RENESAS

ZMID Communication Board (ZMID-COMBOARD)

Serial Communication and Commands

Contents

1.	Intro	duction	3					
	1.1	Requirements for User's Computer						
	1.2	Driver Installation	3					
	1.3	Communication Basics						
		1.3.1. Examples	4					
2.	Com	mands	5					
	2.1	General Commands						
	2.2	Power and Trigger Commands	6					
	2.3	Communication Commands						
	2.4	Commands for Reading the Output						
	2.5	Pin State Commands	9					
3.	Exan	nples	10					
4.	Glos	sary	14					
5.	Revision History							

Figures

Figure 1. Location of the Driver Installer	.3
Figure 2. The ZMID-COMBOARD Appears as a Serial Device	.3
Figure 3. Trigger Command Timing Diagram	.6

Tables

Table 1. Commands List	
Table 2. Version Command: V	5
Table 3. Hardware Revision Command: V_HW	5
Table 4. Supported Interfaces Command: V_FW	5
Table 5. Module Select Command: MS	6
Table 6. Power and On-Delay Trigger Setup Command: T	6
Table 7. Off-Delay Trigger Setup Command: T	7
Table 8. OWI WRITE with Trigger Command: OWT	
Table 9. OWI WRITE Command: OW	7
Table 10. OWI READ Command: OR	
Table 11. OWI READ Continuous Command: ORS	
Table 12. OWI READ Special STOP Command: ORSX	8
Table 13. Set Output Interpretation Command: TSO	
Table 14. Read Output Command: MRO	8

ZMID-COMBOARD / Serial Communication and Commands

Table 15. Read Last SENT Frame Command: MRS	9
Table 16. Pin State Command: PS	9
Table 17. Connecting and Reading EEPROM and SWR Memory (Device 1)	10
Table 18. Writing to the First 7 Registers in EEPROM (Device 1)	11
Table 19. Bulk Writing to the First 7 Registers in EEPROM (Device 1)	11
Table 20. Reading 3 Analog Output Samples from Device 1	11
Table 21. Reading SENT Frames from Device 1	12
Table 22. Enter Command Mode on Device 2	12
Table 23. Reading PWM Output from Device 1 and Device 2	13

1. Introduction

This document describes how to setup and use the serial communication capabilities of Renesas' USB Communication and Programming Board (ZMID-COMBOARD) for ZMID Application Modules in order to provide an interface between the user's computer and the Renesas ZMID4200 that is the device-under-test (DUT) on the module.

1.1 Requirements for User's Computer

- Windows® XP, Vista SP1 or later, 7 (including SP1), 8, 8.1, or 10
- Available USB port

1.2 Driver Installation

The driver required for serial communication is automatically installed on operating systems newer than Windows® 8. For older operating systems, the driver must be manually installed.

To manually install the driver, follow these steps:

- 1. Connect the ZMID-COMBOARD to an available USB port on the user's computer via the micro-USB cable.
- 2. The board will appear as two removable storage devices named EVKIT-1 and EVKIT-2. Open either one of them.
- 3. Locate the *LPC-VCOM.INF* file and open the menu by clicking with the right mouse button over it.

→ This PC → E	/KIT-1 (E:)	
Name	^	Date mo
DEMO_APP.EXE		27-May-
LPC-VCOM.IN		07.14
PROFILE.EVK	Open	
READ.CTL	Install	
READ.DAT	Print	

Figure 1. Location of the Driver Installer

- 4. Select the "Install" option and complete the install setup.
- 5. After successful driver installation, the device appears in the Device Manager under "Ports" as a "USB Serial Device." See Figure 2.

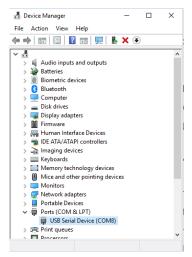


Figure 2. The ZMID-COMBOARD Appears as a Serial Device

1.3 Communication Basics

The computer communicates with the ZMID-COMBOARD through a virtual COM port (VCOM). The commands and responses can be interpreted as ASCII characters. The computer is the "master" in the communication – it sends a command and the ZMID-COMBOARD always returns a response.

Default COM port settings:

- Port Number: Check the Device Manager; the port number is assigned by the operating system and can vary
- Baud Rate: 19200
- Data Bits: 8
- Stop Bits: 1
- Parity Bits: No
- Flow Control: No

Format of the commands and responses:

Both commands and responses end with a carriage return and a line feed character: "\r\n" which corresponds to the ASCII bytes $0D_{HEX}$ and $0A_{HEX}$.

The first byte of the response is a status byte which can be either an Acknowledge (06_{HEX} in ASCII) or Not Acknowledge (15_{HEX} in ASCII). These responses are represented as <ACK> and <NACK> in this document. Depending on the command, a response can have only a status byte or it can be followed by a number of data bytes.

The commands and response are case-insensitive.

Errors are returned as responses that start with a Not Acknowledge byte and can have optional error code bytes.

1.3.1. Examples

Command: OR_E2

Description: OWI Read with command address E2_{HEX}

Characters	0	R	_	Е	2	\r (Carriage Return)	\n (Line Feed)
Bytes	72 _{HEX}	52 _{HEX}	5F _{HEX}	45 _{HEX}	32 _{HEX}	0D _{HEX}	0A _{HEX}

Reply: <ACK>1C3F

Description: Acknowledge byte and data: 1C3FHEX

Characters	<ack></ack>	1	С	3	F	\r (Carriage Return)	\n (Line Feed)
Bytes	06 _{HEX}	31 _{HEX}	43_{HEX}	33 _{HEX}	46 _{HEX}	0D _{HEX}	0A _{HEX}

Command: T00000

Description: Turn off the power for the DUT

Characters	Т	0	0	0	0	0	\r (Carriage Return)	\n (Line Feed)
Bytes	54_{HEX}	30 _{HEX}	30_{HEX}	30 _{HEX}	30 _{HEX}	30 _{HEX}	0D _{HEX}	0A _{HEX}

Reply: <ACK>

Description: Acknowledge without extra data bytes

Characters	<ack></ack>	\r (Carriage Return)	\n (Line Feed)
Bytes	06 _{HEX}	0D _{HEX}	0A _{HEX}

2. Commands

Command	Action
General Comma	nds
V	Returns the firmware version information (see Table 2 for details)
V_HW	Returns the hardware revision information (see Table 3 for details)
V_FW	Returns the supported interfaces information (see Table 4 for details)
MS	Selects the active module (device) for communication and output reading (see Table 5 for details)
Power and Trigg	er Commands
Т	Device under test (DUT) power control and power-on delay trigger setup (see Table 6 for details)
T_	Power-off delay trigger setup (see Table 7 for details)
Communication	Commands
OWT	OWI WRITE with trigger (see Table 8 for details)
OW_	OWI WRITE (see Table 9 for details)
OR_	OWI READ (see Table 10 for details)
ORS	OWI READ continuous (see Table 11 for details)
ORSX	OWI stop continuous READ (see Table 12 for details)
Commands for F	leading the Output
TSO	Output interpretation setup (see Table 13 for details)
MRO	Read last measured output (see Table 14 for details)
MRS	Read last SENT frame (see Table 15 for details)
Pin State Comma	ands
PS_	Set pin state (see Table 16 for details)

Table 1. Commands List

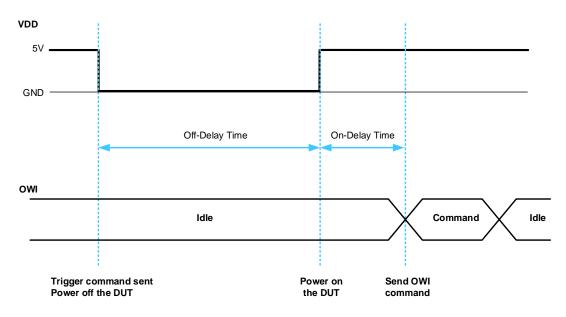
2.1 General Commands

Table 2. Version Command: V

Command	V					
Description	Returns a str	Returns a string with the firmware version of the ZMID-COMBOARD.				
Syntax	V					
Example	Send	V				
Example	Response	<ack>ZMID COM BOARD FW_00.05.1309</ack>				

Table 3. Hardware Revision Command: V_HW

Command	V_HW	V_HW							
Description	Returns a st	Returns a string with the recognized main hardware revision of the ZMID-COMBOARD.							
Syntax	V_HW	V_HW							
Example	Send	V_HW							
Example	Response	<ack>R5.1</ack>							


Table 4. Supported Interfaces Command: V_FW

Command	V_FW	
Description	Returns a string with the supported interfaces of the ZMID-COMBOARD.	
Syntax	V_FW	
Example	Send	V_FW
Lyample	Response	<ack>FW Interfaces: ANALOG, OWI, SENT, PWM</ack>

Command	MS			
Description	Selects the active module (device) between 1 and 2. Further OWI communication or output reading will be performed with the module selected.			
Syntax	MSx			
	x – module/d	x – module/device:		
	x = 0 = Module 1 (Device 1)			
	x = 1 = Module 2 (Device 2)			
	Send	MS0 – Select Device 1 as active		
Examples	Response <ack></ack>			
Examples	Send	MS1 – Select Device 2 as active		
	Response	<ack></ack>		

Table 5. Module Select Command: MS

2.2 Power and Trigger Commands

Figure 3. Trigger	Command	Timing	Diagram
-------------------	---------	--------	---------

Table 6. Power a	nd On-Delav	Trigger Setur	Command: T
	na on bolay	ingger oorap	

Command	Т			
Description	Changes the DUT's VDD state and sets the on-delay used when executing a trigger command.			
Syntax	Txxttt			
	xx = ZMID V	/DD state (binary)		
	■ xx = 00 _{BIN}	= Off		
	■ xx = 11 _{BIN}	= On		
	■ xx = 01 _{BIN}	$xx = 01_{BIN} / 10_{BIN} =$ Forbidden		
	ttt = On-delay time in milliseconds (decimal) from 000 to 999			
	Send	T00000 = Turn off the VDD for the DUT		
	Response	<ack></ack>		
Examples	Send T11001 = Turn on the ZMID VDD and set the on-delay trigger time to 1 millisecond			
Examples	Response	<ack></ack>		
	Send	T11020 = Turn on the ZMID VDD and set the on-delay trigger time to 20 milliseconds		
	Response	<ack></ack>		

Command	Т_		
Description	Defines the	Defines the off-delay time for the ZMID VDD when executing a trigger command.	
Syntax	T_ttt	T_ttt	
	ttt = Off-delay time in milliseconds (decimal) from 000 to 999		
Example	Send	Send T_100 = Set the off-delay trigger time to 100 milliseconds	
Lvalliple	Response	<ack></ack>	

Table 7. Off-Delay Trigger Setup Command: T_

2.3 Communication Commands

Table 8. OWI WRITE with Trigger Command: OWT

Command	OWT			
Description	Performs a	Performs a triggered OWI WRITE command with a command byte and optional data bytes.		
Syntax	OWTccddd	d		
	cc = command byte (hex string)			
	dddd = data bytes (hex string) - optional			
Example	Send	Send OWT81FFFF = Trigger command, write 81_{HEX} as command byte and FFFF _{HEX} as data bytes		
Lample	Response <ack></ack>			

Table 9. OWI WRITE Command: OW_

Command	OW_		
Description	Performs an OWI WRITE command with a command byte and optional data bytes. If the data bytes are more than 2, a bulk WRITE is performed where the command byte is incremented before writing the next two data bytes. Writing xxxx instead of a hex value in the bulk WRITE operation causes the current command byte to be skipped.		
Syntax	OW_ccdddd		
	OW_ccdddd	ddddd = Bulk WRITE	
	cc = command byte (hex string)		
	dddd = data bytes (hex string)		
	Send	OW_A0FFFF = WRITE command byte $A0_{HEX}$ and 2 byte data FFFF _{HEX}	
	Response <ack></ack>		
Examples	Send OW_A1BEEFCAFExxxxFFFF = bulk WRITE – start command byte is A1 _{HEX} , will skip command byte		
	A3 _{HEX}		
	Response <ack></ack>		

Table 10. OWI READ Command: OR_

Command	OR_			
Description		Performs an OWI READ command with a command byte. If a number is specified after the command byte a bulk READ is performed where the command byte is incremented for each READ operation.		
Syntax	OR_cc			
	OR_ccnnn			
	cc = command byte (hex string)			
	nnn = optional: number of bulk READs to perform (decimal) from 000 to 015			
	Send OR_05 = command byte is 05 _{HEX} ; reads one register (2 bytes)			
	Response <ack>0004 = 2 byte reply from the READ operation</ack>			
Examples	Send	OR_E2004 = bulk READ; command byte is E2 _{HEX} ; reads 4 registers (8 bytes) by incrementing the command byte; Equivalent to sending OR_E2; OR_E3; OR_E4; OR_E5		
	Response	<pre><ack>BEEFCAFE3333FFFF = BEEF_{HEX}, CAFE_{HEX}, 3333_{HEX}, FFFF_{HEX} returned from the bulk READ.</ack></pre>		

Command	ORS		
Description	Starts a continuous reading of a specified command byte. Does 5000 reads if not stopped. The reading cycle includes sending specific commands for stopping and starting the position processing of the ZMID4200. The command returns one normal reply with <ack> and then continuously sends 2 byte readings. During the reading, the computer (master) must continuously poll its receive buffer for new data from the DUT.</ack>		
Syntax	ORScc		
	cc = comma	and byte (hex string)	
	Send	ORSD8 = starts a continuous READ of the D8 command byte; reads the spatial angle (<i>Spa</i>) register in the SWR memory of the DUT	
	Response	<ack>\r\n = acknowledge reply for the command</ack>	
		13F2\r\n = 2 byte reading	
Example		15B3\r\n = 2 byte reading	
		188C\r\n = 2 byte reading	
		188C\r\n = 2 byte reading	
		runs until 5000 readings are performed or until a STOP command is sent by the computer	

Table 11. OWI READ Continuous Command: ORS

Table 12. OWI READ Special STOP Command: ORSX

Command	ORSX		
Description	Stops the continuous reading started by the ORS command.		
	Recommendation: The computer (master) should wait approximately 500 milliseconds and then clear its receive buffer before sending another command. There is a small delay between receiving the command in the firmware and stopping the continuous reading		
Syntax	ORSX		
Example	Send ORSX		
Lyampie	Response	<ack></ack>	

2.4 Commands for Reading the Output

The ZMID-COMBOARD supports the reading and interpretation of the analog, PWM, or SENT output depending on the DUT product version. Before reading the output, the ZMID-COMBOARD must be instructed on how to interpret the output from the DUT.

Command	TSO			
Description	Sets the output interpretation of the DUT's signal to analog, PWM, or SENT.			
Syntax	TSOxxxx			
	xxxx = 5201	xxxx = 5201 = interpret output as analog		
	xxxx = 5202 = interpret output as PWM			
	xxxx = 5203 = interpret output as SENT			
	Any other combination is forbidden.			
Example	Send	Send TSO5202 = instructs the firmware to interpret the output of the DUT as a PWM signal		
Lample	Response	Response <ack></ack>		

Table 13. Set Output Interpretation Command: TSO

Table 14. Read Output Command: MRO

Command	MRO
Description	Reads a sample from the interpreted DUT's output; returns a 4-byte reply from which the 12 LSBs are the output data.
	For analog: $0_{DEC} = 0\%$ VDD; $4095_{DEC} = 100\%$ VDD For PWM: $0_{DEC} = 0\%$ duty cycle; $4095_{DEC} = 100\%$ duty Cycle

	For SENT: the FC1 (Fast Channel 1) data is directly mapped to the 12 LSBs of the output data		
Syntax	MRO		
Example	Send	MRO	
Example	Response	$0FFF_{HEX} = extracting the 12 LSBs results in an output reading of FFF_{HEX} = 4095_{DEC}$.	

Table 15. Read Last SENT Frame Command: MRS

Command	MRS		
Description	Reads the decoded contents of the last received SENT frame. Returns a 4-byte reply with the following encoding:		
	SCAAABBB (hex string)		
	S – 4-bit status data		
	C – 4-bit CRC data		
	AAA – 12-bit FC1 data		
	BBB – 12-bit FC2 data		
Syntax	MRS		
	Send	MRS	
	Response	<ack>06D8DC62</ack>	
Example	Status: 0 _{HEX}		
Example		CRC: 6 _{HEX}	
		FC1: D8D _{HEX}	
		FC2: C62 _{HEX}	

2.5 Pin State Commands

Table 16. Pin State Command: PS_

Command	PS_		
Description	Sets the state of a controllable pin of the header on the ZMID-COMBOARD to operate external components as output signal multiplexors or additional pull-up resistors. The pins can be set to a HIGH, LOW, or high impedance state.		
	Newer versions of the ZMID-COMBOARD (R5_1 and above) have no pin header; instead two signal multiplex and an additional pull-up resistor are mounted on the board and connected to the following pins:		
	Pin 3 – Stro	nger pull-up resistors for Device 1 and 2 – used for OWI or PWM	
	LOW or hig	h impedance = pull-up inactive	
	HIGH = pul	l-up active	
	Pin 4 – Mul	tiplexor for the output of Device 2	
	LOW = used to read analog output		
	HIGH = used for OWI, PWM, and SENT		
	High Impedance = not defined		
	Pin 5 – Multiplexor for the output of Device 1		
	LOW = used to read analog output		
	HIGH = used for OWI, PWM, and SENT		
	High Impedance = not defined		
	Important: Do not change the state of pins 1, 6, or 8.		
Syntax	PS_ppx		
	pp = pin number (decimal) from 01 to 08		
	x = pin state		
	x = 0 = LOW		
	x = 1 = HIGH		
	x = 2 = Tri-state (high impedance)		
	Send	PS_031 = Enable the pull-up for PWM and OWI communication	
Examples	Response	<ack></ack>	
	Send	PS_041 = Set the output multiplexor for Device 2 for digital interfaces (OWI/SENT/PWM)	

Response	<ack></ack>
Send	PS_050 = Set the output multiplexor for Device 1 for analog interface
Response	<ack></ack>

3. Examples

Table 17. Connecting and Reading EEPROM and SWR Memory (Device 1)

Command	Comment
MS0	Select Device 1 as active for communication and output reading
<ack></ack>	
T_100	Power-off delay trigger setup = 100ms
<ack></ack>	
T11001	Power-on delay trigger setup = 1ms; power on the device
<ack></ack>	
PS_051	Device 1 output multiplexor set for digital communication
<ack></ack>	
PS_031	Enable additional pull-up for OWI communication
<ack></ack>	
OWT0283AE	OWI WRITE with trigger – enter Command Mode
<ack></ack>	
OR_05	OWI READ – read the status register of the device
<ack>0004</ack>	Status register reply – device is in Command Mode
Memory Read: EEPROM	
<ack></ack>	
OR_E0015	OWI bulk READ – read 15 registers starting from command byte E0 _{HEX}
<ack>23C8048D0000600120A9D87888E008054BF010858 03B107083B0255BFFF</ack>	OWI bulk READ reply – 15 registers (30 bytes)
OR_EF003	OWI bulk READ – read 3 registers starting from command byte EF_{HEX}
<ack>000000000C2</ack>	OWI bulk READ reply – 3 registers (6 bytes)
Memory Read: SWR	
OW_04	OWI WRITE – HOLD_DPU command to stop the position calculation while reading data
<ack></ack>	
OR_C0015	OWI bulk READ – 15 registers starting from command byte C0 _{HEX}
<pre><ack>23C8048D00000600120A9D87888E008054BF010858 03B107083B0255BFFF</ack></pre>	OWI bulk READ reply – 15 registers (30 bytes)
OR_D1	OWI READ – command byte D1 _{HEX}
<ack>00C2</ack>	OWI READ reply – 1 register (2 bytes)
OR_D3009	OWI bulk READ – 9 registers starting from command byte $D3_{HEX}$
<ack>03B901E600017FF30321400640E042270001</ack>	OWI bulk READ reply – 9 registers (18 bytes)
OW_03	OWI WRITE – RUN_DPU command to start the position calculation
<ack></ack>	
T00000	Power off the device

Command	Comment
<ack></ack>	

Table 18. Writing to the First 7 Registers in EEPROM (Device 1)

Command	Comment
OW_A023C8	Write to EEPROM register 00_{HEX} (<i>Offset</i>); command byte = $A0_{HEX}$
<ack></ack>	
OW_A1048D	Write to EEPROM register 01_{HEX} (<i>Slope</i>); command byte = $A1_{HEX}$
<ack></ack>	
OW_A20000	Write to EEPROM register 02_{HEX} (clamping limits); command byte = $A2_{HEX}$
<ack></ack>	
OW_A30600	Write to EEPROM register 03_{HEX} (linear interpolation points 0 and 1); command byte = $A3_{HEX}$
<ack></ack>	
OW_A4120A	Write to EEPROM register 04_{HEX} (linear interpolation points 2 and 3); command byte = $A4_{HEX}$
<ack></ack>	
OW_A59D87	Write to EEPROM register 05_{HEX} (linear interpolation points 4 and 5); command byte = $A5_{HEX}$
<ack></ack>	
OW_A6888E	Write to EEPROM register 06_{HEX} (linear interpolation points 6 and 7); command byte = $A6_{HEX}$
<ack></ack>	
OW_A70080	Write to EEPROM register 07_{HEX} (linear interpolation point 8); command byte = $A7_{HEX}$
<ack></ack>	

Table 19. Bulk Writing to the First 7 Registers in EEPROM (Device 1)

Command	Comment
OW_A023C8048D0000600412A9D87888E00	Bulk WRITE to EEPROM registers 00_{HEX} to 07_{HEX} (command byte A0 _{HEX} to
80	A7 _{HEX})
<ack></ack>	

Table 20. Reading 3 Analog Output Samples from Device 1

Command	Comment
T_100	Power-off delay trigger setup = 100ms
<ack></ack>	
TSO5201	Set the output recognition to analog
<ack></ack>	
PS_050	Device 1 output multiplexor set for analog signal
<ack></ack>	
PS_032	Disable the additional pull-up
<ack></ack>	
T11001	Power-on delay trigger setup = 1ms; power on the device
<ack></ack>	
MRO	Read an output sample
<ack>00000424</ack>	Read reply = 424 _{HEX} (1060 _{DEC}); 1060 / 4095 * 100 = 25.89% VDD

ZMID-COMBOARD / Serial Communication and Commands

Command	Comment
MRO	Read an output sample
<ack>00000424</ack>	Read reply
MRO	Read an output sample
<ack>00000424</ack>	Read reply
T00000	Power off the DUT
<ack></ack>	

Table 21. Reading SENT Frames from Device 1

Command	Comment
T_100	Power-off delay trigger setup = 100ms
<ack></ack>	
TSO5203	Set the output recognition to SENT
<ack></ack>	
PS_051	Device 1 output multiplexor set for digital signal
<ack></ack>	
PS_032	Disable the additional pull-up
<ack></ack>	
T11001	Power-on delay trigger setup = 1ms; power on the device
<ack></ack>	
MRS	Read last SENT frame
<ack>05C81B43</ack>	Read reply = status: 0 _{HEX} ; CRC: 5 _{HEX} ; FC1: C81 _{HEX} ; FC2: B43 _{HEX}
MRS	
<ack>08C81733</ack>	Read reply = status: 0 _{HEX} ; CRC: 8 _{HEX} ; FC1: C81 _{HEX} ; FC2: 733 _{HEX}
MRS	
<ack>0BC812F3</ack>	Read reply = status: 0 _{HEX} ; CRC: B _{HEX} ; FC1: C81 _{HEX} ; FC2: 2F3 _{HEX}
T00000	Power off the DUT
<ack></ack>	

Table 22. Enter Command Mode on Device 2

Command	Comment
MS1	Select Device 2 as active for communication and output reading
<ack></ack>	
T_100	Power-off delay trigger setup = 100ms
<ack></ack>	
T11001	Power-on delay trigger setup = 1ms; power on the device
<ack></ack>	
PS_041	Device 2 output multiplexor set for digital communication
<ack></ack>	
PS_031	Enable additional pull-up for OWI communication
<ack></ack>	
OWT0283AE	OWI WRITE with trigger: Enter Command Mode
<ack></ack>	
OR_05	OWI READ: Read the status register of the device

Command	Comment
<ack>0004</ack>	Status register reply: Device is in Command Mode

Table 23. Reading PWM Output from Device 1 and Device 2

Command	Comment
T_100	Power-off delay trigger setup = 100ms
<ack></ack>	
TSO5202	Set the output recognition to PWM
<ack></ack>	
PS_041	Device 2 output multiplexor set for digital signal
<ack></ack>	
PS_051	Device 1 output multiplexor set for digital signal
<ack></ack>	
PS_031	Enable the additional pull-up
<ack></ack>	
T11001	Power-on delay trigger setup = 1ms; power on the device
<ack></ack>	
MSO	Select Device 1 as active for communication and output reading
<ack></ack>	
MRO	Read last output sample
<ack>00000FD0</ack>	
MS1	Select Device 2 as active for communication and output reading
<ack></ack>	
MRO	Read last output sample
<ack>00000224</ack>	
MS0	Select Device 1 as active for communication and output reading
<ack></ack>	
MRO	Read last output sample
<ack>000007BC</ack>	
MS1	Select Device 2 as active for communication and output reading
<ack></ack>	
MRO	Read last output sample
<ack>00000C84</ack>	

4. Glossary

Abbreviation	Meaning	
DUT	Device Under Test	
VCOM Port	COM Port Virtual Communication Port	
ASCII	CII American Standard Code for Information Interchange – character encoding standard	
PWM	Pulse Width Modulation	
SENT	Single Edge Nibble Transmission	
EEPROM	Electrically Erasable Programmable Read-Only Memory	
SWR	R Shadow Registers – Working memory of the ZMID4200	
DPU	DPU Digital Processing Unit	
CRC	Cyclic Redundancy Check	
LSB	Least Significant Bit	
FC1	Fast Channel 1 of the SENT transmission data	
FC2	Fast Channel 2 of the SENT transmission data	

5. Revision History

Revision	Date	Description
1.0	Jul 21, 2021	Initial release.

Notice

- 1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information.
- Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.
- 3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 4. You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export, manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.
- 5. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.
- 6. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document.

- 7. No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but not limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE, HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION ("Vulnerability Issues"). RENESAS ELECTRONICS DISCLAIMS ANY AND ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.
- 8. When using Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, "General Notes for Handling and Using Semiconductor Devices" in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are responsible for systems manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.
- 12. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.
- 13. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 14. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.
- (Note1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries.
- (Note2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

(Disclaimer Rev.5.0-1)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit: www.renesas.com/contact/

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.