カタログ等資料中の旧社名の扱いについて

2010年4月1日を以ってNECエレクトロニクス株式会社及び株式会社ルネサステクノロジ が合併し、両社の全ての事業が当社に承継されております。従いまして、本資料中には旧社 名での表記が残っておりますが、当社の資料として有効ですので、ご理解の程宜しくお願い 申し上げます。

ルネサスエレクトロニクス ホームページ (http://www.renesas.com)

2010年4月1日 ルネサスエレクトロニクス株式会社

【発行】ルネサスエレクトロニクス株式会社(http://www.renesas.com)

【問い合わせ先】http://japan.renesas.com/inquiry

ご注意書き

- 本資料に記載されている内容は本資料発行時点のものであり、予告なく変更することがあります。当社製品のご購入およびご使用にあたりましては、事前に当社営業窓口で最新の情報をご確認いただきますとともに、当社ホームページなどを通じて公開される情報に常にご注意ください。
- 2. 本資料に記載された当社製品および技術情報の使用に関連し発生した第三者の特許権、著作権その他の知的 財産権の侵害等に関し、当社は、一切その責任を負いません。当社は、本資料に基づき当社または第三者の 特許権、著作権その他の知的財産権を何ら許諾するものではありません。
- 3. 当社製品を改造、改変、複製等しないでください。
- 4. 本資料に記載された回路、ソフトウェアおよびこれらに関連する情報は、半導体製品の動作例、応用例を説明するものです。お客様の機器の設計において、回路、ソフトウェアおよびこれらに関連する情報を使用する場合には、お客様の責任において行ってください。これらの使用に起因しお客様または第三者に生じた損害に関し、当社は、一切その責任を負いません。
- 5. 輸出に際しては、「外国為替及び外国貿易法」その他輸出関連法令を遵守し、かかる法令の定めるところに より必要な手続を行ってください。本資料に記載されている当社製品および技術を大量破壊兵器の開発等の 目的、軍事利用の目的その他軍事用途の目的で使用しないでください。また、当社製品および技術を国内外 の法令および規則により製造・使用・販売を禁止されている機器に使用することができません。
- 6. 本資料に記載されている情報は、正確を期すため慎重に作成したものですが、誤りがないことを保証するものではありません。万一、本資料に記載されている情報の誤りに起因する損害がお客様に生じた場合においても、当社は、一切その責任を負いません。
- 7. 当社は、当社製品の品質水準を「標準水準」、「高品質水準」および「特定水準」に分類しております。また、 各品質水準は、以下に示す用途に製品が使われることを意図しておりますので、当社製品の品質水準をご確 認ください。お客様は、当社の文書による事前の承諾を得ることなく、「特定水準」に分類された用途に当 社製品を使用することができません。また、お客様は、当社の文書による事前の承諾を得ることなく、意図 されていない用途に当社製品を使用することができません。当社の文書による事前の承諾を得ることなく、意図 されていない用途に当社製品を使用することができません。当社の文書による事前の承諾を得ることなく、 「特定水準」に分類された用途または意図されていない用途に当社製品を使用したことによりお客様または 第三者に生じた損害等に関し、当社は、一切その責任を負いません。なお、当社製品のデータ・シート、デ ータ・ブック等の資料で特に品質水準の表示がない場合は、標準水準製品であることを表します。
 - 標準水準: コンピュータ、OA 機器、通信機器、計測機器、AV 機器、家電、工作機械、パーソナル機器、 産業用ロボット
 - 高品質水準:輸送機器(自動車、電車、船舶等)、交通用信号機器、防災・防犯装置、各種安全装置、生命 維持を目的として設計されていない医療機器(厚生労働省定義の管理医療機器に相当)
 - 特定水準: 航空機器、航空宇宙機器、海底中継機器、原子力制御システム、生命維持のための医療機器(生命維持装置、人体に埋め込み使用するもの、治療行為(患部切り出し等)を行うもの、その他 直接人命に影響を与えるもの)(厚生労働省定義の高度管理医療機器に相当)またはシステム 等
- 8. 本資料に記載された当社製品のご使用につき、特に、最大定格、動作電源電圧範囲、放熱特性、実装条件その他諸条件につきましては、当社保証範囲内でご使用ください。当社保証範囲を超えて当社製品をご使用された場合の故障および事故につきましては、当社は、一切その責任を負いません。
- 9. 当社は、当社製品の品質および信頼性の向上に努めておりますが、半導体製品はある確率で故障が発生したり、使用条件によっては誤動作したりする場合があります。また、当社製品は耐放射線設計については行っておりません。当社製品の故障または誤動作が生じた場合も、人身事故、火災事故、社会的損害などを生じさせないようお客様の責任において冗長設計、延焼対策設計、誤動作防止設計等の安全設計およびエージング処理等、機器またはシステムとしての出荷保証をお願いいたします。特に、マイコンソフトウェアは、単独での検証は困難なため、お客様が製造された最終の機器・システムとしての安全検証をお願いいたします。
- 10. 当社製品の環境適合性等、詳細につきましては製品個別に必ず当社営業窓口までお問合せください。ご使用 に際しては、特定の物質の含有・使用を規制する RoHS 指令等、適用される環境関連法令を十分調査のうえ、 かかる法令に適合するようご使用ください。お客様がかかる法令を遵守しないことにより生じた損害に関し て、当社は、一切その責任を負いません。
- 11. 本資料の全部または一部を当社の文書による事前の承諾を得ることなく転載または複製することを固くお 断りいたします。
- 12. 本資料に関する詳細についてのお問い合わせその他お気付きの点等がございましたら当社営業窓口までご 照会ください。
- 注1. 本資料において使用されている「当社」とは、ルネサスエレクトロニクス株式会社およびルネサスエレク トロニクス株式会社がその総株主の議決権の過半数を直接または間接に保有する会社をいいます。
- 注 2. 本資料において使用されている「当社製品」とは、注 1 において定義された当社の開発、製造製品をいい ます。

SDI RAMモニタ R0K332100Z000BR ユーザーズマニュアル M32R/ECU用SDI仕様RAMモニタ

Rev.1.00 2007.03

安全設計に関するお願い

 弊社は品質、信頼性の向上に努めておりますが、半導体製品は故障が発生したり、 誤動作する場合があります。弊社の半導体製品の故障又は誤動作によって結果とし て、人身事故、火災事故、社会的損害などを生じさせないような安全性を考慮した 冗長設計、延焼対策設計、誤動作防止設計などの安全設計に十分ご留意ください。

本資料ご利用に際しての留意事項

- 本資料は、お客様が用途に応じた適切なルネサス テクノロジ製品をご購入いただく ための参考資料であり、本資料中に記載の技術情報についてルネサス テクノロジが 所有する知的財産権その他の権利の実施、使用を許諾するものではありません。
- 本資料に記載の製品データ、図、表、プログラム、アルゴリズム その他応用回路例の使用に起因する損害、第三者所有の権利に対する侵害に関し、ルネサス テクノロジは責任を負いません。
- 3. 本資料に記載の製品データ、図、表、プログラム、アルゴリズムその他全ての情報 は本資料発行時点のものであり、ルネサス テクノロジは、予告なしに、本資料に 記載した製品または仕様を変更することがあります。ルネサス テクノロジ半導体製 品のご購入に当たりましては、事前にルネサス テクノロジ、ルネサス販売または特 約店へ最新の情報をご確認頂きますとともに、ルネサス テクノロジ ホームページ (http://www.renesas.com) などを通じて公開される情報に常にご注意ください。
- 本資料に記載した情報は、正確を期すため、慎重に制作したものですが万一本資料の記述誤りに起因する損害がお客様に生じた場合には、ルネサス テクノロジはその責任を負いません。
- 5. 本資料に記載の製品データ、図、表に示す技術的な内容、プログラム及びアルゴリズムを流用する場合は、技術内容、プログラム、アルゴリズム単位で評価するだけでなく、システム全体で十分に評価し、お客様の責任において適用可否を判断してください。ルネサステクノロジは、適用可否に対する責任は負いません。
- 6. 本資料に記載された製品は、人命にかかわるような状況の下で使用される機器ある いはシステムに用いられることを目的として設計、製造されたものではありません。 本資料に記載の製品を運輸、移動体用、医療用、航空宇宙用、原子力制御用、海底 中継用機器あるいはシステムなど、特殊用途へのご利用をご検討の際には、ルネサス テクノロジ、ルネサス販売または特約店へご照会ください。
- 本資料の転載、複製については、文書によるルネサス テクノロジの事前の承諾が必要です。
- 8. 本資料に関し詳細についてのお問い合わせ、その他お気付きの点がございましたら ルネサス テクノロジ、ルネサス販売または特約店までご照会ください。

はじめに

この度は、ルネサス テクノロジ製 SDI RAMモニタをご購入いただき、誠にありがとうございます。

SDI RAMモニタ(R0K332100Z000BR)は、M32R/ECU用のデバッグインタフェース SDI (Scalable Debug Interface)を使用したRAMモニタ製品です。製品付属のコントロールソフトウェア Jram32R_usbと共に使用 することで、M32R/ECUのプログラム開発を支援します。

本製品の梱包内容は、「製品パッケージ内容(12ページ)」に記載していますのでご確認ください。梱包 内容についてお気付きの点がございましたら、最寄りのルネサス テクノロジ、ルネサス ソリューションズ、 ルネサス販売または特約店へお問い合わせください。

本ユーザーズマニュアルは、SDI RAMモニタの仕様、セットアップ方法、操作方法を中心に説明しています。Cコンパイラなど関連する製品については、各製品に付属のユーザーズマニュアルを参照してください。関連する製品のユーザーズマニュアルを以下に示します。これらの最新版は、弊社開発環境ホームページ(http://japan.renesas.com/tools)で入手可能です。

- ・C/C++コンパイラ: CC32Rユーザーズマニュアル
- ・アセンブラ: AS32Rユーザーズマニュアル
- ・統合開発環境: HEWユーザーズマニュアル

重要事項

本製品をご使用になる前に、必ずユーザーズマニュアルをよく読んで理解してください。また、ユーザー ズマニュアルは必ず保管し、使用上不明な点がある場合は再読してください。

・SDI RAMモニタとは:

本ユーザーズマニュアルにおいて、SDI RAMモニタとは、ルネサス テクノロジ製 R0K332100Z000BRを 指します。お客様のユーザシステムおよびホストPCは含みません。

・SDI RAMモニタの使用目的:

本製品は、ルネサス M32R/ECUシリーズのMCUを使用したシステムの開発支援装置です。ソフトウェア とハードウェアの両面から、システム開発を支援します。また本製品は、生産ラインでの使用を保証する 装置ではありません。この使用目的に従って、本製品を正しく使用してください。本目的以外の使用を堅 くお断りします。

・SDI RAMモニタを使用する人は:

本製品は、ユーザーズマニュアルをよく読み、理解した人のみご使用ください。本製品を使用するうえで、 電気回路、論理回路およびマイクロコンピュータの基本的な知識が必要です。

・本製品のご利用に際して:

- (1) 本製品は、プログラムの開発、評価段階に使用する開発支援装置です。開発の完了したプログラムを量 産される場合には、必ず事前に実装評価、試験などにより、お客様の責任において適用可否を判断して ください。
- (2) 本製品を使用したことによるお客様での開発結果については、一切の責任を負いません。
- (3)弊社は、本製品の不具合に対する回避策の提示または不具合改修などについて、有償もしくは無償の対応に努めます。ただし、いかなる場合でも回避策の提示または不具合改修を保証するものではありません。
- (4) 本製品は、プログラムの開発、評価用に実験室での使用を想定して準備された製品です。国内での使用 に際し、電気用品安全法および電磁波障害対策の適用を受けておりません。
- (5)弊社は、潜在的な危険が存在するおそれのある、すべての起こりうる諸状況や誤使用を予見できません。 したがって、本ユーザーズマニュアルと本製品に示されている警告がすべてではありません。お客様の 責任で、本製品を正しく安全に使用してください。
- (6) 本製品は、ULなどの安全規格、IECなどの規格を取得しておりません。したがって、日本国内から海外 に持ち出される場合は、この点をご承知おきください。

• 使用制限:

本製品は、開発支援用として開発したものです。したがって、機器組み込み用として使用しないでください。また、以下に示す開発用途に対しても使用しないでください。

- (1) 運輸、移動体用
- (2) 医療用(人命にかかわる装置用)
- (3) 航空宇宙用
- (4) 原子力制御用
- (5) 海底中継用

このような目的で本製品の採用をお考えのお客様は、ルネサス テクノロジ、ルネサス ソリューションズ、 ルネサス販売または特約店へご連絡いただきますようお願いいたします。

RENESAS

・権利について:

- (1) 本資料に記載された情報、製品または回路の使用に起因する損害または特許権その他権利の侵害に関して、弊社は一切その責任を負いません。
- (2) 本資料によって第三者または弊社の特許権その他権利の実施権を許諾するものではありません。
- (3) このユーザーズマニュアルおよび本製品は著作権で保護されており、すべての権利は弊社に帰属してい ます。このユーザーズマニュアルの一部であろうと全部であろうといかなる箇所も、弊社の書面による 事前の承諾なしに、複写、複製、転載することはできません。

図について:

このユーザーズマニュアルの一部の図は、実物と違っていることがあります。

安全事項

シグナルワードの定義

ユーザーズマニュアルおよび製品への表示では、本製品を正しくご使用いただき、あなたや他の人々への 危害や財産への損害を未然に防止するために、いろいろな絵表示をしています。

安全事項では、その絵表示と意味を示し、本製品を安全に正しくご使用いただくための注意事項を説明し ます。ここに記載している内容をよく理解してからご使用ください。

RENESAS

目 次

	ページ
はじめに	
重要事項	4
安全事項	6
用語説明	
1. 概 要	11
1.1. 対応MCU	11
1.2. 製品概要	11
1.3. システム構成	11
1.4. 製品パッケージ内容	
1.5. ソフトウェア動作環境	
1.6. PCインタフェース	
1.7. 仕様一覧	
1.8. 各部の名称と機能	
1.9. 使用環境条件	16
	47
2. セットアッノ	
2.1. ナハック開始までの手順	
2.2. コントロールソフトウェアのインストール	
2.3. USBナハ1 ストフ1 ハの1 ノストール	
2.4. DU电源との技術	
2.5. ユーリンスナムとの接続	
2.0. 小へ下FCCの接続	
2.7. 电線の投入 2.8 ステータスIEDま元の確認	
2.0. ヘ) ̄タヘLED扱小の唯記 2.0 USBデバイスドライバの登録	
2.0.000/パーハー シーパの豆球	21
2.10. コントロ ルソント ジェアの起動 2.11 ファームウェアのダウンロード	21
3. コントロールソフトウェアの使用方法	
3.1. ファイル構成	
3.2. 機能概要	
3.3. GUIの起動と終了	23
3.4. RAMモニタ機能	25
3.5. 疑似フラッシュエミュレーション機能	
3.6. フラッシュE/W機能	
3.7. バージョンの表示	
	0.1
4. ハートリエド任禄	
4.1.5V電源入力コイソダ	
4.2.12V電源人力コイクタ	
4.3. SUI MUU 利 御 インダノエー 人 コ イクタ	
4.4. AU/UA1 ノダノエースコイクダ	
4.5. 1ヘント人刀1ンダノエー人コネクタ	
5. 保守と保証	
5.1. 保守	
5.2. 保証内容	
5.3. 修理規定	
5.4. 修理依頼方法	

用語説明

本書で使用する用語は、以下に示すように定義し使用します。

- SDI RAMモニタ(R0K332100Z000BR)
 M32R/ECU用SDI仕様RAMモニタである、本製品を指します。
- ・コントロールソフトウェア Jram32R_usb
 ホストPCからUSBインタフェースを介してSDI RAMモニタを制御する、コントロールソフトウェアGUI
 を指します。
- ・ファームウェア
 SDI RAMモニタの内部に格納されている、制御プログラムを指します。コントロールソフトウェアとの 通信内容を解析して、SDI RAMモニタのハードウェアを制御します。コントロールソフトウェアのバー ジョンアップ時など、必要に応じてファームウェアアップデータでダウンロードすることができます。
- ・ファームウェアアップデータ SendMot ファームウェアをダウンロードするためのユーティリティソフトウェアです。
- ・ホストPC SDI RAMモニタを制御するためのパーソナルコンピュータを指します。
- ・ターゲットMCU デバッグ対象のM32R/ECUシリーズMCUを指します。
- ・ユーザシステム
 ターゲットMCUを使用した、お客様のアプリケーションシステムを指します。
- ・ユーザプログラム
 デバッグ対象のアプリケーションプログラムを指します。
- JTAG接続
 SDI RAMモニタとユーザシステム上のターゲットMCUを、SDIインタフェースケーブルで接続する形態 を指します。この場合、ユーザシステム上のターゲットMCUがユーザプログラムを実行します。
- ・信号名の最後につく "#"の意味 本書では "L"アクティブの信号を表記するため信号名の末尾に "#"を付加しています(例: RESET#)。

1. 概 要

1.1. 対応MCU

・M32R/ECUシリーズMCU

1.2. 製品概要

SDI RAMモニタ(R0K332100Z000BR)は、M32R/ECU用のデバッグインタフェース SDI (Scalable Debug Interface)を使用したRAMモニタ製品です。製品付属のコントロールソフトウェア Jram32R_usbと共に使用 することで、M32R/ECUのプログラム開発を支援します。

1.3. システム構成

SDI RAMモニタは、MCU内蔵のデバッグインタフェース SDI を使用しているため、ユーザシステム上のターゲットMCUとのJTAG接続が可能です。図1.1に、SDI RAMモニタのシステム構成を示します。

図1.1 SDI RAMモニタのシステム構成

- ・付属のSDIインタフェースケーブルを使用して、ユーザシステムとJTAG接続します。ユーザシステム上 にSDI MCU制御インタフェースコネクタ(10ピン)をご用意ください。
- ・ユーザシステム上のターゲットMCUを実機で評価することが可能です。ターゲットMCUは、ユーザシス テム上に実装されているため、電気的等価性や接触不良に関する問題は発生しません。

1.4. 製品パッケージ内容

表1.1に、SDI RAMモニタの製品パッケージ内容を示します。

表1.1 SDI RAMモニタの製品パッケージ内容

項目	内 容	数量
SDI RAMモニタ	R0K332100Z000BR	1
USBインタフェースケーブル	1.8m, USB 2.0認定品, SDI RAMモニタに装着済み	1
SDI MCU制御インタフェースケーブル	11cm, 10極1.27mmピッチ, 専用ロックコネクタ付き	1
イベント入力ケーブル	20cm, 4極, 専用ロックコネクタ付き	1
5V電源ケーブル	20cm, 2極, 専用ロックコネクタおよびヒューズ付き	1
12V電源ケーブル	20cm, 2極, 専用ロックコネクタおよびヒューズ付き	1
ソフトウェアCD-ROM	コントロールソフトウェア、ユーザーズマニュアルなど	1

1.5. ソフトウェア動作環境

・IBM PC/AT互換機(Windows XP, Windows 2000)

1.6. PCインタフェース

・USBインタフェース (USB 2.0 ハイスピード)

1.7. 仕様一覧

表1.2に、SDI RAMモニタの外部仕様を示します。

表1.2 SDI RAMモニタの外部仕様

項目		内 容
対応MCU		M32R/ECUシリーズ
動作モード		モニタモード/トレースモード
モニタモード	概 要	指定アドレスの内容を非同期に読み出す
	サンプル速度	ホストPCの動作状況、性能に依存(参考:1Kバイト/100ms)
	メモリ書き換え	可能
トレースモード	概 要	指定周期ごとに指定アドレスの内容をトレースメモリに格納する
	周期	$1 \text{ms} \sim 1 \text{s}$
	ポイント数	最大999点
	サンプル速度	最大 32点/1ms
	開始トリガ	外部イベント、データ比較、リセット解除、電源入力
	停止トリガ	強制停止、メモリFULL
	トレース量	16Mバイト(メモリFULL/FREE:上書き)
	メモリ書き換え	不可能(トレース停止中は書き換え可能)
実行制御		リセット、実行開始、強制ブレーク
ホストPCとの接	続	USB 2.0 ハイスピード
ユーザシステム	との接続	JTAG接続
イベント入力		2点
AD/DA基板接続		機能拡張用(未サポート)
5V電源		付属の 5V電源ケーブルにて 5.0V±5% 0.5Aを供給
12V電源		付属の12V電源ケーブルにて12.0V±5% 0.5Aを供給
外形寸法(突起部を除く)		横幅:172.0mm, 奥行き:104.0mm, 高さ:33.1mm
使用時環境条件	温度、湿度	$-20 \sim 80^{\circ}$ C, $20 \sim 80\%$
	塵、ほこり	一般事務所程度
保管時環境条件	温度、湿度	$-20 \sim 80^{\circ}$ C, $0 \sim 90\%$
	塵、ほこり	一般事務所程度
海外規格		適合なし

1.8. 各部の名称と機能

1.8.1. SDI RAMモニタの外観

図1.2に、SDI RAMモニタの外観を示します。

図1.2 SDI RAMモニタの外観

1.8.2. ユーザステータスLED(STATUS OF USER)

ユーザステータスLEDは、ユーザシステムの動作状態を表示します。表1.3に、ユーザステータスLEDの 表示内容を示します。

表1.3 ユーザステータスLEDの表示内容

名 称	色	状態	表示内容
POWER	橙	点灯	・ユーザシステムの電源がオンの状態であることを示します。
		消灯	・ユーザシステムの電源がオフの状態であることを示します。
RUN	緑	点灯	・ユーザプログラム実行中であることを示します。
		消灯	・ユーザプログラム停止中であることを示します。
RESET	橙	点灯	・ターゲットMCUがリセット中であることを示します。
			・ユーザシステムの電源をオフにすると点灯します。
		消灯	・ターゲットMCUがリセット中ではないことを示します。

1.8.3. システムステータスLED (STATUS OF SYSTEM)

システムステータスLEDは、SDI RAMモニタの動作状態を表示します。表1.4に、システムステータス LEDの表示内容を示します。

表1.4 システムステータスLEDの表示内容

名 称	色	状態	表示内容
POWER	橙	点灯	・SDI RAMモニタの電源がオンの状態であることを示します。
		消灯	・SDI RAMモニタの電源がオフの状態であることを示します。
SAFE	緑	点灯	・SDI RAMモニタが正常であることを示します。
		点滅	・ファームウェアをダウンロードする特殊モード (メンテナンスモード) であるこ
			とを示します (500ms間隔の点滅)。
			・ファームウェアのダウンロード中であることを示します (約20ms間隔の点滅)。
		消灯	・SDI RAMモニタが異常であることを示します。
ERROR	赤	点灯	・SDI RAMモニタが異常であることを示します。
			・メンテナンスモードでも点灯します。
		点滅	・SDI RAMモニタが異常であることを示します。
			・ファームウェアのダウンロード中であることを示します (約20ms間隔の点滅)。
		消灯	・SDI RAMモニタが正常であることを示します。
			・起動中は消灯しています。

1.8.4. 電源スイッチ (POWER)

中点オフの三点スイッチです。入力されている電源側に倒すことで電源が入ります。

1.8.5. メンテナンススイッチ(MAINT)

電源投入後 2秒以内にこのスイッチを押すと、メンテナンスモードへ移行します。メンテナンスモード中 は、ファームウェアのダウンロードのみ可能です。

1.8.6. USBインタフェース (USB I/F)

SDI RAMモニタとホストPCを接続するためのUSBインタフェースケーブルです。筐体内部で固定していますので、取り外すことはできません。

1.8.7.5V電源入力コネクタ(5V)

5V電源(5.0V±5%)を入力するためのコネクタです。付属の5V電源ケーブルで電源と接続してください。

1.8.8.12V電源入力コネクタ(12V)

12V電源(12.0V±5%)を入力するためのコネクタです。付属の12V電源ケーブルで電源と接続してください。

1.8.9. SDI MCU制御インタフェースコネクタ(TARGET I/F)

SDI RAMモニタとユーザシステムをJTAG接続するためのコネクタです。付属のSDI MCU制御インタフェ ースケーブルでユーザシステムと接続してください。

1.8.10. イベント入力インタフェースコネクタ(EVENT)

SDI RAMモニタへのイベント入力に使用するためのコネクタです。付属のイベント入力ケーブルで外部 機器と接続してください。

1.8.11. AD/DAインタフェースコネクタ(AD/DA)

AD/DA基板との接続に使用するためのコネクタです。機能拡張用として用意していますが、現状サポートしていません。

1.9. 使用環境条件

本エミュレータは、表1.5に示す使用環境条件を必ず守ってご使用ください。

表1.5 使用環境条件

項目	内 容
動作周囲温度	-20 ~ 80℃ (結露なきこと)
非動作時温度範囲	-20 ~ 80℃ (結露なきこと)

2. セットアップ

2.1. デバッグ開始までの手順

図2.1に、デバッグ開始までの手順を示します。詳細については、次ページ以降で説明します。

図2.1 デバッグ開始までの手順

2.2. コントロールソフトウェアのインストール

コントロールソフトウェアなどのソフトウェアー式を、ホストPCにインストールします。付属CD-ROM のSDI_RAMmonitorフォルダを、ホストPCの適切な場所へコピーしてください。

- ・Jram32R usbフォルダ: SDI RAMモニタのコントロールソフトウェアを格納しています。
- ・RusbDrvInstフォルダ: USBデバイスドライバのインストーラを格納しています。
- ・SendMotフォルダ: SDI RAMモニタのファームウェアアップデータを格納しています。

2.3. USBデバイスドライバのインストール

USBデバイスドライバを、ホストPCにインストールします。ホストPCのOSにWindows XP/2000をご使用 の場合は、Administratorの権限を持つユーザが実行してください。Administratorの権限を持たないユーザで は、インストールを完了することができません。

- (1) RusbDrvInstフォルダにある "RusbDrvInst.exe" を起動してください。
- (2) 以下のダイアログが表示されますので [OK] を押してください。

(3) インストール終了後に、以下のダイアログが表示されますので [OK] を押して終了してください。

2.4. DC電源との接続

5Vまたは12V電源をSDI RAMモニタに接続します。表2.1に、使用可能な電源の仕様を示します。

表2.1 使用可能な電源の仕様

項目	内 容
5V電源	5.0V±5% 0.5A
12V電源	12.0V±5% 0.5A

- (1) 使用する電源スイッチがオフであることを確認してください。
- (2) SDI RAMモニタの電源スイッチがオフであることを確認してください。
- (3) 5V電源を使用する場合は、付属の5V電源ケーブルで接続してください。12V電源を使用する場合は、 付属の12V電源ケーブルで接続してください。どちらの電源ケーブルも赤がプラス極性、黒がマイナス 極性です。

2.5. ユーザシステムとの接続

付属のSDI MCU制御インタフェースケーブルでSDI RAMモニタとユーザシステムをJTAG接続します。ユ ーザシステム上に、SDI MCU制御インタフェースコネクタ(10ピン)をご用意ください。

イベント入力を使用される場合は、付属のイベント入力ケーブルでSDI RAMモニタと外部機器を接続してください。

2.6. ホストPCとの接続

SDI RAMモニタに装着済みのUSBインタフェースケーブル(Aプラグ)を、ホストPCのUSBインタフェー スコネクタに接続してください。

2.7. 電源の投入

ホストPC、SDI RAMモニタ、ユーザシステムの接続をもう一度ご確認ください。

- ・電源オン時は、SDI RAMモニタ → ユーザシステムの順に電源オンしてください。
- ・電源オフ時は、ユーザシステム → SDI RAMモニタの順に電源オフしてください。 電源オフした後に再び電源オンする場合は、5秒程度待ってから電源オンしてください。

2.8. ステータスLED表示の確認

SDI RAMモニタが正常に起動したことを確認します。

システムステータスLED (STATUS OF SYSTEM)のPOWERとSAFEが点灯していることを確認してください。

2.9. USBデバイスドライバの登録

SDI RAMモニタの電源を投入すると、ホストPCがUSBデバイスを検出します。

初めて接続する場合は、USBデバイスドライバの登録が必要です。Windows XPをご使用の場合は、以下の手順でUSBデバイスドライバを登録してください。Windows 2000をご使用の場合は、USBデバイスドライバは自動的に登録されます。

新しいハードウェアの検出ウィザード	新しいハードウェアの検索ウィザードの開始 お使いのコンピュータ、ハードウェアのインストール OD または Windows Update の Web サイトを検索して (ユーザーの 7 解のもとに) 現在のソフトウ コアおよび更新されたソフトウェアを検索します。: フライバシー ポリシーを表示します。: ソフトウェア検索のため、Windows Update (ご接続しますか?) (ない、今回のみ接続します (2) (ない、今回のみ接続します (2) (ない、今回のみ接続します (2) (ない、今回のは接続しません(1)) 後行するには、 D太へ1 をクリックしてください。 スペ(い) キャンセル	[いいえ、今回は接続しません]を 選択して[次へ]を押してください。
新しいハードウェアの検出ウィザード	Cのウィザードでは、次のハードウェアに必要なソフトウェアをインストールします: RSO USB Interface かードウェアに付属のインストール CD またはフロッピー ティ クカがある場合は、挿入してください。 インストール方法を選んでください。 ・ <u>リフトウェアを自動的にインストールする(推築)①</u> C 一覧または特定の場所からインストールする(推築)① C 一覧または特定の場所からインストールする(筆録)⑤ 後行するには、D太へ1をクリックしてください。	[ソフトウェアを自動的にインストー ルする]を選択して [次へ] を押して ください。
新しいハードウェアの検出ウィザード	新しいハードウェアの検索ウィザードの完了 次のハードウェアのソフトウェアのインストールが完了しました: ♪ RSO USB Interface FC71をクリックするとウィザードを閉じます。	自動的にUSBドライバがインストール されます。 [完了]を押して終了してください。

図2.2 Windows XPでのUSBデバイスドライバ登録

2.10. コントロールソフトウェアの起動

Jram32R_usbフォルダにある"Jram32R_usb.exe"を起動してください。

2.11. ファームウェアのダウンロード

SDI RAMモニタ内蔵のファームウェアは、製品出荷時にあらかじめ書き込まれていますが、ファームウェアのバージョンアップ時はホストPCからのダウンロードで更新することが可能です。

- (1) バージョンアップするファームウェア (SdiRamMonitor1.mot) をSendMotフォルダヘコピーしてください。
- (2) SDI RAMモニタの電源投入後2秒以内にMAINTスイッチを押してください。システムステータスLED (STATUS OF SYSTEM)のSAFEが点滅して、メンテナンスモードへの移行を示します。
- (3) SendMotフォルダにある "SendMot.exe"を起動してください。ファームウェアのダウンロードを開始し ます。

SendMot	
状態	データ送信中
	OK

(4) ファームウェアのダウンロード終了後、 [OK] を押して終了してください。

SendMot	
ファイル(<u>E</u>) ヘルプ(<u>H</u>)	
状態	データ送信終了
結果	正常終了
	ОК [28]

3. コントロールソフトウェアの使用方法

3.1. ファイル構成

表3.1に、Jram32R_usbフォルダのファイル構成を示します。

表3.1 ファイル構成

項目	内 容
Jram32R_usb.exe	コントロールソフトウェアGUIの実行ファイルです。
Jram32R_usb.ini	GUIの各種設定を保存するためのファイルです。自動的に生成されます。
Jram32R_usb.wp	GUIのウォッチポイント、トレース条件設定等を保存するためのファイルです。自動的
_	に生成されます。
JtagCntl.dll	GUIからJTAG接続機器に対してコマンドやデータを送受信するDLLです。
Communi.dll	JtagCntl.dllからUSBポートの制御に使用するDLLです。

3.2. 機能概要

表3.2に、Jram32R_usbの機能概要を示します。

表3.2 Jram32R_usbの機能概要

機能項目	機能概要
セキュリティチェック機能	GUIの起動時、IDコードによるセキュリティチェックを行います。
RAMモニタ機能	
ウォッチポイントの設定	任意のメモリアドレスをウォッチポイントとして登録/変更/削除します。
RAMモニタ	登録されたウォッチポイントのデータを表示します。
RAMトレース	登録されたウォッチポイントのデータを取得し、ファイルに出力します。
	データの取得開始条件を設定可能です。
MCU制御	MCUの実行開始/実行停止/ハードウェアリセットを行います。
疑似フラッシュ	MCUの疑似フラッシュエミュレーション機能を使用して、ROMの一部分を
エミュレーション機能	RAMにマッピングします。これにより、擬似的にROMの内容を変更するこ
	とが可能です。
フラッシュE/W機能	フラッシュメモリを消去した後、プログラムをフラッシュメモリに書き込み
	ます。

3.3. GUIの起動と終了

3.3.1. GUIの起動手順

- (1) ホストPC \Leftrightarrow SDI RAMモニタ \Leftrightarrow ユーザシステムを接続します。
- (2) SDI RAMモニタの電源をオンします。
- (3) ユーザシステムの電源をオンします。
- (4) Jram32R_usbフォルダにある"Jram32R_usb.exe"を起動します。

3.3.2. セキュリティコードの入力

フラッシュメモリプロテクト用のID照合領域にセキュリティコードが書き込まれている場合、GUI起動時 にセキュリティチェックダイアログが表示されます。

Security Che	ok		×
-Security C ● Hex	ode 000000000000000000000000000000000000	00000000000	32/32
O Ascii			0/16
	(OK	キャンセル	

- (1) [Hex] または [Ascii] を選択して、セキュリティコードを入力してください。
 Hex: 16進数 {0~9, A~F, a~f} 24文字または32文字のセキュリティコードを指定可能です。
 Ascii: 英数字 12文字または16文字のセキュリティコードを指定可能です。
- (2) [OK] を押してください。

セキュリティコードが一致すると、セキュリティコードをJram32R_usb.iniへ保存してターゲットMCUリ セットダイアログを表示します。保存されたセキュリティコードは、次回起動時に表示されます。 セキュリティコードが一致しない場合、フラッシュメモリ初期化ダイアログが表示されます。

JRAM32P	33	×
	セキュリティーコードが一致 フラッシュメモリを初期化し	しません、 ます。
	OK (ギャンセ	μ

- ・ [OK] を押すと、フラッシュメモリを全消去し、ダイアログを表示してGUIを終了します。
- ・ [キャンセル] を押すと、GUIの起動を中止します。

3.3.3. ターゲットMCUのリセット

- ・ [OK] を押すと、ターゲットMCUをリセットしてからGUIを起動します。
- ・[キャンセル]を押すと、ターゲットMCUのプログラムを実行したままでGUIを起動します。

3.3.4. GUIの終了

[File] - [Quit] を選択すると、各種設定をJram32R_usb.iniへ保存してGUIを終了します。

3.4. RAMモニタ機能

3.4.1. RAMモニタウィンドウの表示

Jram32R_usb起動後に [RamMonitor] タブを選択すると、RAMモニタウィンドウを表示します。

Jram32F	Rjusb	+2 4 4								
le (<u>F)</u> / Л	ーション 憤	≢h⊼(<u>∨</u>)								
Kamivionit	or Flash	Emulation Do	wn Load							
		<u> </u>		1	()	[.p:		Č	×	* +
No.	Address	Label	Size 1	FF	Dec 255	11111111				
	00000000			FF	200					
G. Par	n Monitor									
e nar	n Monttor									
⊖ Rar	n Tracer	Trigger: ST	ART: Norma	al TRIG: Nor	10				Sel	ect
		Sampling Inte	rval: 1	n	n sec≧1 m sec	MAX	65536 Counts			
			Mon	itor Or Trace		- MCU-				
				Start	Refresh	6	io Bre	ak	Re	set

・RAMモニタ表示領域

 No.:
 ウォッチポイント番号および許可(チェックあり)/不許可(チェックなし)を表示します。

 Address:
 ウォッチポイントアドレスを表示します。

 Label:
 ウォッチポイントアドレスのラベルを表示します。

 Size:
 ウォッチポイントのデータサイズをバイト数で表示します。

 Hex:
 ウォッチポイントの値を16進数で表示します。

 Dec:
 ウォッチポイントの値を10進数で表示します。

Bin: ウォッチポイントの値を 2進数で表示します。

3.4.2. ウォッチポイントの設定

🥔 Jran	n32R_usb								_ 🗆	×
File (<u>F</u>)	バージョン情報の	D					(1)	2) (3)	(4)	
RamN	Nonitor Flash Emu	Ilation Down L	oad				Ĭ	ĨĬ	Ĭ	
							· · ·	< *	▼ ↓	
No	. Address	Label	Size	Hex	Dec	Bin			_	
	001 00000000		1	FF	255	11111111				
	001 00000000		1	FF	255	11111111				

①このボタンを押すと、ウォッチポイント設定ダイアログを表示します。

設定済みウォッチポイントのクリックおよび白色領域(未設定部)のダブルクリックでもウォッチポイン ト設定ダイアログを表示可能です。

②このボタンを押すと、選択したウォッチポイントを削除します。

③このボタンを押すと、現在選択しているウォッチポイントの上にあるウォッチポイントを選択します。④このボタンを押すと、現在選択しているウォッチポイントの下にあるウォッチポイントを選択します。

3.4.3. ウォッチポイント設定ダイアログ

Jram32R3		×
🔽 Enable.	/Disable	
No.:	002	
Address:	0080070D h	++2011
Label:	P13DATA	
Size • 1 BY	TE O 2 BYTE O 4 BYTE	

- ・Enable/Disable: ウォッチポイントの許可(チェックあり)/不許可(チェックなし)を指定します。
- ・Address: ウォッチポイントアドレスを指定します。
- ・Label: ウォッチポイントに対して任意の文字列をラベルとして付加できます。
- ・Size: ウォッチポイントのデータサイズを選択します。

ウォッチポイントは、最大999点まで設定可能です。モニタモードでは、点数増加に伴い更新間隔が長くなります。トレースモードでは、点数増加に伴い最小サンプリング間隔が32点ごとに1msずつ増加します。

ウォッチポイント設定ダイアログで [OK] を押すと、以下のダイアログが表示され、ウォッチポイントの初期値を変更することが可能です。

			×
Address:	804085		
Data	01		- 1
Data:			
[·····	~ · ·	1
<u> </u>	<u> </u>	Gancel	

- ・値を入力して [OK] を押すと、表示アドレスへ初期値が書き込まれます。
- ・ [Cancel] を押すと、初期値を書き込まずにダイアログを閉じます。

3.4.4. RAMモニタの操作

1	Jram321	R_usb									×
Fi	le (<u>F</u>) / ¹	ージョン情報	駺⊙								
F	RamMonit	tor Flash I	Emulation Down L	oad							
	172 ms	ec						۲)	×	* +	
	No.	Address	Label	Size	Hex	Dec	Bin				
				1	UU	U					
	🖲 Rar	n Monitor									
	C Rar	n Tracer	Trigger: START:	Normal	TRIG: Event[0:1] = [1:1]			Se	elect	
			Sampling Interval:	32 Monito	m sec r Or Trace	≧ 1 m sec Refresh	MAX: 65536 Counts MCU Go Break		Re	eset	

- (1) RAMモニタウィンドウで、 [Ram Monitor] ラジオボタンを選択します。
- (2) Monitor Or Trace欄の [Start] を押すと、ほぼ一定の間隔で許可されたウォッチポイントの表示を更新し ます。更新の間隔はRamMonitorタブの下に表示されます。更新の間隔はウォッチポイント点数および ホストPCの性能に依存します。
 - RAMモニタ動作中は [Start] ボタン表示が [Stop] に変わります。
- (3) [Stop]を押すと、表示の更新を停止します。
- (4) [Refresh]を押すと、許可されたウォッチポイントの表示を最新の情報に更新します。

3.4.5. RAMトレースの操作

1	Jram32	R_usb							×
Fi	le (<u>F</u>) / ¹	ージョン情報	齀⊙						
F	RamMonit	tor Flash I	Emulation [Down Load					
		-	· ·				ya		1
						1.5:	Ľ		
		Address	Label	Size Hi	ex Dec	<u> </u>	1		
		00000000		I FI	- 200		I		
	O Rar	n Monitor							
	🖲 Rai	n Tracer)	Trigger: S	TART: Normal TF	lIG: None			Select	
			Sampling Int	terval: 1	m sec ≧ 1 n	n sec MAX:	65536 Counts		
				- Monitor C	r Trace	MCU-			
				Sta	rt Refres	h	Go Break	Reset	
-									_

- (1) RAMモニタウィンドウで [Ram Tracer] ラジオボタンを選択します。
- (2) Trigger表示の右にある [Select] を押すと、トレース条件設定ダイアログが表示されます。
- (3) Sampling Intervalフィールドでサンプリング間隔を1ms単位で指定してください。最小サンプリング間隔 は、ウォッチポイント32点ごとに1msずつ増加します。
- (4) Monitor Or Trace欄の [Start]を押すと、ファイル指定ダイアログが表示されます。ファイル名フィール ドにログファイル名を入力して [保存]を押すと、RAMトレースを開始します。 RAMトレース動作中は [Start] ボタン表示が [Stop] に変わります。

名前を付けて保存							? ×
保存する場所①:	合 71 F 🛉	1.1/2/1	•	È	<u></u>	<u>r</u>	
						_	_
ファイル名(N):						保存(<u>S</u>)
ファイルの種類(工):	ログファイル	(*.log)	_	-] [キャンセノ	1
E	C. Have	C D					
Format(<u>F</u>):	lex lex	O-Dec					

- ・ログファイルは、許可されたウォッチポイントのデータがCSV形式で書き込まれます。
- ・ [Format] ラジオボタンで、Hex (16進数) または Dec (10進数) を選択可能です。
- (5) [Stop] を押すと、RAMトレース動作を停止します。
- (6) [Refresh] ボタンを押すと、許可されたウォッチポイントの表示を最新の情報に更新します。

3.4.6. トレース条件設定ダイアログ

Jram32R_usb
Start Start Start Image: None Reset JVCC Event[0:1] = [1:0] Image: None
C Normal C Continue
Compare WP: 1 == Data: 000000000 h
Pre: 0 Counts
OK キャンセル

Start欄でトレース開始条件を設定します。

- ・None: 即時にトレースを開始します。
- ・**Reset**: リセット解除後にトレースを開始します。
- ・JVCC: ユーザシステムの電源が投入された後にトレースを開始します。
- ・Event[0:1] = [1:0]: イベント0が "1" かつ イベント1が "0" を検出するとトレースを開始します。
- ・Event[0:1] = [0:1]: イベント0が "0" かつ イベント1が "1"を検出するとトレースを開始します。
- ・Event[0:1] = [1:1]: イベント0が"1"かつイベント1が"1"を検出するとトレースを開始します。
- ・Event[0:1] = [0:0]: イベント0が "0" かつ イベント1が "0" を検出するとトレースを開始します。

Trigger欄でトリガ条件を設定します。Compareは、トレース開始条件がNoneの場合のみ設定可能です。

- ・Normal: トレースメモリフルでトレースを終了します。
- ・Continue: [Stop]を押すまでトレースメモリを上書きします。
- Compare: 指定したウォッチポイントの値が条件を満たしたときにトレースを開始します。
 WP: ウォッチポイント番号を指定します。
 比較式:比較条件(==, !=, <, <=, >, >=)を選択可能です。
 Data: 比較する値を指定します。
 Pre: 条件が成立する何個前のデータからトレース開始するかを指定します。

3.4.7. MCUの動作制御

Ram Monitor	
🔿 Ram Tracer	Trigger: START: Normal TRIG: None Select
	Sampling Interval: 1 m sec ≧ 1 m sec MAX: 65536 Counts
	Monitor Or Trace

- ・ "Go" ボタンを押すと、ターゲットMCUのプログラム実行を開始します。
- ・ "Break" ボタンを押すと、ターゲットMCUのプログラム実行を停止します。
- ・ "Reset" ボタンを押すと、ターゲットMCUをハードウェアリセットします。

3.5. 疑似フラッシュエミュレーション機能

3.5.1. フラッシュエミュレーションウィンドウの表示

Jram32R_usb起動後に [Flash Emulation] タブを選択すると、フラッシュエミュレーションウィンドウを 表示します。

ram32R_usb (E) バージョン umMonitor Flas	情報() sh Ermu	Ø µlatior	n Ì Dr	we L	ad Ì													
RAM Bank	Add	Iress		Size		RO	M	Err	ulatio	on					RAN	M Bank Read	<	Fill RAM From
S Block 1	809	000		1000)		00								Ron	n Addr	ess	File
S Block 2	80A	000		1000)	000	õ								- Emu	Ilation		-Save RAM To
S Block 4 S Block 5	800 80E			1000)	$\frac{000}{000}$	$\stackrel{\infty}{\sim}$									Start		ROM
S Block 6 S Block 7	80E	000		1000)	000	00 00									Stop		File
S DIOCK /	001			1000	,	~~~	<i>w</i>								мси	: M	32182F	
Addrees	0	1	2	2	4	Б	8	7	0	Q	A	P	C I		E			
	00	01	02	03	4 04	05	06	07	08	09		0R	00	0D	ÛF	ÛF	_=	🙃 1 Byte
00808010	ŐŐ	01	02	03	04	0Š	ŎĞ	07	08	Õ9	ŎА	ΟB	ÕČ	ŐĎ	ΰĒ	ΟF		
00808020	00	01	02	03	04	05	06	07	08	09	0A	0B	00	0D	0E	0F		◯ 2 Byte
00808030	00	01	02	03	04	05	06	07	08	09	0A	OB	00	OD OD	0E	0F		
00808040	00	01	02	03	04 N4	05	00	07	08	09	ΠA	0B NR	00		0E NF	ΩF		◯ 4 Byte
00808060	ŐŐ	ů1	02	03	04	05	06	07	08	09	0A	ΟB	ŐČ	ŐĎ	ΰĒ	ΟF		
00808070	00	01	02	03	04	05	06	07	08	09	0A	0B	0C	0D	0E	0F		
00808080	00	01	02	03	04	05	06	07	08	09	ОA	0B	0C	OD	0E	0F		
00808090	00	01	02	03	04	05	06	07	08	09	0A	ΟB	00	0D	0E	0F		
008080A0	00	01	02	03	04	05	06	07	08	09	UA	OB	00	UD OD	UE	0F		
00808080	00	01	02	03	04	05 70	06	07	08	09	UA O A	0B	00	UU	UE			
	00	01	02	03	04	00	00	07	00	09	UA O A	0B	00	0D	0E		-	

RAMバンク表示領域

RAM Bank :	RAMバンク番号を表示します。
Address :	RAMバンクの先頭アドレスを表示します。
Size :	RAMバンクのサイズ(ヘキサバイト)を表示します。
ROM :	マッピングするROMの先頭アドレスを表示します。
Emulation :	RAMバンクのエミュレーション状態 (Start) を表示します。

・メモリ内容表示領域

RAM Bank欄の [Read] を押すことで、選択したRAMバンクの内容を表示します。Size欄のラジオボタン で表示サイズ (1バイト/2バイト/4バイト) を変更可能です。

表示データをダブルクリックすると以下のダイアログが表示され、値を変更することが可能です。

Jram32R_usb	×
Address: 808023	
Data: 📴	
,	
OK	Cancel

・値を入力して [OK] を押すと、表示アドレスにデータが書き込まれます。

・ [Cancel] を押すと、データを書き込まずにダイアログを閉じます。

3.5.2. フラッシュエミュレーションの操作

RAM Bank —	Fill RAM From
Read	ROM
Rom Address	File
– Emulation ––––	-Save RAM To
Emulation Start	Save RAM To ROM

・RAM Bank欄

[Read]を押すと、RAMバンク表示領域で選択したRAMバンクの内容を下段のメモリ領域へ表示します。 [Rom Address]を押すと、ROMアドレス設定ダイアログを表示します。

・Emulation欄

[Start]を押すと、フラッシュエミュレーションを開始します。

[Stop] を押すと、フラッシュエミュレーションを終了します。

・Fill RAM From欄

[ROM] を押すと、ROMの内容を指定したRAMバンクへ転送します。

[File]を押すと、Sフォーマットのファイルを読み込んでRAMバンクへ転送します。

・Save RAM To欄

[ROM] を押すと、RAMバンクの内容を指定したROMへ書き込みます。

[File]を押すと、RAMバンクの内容をSフォーマット形式のファイルへ出力します。

3.5.3. ROMアドレス設定ダイアログ

Jram32R_usb	×
Ram Bank:	S Block 0
Ram Address:	808000h
Ram Size:	1000
Rom Address:	00000
<u> </u>	Cancel

・ROMアドレスを入力して[OK]を押すと、RAMバンクアドレスが設定されます。

・ [Cancel] を押すと、設定を中止します。

3.6. フラッシュE/W機能

3.6.1. ダウンロードウィンドウの表示

Jram32R_usb起動後に [Down Load] タブを選択すると、ダウンロードウィンドウを表示します。

🛷 Jram32R3	_ 🗆 🗙
File(E) バージョン情報(V)	
Dem Meniter [Electric Town Load]	
RamMonitor Flash Emulation Down Load	
File	Refer
Down Load	

3.6.2. ダウンロードウィンドウの操作

- (1) [Refer...]を押して、フラッシュメモリへ書き込むSフォーマット形式のファイルを指定します。
- (2) [Down Load]を押して、ダウンロード処理を開始します。
- (3) フラッシュメモリの全領域を消去した後、以下のダイアログが表示されます。

Jram32R	isp 🔁	×
?	ブランクチェックを行いますか?	,
[[[]]	<u>いの</u> いいえ 🛯	

- [はい]を押すと、ブランクチェックを行います。
- [いいえ]を押すと、ブランクチェックを行いません。
- (4) ブランクチェックが終了すると、以下のダイアログが表示されます。

- ・ [OK] を押すと、セキュリティコードをフラッシュメモリに書き込みます。
- ・ [キャンセル] を押すと、フラッシュメモリのセキュリティコード領域にすべてFFhを書き込みます。

(5) フラッシュメモリへの書き込みが終了すると、以下のダイアログが表示されます。

- [はい]を押すと、ベリファイチェックを行います。
- [いいえ]を押すと、ベリファイチェックを行いません。
- (6) ベリファイチェックが終了すると、以下のダイアログが表示されます。

3.7. バージョンの表示

[バージョン情報] – [バージョン情報…] を選択すると、バージョン情報ダイアログを表示します。 Jram32R_usbのバージョンおよびSdiRamMonitor(ファームウェア)のバージョンを確認できます。

・ [OK] を押してダイアログを閉じてください。

4. ハードウェア仕様

4.1.5V電源入力コネクタ

5V電源(5.0V±5%)を入力するためのコネクタです。付属の5V電源ケーブルにて電源と接続してください。表4.1に、5V電源入力コネクタのピン配置を示します。

表4.1 5V電源入力コネクタのピン配置

ピン番号	ケーブル色	信号名
1	赤	5V電源(5.0V±5%)
2	黒	GND

4.2.12V電源入力コネクタ

12V電源(12.0V±5%)を入力するためのコネクタです。付属の12V電源ケーブルにて電源と接続してください。表4.2に、12V電源入力コネクタのピン配置を示します。

表4.2 12V電源入力コネクタのピン配置

ピン番号	ケーブル色	信号名
1	赤	12V電源(12.0V±5%)
2	黒	GND

4.3. SDI MCU制御インタフェースコネクタ

SDI MCU制御インタフェースコネクタには、JTAG接続で使用する際のMCU制御信号が配置されています。 付属のSDI MCU制御インタフェースケーブルにてユーザシステムと接続してください。表4.3に、SDI MCU 制御インタフェースコネクタのピン配置を示します。また図4.1に、SDI MCU制御インタフェース回路例を 示します。

表4.3 SDI MCU制御インタフェースコネクタのピン配置

ピン番号	信号名	入出力	方 向
1	TCLK	出力	SDI RAMモニタ → ユーザシステム
2	Vss (GND)	_	_
3	TDI	出力	SDI RAMモニタ → ユーザシステム
4	TDO	入力	SDI RAMモニタ ← ユーザシステム
5	TMS	出力	SDI RAMモニタ → ユーザシステム
6	TRST#	出力	SDI RAMモニタ → ユーザシステム
7	N.C.	_	_
8	N.C.	_	_
9	Vcc	入力	SDI RAMモニタ ← ユーザシステム
10	RESET#	入出力	SDI RAMモニタ ⇔ ユーザシステム

図4.1 SDI MCU制御インタフェース回路例

SDI MCU制御インタフェースコネクタをユーザシステムに接続するため、基板設計の際は以下の点にご 注意ください。

- TRST#は、RESET#(MCUのリセット要求)と共通にしないでください。
 SDI RAMモニタを使用する場合、TRST#とRESET#はSDI RAMモニタが個別に制御します。このため、 TRST#とRESET#を共通にするとSDI RAMモニタが正常に動作できません。
- (2) ユーザシステム上のRESET#信号の生成は、CR回路またはオープンコレクタ出力としてください。トー テムポール出力のデバイスは接続しないでください。また、RESET#信号は、SDI RAMモニタと直結し てください。バッファICを実装すると、リセット解除後のトレースができません。

表4.4 SDI MCU制御インタフェース回路例の部品説明

部品番号	部品仕様	備考
R1, R2, R6	10kΩ抵抗	VCC電源にプルアップ。バッファICを実装した場合は必須です。
		バッファICを実装しない信号線へは必須ではありません。
R5	10kΩ抵抗	VCC電源にプルアップ。バッファICは実装不可です。
IC1~IC3, IC6, IC7	バッファIC	論理的には不要ですが、動作安定のため実装を推奨します。
R3	10kΩ抵抗	GNDにプルダウン。バッファIC(IC3)を実装した場合は必須です。
		バッファICを実装しない場合は必須ではありません。
C1	1μFコンデンサ	電源投入時にMCUのJTAG回路をリセットします。

4.4. AD/DAインタフェースコネクタ

AD/DA基板との接続に使用するコネクタです。表4.5に、AD/DAインタフェースコネクタのピン配置を示します。本コネクタは、将来の機能拡張用です。現在、本コネクタは使用できません。

ピン番号	信号名	入出力	方 向
1	GND	—	_
2	TxD	出力	SDI RAMモニタ → AD/DA基板
3	RxD	入力	SDI RAMモニタ ← AD/DA基板
4	GND	_	_
5	N.C. (Vcc予備)	_	_
6	S_CLK	入力	SDI RAMモニタ ← AD/DA基板
7	Event (RAMモニタ中)	出力	SDI RAMモニタ → AD/DA基板
8	GND	_	_

表4.5 AD/DAインタフェースコネクタのピン配置

4.5. イベント入力インタフェースコネクタ

SDI RAMモニタへのイベント入力に使用するコネクタです。表4.6に、イベント入力コネクタのピン配置 を示します。

表4.6 イベント入力コネクタのピン配置

ピン番号	ケーブル色	信号名	入出力	方 向
1	灰/茶	EV0_IN	入力	SDI RAMモニタ ← 外 部
2	緑/赤	EV1_IN	入力	SDI RAMモニタ ← 外 部
3	黒	GND	_	-
4	黒	GND	—	-

5. 保守と保証

5.1. 保守

本エミュレータに埃や汚れが付着した場合は、乾いた柔らかい布で拭いてください。シンナーなどの溶剤 を使用すると、塗料が剥げることがありますので使用しないでください。

5.2. 保証内容

本書の「重要事項」、「安全事項」を守った正常な使用状態のもとで、購入後1年以内に故障した場合は、 無償修理または無償交換いたします。ただし、次の項目による故障の場合は、ご購入から1年以内でも有償 修理または有償交換といたします。

- ・製品の誤用、濫用またはその他異常な条件下での使用
- ・弊社以外による改造、修理、保守またはその他の行為
- ・ユーザシステムの不備または誤使用
- ・火災、地震、またはその他の事故

5.3. 修理規定

- (1) 有償修理 ご購入後1年を超えて修理依頼される場合は、有償修理となります。
- (2) 修理をお断りする場合 次の項目に該当する場合は、修理ではなく、ユニット交換または新規購入いただく場合があります。
 - ・機構部分の故障、破損
 - ・塗装、メッキ部分の傷、剥がれ、錆
 - ・樹脂部分の傷、割れなど
 - ・使用上の誤り、不当な修理、改造による故障、破損
 - ・電源ショートや過電圧、過電流のため電気回路が大きく破損した場合
 - ・プリント基板の割れ、パターン焼失
 - ・修理費用より交換の費用が安くなる場合
 - ・不良箇所が特定できない場合
- (3) 修理期間の終了 製品生産中止後、1年を経過した場合は修理不可能な場合があります。
- (4) 修理依頼時の輸送料など 修理依頼時の輸送料などの費用は、お客様でご負担願います。

5.4. 修理依頼方法

修理を依頼される際は、最寄りのルネサス営業もしくは特約店経由にてRSOツール出荷サポート窓口 (shipment_tool@renesas.com)までお問い合わせください。なお、レンタル中の製品は、レンタル会社また は貸し主とご相談ください。 レイアウトの都合上、このページは白紙です。

M32R/ECU用SDI仕様RAMモニタ R0K332100Z000BR SDI RAMモニタ ユーザーズマニュアル 発行年月日 2007年3月1日 Rev.1.00 発行 株式会社 ルネサス テクノロジ 営業企画統括部 〒100-0004 東京都千代田区大手町2-6-2 編集 株式会社 ルネサス ソリューションズ ツール開発部

© 2007. Renesas Technology Corp. and Renesas Solutions Corp., All rights reserved. Printed in Japan.

SDI RAM モニタ ユーザーズマニュアル R0K332100Z000BR

