カタログ等資料中の旧社名の扱いについて

2010年4月1日を以ってNECエレクトロニクス株式会社及び株式会社ルネサステクノロジ が合併し、両社の全ての事業が当社に承継されております。従いまして、本資料中には旧社 名での表記が残っておりますが、当社の資料として有効ですので、ご理解の程宜しくお願い 申し上げます。

ルネサスエレクトロニクス ホームページ (http://www.renesas.com)

2010年4月1日 ルネサスエレクトロニクス株式会社

【発行】ルネサスエレクトロニクス株式会社(http://www.renesas.com)

【問い合わせ先】http://japan.renesas.com/inquiry

ご注意書き

- 本資料に記載されている内容は本資料発行時点のものであり、予告なく変更することがあります。当社製品のご購入およびご使用にあたりましては、事前に当社営業窓口で最新の情報をご確認いただきますとともに、 当社ホームページなどを通じて公開される情報に常にご注意ください。
- 2. 本資料に記載された当社製品および技術情報の使用に関連し発生した第三者の特許権、著作権その他の知的 財産権の侵害等に関し、当社は、一切その責任を負いません。当社は、本資料に基づき当社または第三者の 特許権、著作権その他の知的財産権を何ら許諾するものではありません。
- 3. 当社製品を改造、改変、複製等しないでください。
- 4. 本資料に記載された回路、ソフトウェアおよびこれらに関連する情報は、半導体製品の動作例、応用例を説明するものです。お客様の機器の設計において、回路、ソフトウェアおよびこれらに関連する情報を使用する場合には、お客様の責任において行ってください。これらの使用に起因しお客様または第三者に生じた損害に関し、当社は、一切その責任を負いません。
- 5. 輸出に際しては、「外国為替及び外国貿易法」その他輸出関連法令を遵守し、かかる法令の定めるところに より必要な手続を行ってください。本資料に記載されている当社製品および技術を大量破壊兵器の開発等の 目的、軍事利用の目的その他軍事用途の目的で使用しないでください。また、当社製品および技術を国内外 の法令および規則により製造・使用・販売を禁止されている機器に使用することができません。
- 6. 本資料に記載されている情報は、正確を期すため慎重に作成したものですが、誤りがないことを保証するものではありません。万一、本資料に記載されている情報の誤りに起因する損害がお客様に生じた場合においても、当社は、一切その責任を負いません。
- 7. 当社は、当社製品の品質水準を「標準水準」、「高品質水準」および「特定水準」に分類しております。また、 各品質水準は、以下に示す用途に製品が使われることを意図しておりますので、当社製品の品質水準をご確 認ください。お客様は、当社の文書による事前の承諾を得ることなく、「特定水準」に分類された用途に当 社製品を使用することができません。また、お客様は、当社の文書による事前の承諾を得ることなく、意図 されていない用途に当社製品を使用することができません。当社の文書による事前の承諾を得ることなく、意図 されていない用途に当社製品を使用することができません。当社の文書による事前の承諾を得ることなく、 「特定水準」に分類された用途または意図されていない用途に当社製品を使用したことによりお客様または 第三者に生じた損害等に関し、当社は、一切その責任を負いません。なお、当社製品のデータ・シート、デ ータ・ブック等の資料で特に品質水準の表示がない場合は、標準水準製品であることを表します。
 - 標準水準: コンピュータ、OA 機器、通信機器、計測機器、AV 機器、家電、工作機械、パーソナル機器、 産業用ロボット
 - 高品質水準:輸送機器(自動車、電車、船舶等)、交通用信号機器、防災・防犯装置、各種安全装置、生命 維持を目的として設計されていない医療機器(厚生労働省定義の管理医療機器に相当)
 - 特定水準: 航空機器、航空宇宙機器、海底中継機器、原子力制御システム、生命維持のための医療機器(生 命維持装置、人体に埋め込み使用するもの、治療行為(患部切り出し等)を行うもの、その他 直接人命に影響を与えるもの)(厚生労働省定義の高度管理医療機器に相当)またはシステム 等
- 8. 本資料に記載された当社製品のご使用につき、特に、最大定格、動作電源電圧範囲、放熱特性、実装条件その他諸条件につきましては、当社保証範囲内でご使用ください。当社保証範囲を超えて当社製品をご使用された場合の故障および事故につきましては、当社は、一切その責任を負いません。
- 9. 当社は、当社製品の品質および信頼性の向上に努めておりますが、半導体製品はある確率で故障が発生したり、使用条件によっては誤動作したりする場合があります。また、当社製品は耐放射線設計については行っておりません。当社製品の故障または誤動作が生じた場合も、人身事故、火災事故、社会的損害などを生じさせないようお客様の責任において冗長設計、延焼対策設計、誤動作防止設計等の安全設計およびエージング処理等、機器またはシステムとしての出荷保証をお願いいたします。特に、マイコンソフトウェアは、単独での検証は困難なため、お客様が製造された最終の機器・システムとしての安全検証をお願いいたします。
- 10. 当社製品の環境適合性等、詳細につきましては製品個別に必ず当社営業窓口までお問合せください。ご使用 に際しては、特定の物質の含有・使用を規制する RoHS 指令等、適用される環境関連法令を十分調査のうえ、 かかる法令に適合するようご使用ください。お客様がかかる法令を遵守しないことにより生じた損害に関し て、当社は、一切その責任を負いません。
- 11. 本資料の全部または一部を当社の文書による事前の承諾を得ることなく転載または複製することを固くお 断りいたします。
- 12. 本資料に関する詳細についてのお問い合わせその他お気付きの点等がございましたら当社営業窓口までご 照会ください。
- 注1. 本資料において使用されている「当社」とは、ルネサスエレクトロニクス株式会社およびルネサスエレク トロニクス株式会社がその総株主の議決権の過半数を直接または間接に保有する会社をいいます。
- 注 2. 本資料において使用されている「当社製品」とは、注 1 において定義された当社の開発、製造製品をいい ます。

SuperH[™]ファミリ用 E10A-USB エミュレータ ユーザーズマニュアル 別冊 SH7147グループデバッグMCUボード ご使用時の補足説明

ルネサスマイクロコンピュータ開発環境システム SuperH[™]ファミリ

E10A-USB for SH7147 HS7147DBKCU01HJ

Rev.1.00 2008.04

本資料ご利用に際しての留意事項

- 本資料は、お客様に用途に応じた適切な弊社製品をご購入いただくための参考資料であり、本資料 中に記載の技術情報について弊社または第三者の知的財産権その他の権利の実施、使用を許諾また は保証するものではありません。
- 2.本資料に記載の製品データ、図、表、プログラム、アルゴリズムその他応用回路例など全ての情報の使用に起因する損害、第三者の知的財産権その他の権利に対する侵害に関し、弊社は責任を負いません。
- 3. 本資料に記載の製品および技術を大量破壊兵器の開発等の目的、軍事利用の目的、あるいはその他 軍事用途の目的で使用しないでください。また、輸出に際しては、「外国為替および外国貿易法」 その他輸出関連法令を遵守し、それらの定めるところにより必要な手続を行ってください。
- 4. 本資料に記載の製品データ、図、表、プログラム、アルゴリズムその他応用回路例などの全ての 情報は本資料発行時点のものであり、弊社は本資料に記載した製品または仕様等を予告なしに変更 することがあります。弊社の半導体製品のご購入およびご使用に当たりましては、事前に弊社営業 窓口で最新の情報をご確認いただきますとともに、弊社ホームページ(http://www.renesas.com) などを通じて公開される情報に常にご注意ください。
- 5. 本資料に記載した情報は、正確を期すため慎重に制作したものですが、万一本資料の記述の誤りに 起因する損害がお客様に生じた場合においても、弊社はその責任を負いません。
- 6.本資料に記載の製品データ、図、表などに示す技術的な内容、プログラム、アルゴリズムその他応用回路例などの情報を流用する場合は、流用する情報を単独で評価するだけでなく、システム全体で十分に評価し、お客様の責任において適用可否を判断してください。弊社は、適用可否に対する責任は負いません。
- 7.本資料に記載された製品は、各種安全装置や運輸・交通用、医療用、燃焼制御用、航空宇宙用、 原子力、海底中継用の機器・システムなど、その故障や誤動作が直接人命を脅かしあるいは人体に 危害を及ぼすおそれのあるような機器・システムや特に高度な品質・信頼性が要求される機器・ システムでの使用を意図して設計、製造されたものではありません(弊社が自動車用と指定する 製品を自動車に使用する場合を除きます)。これらの用途に利用されることをご検討の際には、 必ず事前に弊社営業窓口へご照会ください。なお、上記用途に使用されたことにより発生した損害 等について弊社はその責任を負いかねますのでご了承願います。
- 8.第7項にかかわらず、本資料に記載された製品は、下記の用途には使用しないでください。これらの用途に使用されたことにより発生した損害等につきましては、弊社は一切の責任を負いません。
 1)生命維持装置。
 - 2)人体に埋め込み使用するもの。
 - 3)治療行為(患部切り出し、薬剤投与等)を行うもの。
 - 4)その他、直接人命に影響を与えるもの。
- 9.本資料に記載された製品のご使用につき、特に最大定格、動作電源電圧範囲、放熱特性、実装条件 およびその他諸条件につきましては、弊社保証範囲内でご使用ください。弊社保証値を越えて製品 をご使用された場合の故障および事故につきましては、弊社はその責任を負いません。
- 10.弊社は製品の品質および信頼性の向上に努めておりますが、特に半導体製品はある確率で故障が 発生したり、使用条件によっては誤動作したりする場合があります。弊社製品の故障または誤動作 が生じた場合も人身事故、火災事故、社会的損害などを生じさせないよう、お客様の責任において 冗長設計、延焼対策設計、誤動作防止設計などの安全設計(含むハードウェアおよびソフトウェ ア)およびエージング処理等、機器またはシステムとしての出荷保証をお願いいたします。特に マイコンソフトウェアは、単独での検証は困難なため、お客様が製造された最終の機器・システム としての安全検証をお願いいたします。
- 11.本資料に記載の製品は、これを搭載した製品から剥がれた場合、幼児が口に入れて誤飲する等の 事故の危険性があります。お客様の製品への実装後に容易に本製品が剥がれることがなきよう、 お客様の責任において十分な安全設計をお願いします。お客様の製品から剥がれた場合の事故に つきましては、弊社はその責任を負いません。
- 12.本資料の全部または一部を弊社の文書による事前の承諾なしに転載または複製することを固く お断りいたします。
- 13.本資料に関する詳細についてのお問い合わせ、その他お気付きの点等がございましたら弊社営業 窓口までご照会ください。

目次

1. 3	エミュレータについて	1
1.1	E10A-USBエミュレータの構成品	1
1.2	E10A-USBエミュレータとSH7147グループデバッグMCUボードの接続	3
2. 8	SH7147 グループデバッグ MCU ボード ご使用時のソフトウェア仕様	5
2.1	E10A-USBエミュレータとMCUの相違点	5
2.2	SH7147グループデバッグMCUボード ご使用時のエミュレータ特有機能および注意事項	3
2.2	.1 ターゲットの選択	3
2.2	.2 Event Condition 機能	3
2.2	.3 トレース機能1	3
2.2	.4 JTAG (H-UDI) クロック (TCK) 使用時の注意事項	4
2.2	.5 [Breakpoint]ダイアログボックス設定時の注意事項24	4
2.2	.6 [Event Condition]ダイアログボックス、BREAKCONDITION_SET コマンド設定時の注意事項2:	5
2.2	.7 パフォーマンス測定機能	5

1. エミュレータについて

1.1 E10A-USB エミュレータの構成品

E10A-USB エミュレータは、SH7147 グループデバッグ MCU ボードをサポートしています。 表 1.1 に、E10A-USB エミュレータの構成品を示します。

1. エミュレータについて

分 類	品名	構成品外観		備考
ハードウェア	エミュレータ本体	Ca (D)))		HS0005KCU01H 縦: 65.0 mm、横: 97.0 mm、 高さ: 20.0 mm、質量: 72.9 g または HS0005KCU02H 縦: 65.0 mm、横: 97.0 mm、 高さ: 20.0 mm、質量: 73.7 g
	ユーザインタフェース ケーブル		1	14 ビンタイプ 長さ:20 cm、質量:33.1 g
	ユーザインタフェース ケーブル	-	1	36 ピンタイプ 長さ:20 cm、質量:49.2 g (製品型名:HS0005KCU02H のみ)
	USB ケーブル		1	長さ:150 cm、質量:50.6 g
ソフトウェア	E10A-USB エミュレータ セットアップ プログラム、		1	HS0005KCU01SR
	SuperH™ファミリ用 E10A-USB エミュレータ ユーザーズマニュアル、			HS0005KCU01HJ HS0005KCU01HE
	別冊 SH7147 グループ デバッグ MCU ポード ご使用時の補足説明 ^[注] 、			HS7147DBKCU01HJ HS7147DBKCU01HE
	HS0005KCU01H、 HS0005KCU02H テスト プログラムマニュアル			HS0005TM01HJ HS0005TM01HE (CD-R で提供)

表 1.1 E10A-USB エミュレータの構成品

【注】 その他 E10A-USB でサポートしている MCU の個別マニュアルが収録されています。 対象 MCU を確認の上対象となる個別マニュアルをご参照ください。

1.2 E10A-USB エミュレータと SH7147 グループデバッグ MCU ボード の接続

E10A-USB エミュレータ製品型名とそれに対応するコネクタタイプおよび AUD 機能の使用、非使用の関係を表 1.2 に示します。

製品型名	コネクタタイプ	AUD 機能
HS0005KCU01H, HS0005KCU02H	14 ピンタイプ	使用できません。
HS0005KCU02H	36 ピンタイプ	使用できます。

表 1.2 製品型名と AUD 機能、コネクタタイプ対応表

H-UDI ポートコネクタには、以下に示すように 36 ピンタイプと 14 ピンタイプがありますので、使用目的に合わせてご使用ください。

(1) 36 ピンタイプ(AUD機能有り)

AUD トレース機能に対応した36 ピンコネクタで、大容量のリアルタイムトレースが可能です。また、指定 した範囲内のメモリアクセス(メモリアクセスアドレスやメモリアクセスデータ)をトレース取得するウィ ンドウトレース機能もサポートします。

(2)14 ピンタイプ(AUD機能無し)

H-UDI 機能のみをサポートしており、AUD トレース機能を使用することはできません。

SH7147 グループデバッグ MCU ボード ご使用時のソフトウェア仕様

2.1 E10A-USB エミュレータと MCU の相違点

(1) E10A-USBエミュレータは、システム起動時に汎用レジスタやコントロールレジスタの一部を初期化していますので注意してください。なお、MCUの初期値は不定です。

ワークスペースから起動する場合は、セッションで保存されている値が入力されます。

状態	レジスタ名	E10A-USB エミュレータ
E10A-USB エミュレータ	R0 ~ R14	H'0000000
起動時	R15 (SP)	パワーオンリセットベクタテーブル中の SP の値
	PC	パワーオンリセットベクタテーブル中の PC の値
	SR	H'000000F0
	GBR	H'0000000
	VBR	H'0000000
	MACH	H'0000000
	MACL	H'0000000
	PR	H'0000000

表 2.1 E10A-USB エミュレータでのレジスタ初期値

(2) H-UDIはE10A-USBエミュレータで使用しているので、アクセスしないでください。

- (3) 低消費電力状態
 - ・E10A-USBエミュレータ使用時は、スリープモードの解除要因の他に、[Stop]ボタンによっても状態が 解除され、プレークします。
 - ソフトウェアスタンバイモードにて、メモリ参照や変更をしないでください。
 - ●E10A-USBエミュレータ使用時は、ディープソフトウェアスタンバイモードを使用しないでください。
- (4) リセット信号

MCUのリセット信号は、GOボタンおよびSTEP系ボタンをクリックすることによるエミュレーションで有効 です。したがって、E10A-USBエミュレータのコマンド待ち状態では、リセット信号はMCUに入力されません。

【留意事項】

/RES、/BREQ、/WAIT 端子が"Low"状態のままユーザプログラムをブレークしないでください。TIMEOUT エラー が発生します。また、ブレーク中に/WAIT 端子または/BREQ 端子が"Low"固定状態になると、メモリアクセス時に TIMEOUT エラーが発生します。(MCU によっては/BREQ、/WAIT を持たない場合があります。)

(5) データトランスファコントローラ(DTC)

DTCを内蔵しているMCUでは、E10A-USBエミュレータ使用時でもDTCは機能しています。転送要求が発生 すると、DTC転送を実行します。

(6) ユーザプログラム実行中のメモリアクセス

ユーザプログラム実行中のメモリアクセスには、下記の方法を提供しています。

表 2.2 ユーザプログラム実行中のメモリアクセス

方法	説明
H-UDI リード / ライト	専用のバスマスタによるメモリアクセスのため、ユーザプログラムの停止時間が小さい。
ショートブレーク	本製品では使用しません。(設定しないでください)

ユーザプログラム実行中のメモリアクセス方法は、[Configuration]ダイアログボックスにて指定します。

表 2.3 メモリアクセスによる停止時間(参考値)

方法 条件		停止時間
H-UDI リード / ライト	内蔵 RAM への 1 ロングワードリード	リード 最大2バスクロック(B)
	内蔵 RAM への 1 ロングワードライト	ライト 最大2バスクロック(B)

(7) 外部フラッシュメモリ領域のメモリアクセス

E10A-USBエミュレータは、外部フラッシュメモリ領域に対してロードモジュールをダウンロードすること ができます。(SuperH.ファミリ用 E10A-USB エミュレータユーザーズマニュアル 「6.22章 フラッシュメ モリへのダウンロード機能」参照)外部フラッシュメモリ領域に対しては、メモリライトおよびBREAKPOINT の設定はできません。外部フラッシュメモリ上のプログラムにプレーク条件を設定する場合は、Event Condition機能を使用してください。

MCUによっては外部フラッシュメモリ領域を持たない場合があります。

(8) WDTの使用について

WDTは、ブレーク中に動作しません。

(9) セッションロードについて

[Configuration]ダイアログボックスの[JTAG clock]の情報は、セッションロードで回復されません。このため、 TCKの値は、以下のようになります。

HS0005KCU01H、HS0005KCU02Hを使用の場合は、TCK=2.5MHz

(10) [IO]ウィンドウ

表示と変更

ウォッチドッグタイマの各レジスタは、読み出し/書き込みの2つを用意しています。

表 2.4 ウォッチドッグタイマのレジスタ

レジスタ名	用途	レジスタ	
WTCSR (W) 書き込み用		ウォッチドッグタイマコントロール / ステータスレジスタ	
WTCNT (W) 書き込み用		ウォッチドッグタイマカウンタ	
WTCSR(R) 読み出し用		ウォッチドッグタイマコントロール / ステータスレジスタ	
WTCNT(R) 読み出し用		ウォッチドッグタイマカウンタ	

• I/Oレジスタファイルのカスタマイズ

I/Oレジスタファイルは、I/Oレジスタファイル作成後、デバイス仕様が変更になることがあります。I/Oレジ スタファイルの各I/Oレジスタと、デバイスマニュアル記載のアドレスに相違がある場合は、デバイスマニュ アルの記載にしたがって修正してご使用ください。I/Oレジスタは、I/Oレジスタファイルのフォーマットに したがい、カスタマイズすることが可能です。なお、E10A-USBエミュレータでは、ビットフィールド機能 についてはサポートしていませんので、ご了承ください。

• ベリファイ

[IO]ウィンドウにおいては、入力値のベリファイ機能は無効です。

(11) 不当命令

不当命令をSTEP実行しないでください。

(12) MCU動作モード

E10A-USBエミュレータは、ブートモード、ユーザブートモード、およびユーザプログラムモードで使用し ないでください。

(13) MCU内蔵フラッシュメモリ

ユーザプログラム実行中にMCU内蔵フラッシュメモリの内容の書き換えはできません。2.2

2.2 SH7147 グループデバッグ MCU ボード ご使用時のエミュレータ特 有機能および注意事項

2.2.1 ターゲットの選択

ご使用のターゲットに合わせて、E10A-USB のターゲットを選択してください。詳細は、SuperH™ファミリ用 E10A-USB エミュレータユーザーズマニュアルの4章「デバッグの準備をする」を参照してください。

SH7147 グループデバッグ MCU ボードをデバッグするためには、[デバッガターゲット]ダイアログボックスおよび、[Select Emulator mode]ダイアログボックスでは下記項目を選択してください。

[デバッガターゲット]ダイアログボックス

SH7147 Group Debug MCU BOARD E10A-USB SYSTEM (CPU SH-2)

[Select Emulator mode]ダイアログボックス

- ・ R5F71474 の場合: R5F71474_Debug_MCU_BOARD
- ・ R5F71475 の場合:R5F71475_Debug_MCU_BOARD
- ・ R5F71476 の場合:R5F71476_Debug_MCU_BOARD
- ・ R5F71424 の場合:R5F71424_Debug_MCU_BOARD
- ・ R5F71426 の場合: R5F71426_Debug_MCU_BOARD

2.2.2 Event Condition 機能

E10A-USB エミュレータは、下記の3つの機能に対して、Event条件を設定することができます。

- ・ ユーザプログラムのブレーク
- ・ 内蔵トレース
- ・ パフォーマンスの測定開始 / 終了

表 2.5 に Event Condition の条件の内容を示します。

項番	Event Condition 条件	説明
1	アドレスバス条件	アドレスパス(データアクセス)またはプログラムカウンタ(命令実行前/命令実行後)
	(Address)	の値の一致を条件とします。
2	データバス条件	データバスの値の一致を条件とします。
	(Data)	バイト、ワード、ロングアクセスのデータサイズを指定できます。
3	バスステート条件	バスステート条件には、次の2つの条件設定があります。
	(Bus State)	Bus State 条件 :データバスの値の一致を条件とします。
		Read/Write 条件:リード/ライトの一致を条件とします。
4	カウント	設定した他の条件が指定回数分成立したことを一致の条件とします。
5	Action	条件が一致したときの動作(プレーク、トレース停止条件、トレース取得条件)を選択し
		ます。

表 2.5 Event Condition の条件

シーケンシャル指定、およびパフォーマンスの測定開始 / 終了指定は、[Event Condition]シート上のポップアッ プメニューから[Combination action(Sequential or PtoP)]を選択する事で開く、[Combination action(Sequential or PtoP)] ダイアログボックスにて行います。

ダイアログボックス				機能		
		アドレス バス条件 (Address)	データバス 条件 (Data)	バスステート 条件 (Bus State)	カウント 条件 (Count)	Action
[Event Condition 1]	Ch1					(B • T1 • P)
[Event Condition 2]	Ch2				×	(B · T1 · P)
[Event Condition 3]	Ch3		×	×	×	(B • T2)
[Event Condition 4]	Ch4		×	×	×	(B • T3)
[Event Condition 5]	Ch5		×	×	×	(B • T3)
[Event Condition 6]	Ch6		×	×	×	(B • T2)
[Event Condition 7]	Ch7		×	×	×	(B • T2)
[Event Condition 8]	Ch8		×	×	×	(B • T2)
[Event Condition 9]	Ch9		×	×	×	(B • T2)
[Event Condition 10]	Ch10		×	×	×	(B • T2)

Ch1~Ch10で設定できる条件の組み合わせについて説明します。

表 2.6 Event Condition の条件設定用のダイアログボックス

【注】 は、ダイアログボックスで設定できることを表します。

×は、設定できないことを表します。

Action 項目の

Bは、ブレーク設定ができることを表します。(カウント条件はブレークのみ設定できます。)

T1は、内蔵トレースのトレース停止およびトレース条件設定ができることを表します。

T2 は、内蔵トレースのトレース停止設定ができることを表します。

T3 は、内蔵トレースのトレース停止およびポイント To ポイント設定ができることを表します。

Pは、パフォーマンス開始/終了条件の設定ができることを表します。

(1) シーケンシャル設定

[Combination action(Sequential or PtoP)]ダイアログボックスにて、シーケンシャル条件および、パフォーマンスの 測定開始 / 終了を設定することができます。

表 2.7 設定条件

分類	項目	説明		
[Ch1,2,3] リストボックス	Event Condition 1~3を使用したシーケンシャル条件および、パフォーマンスの測定開始 / 終了を設定することができます。			
	Don't care	シーケンシャル条件および、パフォーマンスの測定開始 / 終了を設定しませ ん。		
	Break: Ch 3-2-1	Event Condition 3-2-1 の順で成立した場合にブレークします。		
	Break: Ch 2-1	Event Condition 2-1 の順で成立した場合にブレークします。		
	I-Trace stop: Ch 3-2-1	Event Condition 3-2-1 の順で成立した場合に内蔵トレースの取得を停止しま す。		
	I-Trace stop: Ch 2-1	Event Condition 2-1 の順で成立した場合に内蔵トレースの取得を停止しま す。		
	Ch 2 to Ch 1 PA	Event Condition 2 条件(開始条件)成立から Event Condition 1 条件(終了条件)成立までの期間をパフォーマンス測定期間に設定します。		
	Ch 1 to Ch 2 PA	Event Condition 1 条件 (開始条件)成立から Event Condition 2 条件 (終了条件)成立までの期間をパフォーマンス測定期間に設定します。		
[Ch4.5] リストボックス	Event Condition 4.5 を使用した内蔵トレースのポイント To ポイント(トレース取得開始 / 終了 ス 指定することができます。			
	Don't care	トレース取得開始 / 終了条件を指定しません。		
	I-Trace: Ch 5 to Ch 4 PtoP	Event Condition 5 条件(開始条件)成立から Event Condition 4 条件(終了条件),成立までの期間をトレース取得期間(ポイント To ポイント)に設定します。		

- パフォーマンス測定にて終了条件成立後に、開始条件が終了した場合は、パフォーマンス測定を再開します。
 プレーク後の測定結果は、パフォーマンス測定期間中の測定結果の合算になります。
- 内蔵トレースのポイントToポイントにて、終了条件成立後に開始条件が成立した場合は、トレース取得を再開します。
- パフォーマンスの測定開始 / 終了を使用する場合、Event Condition 1条件の回数指定は 1 回にしてください。

(2) シーケンシャルブレーク拡張設定の使用例

製品添付のチュートリアルプログラムを例に説明します。

チュートリアルプログラムについては、「SuperH™ファミリ用 E10A-USB エミュレータユーザーズマニュアル 6 章 チュートリアル」を参照してください。

Event Condition 条件を次のように設定します。

1. Ch 3

アドレスH'00001068をOnly program fetched address after条件が成立した時にブレークする。

2. Ch 2

アドレスH'0000107aをOnly program fetched address after条件が成立した時にブレークする。

3. Ch 1

アドレスH'00001086をOnly program fetched address after条件が成立した時にブレークする。

【注】 この時その他のチャネルは設定しないでください。

4. [Combination action(Sequential or PtoP)]ダイアログボックスにて、[Ch1,2,3]リストボックスの内容を[Break: Ch 3-2-1]に設定する。

5. [Event Condition]シートから、右クリックのポップアップメニューによりEvent Condition 1の条件を有効にする。

次に、プログラムカウンタ、スタックポインタ(PC=H'00000800、R15=H'00010000)を[レジスタ]ウィンドウに 設定して、[Go]ボタンをクリックしてください。

正常に実行できない場合は、一旦リセットを発行してから上記手順を実行してください。

Ch1の条件まで、プログラムを実行して停止します。

この時 Ch3 -> 2 -> 1 の順で条件が成立しています。

図 2.1 実行停止時の[Source]ウィンドウ(シーケンシャルブレーク)

シーケンシャル条件、パフォーマンスの測定開始 / 終了または内蔵トレースのポイント To ポイントを設定した 場合、使用する Event Condition の各条件は一度無効になります。このため[Event Condition]シートから右クリック のポップアップメニューにより使用する Event Condition の条件を有効にする必要があります。

【留意事項】

- 遅延分岐命令のスロット命令にプログラムカウンタ(命令実行後)による Event 条件を設定した場合、分岐先の命 令実行前で条件が成立します。(プレークを設定した場合は分岐先の命令実行前にプレークします。)
- SLEEP 命令に対してプログラムカウンタ(命令実行後)による Event 条件を設定しないでください。また、SLEEP 命令の1~2命令前にはデータアクセス条件を設定しないでください。
- 3. パワーオンリセットと Event 条件の一致が同時に発生した場合は、条件が成立しない場合があります。
- 4. 成立する間隔が近接しているシーケンシャル設定を行った場合、シーケンシャル条件が成立しない場合があります。 近接するプログラムカウンタによる Event 条件は 2 命令以上あけてシーケンシャル設定を行ってください。シーケ ンシャル条件の一致によるプレーク発生直前にパワーオンリセットが発生すると停止要因が正しく表示されない 場合があります。CPU はパイプライン構造なので、命令フェッチサイクルとメモリサイクルの順序はパイプライ ンによって決定されます。したがって、パスサイクルの順序においてチャネル条件が一致すると、シーケンシャル 条件が満たされます。
- 6. プログラム実行中に Event 条件設定およびシーケンシャル設定を変更した場合、E10A-USB は設定変更のため一時 的にすべての Event 条件を無効にします。この期間では、Event 条件は成立しません。

- 7. DTC 転送と外部バスアクセス条件を含む Event Condition 条件の成立が競合した場合、この Event Condition 条件 成立によるブレーク、内蔵トレースのトレース停止およびトレース取得、パフォーマンスの測定開始 / 終了が動作 しないことがあります。
- 8. E10A-USB エミュレータを接続している場合、ユーザブレークコントローラ (UBC)機能は使用できません。

2.2.3 トレース機能

E10A-USB エミュレータには、以下に示すトレース機能が使用できます。

機能	内蔵トレース	AUD トレース
分岐トレース機能	可	可
メモリアクセストレース機能	可	可
ソフトウェアトレース機能	不可	可

表 2.8 トレース機能一覧

なお、AUD 機能が使用できる製品は以下ですので、ご注意ください。

表 2.9 製品型名と AUD 機能対応表

製品型名	AUD 機能使用
HS0005KCU01H	使用できません。
HS0005KCU02H	使用できます。

内蔵トレースおよび AUD トレースの設定は、[トレース]ウィンドウの[Acquisition]ダイアログボックスで行います。

(1) 内蔵トレース機能

[Acquisition]ダイアログボックスの[Trace Mode]ページの[Trace type]にて[I-Trace]を選択することで、内蔵トレースを使用することができます。

Acquisition				?×
Trace mo	de			
Trace	type	0.000 v		
	I-Irace	C AUD <u>f</u> unction	n	
-I-Trac	e mode			
Type	L-Bus & Branch			<u> </u>
<u>A</u> cqu	isition			
	Read 🔽 Writ Reach 🔽 Dat	e 		
	OPU 🗖 DAG	A LIDIO	5	
	nstruction Fetch			
When	i trace buffer fu <u>l</u> l	Trace continue	▼	
- AUD r	node			
	Branch trace			
	Window trace	<u>C</u> hannel (A 🗌 C <u>h</u> an	nel B
	Software trace			
P	AUD model: 💿 <u>R</u> e	altime trace	O <u>N</u> on realtime t	race
P.	AUD mode2: 💿 Tra	ace contin <u>u</u> e	🔿 Trace <u>s</u> top	C Break
A	UD trace display rar	ige:		
	Start pointer	D'255	•	
	End pointer	D'0		
			01/	
			<u> </u>	

図 2.2 [Acquisition]ダイアログボックス(内蔵トレース機能)

内蔵トレースは[I-Trace mode]の[Type]により下記3つのタイプから選択できます。

表 2.10 内蔵トレース取得情報

項目	取得情報
[L-Bus & Branch]	L-バス上のデータおよび分岐情報を取得できます。
	・データアクセス(リード / ライト)
	・分岐情報
	・命令フェッチ
[I-Bus]	l-バス上のデータを取得できます。
	・データアクセス(リード / ライト)
	・I-バス上のバスマスタの選択(CPU/DTC)
	・命令フェッチ
[I-Bus, L-Bus & Branch]	[L-Bus & Branch]と[I-Bus]の内容を取得します。

[I-Trace mode]の[Type]選択後に、取得したい内容を[Acquisition]より選択してください。下記に代表例を示します。([Acquisition]にて無効になっている項目は取得されないので注意してください。)

DMAC および DTC を内蔵していない MCU においては、I-バス上のバスマスタの選択にてそれぞれ DMA および DTC を選択しないでください。

• 分岐情報のみを取得する例

[Type]設定にて[L-Bus & Branch]を選択し、[Acquisition]設定にて[Branch]を有効にする。

• ユーザプログラムによるリード / ライトアクセス (L-バス)のみを取得する例

[Type]設定にて[L-Bus & Branch]を選択し、[Acquisition]設定にて[Read]、[Write]および[Data access]を有効にする。

• DTC(I-バス)によるリードアクセスのみを取得する例

[Type]設定にて[I-Bus]を選択し、[Acquisition]設定にて[Read]、[DTC]および[Data access]を有効にする。

Event Condition を使用することでさらに条件を限定することができます。下記3つの種別があります。

表 2.11 内蔵トレースのトレース条件

項目	取得情報		
トレース停止	Event Condition の成立まで内蔵トレースを取得します。(停止後はトレースウィンドウ		
	にて内容を表示します。ユーザプログラムはブレークしません。)		
トレース取得	Event Condition の成立するデータアクセスのみ取得します。		
ポイント To ポイント	Event Condition 5 の成立から Event Condition 4 の成立までの期間をトレースします。		

トレース取得を特定のアドレスのみのアクセスや、プログラムの特定の関数のみに限定したい場合、Event Condition を使用することで可能です。以下に、代表的な例を示します。

ユーザプログラムによるH'FFFF8000へのライトアクセス(L-バス)を条件としてトレース停止する例(トレース停止)

[I-Trace mode]にて取得したい条件を設定します。

[Event Condition 1]または[Event Condition 2] ダイアログボックスにて、下記設定を行います。

アドレス条件: [Address]およびH'FFFF8000を設定

バスステート条件: [L-Bus]および[Write]を設定

アクション条件: [Acquire Break]を無効にし、[Acquire Trace]を[Stop]に設定

ユーザプログラムによるH'FFFF8000へのライトアクセス(L-バス)のみを取得する例(トレース取得条件)
 [Type]設定にて[L-Bus & Branch]を選択し、[Acquisition]設定にて [Write]および[Data access]を有効にします。
 [Event Condition 1]または[Event Condition 2] ダイアログボックスにて、下記設定を行います。

アドレス条件: [Address]およびH'FFFF8000を設定

バスステート条件: [L-Bus]および[Write]を設定

アクション条件: [Acquire Break]を無効にし、[Acquire Trace]を[Condition]に設定

トレース取得条件では、Event Conditionにて取得したい条件を[I-Trace mode]にて取得可能に設定しておく必要があります。

• ユーザプログラムがH'1000を通過してからH'2000を通過するまでの期間をトレース取得する例(ポイントTo ポイント)

[I-Trace mode]にて取得したい条件を設定します。

[Event Condition 5] ダイアログボックスにて、アドレス条件をH'1000に設定します。

[Event Condition 4] ダイアログボックスにて、アドレス条件をH'2000に設定します。

[Combination action(Sequential or PtoP)]ダイアログボックスにて、[Ch 4,5]を I-Trace Ch 5 to Ch 4 PtoPに設定します。

ポイントToポイントとトレース取得条件を同時に設定した場合は、それぞれのAND条件になります。

(2) 内蔵トレースの注意事項

タイムスタンプについて

タイムスタンプはターゲットマイコン(MCU)に接続している水晶発振子または入力している外部クロックの2倍になります。

また取得タイミングは下記になります。

表 2.12 タイムスタンプ取得タイミング

項目	トレースメモリに格納されるカウンタ値
L-バス命令フェッチ	命令フェッチ完了時点のカウンタ値
L-バスデータアクセス	データアクセス完了時点のカウンタ値
分岐	分岐後のバスサイクル完了時点のカウンタ値
I-バスフェッチ	フェッチ完了時点のカウンタ値
I-バスデータアクセス	データアクセス完了時点のカウンタ値

• ポイントToポイントについて

トレース開始条件は指定の命令がフェッチされた時点で成立します。したがってオーバーランフェッチした 命令(分岐時や割込み遷移時にフェッチしたが実行されない命令)に対してトレース開始条件が設定されて いた場合、オーバーランフェッチ中にトレース開始されます。ただし、オーバーランフェッチが分かった(分 岐が完了した)時点で自動的にトレース一時停止します。

開始条件と終了条件の成立が近接している場合は、正しくトレース情報を取得できない場合があります。 開始条件成立前にフェッチされた命令の実行サイクルがトレースされる場合があります。

トレース停止について

SLEEP 命令および遅延スロットがSLEEP 命令になる分岐命令にはトレース終了条件を設定しないでください。

• トレース取得条件について

SLEEP 命令および遅延スロットがSLEEP 命令になる分岐命令にはトレース終了条件を設定しないでください。

[I-Bus, L-Bus & Branch]を選択し、Event Conditionにより、L-バスおよびI-バスのそれぞれに、トレース取得条件を設定する場合は、[Event Condition 1]にL-バス条件、[Event Condition 2]にI-バス条件を設定してください。 プログラム実行中に[I-Trace mode]の設定変更を行った場合は、設定変更のためにプログラム実行を一時的に 停止します。(プログラム実行の停止クロック数は、最大約26バスクロック(B

φ)になります。バスクロック (B

φ)が10.0MHzの場合、2.6µ秒停止します。)

トレース取得条件にはデータ条件を使用しないでください。

トレース表示について

プログラム実行中にトレース表示を行った場合は、トレース情報取得のためにプログラム実行を一時的に停止します。(プログラム実行の停止クロック数は、最大約16384周辺クロック(Pφ)+12310バスクロック(Bφ) になります。周辺クロック(Pφ)が10.0MHz、バスクロック(Bφ)が10.0MHzの場合、2.87m秒停止します。) Event Conditionによりプレークの場合に、プレークした命令から1命令または2命令後に無条件分岐がある 場合、無条件分岐が実行されていないにもかかわらずトレース結果に表示される場合があります。 DTC転送のトレース取得結果が正しく表示できない場合があります。正しく表示できない場合は、トレース 事象を発生させたマスタが空白になるか、または一行分のトレース表示が空白になります。

• トレース停止後の再開について

ユーザプログラム実行中にトレース取得の再開はできません。トレースの取得を再開させる場合は、一度プ レークしてください。

• ユーザプログラム実行中のご注意

ユーザプログラム実行中にトレースに関係する設定の変更は行わないでください。変更を行った場合は、トレースが取得できなくなる場合があります。トレースに関係する設定の変更には、Event Condition条件、Event Conditionによるシーケンシャル条件および[Acquisition]ダイアログボックスでの内蔵トレース設定があります。設定を変更する場合は、一度プレークしてください。

(3) AUD トレース機能

デバイスの AUD 端子を E10A-USB エミュレータに接続している場合に有効なトレース機能です。 各トレース機能で設定できる AUD トレースのトレース取得モードを示します。

種別	モード	説明
トレース出力が連 続して発生した場 合の取得モード	Realtime trace モード	トレース情報を出力中に次の分岐が発生した場合、出力中のトレース 情報は出力されますが、次のトレース情報は出力されません。このた め、ユーザプログラムはリアルタイムに動作しますが、トレース情報 が一部取得できないことがあります。
	Non realtime trace モード	トレース情報を出力中に次の分岐が発生した場合、トレース情報が出 力し終わるまで、CPU は動作を停止します。このため、ユーザプロ グラムのリアルタイム性はありません。
E10A-USB エミュ レータのトレース	Trace continue モード	古い情報に上書きして、常に最新の情報を取得します。
バッファがフルに なった場合の取得 モード	Trace stop モード	その後のトレースを取得しません。 ユーザプログラムは継続して実行されます。

表 2.13 AUD トレース取得モード

AUD トレース取得モードを設定するには、[Trace]ウィンドウを右クリックすることによって開くポップアップ メニューから[設定]を選択し、[Acquisition]ダイアログボックスを開いてください。

[Acquisition]ダイアログボックスの[Trace mode]ページにある、[AUD mode1]、[AUD mode2]グループボックスで 設定できます。

quisition				?
Trace mode Window tr Trace type O I-Trace	race AUD Branch	trace notion		
I-Trace mode				
Type L-Bus & E	3ranch			-
Acquisition Read Read Branch CPU Instruction Fet When trace buffer f AUD mode Branch trace Window trace Software trace	Write Data access DMA Ch Trace contin Ch Ch Ch Ch	DTC nue	<u>Ch</u> annel B	
AUD mode1:	⊙ <u>R</u> ealtime trace	○ <u>N</u> on real	time trace	
AUD mode2:	⊙ Trace contin <u>u</u> e	C Trace <u>s</u> t	op C Brea <u>k</u>	
AUD trace disp Start go <u>E</u> nd poi	lay range: pinter D'255 nter D'0			
		Ok		<u>2</u>]]

図 2.3 [Trace mode]ページ

次に、AUD トレース機能について説明します。

AUD トレース機能を使用する場合、[Trace mode]ページの[Trace type]グループボックス中の、[AUD function]ラ ジオボタンにチェックをつけてください。 分岐トレース機能

分岐元、分岐先アドレスとそのソースを表示します。

[Trace mode]ページの[AUD mode]グループボックス中の、[Branch trace]チェックボックスにチェックをつけることによって分岐トレースが取得できます。

また、[AUD Branch trace]ページで取得する分岐の種類を選択することができます。

Acquisition	?×
Trace mode Window trace AUD Branch trace	
Acquire normal branch instruction trace	
Acquire subroutine branch instruction trace	
Acquire exception branch instruction trace	
<u> </u>	211

図 2.4 [AUD Branch trace]ページ

ウィンドウトレース機能

指定した範囲内のメモリアクセスをトレース取得します。

メモリ範囲は2つまで指定できます。チャネルA、チャネルBにそれぞれ範囲を指定することができます。ま たそれぞれトレース取得するバスサイクルとして、リードサイクル、ライトサイクル、またはリードライトサ イクルを選択できます。

【設定方法】

- (i) [Trace mode]ページの[AUD mode]グループボックス中の、[Channel A]チェックボックス、[Channel B]
 チェックボックスにチェックをつけることによって、各チャネルを有効にしてください。
- (ii) [Window trace]ページを開き、各チャネルに設定するバスサイクルとメモリ範囲、バスの種類を指定してください。

Acquisition				? ×
Trace mode Window tr	ace AUD Br	anch trace]		
Ohannal A				
Read/Write:	○ <u>R</u> ead	⊙ <u>W</u> rite	○ R <u>e</u> ad/Write	
St <u>a</u> rt address:	H'FFFF8000			1
E <u>n</u> d address:	H'FFFF8003			
<u>B</u> us state:	L-Bus		•	1
Channel B	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~			
Read/Write:		O Write(v)	C Read/Write	
S <u>t</u> art address:	H'FFFF8000			
End address;	H'FFFF8003			
B <u>u</u> s state:	I-Bus		•	1
			ОК	キャンセル

図 2.5 [Window trace]ページ

ソフトウェアトレース機能

【留意事項】

本機能はルネサステクノロジ製 SHC/C++コンパイラ(OEM、バンドル販売品を含む)V7.0 よりサポートされます。

特殊な命令を実行した場合に、実行時の PC 値と1 つの汎用レジスタ内容をトレース取得します。

あらかじめ、C ソース上に Trace(x)関数(x は変数名)を記述し、コンパイル、リンクしてください。詳細は SHC マニュアルを参照してください。

ロードモジュールを E10A-USB エミュレータにロードし、ソフトウェアトレース機能を有効にして実行すると、 Trace(x)関数を実行した PC 値と、x に対応する汎用レジスタの値と、ソースが表示されます。

ソフトウェアトレース機能を有効にするには、[Trace mode]ページの[AUD mode]グループボックス中の、 [Software trace]チェックボックスにチェックをつけてください。

(4) AUD トレースの注意事項

1. ユーザプログラム実行中にトレース表示をした場合、ニーモニック、オペランド、ソース表示は行いません。

2.AUD分岐トレースは分岐先 / 元アドレス出力時に、前回出力した分岐先アドレスとの差分を出力しています。 ウィンドウトレースはアドレス出力時に、前回出力したアドレスとの差分を出力しています。前回出力した アドレスと上位16ビットが同じであれば下位16ビット、上位24ビットが同じであれば下位8ビット、上位28ビ ットが同じであれば下位4ビットのみ出力します。

E10A-USBエミュレータではこの差分から32ビットアドレスを再生して[Trace]ウィンドウに表示しています が、32ビットアドレスを表示できない場合があります。この場合は、前の32ビットアドレス表示からの差分 を表示します。

3.32ビットアドレスを表示できない場合には、ソース行は表示しません。

- 4.例外分岐取得時において、完了型例外が発生したとき、例外発生したアドレスの次のアドレスが取得されます。
- 5. プロファイル実行中はAUDトレースを使用できません。
- 6.AUDクロック(AUDCK)は、32MHz以下になるようにしてください。それ以上の周波数が入力されますと、 E10A-USBが正常に動作しなくなります。
- 7. プロファイル測定中はAUDトレースを使用できません。

2.2.4 JTAG (H-UDI) クロック (TCK) 使用時の注意事項

- JTAGクロック(TCK)の周波数は、周辺クロック(P)より小さく、バスクロック(B)の1/4以下で、かつ2MHz 以上の値を設定してください。
- (2) JTAGクロック(TCK)の初期値は、2.5MHzになります。
- (3) JTAGクロック(TCK)の設定値は、[CPUのリセット]、[リセット後実行]を行うと初期化されます。このため、TCKの値は、2.5MHzになります。

2.2.5 [Breakpoint]ダイアログボックス設定時の注意事項

(1) 指定アドレスが奇数時は、偶数に切り捨てます。

- (2) BREAKPOINTは、命令を置き換えることにより実現します。次に示すアドレスには指定できません。
 - CS空間、内蔵RAM、内蔵フラッシュ以外の領域
 - Event Condition 2が成立する命令
 - 遅延分岐命令のスロット命令
- (3) ステップ実行中は、BREAKPOINTおよびEvent Conditionのブレーク指定は無効です。
- (4) BREAKPOINTおよびEvent Conditionの実行前ブレークで停止後、再度そのアドレスから実行を再開した場合、 1度そのアドレスをシングルステップにより実行してから実行を継続するので、リアルタイム性はなくなります。
- (5) BREAKPOINTのアドレスがROMなどで正しく設定できなかった場合、Go実行後に[Memory]ウィンドウ等で REFRESHを行うと[Source], [Disassembly]ウィンドウの該当アドレスの[BP]エリアに が表示されることがあ ります。ただし、このアドレスではブレークしません。また、ブレーク条件で停止すると の表示は消えま す。

2.2.6 [Event Condition]ダイアログボックス、BREAKCONDITION_SET コマンド設定 時の注意事項

(1) Event Condition 3の条件は、Go to cursor、Step In、Step Over、Step Out使用時は無効です。

(2) Event Conditionの条件成立後に複数命令を実行してから停止することがあります。

2.2.7 パフォーマンス測定機能

E10A-USB エミュレータは、パフォーマンス測定機能をサポートしています。

(1) パフォーマンスの測定条件の設定

パフォーマンスの測定条件の設定は、[Performance Analysis]ダイアログボックス、および PERFORMANCE_SET コマンドを使用します。[Performance Analysis]ダイアログボックスは、[Performance Analysis]ウィンドウ上の任意 の1行を選択しマウスの右ボタンを押すと、ポップアップメニューが表示され、[設定]を選択すると表示されます。

【留意事項】

コマンドラインシンタックスについては、オンラインヘルプを参照してください。

(a) 測定開始 / 終了条件指定

Event Condition 1,2 を使用して測定開始 / 終了条件を設定することができます。設定は[Combination action(Sequential or PtoP)]ダイアログボックスの[Ch1,2,3]リストボックスにて指定することができます。

分類	項目	説明
[Ch1,2,3] リストボックス	Ch 2 to Ch1 PA	Event Condition 2 条件(開始条件)成立から Event Condition 1 条件(終了条件)成立までの期間をパフォーマンス測定期間に設定します。
選択内容	Ch 1 to Ch 2 PA	Event Condition 1 条件(開始条件)成立から Event Condition 2 条件(終了条件)成立までの期間をパフォーマンス測定期間に設定します。
	上記以外を選択した 場合	ユーザプログラム実行開始からブレークまでの期間を測定します。

表 2.14 測定期間

Perfomance Analysis		? ×
Condition		
		_
Channel 1	Elapsed time	1
Channel 2	Disabled	J
Channel 3	Disabled	.
Channel 4	Disabled	.
	OK (ギャン	TUI

図 2.6 [Performance Analysis]ダイアログボックス

測定誤差について、

- 測定値は、誤差を含みます。
- ブレーク発生の前後で誤差が生じることがあります。

【留意事項】

[Ch 2 to Ch1 PA]または[Ch 1 to Ch 2 PA]を選択した場合は、Event Condition 2 条件および Event Condition 1 を設定し、 パフォーマンス測定項目を 1 つ以上設定してからユーザプログラムを実行してください。 (b)測定項目

測定項目は、[Performance Analysis]ダイアログボックスの[Channel1~4]で行います。最大4つの条件を同時に指定可能です。以下に測定項目を示します。

	•	
選択名	オプシ ョン名	選択項目
Disabled	なし	パフォーマンス測定項目を設定しません。
Elapsed time	AC	実行サイクル数(lϕ)を測定項目に設定します。
Number of execution states	VS	実行ステート数を測定項目に設定します。
Branch instruction counts	BT	分岐命令回数を測定項目に設定します。
Number of execution instructions	I	実行命令数を測定項目に設定します。
Exception/interrupt counts	EA	例外・割り込み回数
Interrupt counts	INT	割り込み回数
URAM area access counts	UN	URAM エリア命令・データアクセス回数
URAM area instruction access counts	UIN	URAM エリア命令アクセス回数
URAM area data access counts	UDN	URAM エリアデータアクセス回数

表 2.15 測定項目

選択名は[Performance Analysis]ウィンドウの CONDITION に表示します。

オプション名は、PERFORMANCE_SET コマンドの<mode>パラメータです。

2. SH7147 グループデバッグ MCU ボード ご使用時のソフトウェア仕様

各測定条件については、表2.16に示す条件が発生した場合についてもカウントを行います。

表 2.16 パフォーマンス各測定条件においてカウントする場合

測定条件	留意事項		
分岐回数のカウント	カウンタの値は、2 ずつ増えます。これは、1 回の分岐につき有効なサイクルが 2 サイクルという意味です。		

【留意事項】

- ・ AUD トレースの Non realtime trace モード中は、ストールの発生状況や実行サイクルが変化するため、正確なカウントが出来ません。
- スリープモードなど CPU クロックが停止する場合にはカウントも停止します。
- ・ 測定開始 / 終了条件を設定した場合、測定開始条件成立後かつ終了条件成立前にパワーオンリセットを入れるとカ ウントを停止します。

(2) 測定結果の表示

測定結果は、[Performance Analysis]ウィンドウ、または、PERFORMANCE_ANALYSIS コマンドで行います。 表示結果は 16 進数 (32 ビット)で表示します。

【留意事項】

パフォーマンス測定の結果のカウンタがオーバーフローした場合、"********"を表示します。

(3) 測定結果の初期化

測定結果の初期化は、[Performance Analysis]ウィンドウのポップアップメニューで [全てリセット]を選択するか、 PERFORMANCE_ANALYSIS コマンドで INIT を指定してください。

SuperH™ ファミリ用 E10A-USB エミュレータ ユーザーズマニュアル 別冊 SH7147グループデバッグMCUボード ご使用時の補足説明

発行年月日		2008年4月4日 Rev.1.00
発	行	株式会社ルネサス テクノロジ 営業統括部
		〒100-0004 東京都千代田区大手町 2-6-2
編	集	株式会社ルネサスソリューションズ
		グローバルストラテジックコミュニケーション本部
		カスタマサポート部

© 2008. Renesas Technology Corp., All rights reserved. Printed in Japan.

RENESAS 営業お問合せ窓口 http://www.renesas.com 株式会社ルネサス販売 本 社 〒100-0004 千代田区大手町2-6-2 (日本ビル) (03) 5201-5350 西 東 京 社 〒190-0023 立川市柴崎町2-2-23 (第二高島ビル) (042) 524-8701 支 東 北 支 社 〒980-0013 仙台市青葉区花京院1-1-20(花京院スクエア) (022) 221-1351 き 支 い わ 店 〒970-8026 いわき市平宇田町120番地ラトブ (0246) 22-3222 茨 城 支 店 〒312-0034 ひたちなか市堀口832-2 (日立システムプラザ勝田) (029) 271-9411 新 潟 支 店 〒950-0087 新潟市東大通1-4-2 (新潟三井物産ビル) (025) 241-4361 支 松 本 社 〒390-0815 松本市深志1-2-11 (昭和ビル) (0263) 33-6622 支支支支支 中 部 社 ₹460-0008 名古屋市中区栄4-2-29 (名古屋広小路プレイス) (052) 249-3330 」関 社 西 〒541-0044 大阪市中央区伏見町4-1-1 (明治安田生命大阪御堂筋ビル) (06) 6233-9500 北 陸 社 〒920-0031 金沢市広岡3-1-1 (金沢パークビル) (076) 233-5980 (0857) 21-1915 鳥 取 店 〒680-0822 鳥取市今町2-251 (日本生命鳥取駅前ビル) 広 支 島 店 ₹730-0036 広島市中区袋町5-25 (広島袋町ビルディング) (082) 244-2570 支 〒812-0011 福岡市博多区博多駅前2-17-1 (博多プレステージ) 九 州 社 (092) 481-7695 ※営業お問い合わせ窓口の住所・電話番号は変更になることがあります。最新情報につきましては、弊社ホームページをご覧ください。

株式会社 ルネサス テクノロジ 営業統括部 〒100-0004 東京都千代田区大手町2-6-2 日本ビル

■技術的なお問合せおよび資料のご請求は下記へどうぞ。

総合お問合せ窓口:コンタクトセンタ E-Mail: csc@renesas.com

SuperH[™] ファミリ用 E10A-USB エミュレータ ユーザーズマニュアル 別冊 SH7147 グループデバッグ MCU ボード ご使用時の補足説明

