			
P22/INTP1	2-A	1	Vodに接続してください。
P23/INTP2/CI			
P24/INTP3			
P25/INTP4/ASCK/SCK1	8-A	入出力	入力時:Vppに接続してください。
			 出力時:オープンにしてください。
P26/INTP5	2-A	入力	Vpcに接続してください。
P27/SI0			
P30/RxD/SI1	5-A	入出力	入力時:Vppに接続してください。
P31/TxD/SO1			出力時:オープンにしてください。
P32/SCK0	10-A	1	
P33/SO0			
P34/TO0-P37/TO3	5-A	1	
P40/AD0-P47/AD7			
P50/A8-P57/A15			
P60/A16-P63/A19			
P64/RD			
P65/WR			
P66/WAIT/HLDRQ			
P67/REFRQ/HLDAK			
P70/ANI0-P77/ANI7	20	入出力	入力時:VppまたはVssに接続してください。
P90-P97	5-A	1	出力時:オープンにしてください。
P100-P104			
P105/SCK3	10-A	1	
P106/SI3	8-A	1	
P107/SO3	10-A	1	
ASTB/CLKOUT	4	出力	オープンにしてください。
RESET	2	入力	-
IC	1	1	Vssに直接接続してください。
XT2	-	-	オープンにしてください。
XT1	-	入力	Vssに接続してください。
REGOFF	1	-	VDDに接続してください。

表6-1 各端子の入出力回路タイプと未使用端子の処理(2/2)


端子名称	入出力回路タイプ	入出力	未使用時の推奨接続方法
REGC	-	-	VDDに接続してください。
PWM0, PWM1	3	出力	オープンにしてください。
RX	1	入力	VpdまたはVssに接続してください。
TX	3	出力	オープンにしてください。
AV _{REF1}	-	-	Vssに接続してください。
AVss			
AVDD			VDDに接続してください。

注意 入出力兼用端子で,入出力のモードが不定な場合は,数十kΩの抵抗を介してVooに接続してください(特に,電源投入時にリセット入力端子がロウ・レベル入力電圧以上になる場合や,ソフトウエアで入出力を切り替えている場合)。

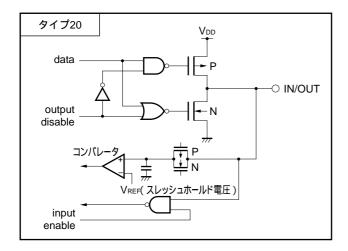

備考 タイプ番号は78Kシリーズで統一しているため,各製品内では連番とはかぎりません(内蔵しない回路あり)。

図6 - 1 端子の入出力回路 (1/2)

図6-1 端子の入出力回路 (2/2)

7. CPUアーキテクチャ

7.1 メモリ空間

1 Mバイトのメモリ空間をアクセスできます。LOCATION命令によって,内部データ領域(特殊機能レジスタおよび内部RAM)のマッピングを選択できます。また,LOCATION命令は,リセット解除後に必ず実行する必要があり,2回以上使用することはできません。

(1) LOCATION 0H命令を実行した場合

・内部メモリ

内部データ領域と内部ROM領域は,次のようになります。

品 名	内部データ領域	内部ROM領域
μ PD784935A	0EB00H-0FFFFH	00000H-0EAFFH
		10000H-17FFFH
μ PD784936A	0E500H-0FFFFH	00000H-0E4FFH
		10000H-1FFFFH
μ PD784937A	0DF00H-0FFFFH	00000H-0DEFFH
		10000H-2FFFFH
μ PD784938A	0D600H-0FFFFH	00000H-0D5FFH
		10000H-3FFFFH

★ 注意 内蔵しているROMのうち,内部データ領域と重なる次の領域は,LOCATION 0H命令実行時には 使用できません。

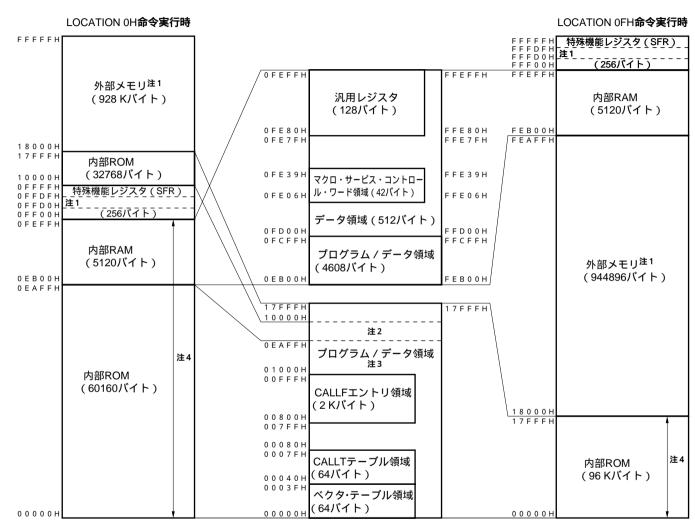
品 名	使用不可領域
μ PD784935A	0EB00H-0FFFFH (5376バイト)
μ PD784936A	0E500H-0FFFFH (6192バイト)
μ PD784937A	ODF00H-0FFFFH (8448バイト)
μ PD784938A	0D600H-0FFFFH

・外部メモリ

外部メモリは,外部メモリ拡張モードでアクセスします。

(2) LOCATION 0FH命令を実行した場合

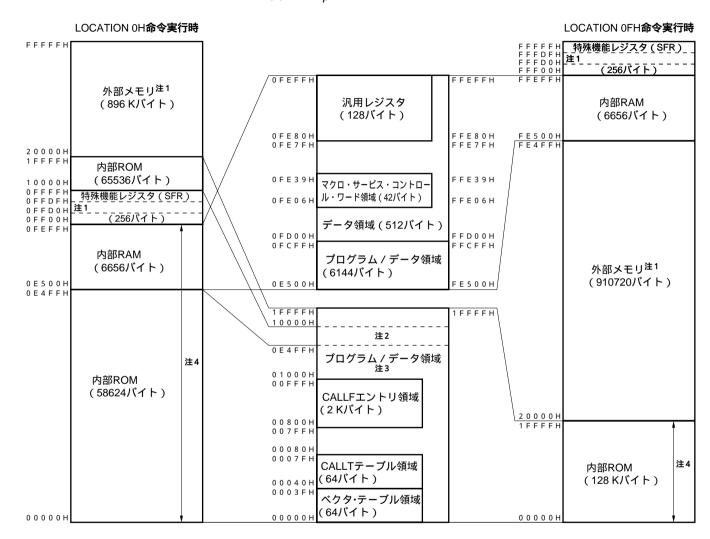
・内部メモリ


内部データ領域と内部ROM領域は,次のようになります。

品 名	内部データ領域	内部ROM領域
μ PD784935A	FEB00H-FFFFFH	00000H-17FFFH
μ PD784936A	FE500H-FFFFFH	00000H-1FFFFH
μ PD784937A	FDF00H-FFFFFH	00000H-2FFFFH
μ PD784938A	FD600H-FFFFFH	00000H-3FFFFH

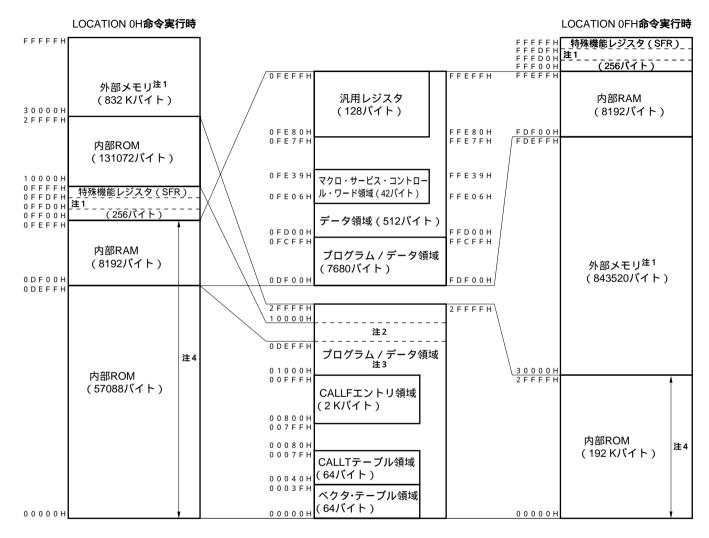
・外部メモリ

外部メモリは,外部メモリ拡張モードでアクセスします。


PD784935A,784936A,784937A,784938A

- 注1. 外部メモリ拡張モードでアクセス
 - 2. この領域の5376バイトは, LOCATION 0FH命令実行時のみ内部ROMとして使用できます
 - 3. LOCATION 0H命令実行時: 92928バイト, LOCATION 0FH命令実行時: 98304バイト
 - 4. ベース領域,リセットまたは割り込みによるエントリ領域。ただし,リセットについては内部RAMを除く

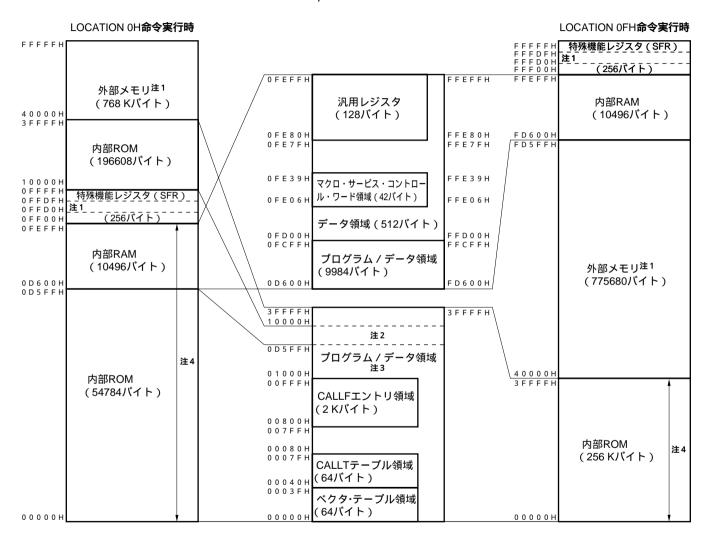
U13572JJ2V0DS


図7 - 2 µPD784936A**のメモリ・マップ**

注1. 外部メモリ拡張モードでアクセス

- 2. この領域の6912バイトは, LOCATION 0FH命令実行時のみ内部ROMとして使用できます
- 3. LOCATION 0H命令実行時: 124160バイト, LOCATION 0FH命令実行時: 131072バイト
- 4. ベース領域,リセットまたは割り込みによるエントリ領域。ただし,リセットについては内部RAMを除く

PD784935A,784936A,784937A,784938A



- 注1. 外部メモリ拡張モードでアクセス
 - 2. この領域の8448バイトは, LOCATION 0FH命令実行時のみ内部ROMとして使用できます
 - 3. LOCATION 0H命令実行時: 188160バイト, LOCATION 0FH命令実行時: 196608バイト
 - 4. ベース領域,リセットまたは割り込みによるエントリ領域。ただし,リセットについては内部RAMを除く

U13572JJ2V0DS

Z

図7 - 4 µPD784938Aのメモリ・マップ

注1. 外部メモリ拡張モードでアクセス

- 2. この領域の10752バイトは, LOCATION 0FH命令実行時のみ内部ROMとして使用できます
- 3. LOCATION 0H命令実行時: 251392バイト, LOCATION 0FH命令実行時: 262144バイト
- 4. ベース領域,リセットまたは割り込みによるエントリ領域。ただし,リセットについては内部RAMを除く

7.2 CPU**レジスタ**

7.2.1 汎用レジスタ

8ビットの汎用レジスタ16本で構成されています。また,8ビット汎用レジスタ2本を組み合わせて16ビット汎用レジスタとして使用できます。さらに,16ビット汎用レジスタのうち4本は,アドレス拡張用の8ビット・レジスタと組み合わせて24ビット・アドレス指定用レジスタとして使用できます。

これらのレジスタ・セットは8バンク用意されており,ソフトウエアまたはコンテキスト・スイッチング機能により切り替えて使用できます。

アドレス拡張用のV, U, T, Wレジスタを除いた汎用レジスタは,内部RAMにマッピングされています。

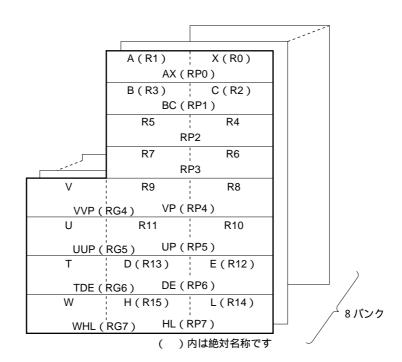


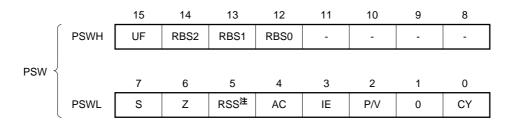
図7-5 汎用レジスタのフォーマット

注意 R4, R5, R6, R7, RP2, RP3, PSWのRSSビットを1にすることで, それぞれ, X, A, C, B, AX, BCレジスタとして使用できますが, この機能を使用するのは, 78K/ シリーズ用のプログラムを流用する場合だけにしてください。

7.2.2 制御レジスタ

(1) プログラム・カウンタ (PC)

20ビットのプログラム・カウンタです。プログラムの実行により,自動的に更新されます。


図7-6 プログラム・カウンタ (PC) のフォーマット

(2) プログラム・ステータス・ワード (PSW)

CPUの各種状態を保持するレジスタです。プログラムの実行により自動的に更新されます。

図7-7 プログラム・ステータス・ワード (PSW) のフォーマット

注 このフラグは,78K/ シリーズとの互換性を保つために用意されているフラグです。78K/ シリーズ 用のソフトウエアを流用するとき以外は必ず0にしてください。

(3) スタック・ポインタ (SP)

スタックの先頭アドレスを保持する24ビットのポインタです。 上位4ビットには,必ず0を書き込んでください。

図7-8 スタック・ポインタ (SP) のフォーマット

	_23			20	U
SP	0	0	0	0	

7.2.3 **特殊機能レジスタ(SFR)**

内蔵周辺ハードウエアのモード・レジスタ,コントロール・レジスタなどの特別な機能が割り付けられたレジスタで,OFF00H-0FFFFH^注の256バイトの空間にマッピングされています。

注 LOCATION 0H命令実行時。LOCATION 0FH命令実行時はFFF00H-FFFFFH

注意 この領域内で,SFRの割り付けられていないアドレスをアクセスしないでください。誤ってアクセスすると, μ PD784938Aがデッドロック状態となることがあります。デッドロック状態は,リセット入力によってのみ解除されます。

表7-1に特殊機能レジスタ(SFR)の一覧を示します。表中の項目の意味は次のようになります。

・略 号 ······· 内蔵されたSFRを示す記号。NEC製アセンブラ(RA78K4)では予約語になって

います。Cコンパイラ (CC78K4) では#pragma sfr指令により , sfr変数として

使用できます。

・R/W ・・・・・・・・・ 該当するSFRが読み出し/書き込みが可能かどうかを示します。

R/W:読み出し(Read)/書き込み(Write)可能

R :読み出し(Read)のみW :書き込み(Write)のみ

・操作可能ビット単位 · · 該当するSFRを操作する場合に,適応可能な操作ビット単位を示します。

16ビット操作可能なSFRはオペランドのsfrpに記述でき,アドレスで指定する場

合は偶数アドレスを記述します。

1ビット操作可能なSFRは,ビット操作命令に記述できます。

・リセット時 ・・・・・・・・ RESET入力時の各レジスタの状態を示します。

表7-1 特殊機能レジスタ (SFR) 一覧 (1/4)

アドレス ^注	特殊機能レジスタ(SFR)名称		略	号	R/W	操作	リセット時		
						1ビット		8ビット	16ビット
0FF00H	ポート0		P0		R/W			-	不定
0FF01H	ポート1	P1					-		
0FF02H	ポート2	P2		R			-		
0FF03H	ポート3		P3		R/W			-	
0FF04H	ポート4		P4					-	
0FF05H	ポート5		P5					-	
0FF06H	ポート6		P6					-	00H
0FF07H	ポート7		P7					-	不定
0FF09H	ポート9		P9					-	
0FF0AH	ポート10		P10					-	
0FF0EH		ポート0バッファ・レジスタL	P0L					-	
0FF0FH	ポート0バッファ・レジスタH		P0H					-	
0FF10H	コンペア・レジスタ(タイマ	7/カウンタ0)	CR00			-	-		
0FF12H	キャプチャ / コンペア・レシ	ブスタ(タイマ / カウンタ0)	CR01			-	-		
0FF14H	コンペア・レジスタL(タイ	マ / カウンタ1)	CR10	CR10W		-			
0FF15H	コンペア・レジスタH (タイ	マ / カウンタ1)	-			-	-		
0FF16H	キャプチャ / コンペア・レジ	「スタL(タイマ / カウンタ1)	CR11	CR11W		-			
0FF17H	キャプチャ / コンペア・レジスタH (タイマ / カウンタ1)					-	-		
0FF18H	コンペア・レジスタL (タイマ / カウンタ2)			CR20W		-			
0FF19H	コンペア・レジスタH (タイ	マ / カウンタ2)	-			-	-		
0FF1AH	キャプチャ / コンペア・レジ	「スタL(タイマ/カウンタ2)	CR21	CR21W	,	-			
0FF1BH	キャプチャ / コンペア・レジ	スタH(タイマ / カウンタ2)	-			-	-		
0FF1CH	コンペア・レジスタL (タイ	₹3)	CR30	CR30W		-			1
0FF1DH	コンペア・レジスタH (タイ	₹3)	-			-	-		
0FF20H	ポート0モード・レジスタ		PM0					-	FFH
0FF21H	ポート1モード・レジスタ		PM1					-	
0FF23H	ポート3モード・レジスタ		РМ3					-	
0FF24H	ポート4モード・レジスタ		PM4					-	
0FF25H	ポート5モード・レジスタ		PM5					-	
0FF26H	ポート6モード・レジスタ		PM6					-	
0FF27H	ポート7モード・レジスタ		PM7					-	
0FF29H	ポート9モード・レジスタ		РМ9					-	
0FF2AH	ポート10モード・レジスタ		PM10					-	
0FF2EH	リアルタイム出力ポート・コ	コントロール・レジスタ	RTPC					-	00H
0FF30H	キャプチャ / コンペア・コン	ノトロール・レジスタ0	CRC0			-		-	10H
0FF31H	タイマ出力コントロール・し	ッジスタ	TOC					-	00H
0FF32H	キャプチャ / コンペア・コン	ノトロール・レジスタ1	CRC1			-		-	
0FF33H	キャプチャ / コンペア・コン	ノトロール・レジスタ2	CRC2			-		-	10H
0FF36H	キャプチャ・レジスタ(タイ	(マ/カウンタ0)	CR02		R	-	-		0000H
0FF38H	キャプチャ・レジスタL (タ	イマ / カウンタ1)	CR12	CR12W		-			1
0FF39H	キャプチャ・レジスタH(タ	イマ / カウンタ1)	-	1		-	-		

注 LOCATION 0H命令を実行した場合。LOCATION 0FH命令を実行した場合は,この値に "F0000H" を加えます。

表7 - 1 特殊機能レジスタ (SFR) 一覧 (2/4)

アドレス ^注	特殊機能レジスタ(SFR)名称	略号		R/W	操作	リセット時		
					1ビット	8ビット	16ビット	
0FF3AH	キャプチャ・レジスタL (タイマ / カウンタ2)	CR22	CR22W	R	-			0000H
0FF3BH	キャプチャ・レジスタH(タイマ / カウンタ2)	-			-	-		
0FF41H	ポート1モード・コントロール・レジスタ	PMC1		R/W			-	00H
0FF43H	ポート3モード・コントロール・レジスタ	РМС3					-	
0FF4AH	ポート10モード・コントロール・レジスタ	PMC10)				-	
0FF4EH	プルアップ抵抗オプション・レジスタL	PUOL					-	
0FF4FH	プルアップ抵抗オプション・レジスタH	PUOH					-	
0FF50H	タイマ・レジスタ0	TMO		R	-	-		0000H
0FF51H					-	-		
0FF52H	タイマ・レジスタ1	TM1	TM1W		-			
0FF53H		-			-	-		
0FF54H	タイマ・レジスタ2	TM2	TM2W		-			
0FF55H		-			-	-		
0FF56H	タイマ・レジスタ3	ТМЗ	TM3W		-			
0FF57H		-			_	_		
0FF5CH	プリスケーラ・モード・レジスタ0	PRM0		R/W	-		-	11H
0FF5DH	タイマ・コントロール・レジスタ0	TMC0					-	00H
0FF5EH	プリスケーラ・モード・レジスタ1	PRM1			_		-	11H
0FF5FH	タイマ・コントロール・レジスタ1	TMC1					-	00H
0FF68H	A/Dコンバータ・モード・レジスタ	ADM					-	00H
0FF6AH	A/D変換結果レジスタ	ADCR		R	-		-	不定
0FF6CH	A/D電流カット選択レジスタ	IEAD		R/W			-	00H
0FF6FH	時計用タイマ・モード・レジスタ	WM					-	
0FF70H	PWMコントロール・レジスタ	PWMC					-	05H
0FF71H	PWMプリスケーラ・レジスタ	PWPR			-		-	00H
0FF72H	PWMモジュロ・レジスタ0	PWM0			-	-		不定
0FF74H	PWMモジュロ・レジスタ1	PWM1			-	-		
0FF78H	ROMコレクション・コントロール・レジスタ	CORC					-	00H
0FF79H	ROMコレクション・アドレス・ポインタH	CORA	H		-		-	
0FF7AH	ROMコレクション・アドレス・ポインタL	CORA	<u> </u>		-	-		
0FF7DH		OSPC					-	00H
0FF80H		CSIM3					-	
	ジスタ3							
0FF82H	クロック同期式シリアル・インタフェース・モード・レ	CSIM		:			-	
	ジスタ							
0FF84H	クロック同期式シリアル・インタフェース・モード・レ	・レ CSIM1					-	1
	ジスタ1							
0FF85H	クロック同期式シリアル・インタフェース・モード・レ	CSIM2					-	1
	ジスタ2							
0FF86H	シリアル・シフト・レジスタ	SIO		1	_		-	不定

注 LOCATION 0H命令を実行した場合。LOCATION 0FH命令を実行した場合は,この値に "F0000H" を加えます。

表7-1 **特殊機能レジスタ**(SFR)**一覧**(3/4)

アドレス ^注	特殊機能レジスタ(SFR)名称	略	号	R/W	操作	リセット時		
					1ビット	8ビット	16ビット	
0FF88H	アシンクロナス・シリアル・インタフェース・モード・	コナス・シリアル・インタフェース・モード・ ASIM		R/W			-	00H
	ブスタ							
0FF89H	アシンクロナス・シリアル・インタフェース・モード・	· ASIM2					-	
	レジスタ2							
0FF8AH	アシンクロナス・シリアル・インタフェース・ステータ	ASIS		R			-	
	ス・レジスタ							
0FF8BH	アシンクロナス・シリアル・インタフェース・ステータ	ASIS2					-	
	ス・レジスタ2							
0FF8CH	シリアル受信バッファ:UART0	RXB			-		-	不定
	シリアル送信シフト・レジスタ:UART0	TXS		W	-		-	
	シリアル・シフト・レジスタ : IOE1	SIO1		R/W	-		-	
0FF8DH	シリアル受信バッファ:UART2	RXB2		R	-		-	
	シリアル送信シフト・レジスタ:UART2	TXS2		W	-		-	
	シリアル・シフト・レジスタ : IOE2	SIO2		R/W	-		-	
0FF8EH	シリアル・シフト・レジスタ3 : IOE3	SIO3			-		-	
0FF90H	ボー・レート・ジェネレータ・コントロール・レジスタ	BRGC			-		-	00H
0FF91H	ボー・レート・ジェネレータ・コントロール・レジスタ2	BRGC	2		-		-	
0FFA0H	外部割り込みモード・レジスタ0	INTM0 INTM1					-	
0FFA1H	外部割り込みモード・レジスタ1						-	
0FFA4H	サンプリング・クロック選択レジスタ	SCS0			-		-	
0FFA8H	インサービス・プライオリティ・レジスタ	ISPR		R			-	
0FFAAH	割り込みモード・コントロール・レジスタ	IMC		R/W			-	80H
0FFACH	割り込みマスク・レジスタ0L	MK0L	MK0					FFFFH
0FFADH	割り込みマスク・レジスタ0H	МКОН						
0FFAEH	割り込みマスク・レジスタ1L	MK1L	MK1					
0FFAFH	割り込みマスク・レジスタ1H	MK1H						
0FFB0H	バス・コントロール・レジスタ	BCR	-				-	00H
0FFB2H	ユニット・アドレス・レジスタ	UAR			-	-		0000H
0FFB4H	スレーブ・アドレス・レジスタ	SAR			-	-		
0FFB6H	パートナー・アドレス・レジスタ	PAR		R	-	-		
0FFB8H	コントロール・データ・レジスタ	CDR		R/W	-		-	01H
0FFB9H	電文長レジスタ	DLR			-		-	
0FFBAH	データ・レジスタ	DR			-		-	00H
0FFBBH	ユニット・ステータス・レジスタ	USR		R			-	
0FFBCH	インタラプト・ステータス・レジスタ	ISR		R/W			-	
0FFBDH	スレーブ・ステータス・レジスタ	SSR		R			-	41H
0FFBEH	サクセス・カウント・レジスタ	SCR		7	-		-	01H
0FFBFH	コミュニケーション・カウント・レジスタ	CCR		1	-		-	20H
0FFC0H	スタンバイ・コントロール・レジスタ	STBC		R/W	-	注 2	-	30H
0FFC2H	ウォッチドッグ・タイマ・モード・レジスタ	WDM		1	-	注 2	-	00H

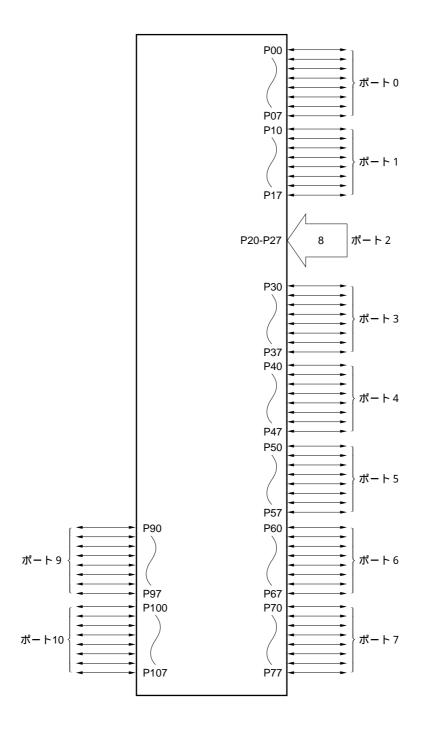
- **注**1. LOCATION 0H命令を実行した場合。LOCATION 0FH命令を実行した場合は,この値に"F0000H"を加えます。
 - 2. 書き込みは , 専用の命令MOV STBC, #btye命令および , MOV MDM, #byte命令によってのみ可能です。他の命令では , 書き込みはできません。

表7 - 1 特殊機能レジスタ (SFR) 一覧 (4/4)

アドレス ^注	特殊機能レジスタ(SFR)名称	略号	R/W	操作	リセット時		
				1ビット	8ビット	16ビット	
0FFC4H	メモリ拡張モード・レジスタ	MM	R/W			-	20H
0FFC5H	ホールド・モード・レジスタ	HLDM				-	00H
0FFC6H	クロック出力モード・レジスタ	CLOM				-	
0FFC7H	プログラマブル・ウエイト制御レジスタ1	PWC1		-		-	AAH
0FFC8H	プログラマブル・ウエイト制御レジスタ2	PWC2		-	-		AAAAH
0FFCCH	リフレッシュ・モード・レジスタ	RFM				-	00H
0FFCDH	リフレッシュ領域指定レジスタ	RFA				-	
0FFCFH	発振安定時間指定レジスタ	OSTS		-		-	
0FFD0H-	外部SFR領域	-				-	-
0FFDFH							
0FFE0H	割り込み制御レジスタ(INTPO)	PIC0				-	43H
0FFE1H	割り込み制御レジスタ(INTP1)	PIC1				-	
0FFE2H	割り込み制御レジスタ(INTP2)	PIC2				-	
0FFE3H	割り込み制御レジスタ(INTP3)	PIC3				-	
0FFE4H	割り込み制御レジスタ(INTC00)	CIC00				-	
0FFE5H	割り込み制御レジスタ(INTC01)	CIC01				-	
0FFE6H	割り込み制御レジスタ(INTC10)	CIC10				-	
0FFE7H	割り込み制御レジスタ(INTC11)	CIC11				-	
0FFE8H	割り込み制御レジスタ(INTC20)	CIC20				-	
0FFE9H	割り込み制御レジスタ(INTC21)	CIC21				-	
0FFEAH	割り込み制御レジスタ(INTC30)	CIC30				-	
0FFEBH	割り込み制御レジスタ(INTP4)	PIC4				-	
0FFECH	割り込み制御レジスタ(INTP5)	PIC5				-	
0FFEDH	割り込み制御レジスタ(INTAD)	ADIC				-	
OFFEEH	割り込み制御レジスタ(INTSER)	SERIC				-	
0FFEFH	割り込み制御レジスタ(INTSR)	SRIC				-	
	割り込み制御レジスタ(INTCSI1)	CS C1				-	
0FFF0H	割り込み制御レジスタ(INTST)	STIC				-	
0FFF1H	割り込み制御レジスタ(INTCSI)	cs c				-	
0FFF2H	割り込み制御レジスタ(INTSER2)	SERIC2				-	
0FFF3H	割り込み制御レジスタ(INTSR2)	SRIC2				-	
	割り込み制御レジスタ(INTCSI2)	CS C2	1			-	
0FFF4H	割り込み制御レジスタ(INTST2)	STIC2	1			-	
0FFF6H	割り込み制御レジスタ(INTIE1)	IEIC1	1			-	
0FFF7H	割り込み制御レジスタ(INTIE2)	IEIC2	1			-	
0FFF8H	割り込み制御レジスタ (INTW)	WIC	1			-	
0FFF9H	割り込み制御レジスタ (INTCSI3)	CS C3	1			-	
0FFFCH	内部メモリ・サイズ切り替えレジスタ ^{注2}	IMS	1	_		-	FFH

注1. LOCATION 0H命令を実行した場合。LOCATION 0FH命令を実行した場合は,この値に "F0000H" を加えます。

2. 本レジスタへの書き込みは , μ PD78F4938Aの場合のみ意味があります。



8. 周辺ハードウエア機能

8.1 ポート

図8 - 1のようなポートを備えており,多様な制御ができます。各ポートの機能は表8 - 1のとおりです。ポート0からポート6,ポート9,ポート10は,入力時に,内蔵プルアップをソフトウエアで指定できます。

図8 - 1 ポートの構成

表8-1 ポートの機能

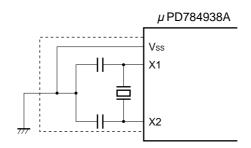
ポート名	端子名称	機能	ソフトウエア・プルアップの指定
ポート0	P00-P07	・1ビット単位で入力か出力に指定可能	入力モードの端子について一括して指定
		・4ビット・リアルタイム出力としても動作可能	
		(P00-P03, P04-P07)	
		・トランジスタ駆動可能	
ポート1	P10-P17	・1ビット単位で入力か出力に指定可能	入力モードの端子について一括して指定
		·LED駆動可能	
ポート2	P20-P27	・入力ポート	6ビット単位(P22-P27)
ポート3	P30-P37	・1ビット単位で入力か出力に指定可能	入力モードの端子について一括して指定
		・P32/SCK0端子とP33/SO0端子は,N-chオープ	
		ン・ドレーンに設定可能	
ポート4	P40-P47	・1ビット単位で入力か出力に指定可能	入力モードの端子について一括して指定
		·LED駆動可能	
ポート5	P50-P57	・1ビット単位で入力か出力に指定可能	入力モードの端子について一括して指定
		·LED駆動可能	
ポート6	P60-P67	・1ビット単位で入力か出力に指定可能	入力モードの端子について一括して指定
ポート7	P70-P77	・1ビット単位で入力か出力に指定可能	-
ポート9	P90-P97	・1ビット単位で入力か出力に指定可能	入力モードの端子について一括して指定
ポート10	P100-P107	・1ビット単位で入力か出力に指定可能	入力モードの端子について一括して指定
		・P105/SCK3端子とP107/SO3端子は,N-chオープ	
		ン・ドレーンに設定可能	

8.2 クロック発生回路

動作に必要なクロック発生回路を備えています。また,クロック発生回路には分周回路があり,高速動作が不要な場合は,内部動作周波数を下げることにより,低消費電流を実現できます。

クロック同期式 3 線式シリアルI/O (CSI) アシンクロナス・シリアルI/O (UART/IOE) INTP0ノイズ除去回路 発振安定用タイマ STBC.4,5 タイマ/カウンタ fxx/8 fxx 発振回路 1/2 1/2 1/2 fxx/4 セレクタ fclk CPU fxx/2 各周辺回路 STBC.7 1 セ - IEBusコントローラの動作クロック^注 0 時計クロック ― 時計用タイマ^注 ► INTW割り込み信号 メイン・クロック 一

図8-2 クロック発生回路のブロック図


注 メイン・クロックを使用時はスタンバイ・コントロール・レジスタ (STBC) のビット7に1を必ず設定してください。

備考 fxx : 発振周波数

★ fclk : 内部システム・クロック周波数

図8-3 発振回路の使用例

クリスタル/セラミック発振

- 注意 クロック発振回路を使用する場合は,配線容量などの影響を避けるために,破線の部分を次のように配線してください。
 - ・配線を極力短くする。
 - ・ほかの信号線と交差させない。
 - ・変化する大電流が流れる線と接近させない。
 - ・発振回路のコンデンサの接地点は,常にVssと同電位となるようにする。大電流が流れるグランド・ パターンには接地しない。
 - ・発振回路から信号を取り出さない。

サブシステム発振回路は,低消費電流にするために増幅度の低い回路になっており,ノイズに対する誤動作がメイン・システム・クロック発振回路よりも起こりやすくなっています。したがって,サブシステム・クロック回路を使用する場合は,配線方法について特に注意してください。

発振が正常に安定して行われないと、マイコンも正常に安定した動作を行うことができません。また、高精度な 発振周波数を得たい場合などは、発振器メーカと相談してください。

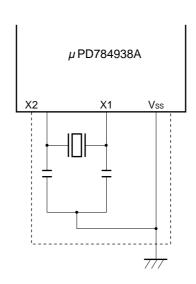
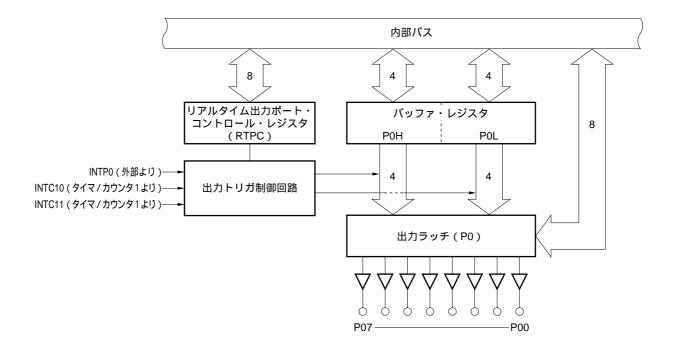


図8-4 発振子の接続の注意点

注意1. 発振回路は, X1, X2 (XT1, XT2) 端子にできるだけ近づけてください。

2. 破線の範囲に他の信号線を通さないでください。


8.3 リアルタイム出力ポート

リアルタイム出力ポートは,バッファに格納しておいたデータを,タイマ/カウンタ1の一致割り込みや外部割り込みに同期して出力します。これによって,ジッタのないパルス出力を得られます。

したがって,任意の間隔で任意パターンを出力する応用(ステッピング・モータの開ループ制御など)に最適です。

図8 - 5のように,ポート0とポート0バッファ・レジスタ (POH, POL)が構成の中心です。

図8-5 リアルタイム出力ポートのブロック図

8.4 タイマ/カウンタ

トグル出力 PWM/PPG出力

リアルタイム出力 パルス幅測定

割り込み要求数

ワンショット・パルス出力^注

タイマ/イベント・カウンタを3ユニット,タイマを1ユニット内蔵しています。

また,計7つの割り込み要求をサポートしていますので,7ユニットのタイマ/カウンタとして機能させることができます。

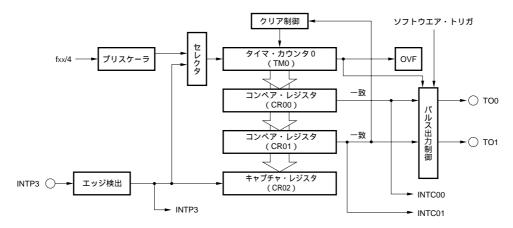
名 称 タイマ / イベント・ タイマ / イベント・ タイマ / イベント・ タイマ3 項目 カウンタ0 カウンタ1 カウンタ2 カウント幅 8ビット 16ビット 動作モード インターバル・タイマ 2ch 2ch 2ch 1ch 外部イベント・カウンタ ワンショット・タイマ 機能 タイマ出力 2ch 2ch

表8-2 タイマ/カウンタの動作

1入力

1入力

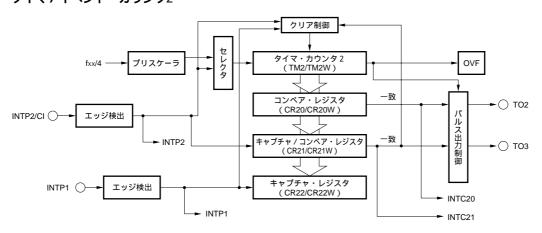
2入力

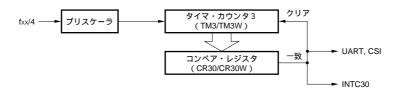

1

この機能は、タイマ/イベント・カウンタ2のワンショット・タイマ機能とは性質が異なります。

注 ワンショット・パルス出力機能とは,ソフトウエアによりパルス出力レベルをアクティブにし,ハードウエア(割り込み要求信号)によりインアクティブにする機能です。

図8-6 タイマ/カウンタのブロック図


タイマ/イベント・カウンタ0


タイマ/イベント・カウンタ1

タイマ/イベント・カウンタ2

タイマ3

備考 OVF:オーバフロー・フラグ

8.5 時計用タイマ

時計用タイマに入力するカウント・クロックは,メイン・クロック(12.58 MHz)と時計クロック(32.768 kHz)の2種類があり,制御レジスタにより選択できます。時計クロックは,時計用タイマのみに入力するクロックで,CPUや他の周辺回路には入力しません。したがって,時計クロックによりCPUを低速動作させることはできません。

時計用タイマはカウント・クロックを分周して,0.5秒間隔^注の割り込み信号(INTW)を発生します。同時に割り込み要求フラグ(WIF)もセットします(ここでのWIFは,割り込み制御レジスタ(WIC)のビット7です)。

また,モード切り替えにより,INTW発生間隔を約1 msに変更できます(早送りモード:通常動作の512倍速)。カウント・クロックにメイン・クロックを選択している場合は,STOPモードとIDLEモードのスタンバイ時には,動作を停止します。ただし,HALTモード時は動作を継続します。また,カウント・クロックに時計クロックを選択した場合は,どのスタンバイ・モード時でも動作を継続できます。時計クロック発振器の動作制御は,時計用タ

μ PD784938Aの時計用タイマには,ブザー出力機能は内蔵しません。

注 動作許可後,はじめのINTWまでは0.5 sではありません。

イマ・モード・レジスタ (WM) で行います。

カウント・クロックの選択	通常動作モード	スタンバイ・モードの種類						
		HALTモード	STOPE-F	IDLEモード				
メイン・クロック	動作可能	動作可能	停止	停止				
時計クロック	動作可能	動作可能	動作可能	動作可能				

表8-3 カウント・クロックと時計用タイマ動作の関係

時計用タイマの構成は,カウント・クロックを3分周する分周回路と,分周回路の出力を2¹⁴分周するカウンタから構成されています。カウント・クロックは,内部システム・クロックを128分周した信号と,時計クロック発振器からの信号を選択して使用してください。

WM.3 -リセット -3 4 5 6 10 11 12 13 メイン・クロック 3分周 fxx/128 カウンタ カウンタ 0 - INTW SFL SEI 時計クロック 発振器 WM.2 ON/OFF WM.7 WM.6 STBC.7 (メイン・クロック12.58 MHz 時に命令でセットする)

図8-7 時計用タイマのプロック図

8.6 PWM出力 (PWM0, PWM1)

12ビット分解能で、PWM (パルス幅変調)出力回路を2チャネル内蔵しています。このPWM出力は両チャネルとも独立にアクティブ・レベルをハイかロウに選択できます。この出力はDCモータの速度制御用として最適です。

内部バス 16 ∫ 8 [(モジュロ・<u>レジスタ</u>) PWMコントロール・レジスタ 15 8 7 4 3 PWMn (PWMC) 4 8 リロード制御 8ビット・ 出力 プリスケーラ パルス制御回路 —○ PWMn (出力端子) 制御 ダウン・カウンタ 4ビット・カウンタ 1/256

図8-8 PWM出力ユニットのプロック図

備考 n = 0, 1

8.7 A/Dコンパータ

8マルチプレクスト・アナログ入力(ANIO-ANI7)を持つアナログ / ディジタル(A/D)コンバータを内蔵しています。

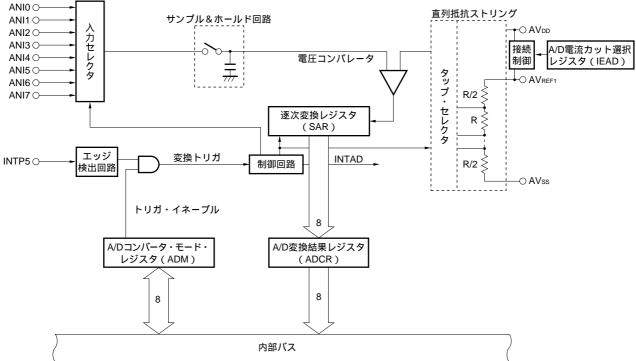
変換方式は逐次比較で,変換結果を8ビットのA/D変換結果レジスタ(ADCR)に保持します。このため,高速で高精度に変換します。

A/D変換動作の起動には,次のモードがあります。

- ・ハードウエア・スタート:トリガ入力 (INTP5) により変換開始
- ・ソフトウエア・スタート: A/Dコンバータ・モード・レジスタ (ADM)のビット設定により変換開始。

また,起動後の動作には,次のモードがあります。

- ・スキャン・モード:複数のアナログ入力を順次選択し,複数端子の変換を行います。
- ・セレクト・モード:アナログ入力を1端子に固定し,連続的な変換値を得ます。


以上のモードと変換動作の停止は,すべてADMで指定します。

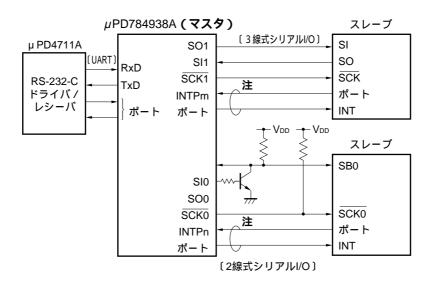
なお、変換結果をADCRへ転送すると、割り込み要求INTADを発生します。これを利用して、マクロ・サービスによって、変換値をメモリへ連続的に転送できます。

注意1. 本製品では,基準電圧入力端子(AVREF1)には,電源電圧(AVDD)と同じ電圧を印加して使用してください。

図8-9 A/Dコンパータのブロック図

2. ポート7を出力ポートとA/D入力を混在して使用している場合には,A/D変換動作中は,出力ポートの操作は行わないでください。

8.8 シリアル・インタフェース


独立した4チャネルのシリアル・インタフェースを備えています。

アシンクロナス・シリアル・インタフェース(UART) / 3線式シリアルI/O(IOE) \times 2 クロック同期式シリアル・インタフェース(CSI) \times 2 ・3線式シリアルI/O(IOE)

このため、システム外部との通信と、システム内部のローカルな通信とを同時にできます(図8-10参照)。

図8-10 シリアル・インタフェース例

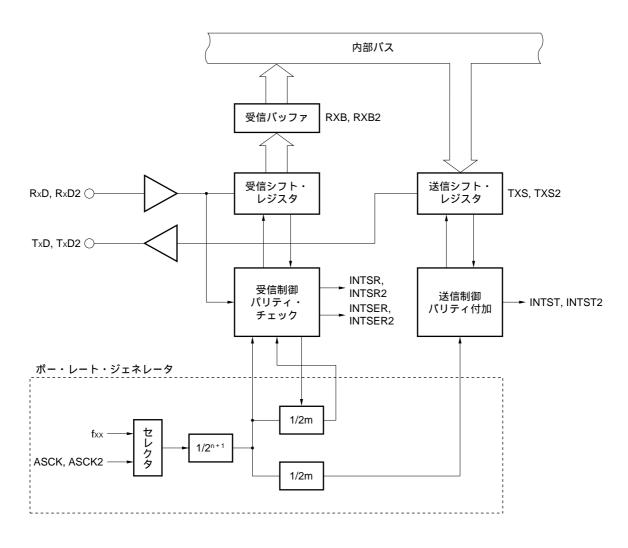
UART + 3線式シリアルI/O + 2線式シリアルI/O

注 ハンドシェーク・ライン

8.8.1 アシンクロナス・シリアル・インタフェース/3線式シリアルI/O (UART/IOE)

アシンクロナス・シリアル・インタフェース・モードと3線式シリアルI/Oモードを選択できるシリアル・インタフェースを2チャネル持っています。

(1) アシンクロナス・シリアル・インタフェース・モード


スタート・ビットに続く1バイトのデータを送受信する方式です。

ボー・レート・ジェネレータを内蔵しており、広範囲な任意のボー・レートで通信できます。

また, ASCK端子への入力クロックを分周することで, ボー・レートの定義ができます。

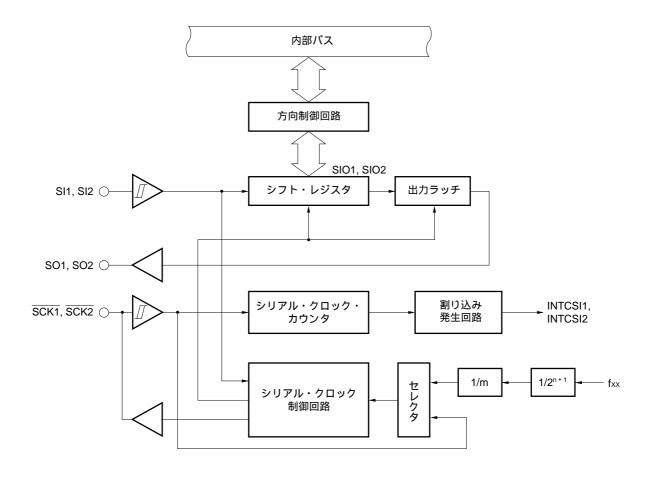
ボー・レート・ジェネレータを使用すると, MIDI規格のボー・レート(31.25 kbps)も得られます。

図8-11 アシンクロナス・シリアル・インタフェース・モード時のプロック図

★ **備考** fxx:発振周波数

n = 0-11

m = 16-30


(2)3線式シリアルI/Oモード

マスタ・デバイスがシリアル・クロックをアクティブにして送信を開始し、このクロックに同期して1バイトのデータを通信する方法です。

従来のクロック同期式シリアル・インタフェースを内蔵するデバイスと通信するためのインタフェースです。 基本的には、シリアル・クロック(SCK)とシリアル・データ(SI,SO)の3線で通信します。

また,一般的には通信状態を確認するため,ハンドシェーク・ラインが必要となります。

図8 - 12 3線式シリアルI/Oモード時のブロック図

★ **備考** fxx:発振周波数

n = 0-11

m = 1, 16-30

8.8.2 クロック同期式シリアル・インタフェース (CSI)

マスタ・デバイスがシリアル・クロックをアクティブにして送信を開始し、このクロックに同期して1バイトのデータを通信する方法です。

内部パス
SIn
SIn
SIOn レジスタ
CSIMn レジスタ
INTCSIn

fxx/8
t fxx/16
fxx/32
fxx/64
fxx/128

図8-13 クロック同期式シリアル・インタフェースのプロック図

★ 備考 fxx:発振周波数

n = 0, 3

・3線式シリアルI/Oモード

従来のクロック同期式シリアル・インタフェースを内蔵するデバイスと通信するためのインタフェースです。 基本的には , シリアル・クロック (\overline{SCKn}) とシリアル・データ (SCKn) の3線で通信します (N=0,3)。また , 一般的には通信状態を確認するため , ハンドシェーク・ラインが必要となります。

8.9 クロック出力機能

CPUの動作クロックを分周して外部に出力できます。また、1ビットのポートとしても使用できます。

本機能使用時には,ASTB端子とCLKOUT端子が兼用になっているため,ローカル・バス・インタフェースは使用できません。

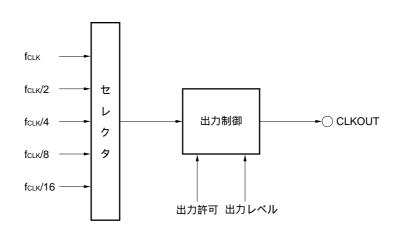


図8 - 14 クロック出力機能のブロック図

8.10 エッジ検出機能

割り込み入力端子(NMI, INTPO-INTP5)は、割り込みの要求を入力するだけでなく、各種の内蔵ハードウエアのトリガ信号などの入力端子としても使用します。これらは、すべて入力信号のエッジで動作するため、エッジを検出するための機能が内蔵されています。また、ノイズによるエッジの誤検出を防ぐために、ノイズ除去機能も備えています。

端子名称	検出可能エッジ	ノイズ除去方法
NMI	立ち上がりまたは立ち下がりのどちらか一方	アナログ・ディレイによる
INTP0-INTP3	立ち上がり,立ち下がりの一方または両方	クロック・サンプリングによる ^注
INTP4, INTP5		アナログ・ディレイによる

表8-4 割り込み入力端子のノイズ除去方法

注 INTP0は,サンプリング・クロックを選択可能

8.11 ウォッチドッグ・タイマ

CPUの暴走検出のためのウォッチドッグ・タイマを内蔵しています。このウォッチドッグ・タイマは、あらかじめ指定したインターバル時間以内にソフトウエアでクリアしないと、マスク不可能な割り込み要求を発生します。さらに、このウォッチドッグ・タイマは、一度動作を許可するとソフトウエアで動作を止めることはできません。また、ウォッチドッグ・タイマによる割り込み要求とNMI端子からの割り込み要求のどちらを優先するかを指定できます。

fclk タイマ

fclk/2²¹

fclk/2²⁰

tc

p
fclk/2¹⁹

fclk/2¹⁷

fclk/2¹⁷

図8-15 ウォッチドッグ・タイマのブロック図

8. 12 **簡易版**IEBus**コントローラ**

 μ PD784938Aは,新規に開発したIEBusコントローラを内蔵しています。従来品のIEBusインタフェース機能 (78K/0に内蔵)に比べると,機能を限定したものです。

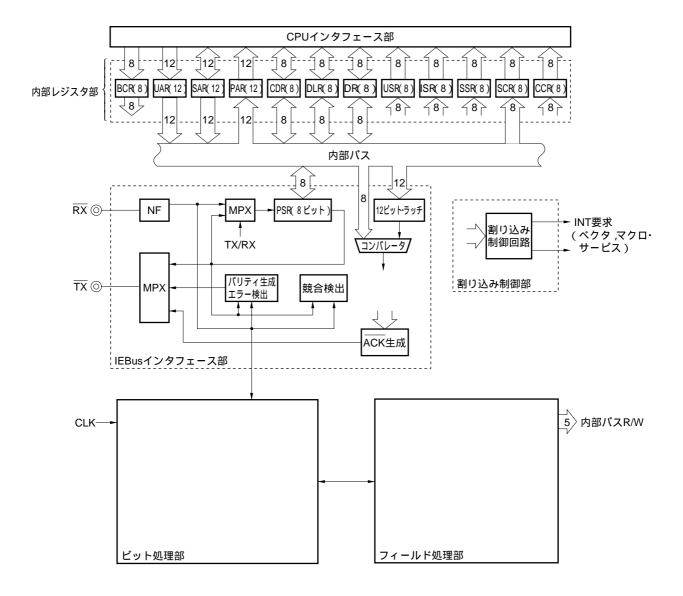

表8-5に従来品と簡易版IEBusインタフェースの比較を示します。

表8-5 従来品と簡易版IEBusインタフェースの比較

項目	従来品(78K/0内蔵IEBus)	簡易版IEBus
通信モード	モード0,モード1,モード2	モード1固定
内部システム・クロック	6.0 (6.29) MHz	
内部バッファ・サイズ	送信バッファ 33バイト(FIFO)	送受信レジスタ 1バイト
	受信バッファ 40バイト(FIFO)	
	最大4フレーム受信可能	
CPU処理	通信開始前処理(データ設定)	通信開始前処理(データ設定)
	各通信状態設定,管理	各通信状態設定,管理
	送信バッファへのデータ・ライト	1バイトごとのデータ・ライト処理
	受信バッファからのデータ・リード	1バイトごとのデータ・リード処理
		スレーブ・ステータスなど送信管理
		複数フレーム管理,再マスタ要求処理
ハード処理	ビット処理(変復調,エラー検出)	ビット処理(変復調,エラー検出)
	フィールド処理(生成/管理)	フィールド処理(生成/管理)
	アービトレーション結果検出	アービトレーション結果検出
	パリティ処理(生成/エラー検出)	パリティ処理(生成/エラー検出)
	ACK/NACKの自動返答	ACK/NACKの自動返答
	自動データ再送処理	自動データ再送処理
	自動再マスタ処理	
	自動スレーブ・ステータスなど送信処理	
	複数フレーム受信処理	

図8 - 16 IEBusコントローラのブロック図

ハードウエアの構成と機能

IEBusの内部構成は,主に次の6つのブロックから構成されます。

- ・CPUインタフェース部
- ・割り込み制御部
- ・内部レジスタ部
- ・ビット処理部
- ・フィールド処理部
- ・IEBusインタフェース部

<CPUインタフェース部>

CPU (78K/)とIEBus本体とをインタフェースするための制御部です。

<割り込み制御部>

IEBus本体からの割り込み要求信号をCPUに渡すための制御部です。

<内部レジスタ部>

IEBusの制御を行うコントロール・レジスタ,各フィールドのデータを設定します。

<ピット処理部>

ビット・タイミングの生成,分解を行い,主にビット・シーケンスROM,8ビット・プリセット・タイマ,判定器から構成されます。

<フィールド処理部>

通信フレーム内の各フィールドの生成を行い,主にフィールド・シーケンスROM,4ビット・ダウン・カウンタ,判定器から構成されます。

<IEBusインタフェース部>

外付けのドライバ / レシーバのインタフェース部で,主にノイズ・フィルタ,シフト・レジスタ,競合検出,パリティ検出,パリティ生成回路,およびACK/NACK生成回路から構成されます。

9. 割り込み機能

割り込み要求に対する処理として,表9-1のような3つの処理をプログラムで選択できます。

処理モード 処理の主体 処 理 PC, PSWの内容 ベクタ割り込み ソフトウエア 処理ルーチンへ分岐して実行(処理内容は任意) スタックへの退避,復帰を伴う コンテキスト・ レジスタ・バンクで自動的に切り替えて,処理ル レジスタ・バンク中の固定エリ スイッチング ーチンへ分岐して実行(処理内容は任意) アへの退避,復帰を伴う マクロ・サービス メモリ-I/O間のデータ転送などを実行(処理内容は ファームウエア 保持 固定)

表9-1 割り込み要求の処理

9.1 割り込み要因

割り込み要因には,表9-2のような27種類とBRK命令,BRKCS命令実行およびオペランド・エラーがあります。 割り込み処理の優先順位は,4レベルに設定できます。これによって,割り込み処理中のネスト制御や,同時発生した割り込み要求のレベル分けができます。ただし,マクロ・サービスでは,必ずネスティングが進みます(保留されず)。

ディフォールト・プライオリティは,同時に発生した同優先レベルの割り込み要求に対する処理の優先順位(固定)です(表9-2参照)。

表9-2 割り込み要因

タイプ	ディフォールト・		要因	内部。	/ 外部	マクロ・
	プライオリティ	名 称	トリガ			サービス
ソフトウエア	-	BRK命令	命令の実行			-
		BRKCS命令	命令の実行			
		オペランド・エラー	MOV STBC, #byte命令, MOV WDM, #byte命令,			
			LOCATION命令実行時にオペランドのbyteとbyteの排他			
			的論理和をとった結果がFFHでなかったとき			
ノンマスカブル	-	NMI	端子入力エッジ検出	外	部	-
		WDT	ウォッチドッグ・タイマのオーバフロー	内	部	
マスカブル	0(最高)	INTP0	端子入力エッジ検出(TM1/TM1Wキャプチャ・トリガ)	外	部	
	1	INTP1	端子入力エッジ検出(TM2/TM2Wキャプチャ・トリガ)			
	2	INTP2	端子入力エッジ検出(TM2/TM2Wイベント・カウンタ入力)			
	3	INTP3	端子入力エッジ検出(TM0キャプチャ・トリガ)			
	4	INTC00	TM0-CR00一致信号発生	内	部	
	5	INTC01	TM0-CR01一致信号発生			
	6	INTC10	TM1-CR10一致信号発生(8ビット動作モード時)			
			TM1W-CR10W一致信号発生(16ビット動作モード時)			
	7	INTC11	TM1-CR11一致信号発生(8ビット動作モード時)			
			TM1W-CR11W一致信号発生(16ビット動作モード時)			
	8	INTC20	TM2-CR20一致信号発生(8ビット動作モード時)			
			TM2W-CR20W一致信号発生(16ビット動作モード時)			
	9	INTC21	TM2-CR21一致信号発生(8ビット動作モード時)			
			TM2W-CR21W一致信号発生(16ビット動作モード時)			
	10	INTC30	TM3-CR30一致信号発生(8ビット動作モード時)			
			TM3W-CR30W一致信号発生(16ビット動作モード時)			
	11	INTP4	端子入力エッジ検出	外	部	
	12	INTP5	端子入力エッジ検出			
	13	INTAD	A/Dコンバータ変換終了(ADCRの転送)	内	部	
	14	INTSER	ASIO受信エラー発生			-
	15	INTSR	ASI0受信終了またはCSI1転送終了			
		INTCSI1				
	16	INTST	ASI0送信終了			
	17	INTCSI	CSI0転送終了			
	18	INTSER2	ASI2受信エラー発生			-
	19	INTSR2	ASI2受信終了またはCSI2転送終了			
		INTCSI2				
	20	INTST2	ASI2送信終了			
	21	INTIE1	IEBusデータ・アクセス要求			
	22	INTIE2	IEBus通信エラー発生および通信開始 / 終了			
	23	INTW	時計用タイマ出力			
	24 (最低)	INTCSI3	CSI3転送終了			

備考 ASI: アシンクロナス・シリアル・インタフェース

CSI: クロック同期式シリアル・インタフェース

9.2 ベクタ割り込み

割り込み要因に対応するベクタ・テーブル・アドレスのメモリ内容を分岐先のアドレスとして,処理ルーチンへ 分岐します。

CPUが割り込み処理をするため,次のような動作が起こります。

・分岐時: CPUの状態 (PC, PSWの内容)をスタックへ退避

・復帰時: " をスタックから復帰

なお,処理ルーチンからメイン・ルーチンへの復帰には,RETI命令を使用します。

また,分岐先のアドレスは,0-FFFFHに限ります。

表9-3 ベクタ・テーブル・アドレス

-	
割り込み要因	ベクタ・テーブル・アドレス
BRK命令	003EH
オペランド・エラー	003CH
NMI	0002H
WDT	0004H
INTP0	0006H
INTP1	0008H
INTP2	000AH
INTP3	000CH
INTC00	000EH
INTC01	0010H
INTC10	0012H
INTC11	0014H
INTC20	0016H
INTC21	0018H
INTC30	001AH
INTP4	001CH
INTP5	001EH
INTAD	0020H
INTSER	0022H
INTSR	0024H
INTCSI1	
INTST	0026H
INTCSI	0028H
INTSER2	002AH
INTSR2	002CH
INTCSI2	
INTST2	002EH

割り込み要因	ベクタ・テーブル・アドレス
INTIE1	0032H
INTIE2	0034H
INTW	0036H
INTCSI3	0038H

9.3 コンテキスト・スイッチング

割り込み要求の発生またはBRKCS命令の実行により、ハードウエア的に所定のレジスタ・バンクを選択します。 レジスタ・バンク内にあらかじめストアしておいたベクタ・アドレスへ分岐すると同時に、現在のプログラム・カウンタ(PC)、プログラム・ステータス・ワード(PSW)の内容をレジスタ・バンク内にスタックする機能です。 なお、分岐先のアドレスは、0-FFFFHに限ります。

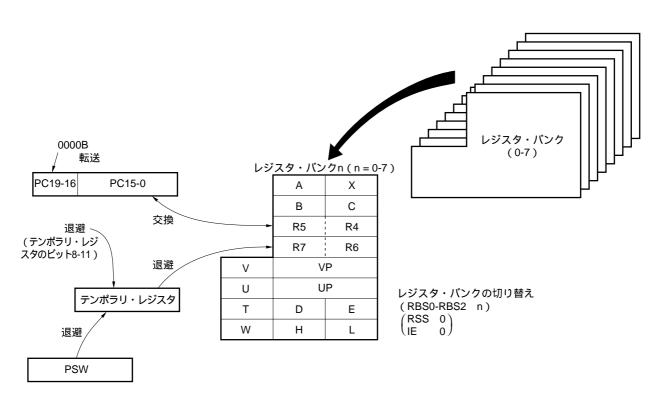


図9-1 割り込み要求の発生によるコンテキスト・スイッチング動作

9.4 マクロ・サービス

メモリ-特殊機能レジスタ(SFR)間でCPUを介さずにデータを転送する機能です。マクロ・サービス・コントローラが同一転送サイクル内でメモリとSFRをアクセスし,データを取り込まずに直接転送します。

CPUの状態を退避,復帰したり,データを取り込んだりしないため,高速転送が可能です。

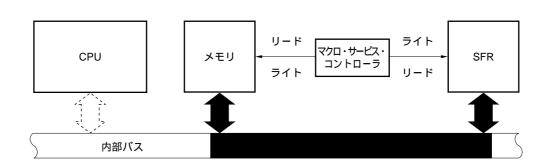
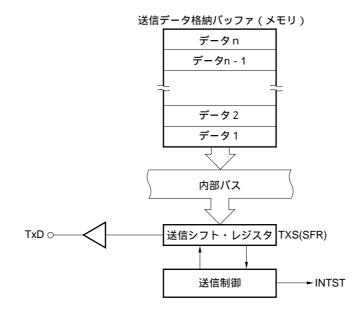
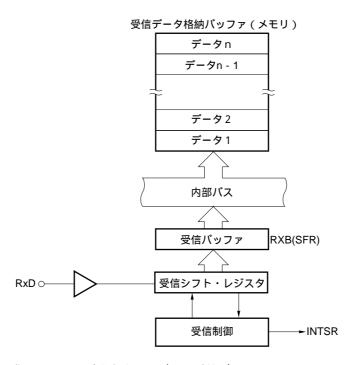



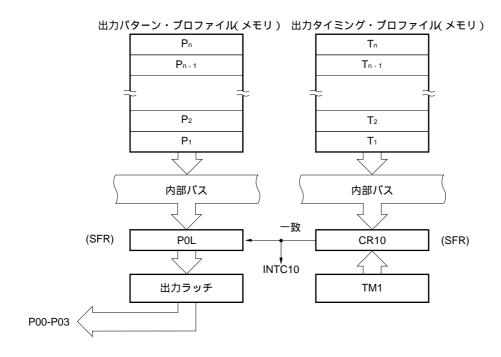
図9-2 マクロ・サービス


9.5 マクロ・サービスの応用例

(1)シリアル・インタフェースの送信動作

マクロ・サービス要求(INTST)が発生するたびに、次の送信データをメモリからTXSへ転送します。データn(最終バイト)をTXSへ転送する(送信データ格納バッファが空になる)と、ベクタ割り込み要求(INTST)を発生します。

(2)シリアル・インタフェースの受信動作



マクロ・サービス要求(INTSR)が発生するたびに,受信データをRXBからメモリへ転送します。データn (最終バイト)をメモリへ転送する(受信データ格納バッファに空きがなくなる)と,ベクタ割り込み要求 (INTSR)を発生します。

(3) リアルタイム出力ポート

INTC10, INTC11はリアルタイム出力ポートの出力トリガとなります。これらに対するマクロ・サービスでは,次の出力パターンと間隔を同時に設定できます。このため,INTC10とINTC11は独立に,2系統のステッピング・モータを制御できます。また,PWMやDCモータの制御などにも応用できます。

マクロ・サービス要求 (INTC10) が発生するたびに , パターンとタイミングをバッファ・レジスタ (P0L) とコンペア・レジスタ (CR10) にそれぞれ転送します。タイマ・レジスタ1 (TM1) の内容がCR10の内容と 一致すると , 次のINTC10を発生するとともに , P0Lの内容を出力ラッチへ送ります。Tn (最終バイト)がCR10 へ転送されると , ベクタ割り込み要求 (INTC10) を発生します。

INTC11についても同様の動作となります。

10. ローカル・パス・インタフェース

外部にメモリやI/O (メモリ・マップI/O)を接続でき、1 Mバイトのメモリ空間をサポートします(図10 - 1参照)。

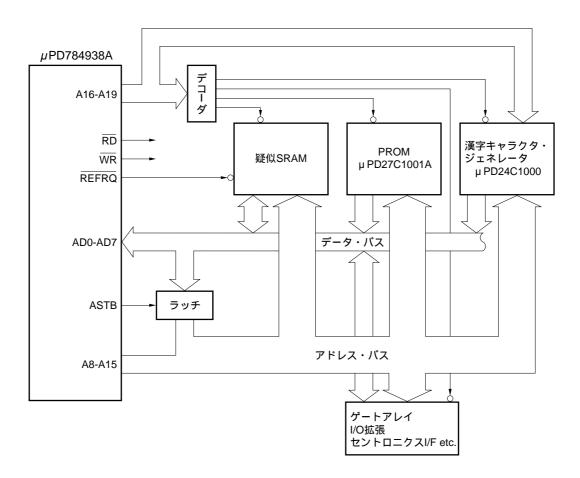


図10-1 ローカル・パス・インタフェース例

10.1 メモリ拡張

外部にプログラム・メモリやデータ・メモリを256バイトから最大約1 Mバイトまで7段階に拡張できます。

10.2 メモリ空間

1 Mバイトのメモリ空間は,論理アドレスによる8つの空間に分割されています。この各空間ごとに,プログラマブル・ウエイト機能や疑似スタティックRAMリフレッシュ機能での制御ができます。

図10-2 メモリ空間

10.3 プログラマブル・ウエイト

メモリ空間を8分割して,各メモリ空間ごとに独立に,RD,WR信号がアクティブの期間にウエイトを挿入できます。このため,アクセス時間の異なるメモリを接続しても,システム全体の効率を低下させずに済みます。

また,アドレス・デコード時間を確保するために,ASTB信号のアクティブ期間を長くするアドレス・ウエイト機能もあります(全空間に対して設定)。

10.4 疑似スタティックRAMリフレッシュ機能

リフレッシュ動作には,次のような動作があります。

- ・パルス・リフレッシュ
 - 一定期間ごとにREFRQ端子にリフレッシュ・パルスを出力するバス・サイクルを挿入します。また,メモリ空間を8分割し,指定された領域にアクセスしているときに,メモリ・アクセスと同時にREFRQ端子からリフレッシュ・パルスを出力することも可能です。これにより,リフレッシュ・サイクルによって通常のメモリ・アクセスが待たされないようにすることが可能です。
- ・パワーダウン・セルフ・リフレッシュ スタンバイ・モード時, REFRQ端子にロウ・レベルを出力し, 疑似スタティックRAMの内容を保持します。

10.5 パス・ホールド機能

DMAコントローラなどを容易に接続するために,バス・ホールド機能を持っています。外部のバス・マスタからのバス・ホールド要求信号(HLDRQ)を受け付けると,受け付け時に実行中のバス・サイクルが終了した時点で,アドレス・バス,アドレス/データ・バスおよびASTB,RD,WRの各端子をハイ・インピーダンスにしてバス・ホールド応答信号(HLDAK)をアクティブにし,外部のバス・マスタにバスを開放します。

なお,バス・ホールド機能を使用しているときは,外部ウエイト機能と疑似スタティックRAMリフレッシュ機能 は使用できません。

11. スタンバイ機能

チップの消費電力を低減する機能です。次のようなモードがあります。

・HALTモード : CPUの動作クロックを停止させます。通常動作との間欠動作により,平均消費電力を低減できます。

・IDLEモード : 発振回路の動作を継続したまま,それ以外のシステム全体が停止するモードです。STOPモードに近い低消費電力と,HALTモードと同等の時間で,通常のプログラム動作に復帰できます。

・STOPモード:発振器を停止させます。チップ内部の動作をすべて停止させ,リーク電流だけの微少消費電力状態にします。

これらのモードはプログラマブルです。

また, HALTモードからマクロ・サービスを起動できます。

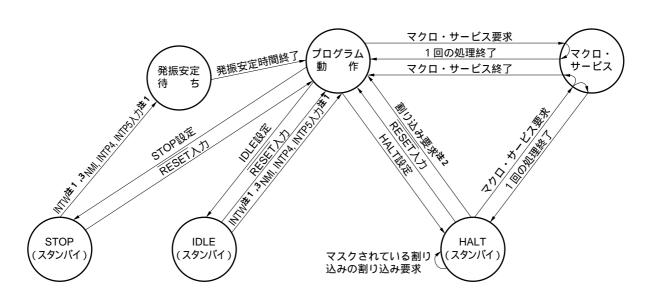


図11-1 スタンバイ・モードの状態遷移

- 注1. INTW, INTP4, INTP5はマスクされていない場合
 - 2. マスクされていない割り込み要求のみ
 - 3. サブクロック動作時

備考 NMIは外部入力のみ有効です。ウォッチドッグ・タイマは,スタンバイの解除(STOP/HALT/IDLEモード)には使用できません。

12. リセット機能

RESET端子にロウ・レベルを入力すると、内部ハードウエアは初期状態になります(リセット状態)。
RESET入力がロウ・レベルからハイ・レベルになると、次のようなデータをプログラム・カウンタ(PC)に設定します。

・PCの下位8ビット:0000H番地の内容・PCの中位8ビット:0001H番地の内容

・PCの上位4ビット:0

PCの設定内容を分岐先アドレスとし、そのアドレスからプログラムの実行を開始します。このため、任意の番地からリセット・スタートできます。

各レジスタの内容は,必要に応じてプログラムで設定してください。

ノイズによる誤動作を防ぐため,RESET入力回路にはノイズ除去回路を内蔵しています。このノイズ除去回路は,アナログ・ディレイによるサンプリング回路となっています。

ディレイ ディレイ PC初期化 リセット・スタート・アドレスの命令実行 (入力) 内部リセット信号 リセット開始 リセット終了

図12 - 1 リセットの受け付け

電源投入時のリセット動作では,発振安定時間(約40 ms)が経過するまでRESET信号をアクティブにしてください。

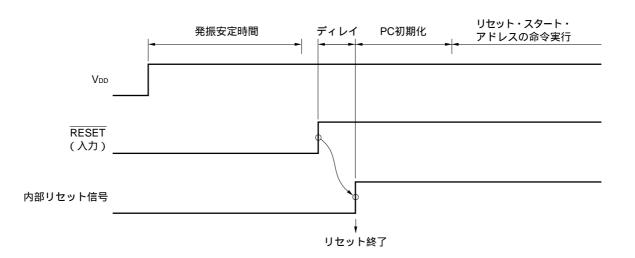


図12-2 電源投入時のリセット動作

13. レギュレータ

μ PD784938Aは,デバイスの消費電力を低減するレギュレータ(内部を低電圧動作させるための回路)を内蔵しています。このレギュレータの動作/停止の切り替えは,REGOFF端子の入力レベルで指定して行います。REGOFF端子にハイ・レベルを入力するとOFFし,ロウ・レベルを入力するとONします。

レギュレータをONにすると,低消費電力動作が可能となります。 μ PD784938Aでは,レギュレータ選択による動作(REGOFF端子 = Lレベル)を推奨いたします。

このときレギュレータ出力電圧を安定させるためにREGC端子(レギュレータ安定用容量接続端子)には , 1 μ F 程度のコンデンサを接続してください。

なお , レギュレータ停止時は , REGC端子にVooと同一レベルを印加してください。図13 - 1にレギュレータ周辺のブロック図を示します。

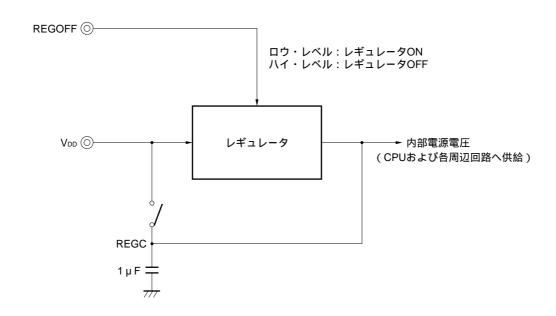
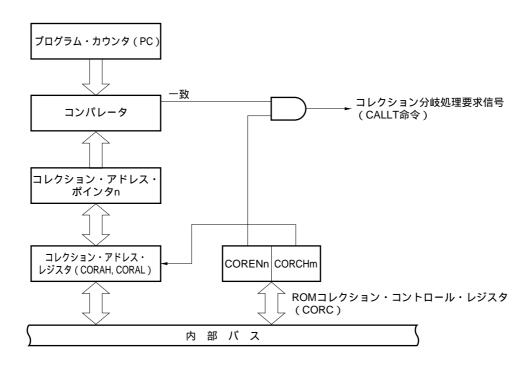


図13-1 レギュレータ周辺のブロック図

・REGC端子の処理

レギュレータ動作時	レギュレータ安定用容量(1 μ F)を接続
レギュレータ停止時	電源電圧を供給


14. ROMコレクション

ROMコレクションは,内部ROM内のプログラムの一部を内部RAM内のプログラムに置き換えて実行することができる機能です。

ROMコレクションを使用することにより、内部ROMで発見された命令バグを回避したり、プログラムの流れを変更したりすることができます。

ROMコレクションは,内部ROM(プログラム)中,最大4箇所使用できます。

図14-1 ROMコレクションのブロック図

備考 n = 0-3, m = 0, 1

15. 命令セット

(1)8ビット命令(()内は,rとしてAを記述することで実現している組み合わせです)

MOV, XCH, ADD, ADDC, SUB, SUBC, AND, OR, XOR, CMP, MULU, DIVUW, INC, DEC, ROR, ROL, RORC, ROLC, SHR, SHL, SOR4, ROL4, DBNZ, PUSH, POP, MOVM, XCHM, CMPME, CMPMNE, CMPMNC, CMPMC, MOVBK, XCHBK, CMPBKE, CMPBKNE, CMPBKNC, CMPBKC

なし^{注2} 第2オペランド #byte Α saddr ٩fr !addr16 r3 [WHL +] mem !!addr24 **PSWL** [WHL -] r' saddr' [saddrp] 第1オペランド [%saddrg] **PSWH** (MOV)^{注6} Α (MOV) (MOV) MOV MOV (MOV) MOV MOV (MOV) ADD^{注1} (XCH)^{注6} (XCH) XCH (XCH) (XCH) XCH (XCH) (ADD)^{注1,6} ADD^{注1} $\mathsf{ADD}^{\grave{\Xi}^1}$ (ADD)^{注1} (ADD)^{注1} (ADD)^{注1} (ADD)^{注1} ROR^{注3} (MOV) MULU MOV MOV MOV MOV MOV ADD^{注1} (XCH) DIVUW XCH XCH XCH XCH (ADD)^{注1} ADD^{注1} ADD^{注1} ADD^{注1} INC DEC (MOV) 注6 saddr MOV MOV MOV INC (ADD)^{注1} $\mathsf{ADD}^{\grave{\Xi}_1}$ ADD^{注1} XCH DEC ADD^{注1} DBNZ sfr MOV MOV MOV **PUSH** ADD^{注1} ADD^{注1} (ADD)^{注1} POP !addr16 MOV (MOV) MOV ADD^{注1} !!addr24 mem MOV ADD^{注1} [saddrp] [%saddrg] ROR4 mem3 ROL4 MOV r3 MOV **PSWL PSWH** B, C DBNZ STBC, WDM MOV MOVBK^{注5} [TDE +] (MOV) (ADD)^{注1} [TDE -] MOVM^{注4}

表15-1 8ビット・アドレシング別命令一覧

- 注1. ADDC, SUB, SUBC, AND, OR, XOR, CMPはADDと同じ
 - 2. 第2オペランドがないか,第2オペランドがオペランド・アドレスでない
 - 3. ROL, RORC, ROLC, SHR, SHLはRORと同じ
 - 4. XCHM, CMPME, CMPMNE, CMPMNC, CMPMCはMOVMと同じ
 - 5. XCHBK, CMPBKE, CMPBKNE, CMPBKNC, CMPBKCはMOVBKと同じ
 - 6. この組み合わせでsaddrがsaddr2の場合,短いコード長の命令がある

(2)16ビット命令(()内は,rpとしてAXを記述することで実現している組み合わせです)

MOVW, XCHW, ADDW, SUBW, CMPW, MULUW, MULW, DIVUX, INCW, DECW, SHRW, SHLW, PUSH, POP, ADDWG, SUBWG, PUSHU, POPU, MOVTBLW, MACW, MACSW, SACW

表15-2 16ビット・アドレシング別命令一覧

第2オペランド	#word	AX	rp	saddrp	sfrp	!addr16	mem	[WHL+]	byte	n	なし ^{注2}
			rp'	saddrp'		!!addr24	[saddrp]				
第1オペランド							[%saddrg]				
AX	(MOVW)	(MOVW)	(MOVW)	(MOVW) ^{注3}	MOVW	(MOVW)	MOVW	(MOVW)			
	ADDW ^{注1}	(XCHW)	(XCHW)	(XCHW) ^{注3}	(XCHW)	XCHW	XCHW	(XCHW)			
		(ADD) ^{注1}	(ADDW) ^{注1}	(ADDW) ^{注1,3}	(ADDW) ^{注1}						
rp	MOVW	(MOVW)	MOVW	MOVW	MOVW	MOVW				SHRW	MULW ^{注4}
	ADDW ^{注1}	(XCHW)	XCHW	XCHW	XCHW					SHLW	INCW
		(ADDW) ^{注1}	ADDW ^{注1}	ADDW ^{注1}	ADDW ^{注1}						DECW
saddrp	MOVW	(MOVW) ^{注3}	MOVW	MOVW							INCW
	ADDW ^{注1}	(ADDW) ^{注1}	ADDW ^{注1}	XCHW							DECW
				ADDW ^{注1}							
sfrp	MOVW	MOVW	MOVW								PUSH
	ADDW ^{注1}	(ADDW) ^{注1}	ADDW ^{注1}								POP
!addr16	MOVW	(MOVW)	MOVW						MOVTBLW		
!!addr24											
mem		MOVW									
[saddrp]											
[%saddrg]											
PSW											PUSH
											POP
SP	ADDWG										
	SUBWG										
post											PUSH
											POP
											PUSHU
											POPU
[TDE+]		(MOVW)						SACW			
byte											MACW
											MACSW

- 注1. SUBW, CMPWはADDWと同じ
 - 2. 第2オペランドがないか,第2オペランドがオペランド・アドレスでない
 - 3. この組み合わせでsaddrpがsaddrp2の場合,短いコード長の命令がある
 - 4. MULUW, DIVUXはMULWと同じ

(3)24ビット命令(()内は,rgとしてWHLを記述することで実現している組み合わせです)

MOVG, ADDG, SUBG, INCG, DECG, PUSH, POP

表15-3 24ビット・アドレシング別命令一覧

第2オペランド	#imm24	WHL	rg	saddrg	!!addr24	mem1	[%saddrg]	SP	なし ^注
			rg'						
第1オペランド									
WHL	(MOVG)	(MOVG)	(MOVG)	(MOVG)	(MOVG)	MOVG	MOVG	MOVG	
	(ADDG)	(ADDG)	(ADDG)	ADDG					
	(SUBG)	(SUBG)	(SUBG)	SUBG					
rg	MOVG	(MOVG)	MOVG	MOVG	MOVG				INCG
	ADDG	(ADDG)	ADDG						DECG
	SUBG	(SUBG)	SUBG						PUSH
									POP
saddrg		(MOVG)	MOVG						
!!addr24		(MOVG)	MOVG						
mem1		MOVG							
[%saddrg]		MOVG							
SP	MOVG	MOVG							INCG
									DECG

注 第2オペランドがないか,第2オペランドがオペランド・アドレスでない

(4)ビット操作命令

MOV1, AND1, OR1, XOR1, SET1, CLR1, NOT1, BT, BF, BTCLR, BFSET

表15-4 ビット操作命令アドレシング別命令一覧

第2オペランド	CY	saddr.bit sfr.bit	/saddr.bit /sfr.bit	なし ^注
		A.bit X.bit	/A.bit /X.bit	
		PSWL.bit PSWH.bit	/PSWL.bit /PSWH.bit	
		mem2.bit	/mem2.bit	
第1オペランド		!addr16.bit !!addr24.bit	/!addr16.bit /!!addr24.bit	
CY		MOV1	AND1	NOT1
		AND1	OR1	SET1
		OR1		CLR1
		XOR1		
saddr.bit	MOV1			NOT1
sfr.bit				SET1
A.bit				CLR1
X.bit				BF
PSWL.bit				вт
PSWH.bit				BTCLR
mem2.bit				BFSET
!addr16.bit				
!!addr24.bit				

注 第2オペランドがないか,第2オペランドがオペランド・アドレスでない

(5) コール・リターン命令/分岐命令

CALL, CALLF, CALLT, BRK, RET, RETI, RETB, RETCS, RETCSB, BRKCS, BR, BNZ, BNE, BZ, BE, BNC, BNL, BC, BL, BNV, BPO, BV, BPE, BP, BN, BLT, BGE, BLE, BGT, BNH, BH, BF, BT, BTCLR, BFSET, DBNZ

表15-5 コール・リターン命令/分岐命令アドレシング別命令一覧

命令アドレス	\$addr20	\$!addr20	!addr16	!!addr20	rp	rg	[rp]	[rg]	!addr11	[addr5]	RBn	なし
のオペランド												
基本命令	BC [≇]	CALL	CALL	CALL	CALL	CALL	CALL	CALL	CALLF	CALLF	BRKCS	BRK
	BR	BR	BR	BR	BR	BR	BR	BR				RET
			RETCS									RETI
			RETCSB									RETB
複合命令	BF											
	вт											
	BTCLR											
	BFSET											
	DBNZ											

注 BNZ, BNE, BZ, BE, BNC, BNL, BL, BNV, BPO, BV, BPE, BP, BN, BLT, BGE, BLE, BGT, BNH, BHはBCと同じ

(6) その他の命令

ADJBA, ADJBS, CVTBW, LOCATION, SEL, NOT, EI, DI, SWRS

16. 電気的特性

絶対最大定格 (TA = 25)

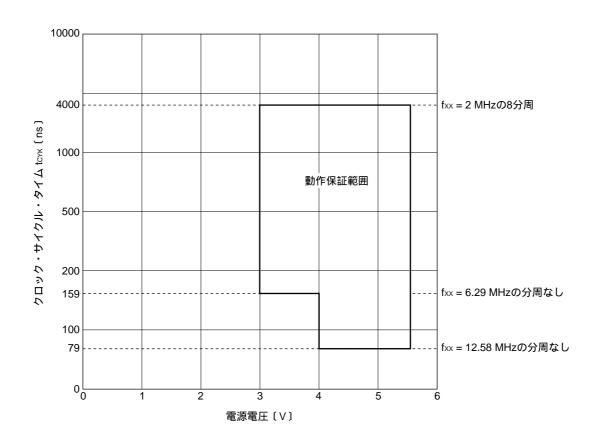
項目	略号	条件	定格	単 位
電源電圧	V _{DD}		- 0.3 ~ + 6.5	٧
	AV _{DD}		- 0.3 ~ V _{DD} + 0.3	٧
	AVss		- 0.3 ~ Vss + 0.3	٧
	AV _{REF1}	A/Dコンバータ基準電圧入力	- 0.3 ~ V _{DD} + 0.3	٧
入力電圧	Vıı		- 0.3 ~ V _{DD} + 0.3	V
アナログ入力電圧	VIAN	アナログ入力電圧	AVss - 0.3 ~ AV _{REF1} + 0.3	V
出力電圧	Vo		- 0.3 ~ V _{DD} + 0.3	٧
ロウ・レベル出力電流	lol	1端子	10	mA
		ポート0, 3, 6, 10の全端子とP54-P57の合計	50	mA
		ポート1, 4, 7, 9の全端子とP50-P53, PWM0,	50	mA
		PWM1, TX端子の合計		
ハイ・レベル出力電流	Іон	1端子	- 6	mA
		ポート0, 3, 6, 10の全端子とP54-P57の合計	- 30	mA
		ポート1, 4, 7, 9の全端子とP50-P53, PWM0,	- 30	mA
		PWM1, TX端子の合計		
動作周囲温度	TA		- 40 ~ +85	
保存温度	Tstg		- 65 ~ + 150	

注意 各項目のうち1項目でも,また一瞬でも絶対最大定格を越えると,製品の品質を損なう恐れがあります。つまり絶対最大定格とは,製品に物理的な損傷を与えかねない定格値です。必ずこの定格値を越えない状態で,製品をご使用ください。

備考 特に指定がないかぎり,兼用端子の特性はポート端子の特性と同じです。

動作条件

・クロック周波数


クロック周波数	電源電圧			
2 MHz fxx 12.58 MHz	4.0 VDD 5.5 V			
2 MHz fxx 6.29 MHz	3.0 V _{DD} 5.5 V			

・動作周囲温度 (TA): -40~+85

・電源電圧およびクロック・サイクル・タイム:図16 - 1参照

・内部レギュレータ動作選択 (REGOFF端子:ロウ・レベル入力)

図16-1 電源電圧およびクロック・サイクル・タイム

容量 (TA = 25 , VDD = VSS = 0 V)

項目	略 号	条 件	MIN.	TYP.	MAX.	単 位
入力容量	CIN	f = 1 MHz			15	pF
出力容量	Соит	被測定端子以外は0 V			15	pF
入出力容量	Сю				15	pF

メイン発振器特性 (TA = -40~+85 , VDD = 3.0~5.5 V, Vss = 0 V)

項目	略号	条 件	†		MIN.	MAX.	単 位
発振周波数	fxx	セラミック発振子または推奨	4.0 V _{DD} 5	5.5 V	2.0	12.58	MHz
		振動子	3.0 VDD 5	5.5 V	2.0	6.29	MHz

注意 メイン・クロック発振回路を使用する場合は,配線容量などの影響を避けるために,次のように配線してください。

- ・配線は極力短くする。
- ・他の信号線と交差させない。
- ・変化する大電流が流れる線に接近させない。
- ・発振回路のコンデンサの接地点は、常にVssと同電位になるようにする。
- ・大電流が流れるグランド・パターンに接地しない。
- ・発振回路から信号を取り出さない。

備考1. メイン発振で,内部時計タイマを動作させるときには,12.582912 MHzまたは6.291456 MHzの発振子を接続してください。

2. 発振子の選択および発振回路定数についてはお客さまにおいて発振評価していただくか,発振子メーカに評価を依頼してください。

時計用発振器特性 (TA = -40~+85 , VDD = 3.0~5.5 V, Vss = 0 V)

項目	略号	条件	MIN.	TYP.	MAX.	単 位
発振周波数	fхт	セラミック発振子または水晶振動子	32	32.768	35	KHz
発振安定時間	f _{sxt}	4.5 V _{DD} 5.5 V		1.2	2	s
					10	s
発振保持電圧	V _{DDXT}		3.0		5.5	V
時計機能動作電圧	V _{DDW}		3.0		5.5	V

DC特性(TA = -40~+85 , VDD = AVDD = 3.0~5.5 V, Vss = AVss = 0 V) (1/2)

項目	略号	条	件	MIN.	TYP.	MAX.	単 位
ロウ・レベル入力電圧 ^注	VIL1	P10, P11, P13-P17, F	P30, P31, P34-P37,	- 0.3		0.3 V _{DD}	V
		P70-P77, P90-P97, P	100-P104, X1, X2,				
		XT1, XT2					
	V _{IL2}	P12, P20-P27, P32, P3	33, P105-P107	- 0.3		0.2 V _{DD}	V
		RESET					
	V _{IL3}	P00-P07, P40-P47,	4.5 V VDD 5.5 V	- 0.3		0.8	V
	VIL4	P50-P57, P60-P67		- 0.3		0.2 V _{DD}	V
ハイ・レベル入力電圧	V _{IH1}	P10, P11, P13-P17, F	P30, P31, P34-P37,	0.7 V _{DD}		V _{DD} + 0.3	V
		P70-P77, P90-P97, P	100-P104, X1, X2,				
		XT1, XT2					
	V _{IH2}	P12, P20-P27, P32, P3	33, P105-P107	0.8 V _{DD}		V _{DD} + 0.3	٧
		RESET					
	V _{IH3}	P00-P07, P40-P47,	4.5 V VDD 5.5 V	2.2		V _{DD} + 0.3	V
	V _{IH4}	P50-P57, P60-P67		0.7 V _{DD}		0.3 V _{DD}	٧
ロウ・レベル出力電圧	V _{OL1}	1 ΙοL = 20 <i>μ</i> A				0.1	٧
		IoL = 100 μ A				0.2	V
		IoL = 2 mA				0.4	V
	V _{OL2}	IoL = 8 mA, P10-P17,	4.5 V VDD 5.5 V			1.0	V
		P40-P47, P50-P57					
ハイ・レベル出力電圧	V _{OH1}	Іон = - 20 μ A		V _{DD} - 0.1			٧
		IoL = - 100 μ A		V _{DD} - 0.2			V
		IoL = - 2 mA		V _{DD} - 1.0			٧
	V _{OH2}	IoL = - 5 mA,	4.5 V VDD 5.5 V	VDD - 2.4			V
		P10-P17, P40-P47,					
		P50-P57					
ロウ・レベル入力リーク電流	ILIL1	Vin = 0 V	X1, X2, XT1, XT2		_	10	μΑ
			以外の端子				
	ILIL2		X1, X2, XT1, XT2			- 20	μΑ
ハイ・レベル入力リーク電流	Ішн1	VIN = VDD	X1, X2, XT1, XT2			10	μΑ
			以外の端子				
	ILIH2		X1, X2, XT1, XT2			20	μΑ
ロウ・レベル出力リーク電流	ILOL1	Vout = 0 V				- 10	μΑ
ハイ・レベル出力リーク電流	ILOH1	Vout = Vdd				10	μΑ

注 プルアップ抵抗は,OFFの場合

データ・シート U13572JJ2V0DS

DC特性 (TA = $-40 \sim +85$, VDD = AVDD = $3.0 \sim 5.5$ V, Vss = AVss = 0 V) (2/2)

項目	略号		条件	MIN.	TYP.	MAX.	単 位
電源電流	I _{DD1}	動作モード	fxx = 12.58 MHz, 4.0 V VDD 5.5 V		10	20	mA
			fxx = 6.29 MHz, 3.0 V VDD 5.5 V		5	10	mA
	I _{DD2}	HALTモード	fxx = 12.58 MHz , 周辺クロック停止時 ^注 ,		2	4	mA
			4.0 V VDD 5.5 V				
			fxx = 6.29 MHz , 周辺クロック停止時 ^注 ,		1.2	2.4	mA
			3.0 V VDD 5.5 V				
	IDD3	IDLEモード	fxx = 12.58 MHz, 4.0 V VDD 5.5 V		0.6	1.2	mA
			fxx = 6.29 MHz, 3.0 V VDD 5.5 V		0.3	0.6	mA
データ保持電圧	V _{DDDR}	STOPE-I	*	2.5		5.5	V
データ保持電流	IDDDR	STOPE-F	V _{DD} = 2.5 V サブクロック停止		2	10	μΑ
			V _{DD} = 5.5 V サブクロック停止		10	50	μΑ
プルアップ抵抗	R∟	VIN = 0 V		15	40	80	kΩ

注 メイン・システム・クロック:fclk = fxx/8を選択(スタンバイ・コントロール・レジスタ(STBC)で設定),時計用タイマ動作時

備考 内蔵レギュレータがONの状態 (REGOFF端子 = ロウ・レベル入力)時の値です。

(1) リード/ライト・オペレーション (1/2)

項目	略号	条件	MIN.	TYP.	MAX.	単 位
サイクル・タイム	t cyk	4.0 VDD 5.5 V	79			ns
		V _{DD} = 3.0 V	159			ns
アドレス・セットアップ時間	t sast	V _{DD} = 5.0 V	(0.5+a)T-11			ns
(対ASTB)		V _{DD} = 3.0 V	(0.5+a)T - 15			ns
アドレス・ホールド時間	t HSTLA	V _{DD} = 5.0 V	0.5T - 19			ns
(対ASTB)		V _{DD} = 3.0 V	0.5T - 24			ns
ASTBハイ・レベル幅	twsтн	V _{DD} = 5.0 V	(0.5+a)T - 17			ns
		V _{DD} = 3.0 V	(0.5+a)T-40			ns
アドレス・ホールド時間	t HRA	V _{DD} = 5.0 V	0.5T - 14			ns
(対RD)		V _{DD} = 3.0 V	0.5T - 14			ns
アドレス RD 遅延時間	t dar	V _{DD} = 5.0 V	(1+a)T-5			ns
		V _{DD} = 3.0 V	(1+a)T-10			ns
アドレス・フロート時間 (対RD)	t far				0	ns
アドレスデータ入力時間	t DAID	V _{DD} = 5.0 V			(2.5+a+n)T-37	ns
		V _{DD} = 3.0 V			(2.5+a+n)T-52	ns
ASTB データ入力時間	t DSTID	V _{DD} = 5.0 V			(2+n)T-35	ns
		V _{DD} = 3.0 V			(2+n)T-50	ns
RD データ入力時間	t DRID	V _{DD} = 5.0 V			(1.5+n)T - 40	ns
		V _{DD} = 3.0 V			(1.5+n)T - 50	ns
ASTB RD 遅延時間	tdstr	V _{DD} = 5.0 V	0.5T - 9			ns
		V _{DD} = 3.0 V	0.5T - 9			ns
データ・ホールド時間 (対RD)	thrid		0			ns
RD アドレス・アクティ	t dra	V _{DD} = 5.0 V	0.5T - 2			ns
ブ時間		V _{DD} = 3.0 V	0.5T - 12			ns
 RD ASTB 遅延時間	torst	V _{DD} = 5.0 V	0.5T - 9			ns
		V _{DD} = 3.0 V	0.5T - 9			ns
RDロウ・レベル幅	twrl	V _{DD} = 5.0 V	(1.5+n)T - 25			ns
		V _{DD} = 3.0 V	(1.5+n)T - 30			ns

備考1. T:tcyk = 1/fclk (fclk:内部システム・クロック)

2. a:アドレス・ウエイト時 = 1, それ以外 = 0

3. n:ウエイト数(n 0)

4. VDD = 5.0 V時: T = 79 ns (min.) で計算

5. V_{DD} = 3.0 V時: T = 159 ns (min.) で計算

(1) リード/ライト・オペレーション(2/2)

項目	略号	条件	MIN.	TYP.	MAX.	単位
	tdaw	VDD = 5.0 V	(1+a)T-5			ns
		V _{DD} = 3.0 V	(1+a)T-10			ns
アドレス・ホールド時間	thwa	V _{DD} = 5.0 V	0.5T - 14			ns
(対WR)		V _{DD} = 3.0 V	0.5T - 14			ns
ASTB データ出力遅延時	t DSTOD	V _{DD} = 5.0 V			0.5T + 15	ns
間		V _{DD} = 3.0 V			0.5T + 20	ns
<u></u>	towod				15	ns
ASTB WR 遅延時間	tostw	V _{DD} = 5.0 V	0.5T - 9			ns
		V _{DD} = 3.0 V	0.5T - 9			ns
データ・セットアップ時間	tsodwr	V _{DD} = 5.0 V	(1.5+n)T - 20			ns
(対WR)		V _{DD} = 3.0 V	(1.5+n)T - 25			ns
データ・ホールド時間	thwod	V _{DD} = 5.0 V	0.5T - 14			ns
(対WR)		V _{DD} = 3.0 V	0.5T - 14			ns
WR ASTB 遅延時間	towst	V _{DD} = 5.0 V	0.5T - 9			ns
		V _{DD} = 3.0 V	0.5T - 9			ns
WRロウ・レベル幅	twwL	V _{DD} = 5.0 V	(1.5+n)T - 25			ns
		V _{DD} = 3.0 V	(1.5+n)T - 30			ns

備考1. T: tcyk = 1/fclk (fclk:内部システム・クロック)

2. a:アドレス・ウエイト時 = 1, それ以外 = 0

3. n:ウエイト数(n 0)

4. V_{DD} = 5.0 V時: T = 79 ns (min.) で計算

5. VDD = 3.0 V時: T = 159 ns (min.) で計算

(2)外部ウエイト・タイミング

	項目	略号	条件	MIN.	TYP.	MAX.	単 位
	アドレス WAIT 入力時間	t DAWT	V _{DD} = 5.0 V			(2+a)T-40	ns
			V _{DD} = 3.0 V			(2+a)T-60	ns
	ASTB WAIT 入力時間	t DSTWT	V _{DD} = 5.0 V			1.5T - 40	ns
			V _{DD} = 3.0 V			1.5T - 60	ns
	ASTB WAIT保持時間	t HSTWTH	V _{DD} = 5.0 V	(0.5+n)T+5			ns
			V _{DD} = 3.0 V	(0.5 + n)T + 10			ns
	ASTB WAIT 遅延時間	t DSTWTH	V _{DD} = 5.0 V			(1.5+a)T-40	ns
			V _{DD} = 3.0 V			(1.5 + a)T - 60	ns
	RD WAIT 入力時間	t drwtl	V _{DD} = 5.0 V			T - 40	ns
			V _{DD} = 3.0 V			T - 60	ns
		t HRWT	V _{DD} = 5.0 V	nT + 5			ns
			V _{DD} = 3.0 V	nT + 10			ns
*	WAIT 遅延時間	t DRWTH	V _{DD} = 5.0 V			(1+n)T-40	ns
			V _{DD} = 3.0 V			(1+n)T-60	ns
	 WAIT データ入力時間	t DWTID	V _{DD} = 5.0 V			0.5T - 5	ns
			V _{DD} = 3.0 V			0.5T - 10	ns
	WAIT RD 遅延時間	towtr	V _{DD} = 5.0 V	0.5T			ns
			V _{DD} = 3.0 V	0.5T			ns
	WAIT WR 遅延時間	towtw	V _{DD} = 5.0 V	0.5T			ns
			V _{DD} = 3.0 V	0.5T			ns
	WR WAIT 入力時間	t DWWTL	V _{DD} = 5.0 V			T - 40	ns
			V _{DD} = 3.0 V			T - 60	ns
	WR WAIT保持時間	tнwwт	V _{DD} = 5.0 V	nT + 5			ns
			V _{DD} = 3.0 V	nT + 10			ns
	WR WAIT 遅延時間	t DWWTH	V _{DD} = 5.0 V			(1+n)T-40	ns
*			V _{DD} = 3.0 V			(1+n)T-60	ns

備考1. T:tcyk = 1/fclk (fclk:内部システム・クロック)

2. a:アドレス・ウエイト時 = 1, それ以外 = 0

3. n:ウエイト数(n 0)

4. V_{DD} = 5.0 V時: T = 79 ns (min.) で計算

5. V_{DD} = 3.0 V時: T = 159 ns (min.) で計算

データ・シート U13572JJ2V0DS

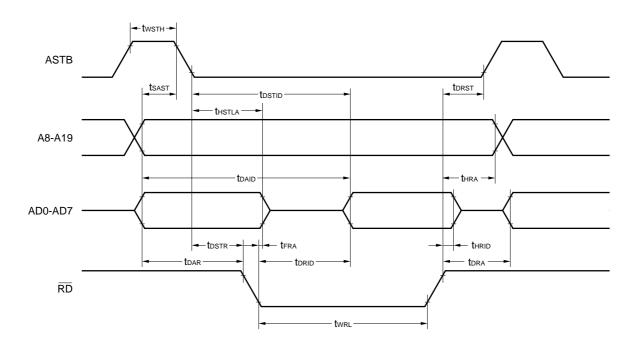
(3) パス・ホールド/リフレッシュ・タイミング

項目	略号	条件	MIN.	TYP.	MAX.	単 位
HLDRQ フロート遅延時	t FHQC	V _{DD} = 5.0 V			(2+4+a+n)T+50	ns
間		V _{DD} = 3.0 V			(2+4+a+n)T+50	ns
HLDRQ HLDAK 遅延	t dhqhhah	VDD = 5.0 V			(3+4+a+n)T+30	ns
時間		V _{DD} = 3.0 V			(3+4+a+n)T+40	ns
フロート HLDAK 遅延時	t DCFHA	VDD = 5.0 V			T + 30	ns
間		V _{DD} = 3.0 V			T + 30	ns
HLDRQ HLDAK 遅延	t DHQLHAL	V _{DD} = 5.0 V			2T + 40	ns
時間		V _{DD} = 3.0 V			2T + 60	ns
HLDAK アクティブ遅延	t DHAC	VDD = 5.0 V	T - 20			ns
時間		V _{DD} = 3.0 V	T - 30			ns
ランダム・リード / ライト	trc	V _{DD} = 5.0 V	3T			ns
サイクル時間		V _{DD} = 3.0 V	3Т			ns
REFRQロウ・レベル・パル	twrfql	V _{DD} = 5.0 V	1.5T - 25			ns
ス幅		V _{DD} = 3.0 V	1.5T - 30			ns
ASTB REFRQ遅延時間	t DSTRFQ	V _{DD} = 5.0 V	0.5T - 9			ns
		V _{DD} = 3.0 V	0.5T - 9			ns
RD REFRQ遅延時間	tdrrfq	V _{DD} = 5.0 V	1.5T - 9			ns
		V _{DD} = 3.0 V	1.5T - 9			ns
WR REFRQ遅延時間	t DWRFQ	V _{DD} = 5.0 V	1.5T - 9			ns
		V _{DD} = 3.0 V	1.5T - 9			ns
 REFRQ ASTB遅延時間	t DRFQST	V _{DD} = 5.0 V	0.5T - 9			ns
		V _{DD} = 3.0 V	0.5T - 9			ns
REFRQハイ・レベル・パル	t wrfqh	V _{DD} = 5.0 V	1.5T - 25			ns
ス幅		V _{DD} = 3.0 V	1.5T - 30			ns

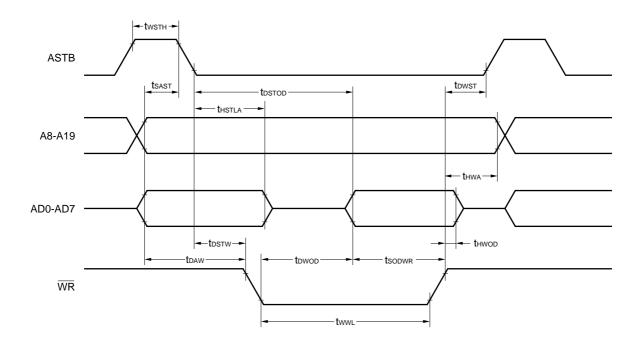
備考1. T:tcyk = 1/fclk (fclk:内部システム・クロック)

2. a:アドレス・ウエイト時 = 1, それ以外 = 0

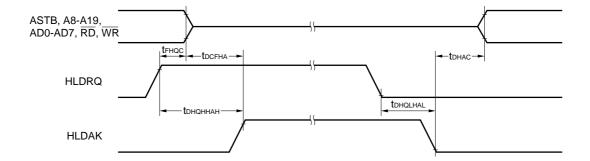
3. n:ウエイト数(n 0)


4. V_{DD} = 5.0 V時: T = 79 ns (min.) で計算

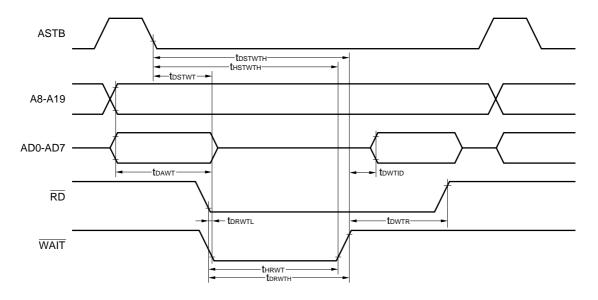
5. V_{DD} = 3.0 V時: T = 159 ns (min.) で計算



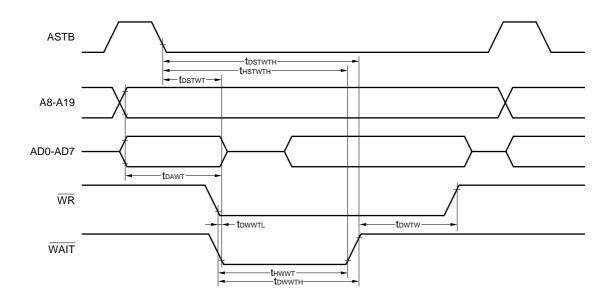
タイミング波形


(1) リード・オペレーション

(2) ライト・オペレーション



ホールド・タイミング

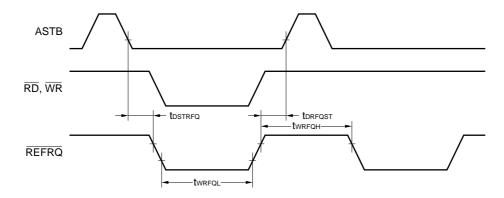


外部WAIT信号入力タイミング

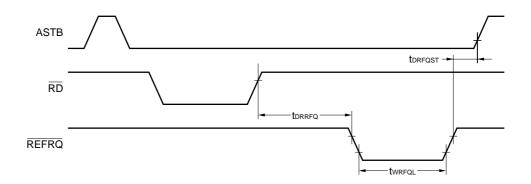
(1) リード・オペレーション

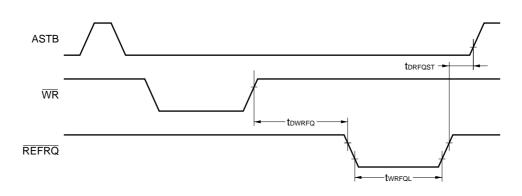


(2) ライト・オペレーション



リフレッシュ・タイミング波形


(1) ランダム・リード/ライト・サイクル


(2) リフレッシュ・メモリ・アクセスが同時の場合

(3) リード後のリフレッシュ

(4) ライト後のリフレッシュ

シリアル・オペレーション (Ta = -40~+85 , Vdd = AVdd = 3.0~5.5 V, Vss = AVss = 0 V)

(a) CSIO, CSI3 3線式シリアルI/Oモード(SCKO, SCK3...外部クロック入力)

項 目	略号	条	#	MIN.	MAX.	単 位
SCKサイクル・タイム	tcysko,	SO0, SO3lt ,	fclk = fxx	8/fxx		ns
(SCK0, SCK3)	tcysk3	CMOS出力	fclk = fxx以外	4/fclk		ns
SCKロウ・レベル幅	twsklo,	SO0, SO3は ,	fclk = fxx	4/fxx - 40		ns
(SCK0, SCK3)	twskL3	CMOS出力	fclk = fxx以外	2/fcLK - 40		ns
SCKハイ・レベル幅	twsкно,	SO0, SO3lt,	fclk = fxx	4/fxx - 40		ns
(SCKO, SCK3)	t wskH3	CMOS出力	fclk = fxx以外	2/fcLK - 40		ns
SI0, SI3セットアップ時間	tsssko,		•	80		ns
(対SCKO, SCK3)	tsssk3					
SI0, SI3ホールド時間	thssko,			1/fclk + 80		ns
(対SCKO, SCK3)	thssk3					
SCK0, SCK3 出力遅延	tobsko,	CMOS出力		0	1/fcLK + 150	ns
時間	tdbsk3	N-chオープン・ドレーンと	出力(R∟= 1 kΩ)	0	1/fclk + 400	ns
SO0, SO3出力保持時間	t нѕвѕко,	データ転送時		0.5tсүзко - 40,		ns
(対 SCK0 , SCK3)	tнsвsкз			0.5tсүзкз - 40		

備考1. 表中の数値は , CL = 100 pFのときの値

2. txx : 外付け発振周波数 (fxx = 12.58 MHzまたはfxx = 6.29 MHz)

3. tclk : システム・クロック発振周波数 (fxx, fxx/2, fxx/4, fxx/8の中からスタンバイ・コントロール・レジスタ (STBC) で選択)

(b) CSIO, CSI3 3線式シリアルI/Oモード(SCKO, SCK3...内部クロック出力)

	項目	略号	条件	#	MIN.	MAX.	単 位
	SCKサイクル・タイム	tcysko,	SO0, SO3は ,	fclk = fxx/8以外	8/fxx		ns
	(SCK0, SCK3)	tcysk3	CMOS出力	fclk = fxx/8	16/fxx		ns
	SCKロウ・レベル幅	twsklo,	SO0, SO31t,	fclk = fxx/8以外	4/fxx - 40		ns
*	(SCKO, SCK3)	twskL3	CMOS出力	$f_{CLK} = f_{XX}/8$	8/fxx - 40		ns
	SCKハイ・レベル幅	twsкно,	SO0, SO3は ,	fclk = fxx/8以外	4/fxx - 40		ns
*	(SCK0, SCK3)	twsкнз	CMOS出力	fclk = fxx/8	8/fxx - 40		ns
	SI0, SI3セットアップ時間	tsssko,			80		ns
	(対SCK0, SCK3)	tsssk3					
	SI0, SI3ホールド時間	thssko,			80		ns
	(対SCK0, SCK3)	thssk3					
	SCK0, SCK3 出力遅延	tobsko,	CMOS出力		0	150	ns
	時間	tdbsk3	N-chオープン・ドレーン出	岀力(R∟=1kΩ)	0	400	ns
*	SO0, SO3出力保持時間	thsbsko,	データ転送時		0.5tcysко - 40,		ns
	(対SCKO, SCK3)	thsbsk3			0.5tсүзкз - 40		

備考1. 表中の数値は, CL = 100 pFのときの値

2. txx : 外付け発振周波数 (fxx = 12.58 MHzまたはfxx = 6.29 MHz)

3. tclk : システム・クロック発振周波数 (fxx, fxx/2, fxx/4, fxx/8の中からスタンバイ・コントロール・レジスタ (STBC)で選択)

シリアル・オペレーション (TA = -40~+85 , VDD = AVDD = 3.0~5.5 V, Vss = AVss = 0 V)

(a) UARTO, UART2 (アシンクロナス・シリアル・インタフェース・モード)

項目	略号	条件	MIN.	TYP.	MAX.	単 位
ASCK0, ASCK2サイクル・タ	tcyask	4.0 Vdd 5.5 V	160			ns
イム			320			ns
ASCK0, ASCK2ロウ・レベル	twaskl	4.0 Vdd 5.5 V	65			ns
幅			120			ns
ASCK0, ASCK2ハイ・レベル	twaskh	4.0 Vdd 5.5 V	65			ns
幅			120			ns

シリアル・オペレーション (TA = -40~+85 , VDD = AVDD = 3.0~5.5 V, Vss = AVss = 0 V)

(d) IOE1, IOE2 3線式シリアルI/Oモード(SCK1, SCK2...外部クロック入力)

	項目	略号	条件	MIN.	MAX.	単 位
	SCKサイクル・タイム	tcysk1	4.0 V _{DD} 5.5 V	640		ns
*	(SCK1, SCK2)	tcysk2		1280		ns
	 SCKロウ・レベル幅	twskl1,	4.0 V _{DD} 5.5 V	280		ns
*	(SCK1, SCK2)	twskL2		600		ns
	SCKハイ・レベル幅	twskH1,	4.0 VDD 5.5 V	280		ns
*	(SCK1, SCK2)	twskH2		600		ns
	SI0, SI3セットアップ時間	tsssk1,		40		ns
	(対SCK1, SCK2)	tsssk2				
	SI0, SI3ホールド時間	thssk1,		40		ns
	(対SCK1, SCK2)	thssk2				
	SCK1, SCK2 出力遅延	tdsosk1,		0	50	ns
	時間	tdsosk2				
	SO1, SO2出力保持時間	thsosk1,	データ転送時	0.5tcysk1 - 40,		ns
	(対SCK1, SCK2)	thsosk2		0.5tcysk2 - 40		

備考1. 表中の数値は, CL = 100 pFのときの値

2. T:選択したシリアル・クロック周期,最小値は8/fxx

(e) IOE1, IOE2 3線式シリアルI/Oモード(SCK1, SCK2...内部クロック出力)

項目	略号	条 件	MIN.	MAX.	単 位
SCKサイクル・タイム	tcysk1,		Т		ns
(SCK1, SCK2)	tcysk2				
SCKロウ・レベル幅	twskl1,		0.5T - 40		ns
(SCK1, SCK2)	twskL2				
SCKハイ・レベル幅	twskH1,		0.5T - 40		ns
(SCK1, SCK2)	twskH2				
SI0, SI3セットアップ時間	tsssk1,		40		ns
(対SCK1, SCK2)	tsssk2				
SI0, SI3ホールド時間	thssk1,		40		ns
(対SCK1, SCK2)	thssk2				
SCK1, SCK2 出力遅延	tdsosk1,		0	50	ns
時間	tdsosk2				
SO1, SO2出力保持時間	thsosk1,	データ転送時	0.5tcysk1 - 40,		ns
(対SCK1, SCK2)	thsosk2		0.5tсүѕк2 - 40		

備考1. 表中の数値は , CL = 100 pFのときの値

2. T : 選択したシリアル・クロック周期, 最小値は8/fxx

その他のオペレーション (Ta = -40~+85 , Vdd = AVdd = 3.0~5.5 V, Vss = AVss = 0 V)

項目	略号	条 件	MIN.	TYP.	MAX.	単 位
NMI八イ,ロウ・レベル幅	twnil		10			μs
	twnih					
INTP0八イ , ロウ・レベル幅	t WITOL		4tcysmp			s
	twiтон					
INTP1-INTP3, CI	t WIT1L		4tсүсри			S
ハイ,ロウ・レベル幅	t wiT1H					
INTP4, INTP5	t WIT2L		10			μs
ハイ,ロウ・レベル幅	t wit2H					
RESETハイ,ロウ・レベル	twrsl		10			μs
幅 ^注	twrsh					

注 電源投入時と,リセットによるSTOP解除時は,RESETのロウ・レベル幅で発振安定時間を確保してください。 また,電源投入時は必ずRESET = ロウ・レベルの状態で,VDDを立ち上げてください。

備考 tcysmp:ソフトウエアで設定するサンプリング・クロック

tcycpu: ソフトウエアで設定するCPUクロック

クロック出力オペレーション (TA = -40~+85 , VDD = AVDD = 3.0~5.5 V, Vss = AVss = 0 V)

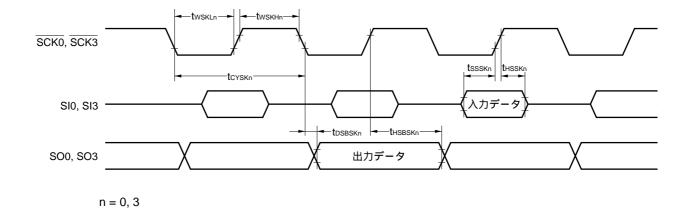
項目	略号	条件	MIN.	TYP.	MAX.	単 位
CLKOUTサイクル時間	tcycl	nT	79		32000	ns
CLKOUTロウ・レベル時間	tcll	4.5 VDD 5.5 V	0.5T - 10			ns
			0.5T - 20			ns
CLKOUTハイ・レベル時間	tclh	4.5 VDD 5.5 V	0.5T - 10			ns
			0.5T - 20			ns
CLKOUT立ち上がり時間	tclr	4.5 VDD 5.5 V			10	ns
		3.0 VDD 4.5 V			20	ns
CLKOUT立ち下がり時間	tclf	4.5 V _{DD} 5.5 V			10	ns
		3.0 VDD 4.5 V			20	ns

備考 n: クロック出力分周比, T: tcxk = 1/fclk(システム・クロック・サイクル・タイム)

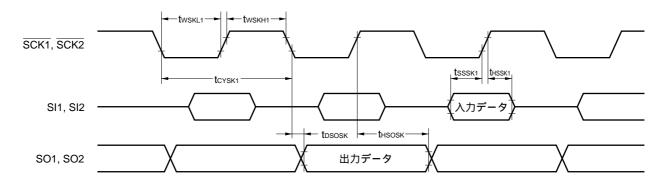
IEBus コントローラ (TA = -40~+85 , VDD = AVDD = 4.5~5.5 V, Vss = AVss = 0 V)

項目	略号	条 件	MIN.	TYP.	MAX.	単 位
IEBusシステム・クロック	fs	モード1		6.29		MHz
周波数						

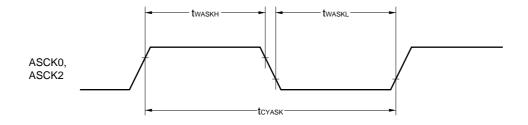
備考 IEBusの規格上ではシステム・クロック周波数は6.0 MHzですが μ PD784938Aでは6.0 MHzのほか ,6.29 MHz での正常動作も保証します。ただし , 6.0 MHzと6.29 MHzを混在して使用することはできません。

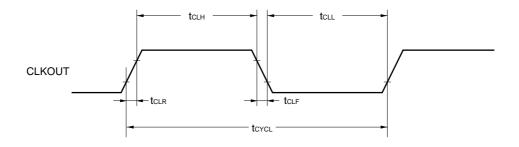


A/D**コンパータ特性 (**TA = -40~+85 , VDD = AVDD = AVREF1 = 3.0~5.5 V, Vss = AVss = 0 V)

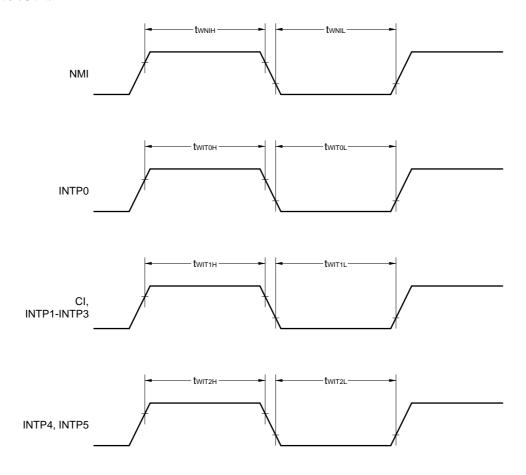

項目	略号		条件	MIN.	TYP.	MAX.	単位
分解能				8			bit
総合誤差 ^{注1}		IEAD = 00H	6.29 MHz fxx 12.58 MHz			0.6	%FSR ^{注2}
			かつFR = 1以外				
			6.29 MHz fxx 12.58 MHz			1.5	%FSR ^{注2}
			かつFR = 1				
		IEAD = 01H	4.5 V _{DD} 5.5 V		1	2.2	%FSR ^{注2}
			3.0 V _{DD} < 5.5 V		1.4	2.6	%FSR ^{注2}
量子化誤差						± 1/2	LSB
変換時間	tconv	FR = 1 : 12	0 tсүк	9.5		480	μs
		FR = 0 : 24	0 tсүк	19.1		960	μs
サンプリング時間	t SAMP	FR = 1 : 18	tсук	1.4		72	μs
		FR = 0 : 36	tсук	2.9		144	μs
アナログ入力電圧	VIAN			AVss		AV _{REF1}	V
アナログ入力インピーダン	Ran				1000		ΜΩ
ス							
基準電圧	AV _{REF1}			3.0		AV _{DD}	V
AVREF1抵抗	Ravref1			3.0	10		kΩ
AV _{REF1} 電流	AIREF1				0.5	1.5	mA
AVD電流	AI _{DD1}				2.0	5.0	mA
	AI _{DD2}					20	mA

- 注1. 量子化誤差 (±1/2 LSB) を含みません。
 - 2. フルスケールに対する比率 (%FSR)で表します。
- 注意 μ PD784938Aのアナログ入力端子は,ポート7(入出力ポート)と兼用していますが,A/D使用時はポート7 のすべての端子を入力ポートに設定してください。このときには,A/Dアナログ入力として使用していない 端子でも出力ポートとして使用できません(出力ポートとしてのデータ反転動作が,A/Dの精度を低下させるため)。

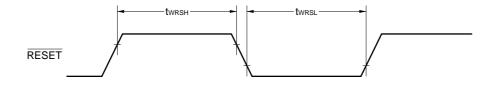

シリアル・オペレーション (CSI, CSI3)


シリアル・オペレーション (IOE1, IOE2)

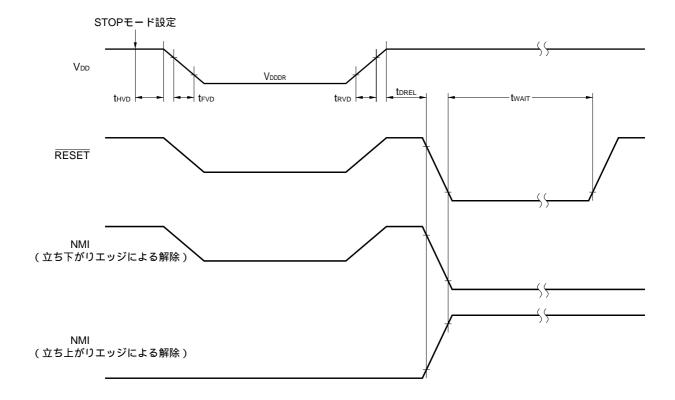
シリアル・オペレーション (UARTO, UART2)



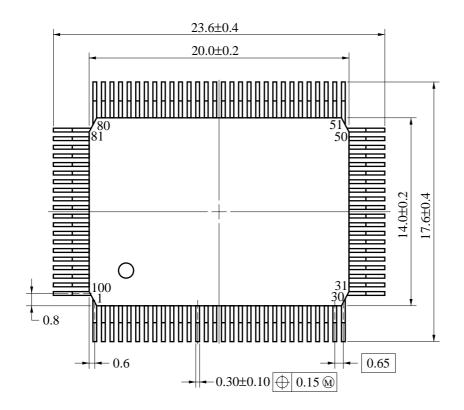
クロック出力タイミング



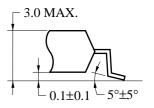
割り込み要求入力タイミング

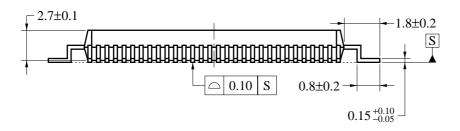


リセット入力タイミング



データ保持特性




17. 外形図

★ 100ピン・プラスチック QFP (14x20)外形図 (単位:mm)

端子先端形状詳細図

P100GF-65-3BA1-4

備考 ES品の外形や材質は,量産品と同じです。

18. 半田付け推奨条件

μPD784938Aの半田付け実装は,次の推奨条件で実施してください。

半田付け推奨条件の詳細は,インフォメーション資料「半導体デバイス実装マニュアル」(C10535J)を参照してください。

なお,推奨条件以外の半田付け方式および半田付け条件については,当社販売員にご相談ください。

表18-1 表面実装タイプの半田付け条件

 μ PD784935AGF-×××-3BA: 100ピン・プラスチックQFP (14×20)

 μ PD784936AGF- \times \times \times -3BA : μ PD784937AGF- \times \times \times -3BA : μ PD784938AGF- \times \times \times -3BA : μ

半田付け方式	半田付け条件	推奨条件記号
赤外線リフロ	パッケージ・ピーク温度:235 ,時間:30秒以内(210 以上),	IR35-00-2
	回数:2回以内	
VPS	パッケージ・ピーク温度:215 ,時間:40秒以内(200 以上),	VP15-00-2
	回数:2回以内	
ウエーブ・ソルダリング	半田槽温度:260 以下,時間:10秒以内,回数1回,	WS60-00-1
	予備加熱温度:120 MAX.(パッケージ表面温度)	
端子部分加熱	端子温度:300 以下,時間:3秒以内(デバイスの一辺当たり)	_

注意 半田付け方式の併用はお避けください(ただし,端子部分加熱方式は除く)。

付録A. 開発ツール

 μ PD784938Aを使用するシステム開発のために,次のような開発ツールを用意しています。

(5) 開発ツールを使用する際の注意も参照してください。

(1)言語処理用ソフトウエア

RA78K4	78K/ シリーズ共通のアセンブラ・パッケージ
CC78K4	78K/ シリーズ共通のCコンパイラ・パッケージ
DF784937	μ PD784938Aサブシリーズ用デバイス・ファイル
CC78K4-L	78K/ シリーズ共通のCコンパイラ・ライブラリ・ソース・ファイル

(2) フラッシュ・メモリ書き込み用ツール

*	Flashpro	フラッシュ・メモリ内蔵マイコン専用のフラッシュ・ライタ。
	(PG-FP)	
	FA-100GF	100ピン・プラスチックQFP(GF-3BAタイプ)用フラッシュ・メモリ書き込み用アダプタ。
		対象製品にあわせて結線が必要です。

(3) ディバグ用ツール

・インサーキット・エミュレータ IE-78K4-NSを使用する場合

IE-78K4-NS	78K/ シリーズ共通のインサーキット・エミュレータ
IE-70000-MC-PS-B	IE-78K4-NS電源ユニット
IE-70000-98-IF-C	ホスト・マシンとしてPC-9800シリーズ(ノート型パソコンを除く)を使用するときに必要なイ
	ンタフェース・アダプタ
IE-70000-CD-IF-C	ホスト・マシンとしてPC-9800シリーズのノート型パソコンを使用するときに必要なPCカードと
	ケーブル
IE-70000-PC-IF-C	ホスト・マシンとしてIBM PC/AT™互換機を使用するときに必要なインタフェース・アダプタ
IE-784937-NS-EM1	μ PD784938Aサブシリーズをエミュレーションするためのエミュレーション・ボード
NP-100GF	100ピン・プラスチックQFP(GF-3BAタイプ)用エミュレーション・プローブ
EV-9200GF-100	100ピン・プラスチックQFP(GF-3BAタイプ)用に作られたターゲット・システムの基板上に実
	装するソケット
ID78K4-NS	IE-78K4-NS用統合ディバッガ
SM78K4	78K/ シリーズ共通のシステム・シミュレータ
DF784937	μ PD784938Aサブシリーズ用デバイス・ファイル

・インサーキット・エミュレータ IE-784000-Rを使用する場合

IE-784000-R	78K/ シリーズ共通のインサーキット・エミュレータ
IE-70000-98-IF-B	ホスト・マシンとしてPC-9800シリーズ(ノート型パソコンを除く)を使用するときに必要なイ
IE-70000-98-IF-C	ンタフェース・アダプタ
IE-70000-98N-IF	ホスト・マシンとしてPC-9800シリーズのノート型パソコンを使用するときに必要なインタフェ
	ース・アダプタとケーブル
IE-70000-PC-IF-B	ホスト・マシンとしてIBM PC/AT互換機を使用するときに必要なインタフェース・アダプタ
IE-70000-PC-IF-C	
IE-78000-R-SV3	ホスト・マシンとしてEWSを使用するときのインタフェース・アダプタとケーブル
IE-784937-NS-EM1	μ PD784938Aサブシリーズをエミュレーションするためのエミュレーション・ボード
IE-784000-R-EM	78K/ シリーズ共通のエミュレーション・ボード
IE-78K4-R-EX2	IE-784937-NS-EM1をIE-784000-R上で使用するときに必要なエミュレーション・プローブ変換ボ
	ード。
EP-78064GF-R	100ピン・プラスチックQFP(GF-3BAタイプ)用エミュレーション・プローブ
EV-9200GF-100	100ピン・プラスチックQFP(GF-3BAタイプ)用に作られたターゲット・システムの基板上に実
	装するソケット
ID78K4	IE-784000-R用統合ディバッガ
SM78K4	78K/ シリーズ共通のシステム・シミュレータ
DF784937	μ PD784938Aサブシリーズ用デバイス・ファイル

(4) **リアルタイム**OS

RX78K/	78K/ シリーズ用リアルタイムOS
MX78K4	78K/ シリーズ用OS

(5) 開発ツールを使用する際の注意

- ・ID78K4-NS, ID78K4, SM78K4は, DF784937と組み合わせて使用します。
- ・CC78K4, RX78K/ は, RA78K4およびDF784937と組み合わせて使用します。
- ・Flashpro , FA-100GF, NP-100GFは,株式会社内藤電誠町田製作所(TEL(044)822-3813)の製品です。
- ・各ソフトウエアに対応するホスト・マシンとOSは次のとおりです。

ホスト・マシン	PC	EWS
[08]	PC-9800シリーズ [Windows]	HP9000シリーズ700 [™] [HP-UX [™]]
	IBM PC/AT互換機[日本語/英語Windows]	SPARCstation [™] [SunOS [™] , Solaris [™]]
ソフトウエア		NEWS [™] (RISC) [NEWS-OS [™]]
RA78K4	注	
CC78K4	注	
ID78K4-NS		-
ID78K4		
SM78K4		-
RX78K/	注	
MX78K4	注	

注 DOSベースのソフトウエアです。

付録B. 関連資料

関連資料は暫定版の場合がありますが,この資料では「暫定」の表示をしておりません。あらかじめご了承ください。

デバイスの関連資料

	資料 名		資料番号	
		和 文	英 文	
	μ PD784935A, 784936A, 784937A, 784938A データ・シート	この資料	作成予定	
*	μPD78F4938A データ・シート	U14118J	作成予定	
*	μ PD784938サブシリーズ ユーザーズ・マニュアル ハードウエア編	U13987J	U13987E	
	μ PD784937サブシリーズ 特殊機能レジスタ活用表	作成予定	-	
	78K/ シリーズ ユーザーズ・マニュアル 命令編	U10905J	U10905E	
	78K/ シリーズ インストラクション活用表	U10594J	-	
	78K/ シリーズ インストラクション・セット	U10595J	-	
	78K/ シリーズ アプリケーション・ノート ソフトウエア基礎編	U10095J	U10095E	

開発ツールの資料 (ユーザーズ・マニュアル)

資料名		資料	資料番号	
		和 文	英文	
RA78K4 アセンブラ・パッケージ	言語編	U11162J	U11162E	
	操作編	U11334J	U11334E	
	構造化アセンブラ・プリ	U11743J	U11743E	
	プロセッサ			
CC78K4 Cコンパイラ	言語編	U11571J	U11571E	
	操作編	U11572J	U11572E	
IE-78K4-NS		U13356J	U13356E	
IE-784000-R		U12903J	U12903E	
IE-784937-NS-EM1		作成予定	作成予定	
PG-FP3(フラッシュ・メモリ・プログラマ)		U13502J	U13502E	
EP-78064		EEU-934	EEU-1469	
SM78K4 システム・シミュレータ Windowsベース	レファレンス編	U10093J	U10093E	
SM78Kシリーズ システム・シミュレータ Ver.1.40以上	外部部品ユーザ・オープ	U10092J	U10092E	
	ン・インタフェース仕様			
	編			
ID78K4-NS 統合ディバッガ Windowsベース	レファレンス編	U12796J	U12796E	
ID78K4 統合ディバッガ Windowsベース	レファレンス編	U10440J	U10440E	

注意 上記関連資料は,予告なしに内容を変更することがあります。設計などには,必ず最新の資料をご使用ください。

組み込み用ソフトウエアの資料 (ユーザーズ・マニュアル)

資 料 名		資料番号	
		和文	英 文
78K/ シリーズ リアルタイムOS	基礎編	U10603J	U10603E
	インストール編	U10604J	U10604E
	ディバッガ編	U10364J	-
78K/ シリーズ用OS MX78K4	基礎編	U11779J	U11779E

その他の資料

資料名	資料	番号
	和文	英 文
SEMICONDUCTOR SELECTION GUIDE Products & Packages (CD-ROM)	X13769X	
半導体デバイス 実装マニュアル	C10535J	C10535E
NEC半導体デバイスの品質水準	C11531J	C11531E
NEC半導体デバイスの信頼性品質管理	U10983J	U10983E
静電気放電(ESD)破壊対策ガイド	C11892J	C11892E
半導体 品質 / 信頼性ハンドブック	C12769J	-
マイクロコンピュータ関連製品ガイド 社外メーカ編	U11416J	-

注意 上記関連資料は,予告なしに内容を変更することがあります。設計などには,必ず最新の資料をご使用ください。

CMOSデバイスの一般的注意事項

静電気対策 (MOS全般)

注意 MOSデバイス取り扱いの際は静電気防止を心がけてください。

MOSデバイスは強い静電気によってゲート絶縁破壊を生じることがあります。運搬や保存の際には、NECが出荷梱包に使用している導電性のトレーやマガジン・ケース、または導電性の緩衝材、金属ケースなどを利用し、組み立て工程にはアースを施してください。プラスチック板上に放置したり、端子を触ったりしないでください。

また,MOSデバイスを実装したボードについても同様の扱いをしてください。

未使用入力の処理 (CMOS特有)

注意 CMOSデバイスの入力レベルは固定してください。

バイポーラやNMOSのデバイスと異なり、CMOSデバイスの入力に何も接続しない状態で動作させると、ノイズなどに起因する中間レベル入力が生じ、内部で貫通電流が流れて誤動作を引き起こす恐れがあります。プルアップかプルダウンによって入力レベルを固定してください。また、未使用端子が出力となる可能性(タイミングは規定しません)を考慮すると、個別に抵抗を介してV∞またはGNDに接続することが有効です。

資料中に「未使用端子の処理」について記載のある製品については、その内容を守ってください。

初期化以前の状態 (MOS全般)

注意 電源投入時, MOSデバイスの初期状態は不定です。

分子レベルのイオン注入量等で特性が決定するため、初期状態は製造工程の管理外です。電源投入時の端子の出力状態や入出力設定、レジスタ内容などは保証しておりません。ただし、リセット動作やモード設定で定義している項目については、これらの動作ののちに保証の対象となります。

リセット機能を持つデバイスの電源投入後は、まずリセット動作を実行してください。

FIPは,日本電気株式会社の登録商標です。

IEBusは, EEPROMは, 日本電気株式会社の商標です。

Windowsは、米国Microsoft Corporationの米国およびその他の国における登録商標または商標です。

PC/ATは,米国IBM社の商標です。

HP9000シリーズ700, HP-UXは,米国ヒューレット・パッカード社の商標です。

SPARCstationは,米国SPARC International, Inc.の商標です。

Solaris, SunOSは,米国サン・マイクロシステムズ社の商標です。

NEWS, NEWS-OSは, ソニー株式会社の商標です。

本製品が外国為替および外国貿易管理法の規定による規制貨物等(または役務)に該当するか否かは、ユーザ (仕様を決定した者)が判定してください。

- 本資料の内容は予告なく変更することがありますので,最新のものであることをご確認の上ご使用くだ さい。
- 文書による当社の承諾なしに本資料の転載複製を禁じます。
- 本資料に記載された製品の使用もしくは本資料に記載の情報の使用に際して,当社は当社もしくは第三 者の知的財産権その他の権利に対する保証または実施権の許諾を行うものではありません。上記使用に 起因する第三者所有の権利にかかわる問題が発生した場合、当社はその責を負うものではありませんの でご了承ください。
- 本資料に記載された回路,ソフトウエア,及びこれらに付随する情報は,半導体製品の動作例,応用例 を説明するためのものです。従って、これら回路・ソフトウエア・情報をお客様の機器に使用される場 合には、お客様の責任において機器設計をしてください。これらの使用に起因するお客様もしくは第三 者の損害に対して,当社は一切その責を負いません。
- 当社は品質,信頼性の向上に努めていますが,半導体製品はある確率で故障が発生します。当社半導体 製品の故障により結果として,人身事故,火災事故,社会的な損害等を生じさせない冗長設計,延焼対 策設計,誤動作防止設計等安全設計に十分ご注意願います。
- 当社は,当社製品の品質水準を「標準水準」,「特別水準」およびお客様に品質保証プログラムを指定 して頂く「特定水準」に分類しております。また,各品質水準は以下に示す用途に製品が使われること を意図しておりますので、当社製品の品質水準をご確認の上ご使用願います。

標準水準:コンピュータ,OA機器,通信機器,計測機器,AV機器,家電,工作機械,パーソナル機 器,産業用ロボット

特別水準:輸送機器(自動車,列車,船舶等),交通用信号機器,防災/防犯装置,各種安全装置, 生命維持を直接の目的としない医療機器

特定水準:航空機器,航空宇宙機器,海底中継機器,原子力制御システム,生命維持のための医療機 器,生命維持のための装置またはシステム等

当社製品のデータ・シート/データ・ブック等の資料で、特に品質水準の表示がない場合は標準水準製 品であることを表します。当社製品を上記の「標準水準」の用途以外でご使用をお考えのお客様は,必 ず事前に当社販売窓口までご相談頂きますようお願い致します。

M7 988

- お問い合わせ先

【技術的なお問い合わせ先】

044-435-9494 044-435-9608 NEC半導体テクニカルホットライン

(電話:午前9:00~12:00,午後1:00~5:00) s-info@saed.tmg.nec.co.jp

【営業関係お問い合わせ先】

第一販売事業部	第二販売事業部	第三販売事業部
東 京 (03)3798-6106, 6107,	東 京 (03)3798-6110,6111,	東 京 (03)3798-6151, 6155, 6586,
6108	6112	1622, 1623, 6156
名古屋 (052)222-2375	立 川 (042)526-5981, 6167	水 戸 (029)226-1702
大阪 (06)6945-3178, 3200,		広島 (082)242-5504
3208, 3212	松 本 (0263)35-1662	高 崎 (027)326-1303
仙 台 (022)267-8740	静 岡 (054)254-4794	鳥 取 (0857)27-5313
,	金 沢 (076)232-7303	太田 (0276)46-4014
郡 山 (024)923-5591	,	名古屋 (052)222-2170, 2190
千 葉 (043)238-8116	松 山 (089)945-4149	福 岡 (092)261-2806

【資料の請求先】

上記営業関係お問い合わせ先またはNEC特約店へお申しつけください。

【インターネット電子デバイス・ニュース】

NECエレクトロンデバイスの情報がインターネットでご覧になれます。 URL(アドレス) http://www.ic.nec.co.jp/