

User manual

DA9155M Getting Started with Evaluation Board

UM-PM-010

Abstract

This document describes the hardware and software used by Dialog Semiconductor to test and evaluate the DA9155M slave battery charger.

The hardware solution is based on PCB numbered 287-06-A.

The software uses a PC operating Windows 2000/XP/Vista/Windows 7 ™ with USB (1.1, 2.0 or 3.0) interface.

The software permits configuration of the device using one pre-defined templates, read and operations to all control registers while monitoring device status.

The section 'Quick Start Tutorial' provides an abbreviated quick start guide with a practical configuration example on how to run the evaluation kit.

UM-PM-010

DA9155M Getting Started with Evaluation Board

Company confidential

Contents

Ab	stract		1
Со	ntents	·	2
Fig	ures.		2
Ta	bles		3
1	Term	s and definitions	3
2	Refer	ences	3
3	Intro	duction	4
4	Boar	d recommended operating conditions	5
5	DA91	55M Performance Board Hardware	6
	5.1	DA9155M Slave charger layout	7
	5.2	Slave charger multi-test point J10 connector	8
	5.3	Digital I/O board connectivity headers	8
	5.4	Transient injection points	9
	5.5	Connectivity	9
6	Hard	ware requirements	0
	6.1	Input voltage supply 1	0
	6.2	Battery voltage 1	0
7	DA91	55M Performance Board Graphical User Interface1	1
	7.1	Software installation 1	1
	7.2	GUI overview1	2
8	Quicl	< start tutorial guide1	6
Re	vision	history1	8

Figures

Figure 1: DA9155M Performance Board (top view)	. 4
Figure 2: Functional overview	. 6
Figure 3: PCB Layout for DA9155M	. 7
Figure 4: DA9155M Performance Board Layout	. 7
Figure 5: Test point J10 header	. 8
Figure 6: DIO connectivity headers (a) Layout view (b) Default jumper settings	. 8
Figure 7: DIO and DA9155M Performance board	. 9
Figure 8: DA9155M Evaluation GUI Installation File	11
Figure 9: DA9155M GUI Software Licensing and Installation	11
Figure 10: DA9155M GUI Installation Path	11
Figure 11: GUI Overview Screen	12
Figure 12: Active Communication Indicator	13
Figure 13: Board Status Indicator	13
Figure 14: Status and Events shown in GUI	13
Figure 15: Control Registers in GUI	13
Figure 16: Buck converter control registers	14
Figure 17: Raw I/O and File I/O GUI Controls	14
Figure 18: DA9155M GUI using the Table View	15
Figure 19: DA9155M Performance Board Full Setup	16
Figure 20: Clear Events button	16
Figure 21: Configure the output current	17
Figure 22: Enable Buck converter button	17

	COR	monuol	
U	Sei	Inditudi	
-			

Revision 1.0

Company confidential

DA9155M Getting Started with Evaluation Board

Tables

Table 1: DA9155M Performance Board recommended operating conditions	5
Table 2: DA9155M Performance Board overview and descriptions	6
Table 3: List of hardware	10

1 Terms and definitions

DAI	Digital Audio Interface
DIO	Digital Input/Output
DUT	Device Under Test
GPIO	General Purpose Input Output
GUI	Graphical User Interface
I2C/SPI	Inter-Integrated Circuit/Serial Peripheral Interface
OS	Operating System
РСВ	Printed Circuit Board
SPI	Serial Peripheral Interface
SMU	Source Meter Unit
USB	Universal Serial Bus
РСВ	Printed Circuit Board

2 References

- [1] DA9155M, Data sheet, Dialog Semiconductor
- [2] UG-179-070-D, Digital I/O Board User Guide, Dialog Semiconductor
- [3] AN-PM-058 DA9155M PCB Layout Recommendation Application Note, Dialog Semiconductor
- [4] 287-06-A00_SCH, DA9155M Performance Board Schematic, Dialog Semiconductor
- [5] 287-06-A_PCB, DA9155M Performance Board Layout, Dialog Semiconductor

3 Introduction

The DA9155M Performance Board is designed evaluate the DA9155M slave battery charger. The optimised board layout enables testing at full-rated power and measurement of efficiency, current accuracy, transient response, and thermal performance.

The performance board includes an interface connector to the communication board referred as the Digital I/O (DIO) board. This DIO board connects the DA9155M to a computer via USB-to-I2C, for status monitoring and control using the DA9155M Graphical User Interface (GUI).

This document provides an overview of the development board, hardware configuration, and GUI installation process. The goal of this user manual is to provide the details required to get started with the evaluation of the DA9155M.

Figure 1: DA9155M Performance Board (top view)

Company confidential

4 Board recommended operating conditions

 Table 1 lists the recommended operating conditions of the DA9155M Performance board. Stressing the board beyond these ratings may cause permanent damage to the board.

Table 1: DA9155M Performance Board recommended operating conditions

Parameter	Symbol	Min	Max	Unit
Storage temperature		-60	+150	°C
Operating				
temperature	Та	-40	+85	°C
Input voltage	VIN	4.3	13.4	V
Supply voltage IO	Vddio	1.5	3.6	V
Battery voltage	VBAT	0	4.5	V
Battery current	Іват	0	3	А
Digital I/O				
(EN, SCL, SDA, nIRQ)		0	0.7 x VDDIO	

Company confidential

5 DA9155M Performance Board Hardware

The DA9155M board functional overview is shown in Figure 2. The board functionality can be broken down into the following functions:

Figure 2: Functional overview

|--|

Section No.	Function Description
1	Device Under Test (DUT) DA9155M slave charger
2	Input Voltage (VIN) terminals
3	Battery Output (VBAT) terminals and battery current sense resistor
4	VDDIO supply selector (DIO vs External)
5	DA9155M multi-test point J10 connector header
6	Digital I/O interface connector
7	Line transient injection point
8	Load transient injection point
9	Digital I/O board connectivity selector (signals SCL, SDA, Enable, nIRQ, TP)

Company confidential

5.1 DA9155M Slave charger layout

The placement guidelines for PCB layout and trace interconnectivity for the main power components are shown in the PCB layout section of the DA9155M Datasheet [Ref 1] and also shown in Figure 3 below. The same layout guidelines were followed and implemented for the DA9155M Performance Board, with the exception of the footprint for additional output capacitors are included in the board for experimentation purposes.

Figure 3: PCB Layout for DA9155M

It is important to follow the recommended layout guidelines in order to achieve the best efficiency performance and noise immunity. Particular attention should be paid to the layout of the input capacitor, inductor and output capacitors, highlighted in Figure 4. From this figure it can be seen that that the Power Ground ensures that there is the minimal path impedance between the capacitors and the DA9155M PGND terminals. The layout engineer should review the DA9155M PCB Layout Recommendations Application Note, see [Ref 3]

Figure 4: DA9155M Performance Board Layout

User manual

Revision 1.0

Company confidential

5.2 Slave charger multi-test point J10 connector

The multi-test point connector is shown in Figure 5. This connector provides the user access to the various nodes of the DUT. This connector is only capable of "sensing" voltages and should not be used for delivering current/voltage to and from the DUT, as the PCB traces can be fused by excessive current.

The signals available on this header are:

- Battery voltage VBAT sense (using battery Kelvin connection)
- Voltage of the AVDD supply
- Voltage of the PVDD supply
- Input voltage VIN sense
- Output voltage VOUT (measured at DA9155M output capacitor node)

Figure 5: Test point J10 header

5.3 Digital I/O board connectivity headers

The DIO interface connectors select the signals from the DIO board to the DUT board and also provide test point terminals to monitor the different voltage rails of the DIO board. The jumpers shown in **Figure 6** below indicate the default jumper selection for the digital signals SCL, SDA, Enable, nIRQ and TP.

Figure 6: DIO connectivity headers (a) Layout view (b) Default jumper settings

User	manual

Revision 1.0

Company confidential

5.4 Transient injection points

The two injection points are connected to the input voltage and output voltage (J5 and J15). These can be used to measure the line and load transient response of the DUT. Special transient injection boards are available (P/N 44-179-168-03-A and 44-179-168-03-B Hammer2 board), but these are not supplied as part of the standard DA9155M Performance Board kit. Please contact Dialog Semiconductor for more information on how to obtain one of the transient injection boards.

5.5 Connectivity

To evaluate the features of the DA9155M slave charger, it is necessary to connect the DUT to a computer to perform status monitoring and configure the device. The DA9155M Performance Board uses the DIO board as an interface to convert the USB datalink to I²C bus on the DUT.

Figure 7: DIO and DA9155M Performance board

The configuration settings for the DIO board are shown in Figure 7. Ensure these settings match the board under test. For additional information, schematics, and configuration, see the Digital I/O Board User guide [Ref 2]

Company confidential

6 Hardware requirements

The hardware included in the list below can be substituted by equivalent hardware.

Table 3: List of hardware

Item #	Description	Manufacturer	Comments
1	DA9155M Performance Board	Dialog Semiconductor	
2	Digital I/O Board	Dialog Semiconductor	
3	USB Cable	N/A	Type-A Male to Mini Type-B Male
4	Keithley 2308 Battery Emulator	Keithley	Dual output SMU, Output #1: Connected to VBAT (1) and Output #2: Connected to VIN

Note 1 This SMU must be capable of sourcing and sinking current (simulate a battery).

6.1 Input voltage supply

The DA9155M Performance Board is a slave battery charger; this means that the input voltage must be present in order to enable the DUT. For the initial setup, and example in this document, this is set to 9 V DC and the current limited to 3 A.

6.2 Battery voltage

The VBAT terminals must be connected to a battery and the battery voltage must be within the DA9155M under- and overvoltage limits. Otherwise the DUT will enter into a fault condition and the charging mode will not be enabled until the fault is removed and the fault status registers (Event_A and Event_B) are cleared, see the DA9155M Datasheet [Ref 1] for more details on the DUT power modes and/or fault detection.

Before connecting a standard DC power supply to the VBAT terminals, ensure that the DC power supply is able to source and sink current. Once the DA9155M charger is enabled, current needs to flow into the VBAT supply. Failure to do so could damage the DC power supply and/or the DA9155M Performance Board.

In the hardware list Table 3, the Keithley 2308 Battery Emulator Output #1 is connected to the VBAT terminals. The battery emulator was selected because it is able to sink/source up to 5 A of current and the input impedance can be programmed between 0 Ω and 1 Ω , in 10 m Ω steps.

There are three options that can be connected to the VBAT terminals:

- Li-Ion battery, the voltage must be within the under- and overvoltage limits as configured in DA9155M settings (VBAT_UV and VBAT_OV registers)
- Source Meter Unit capable of sourcing and sinking current, such as the Keithley 2308.
- Power supply connected in parallel to a resistive or electronic load. The user must ensure that the current load is greater than the current supplied by DA9155M, defined by the BUCK_IOUT register. For example: Power supply output set to 4 V, electronic load set to 1 A and DA9155M set to 500 mA.

Company confidential

7 DA9155M Performance Board Graphical User Interface

The user can explore all the features of the DA9155M with the Graphical User Interface (GUI) using the l²C interface. This includes changing the control settings and monitoring the status/fault of the DUT.

The user must be aware that the GUI is non-invasive, meaning:

- It will not modify registers contents without user interaction
- I²C periodic communication stops when the "Polling Enabled" button is set to "Polling Disabled"

7.1 Software installation

When the supplied media is inserted into the computer the installation begins automatically. If the installation does not start automatically, run the program file

'setup_DA9155M_Evaluation_GUI_AB.0_0_xx.exe' from the 'Software' directory on the media. An automated script installs the program on your PC, and by default, the directory

C:\Dialog Semiconductor\Power Management\DA9155M_Evaluation GUI is used.

To install the software:

1. Run setup_DA9155M_Evaluation_GUI_AB.0_0_xx.exe and click the 'Next' button

Figure 8: DA9155M Evaluation GUI Installation File

2. Accept the license agreement and click 'Next'

Figure 9: DA9155M GUI Software Licensing and Installation

3. Choose the installation path using 'Browse' or leave the default path and click 'Next'

Figure 10: DA9155M GUI Installation Path

User manual	Revision 1.0	11-10-2015

- 4. Choose the 'Start Menu Folder' using 'Browse...' or leave the default folder and click 'Next'
- 5. Check 'Create a desktop icon' to access the software directly from the desktop and click 'Next'
- 6. Review installation information and click 'Next'
- 7. Check 'Launch DA9155M GUI' to launch the GUI immediately after installation and click 'Finish'

Once connected, the hardware will be detected and the drivers will install automatically. In some operating systems the driver installer window may pop up: accept the recommended settings.

7.2 GUI overview

The GUI is laid out in a modular way, where the sections are grouped by functionality. This means that some sections or 'smartcanvas' modules are used to display device status (for example, VBAT Under Voltage) and other modules are used to control the behaviour of the DUT (for example, output current).

This section gives an overview of the GUI functions and references the GUI sections as shown in Figure 11.

Figure 11: GUI Overview Screen

Smartcanvas section 1: Right after the GUI is initialized the "I2C comms" and "USB Connected" indicators should be shown in green, see Figure 12. If either one of these indicators is not green communication has not being established between the DA9155M and the GUI. It is possible to verify this by disabling the VBAT and the input voltage of the performance board, and then the green light should be disabled. Once power is re-enabled, press the "Reconnect to device" button to ensure the communication link is active.

The Enable/Disable Polling enables the GUI to perform periodic updates (once per second) of all the DUT registers and all the control/status registers will be updated with the read-back data.

Lloor	monual
0361	manuai

Figure 12: Active Communication Indicator

Smartcanvas section 2: This module will show the performance board status information and will define whether the GUI displayed registers are automatically or manually updated. In order to enable the automatic updates, enable the "Auto Status On" button, see Figure 13. Alternatively, the user might opt to perform a single GUI register refresh/read-back by pressing the "Single Update" button and keeping the "Auto Status Disabled". The "Read All Registers" button will update all registers including those not displayed in the active GUI screen.

It is recommended to disable "Auto Status On" if other I²C devices in addition to the DIO and DA9155M are connected to the communication interface, particularly if another I²C master is connected, as this could create conflict in the communication link. If this is the case, the "Single Update" can be pressed whenever the GUI needs updating.

Figure 13: Board Status Indicator

Smartcanvas section 3: This section of the GUI provides the user with "Status and Events" information and can be used to "Mask" events from generating nIRQ flags or events. Figure 14 shows all events are masked or ignored as a default setting.

Event_A and Event_B registers display the status of all specific events, as described in the DA9155M datasheet [REF 1]. For example, if the battery voltage drops below the E_VIN_UV and the M_VIN_UV is unmasked, the S_VIN_UV bit is enabled and this will be displayed in the GUI, ensure the "Auto Status ON" button is active. When the event is "Unmasked" a nIRQ flag is generated and the nIRQ pin is set low after the event occurs.

EVENT_A		IRQ_MASK_A	STATU	IS_A	
E_TJUNC_WARN	Low	M_TJUNC_WARN	Masked S_T3U	NC_WARN	Tj < Tj_warn
E_TJUNC_CRIT	Low	M_TJUNC_CRIT	Masked S_T3U	NC_CRIT	Tj <tj_crit< td=""></tj_crit<>
E_VBAT_UV	Low	M_VBAT_UV	Masked S_V8A	T_UV	VBAT > VBAT.
E_VBAT_OV	Low	M_VBAT_OV	Masked S_VBA	T_OV	VBAT < VBAT.
E_VIN_UV	Low	M_VIN_UV	Masked S_VIN	UV	VIN > VIN_U.
E_VIN_DROP	Low	M_VIN_DROP	Masked S_VIN	DROP	VIN > VIN_D.
E_VIN_OV	Low	M_VIN_OV	Masked S_VIN	_OV	VIN< VIN_OV
E_EN_BLOCK	Low	M_EN_BLOCK	Masked S_EN_	BLOCK	Unblocked
0x03	0x00] 0x05 [0xFF 🔂 0x01		0x00
EVENT_B		IRQ_MASK_B	STATU	IS_B	
E_RDY	High	M_RDY (Unmasked MODE		Disabled
E_BUCK_ILIM	IOUT < ILIM	M_BUCK_ILIM (Masked S_EN_	PIN	Low
E_TIMER	Low	M_TIMER	Masked S_BUC	K_ILIM	Low
E_VDDIO_UV	VDDIO> VPOR	M_VDDIO_UV	Masked		
E_TJUNC_POR	T) < T)_por	M_TJUNC_POR	Masked		
0x04	0x01	0x06	0x1E 0x02		0x00

Figure 14: Status and Events shown in GUI

Smartcanvas section 4: This section of the GUI is used to modify specific control registers of the DA9155M as defined in the Datasheet [Ref 1]. For example, the user is able to change the undervoltage (VBAT_UV) level or the specific DUT temperature for generating a warning.

PAGE_CTRL_0		CONTROL_A		CONTROL_B	
reg_page write_mode	0 page	VIN_DROP	(4.3V v)	VBAT_UV	2.0V V
0x00	0x00	0x07	0x00	0x08	0x00
CONTROL_C		CONTROL_D		CONTROL_E	
VBAT_OV	5.175V	DEF_SLEW_RATE START_SLEW	0.469mA/us >	TJUNC_WARN	70C 🗸
0x09	0x3E	A0x0A	0x66	0x0B	0x10

Figure 15: Control Registers in GUI

User manual	Revision 1.0

Company confidential

Smartcanvas section 5: This section of the GUI controls three of the most important registers of the DA9155M: These are the Buck Enable (BUCK_EN), Buck Current Limit (BUCK_ILIM), and Buck Output Current (BUCK_IOUT) registers.

The BUCK_EN will only enable the converter if there are no faults/events present, (EVENT_A = EVENT_B = 0x00). It is best practice to press the "Clear Events" button before enabling the Buck.

Figure 16: Buck converter control registers

Smartcanvas section 6: In this section of the GUI the following information about the DUT is displayed: I²C address, REVID, Oscillator Frequency, Timer_A, Timer_B, and page control registers. Review the DA9155M Datasheet for specific functionality of each of the registers in this section.

Smartcanvas section 7: This section of the GUI is used to manually Read/Write data to the I²C bus, by specifying the Device I²C address, Register Address, and the data package to read or write. The GUI will not perform any data manipulation or validation to the data written or read.

File I/O is used to save all DA9155M registers to a file. This feature is helpful when used after the "Read All Registers", as it will capture a snap shot of the device under specific test conditions.

Figure 17: Raw I/O and File I/O GUI Controls

UM-PM-010

DA9155M Getting Started with Evaluation Board

Company confidential

Smartcanvas section 8: The Table View tab displays the DA9155M Registers in a table format and captures the status of all the registers in a compact form. The register values are also editable in the Table View.

DA9155 USB_Ports									
Controls Table View	Registe	er value							
	Data	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0x000: PAGE_CTRL_	(0x06 ÷	revert_[7]: 0x00	write_mode_[ont	reg_page	_[0]: 0x06	ont	
0x001: STATUS_A	0x00 V	S_EN_BLOCK	S_VIN_OV_[6]:	S_VIN_DROP	S_VIN_UV_[4]:	S_VBAT_OV_[S_VBAT_UV_[S_TJUNC_CR	S_TJUNC_WA
0x002: STATUS_B	0x01			unused			S_BUCK_ILIM	S_EN_PIN_[1]	MODE_[0]: 0x01
0x003: EVENT_A	0x00 ÷	E_EN_BLOCK	E_VIN_OV_[6]:	E_VIN_DROP	E_VIN_UV_[4]:	E_VBAT_OV_[E_VBAT_UV_[E_TJUNC_CR	E_TJUNC_WA
0x004: EVENT_B	0x00 ÷		unused		E_TJUNC_PO	E_VDDIO_UV	E_TIMER_[2]:	E_BUCK_ILIM	E_RDY_[0]: 0x00
0x005: IRQ_MASK_	0xFF ÷	M_EN_BLOCK	M_VIN_OV_[6	M_VIN_DROP	M_VIN_UV_[4	M_VBAT_OV	M_VBAT_UV	M_TJUNC_CR	M_TJUNC_W
0x006: IRQ_MASK_	0x1E ÷		unused		M_TJUNC_PO	M_VDDIO_UV	M_TIMER_[2]:	M_BUCK_ILIM	M_RDY_[0]: 0x00
0x007: CONTROL_A	0x00 ÷				VIN_DRO	P_[0]: 0x00			
0x008: CONTROL_P	0x00 ÷	unu	ised			VBAT_UV	_[0]: 0x00		
0x009: CONTROL_C	0x3F ÷	unu	ised			VBAT_OV	_[0]: 0x3F		
0x00A: CONTROL_I	0x66 ÷	unused	ST	ART_SLEW_[4]: 0:	x06	unused	DEF_	SLEW_RATE_[0]:	0x06
0x00B: CONTROL_F	0x10 ÷		unused TJUNC_WARN_[0]: 0x00						
0x00C: TIMER_A	0xFF		TIMER_COUNT_[0]: 0xFF						
0x00D: TIMER_B	0xFF ÷		TIMER_LOAD_[0]: 0xFF						
0x00E: BUCK_CTRL	0x01 ÷				unused				BUCK_EN_[0]:
0x00F: BUCK_ILIM	0x19 ÷		unused BUCK_ILIM_[0]: 0x19						
0x010: BUCK_IOUT	0x19 ÷				BUCK_IOU	T_[0]: 0x19			
0x011: INTERFACE	0x80 ÷			IF_I	BASE_ADDR_[1]: 0	x58			unused
0x012: CONFIG_A	0x00 ÷	VDDIO_CO	NF_[6]: 0x00	I2C_EXTEND	2W_TO_[4]: 0x00	2W_IF_HSM_[unused	IRQ_LEVEL_[IRQ_TYPE_[0]
0x013: CONFIG_B	0x02 ÷		OSC_FRO	2_[4]: 0x00		unu	sed	BUCK_FSV	V_[0]: 0x02
0x069: REVID	0x01		MAJREV_[4]: 0x00 MINREV_[0]: 0x01						
0x06A: LOCK_REG	0x00 ÷	LOCK_REG_10: 0x00							
0x080: PAGE_CTRL_	0x00 ÷	REVERT_[7]:	RT_[7]: WRITE_MODE REG_PAGE_RSVD_[3]: 0x00 REG_PAGE_[0]: 0x00			0			
0x100: PAGE_CTRL_	0x00 ÷	REVERT_[7]:	WRITE_MODE	VRITE_MODE REG_PAGE_RSVD_[3]: 0x00 REG_PAGE_[0]: 0x00			0		
0x180: PAGE_CTRL_	0x02 ÷	PAGE_CTRL	PAGE_CTRL PAGE_CTRL_3_REG_PAGE_RSVD_[3]: 0x00 PAGE_CTRL_3_REG_PAGE_[0]: 0x02			_[0]: 0x02			
0x200: PAGE_CTRL_	(0x00 ÷	REVERT_[7]: WRITE_MODE REG_PAGE_RSVD_[3]: 0x00 REG_PAGE_[0]: 0x00			0				
0x280: PAGE_CTRL_	0x04 ÷	PAGE_CTRL PAGE_CTRL PAGE_CTRL_5_REG_PAGE_RSVD_[3]: 0x00 PAGE_CTRL_5_REG_PAGE_[0]: 0x04			_[0]: 0x04				
0x300: PAGE_CTRL_	(0x00 ÷	REVERT_[7]:	WRITE_MODE	DE REG_PAGE_RSVD_[3]: 0x00 REG_PAGE_[0]: 0x00			0		
0x354: DIG_ENG_SV	0x00 ÷	unu	ised	ENGSW_SYS	ENGSW_SYS		unused		ENGSW_CLE
0x35C: DIG_ENG_S	0x24	unused	ENGSW_OTP	ENGSW_	SYS_CTRL_STATE	_[3]: 0x04	ENGSW_B	UCK1_CTL_STATE	_[0]: 0x04

Figure 18: DA9155M GUI using the Table View

Company confidential

8 Quick start tutorial guide

This section of the document provides the steps required to power up the board. Assumed that the GUI is installed and the DIO board is configured as in Figure 7.

Figure 19: DA9155M Performance Board Full Setup

- 1. Set the Input Voltage: The input voltage is set to 9 V with a 3 A current limit, (the current limit can be changed later, and this is only a practical starting point). Also, since the Keithley 2308 is a dual output supply, Output #2 of this instrument can be connected to the input voltage terminals.
- Set the VBAT Voltage: The VBAT terminals should be connected to the Keithley 2308 (battery emulator) Output #1 set to 4 V and current limited to 3 A. As mentioned in the "Battery voltage" section, if a real battery is to be connected, ensure the voltage is within the under- and overvoltage limits.
- 3. Set the VDDIO Voltage: The VDDIO voltage will be supplied by the DIO board, by selecting the VDDIO SEL jumper as shown in Figure 19, where header J4, is configured to short position pin 1 and 2 (the two closest to the interface connector).
- 4. Connect the USB cable: If not already so, connect the USB cable from the DIO port to the computer host computer.
- 5. Using the GUI: At this point the hardware setup is completed and the DA9155M GUI can be initialized. Once the GUI is done loading check the Active Communication Indicator, see Figure 12.
 - a. Before the Buck converter is enabled, press the 'Clear Events' button.

Test Release and	Clear Events
LOCK_REG locked	
Clear Events	Clear Fault Log

Figure 20: Clear Events button

b. Select the desired Buck output current from the drop-down

User manual

Figure 21: Configure the output current

c. Click the BUCK_EN 'Disabled' button to enable the converter

Buck	
BUCK_CTRL	
BUCK_EN	Disabled
0x0E	0x00 🗄
BUCK_ILIM	
BUCK_ILIM	5500mA 🗸
0x0F	0x19
BUCK_IOUT	
BUCK_IOUT	500mA 🗸
0×10	0x19

Figure 22: Enable Buck converter button

At this point the Buck converter should be enabled and performance evaluation can begin.

Company confidential

Company confidential

Revision history

Revision	Date	Description
0.2	27-10-2015	Initial draft
1.0	10-11-2015	Initial release
Change details:		

User manual

Company confidential

Status definitions

Status	Definition
DRAFT	The content of this document is under review and subject to formal approval, which may result in modifications or additions.
APPROVED or unmarked	The content of this document has been approved for publication.

Disclaimer

Information in this document is believed to be accurate and reliable. However, Dialog Semiconductor does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information. Dialog Semiconductor furthermore takes no responsibility whatsoever for the content in this document if provided by any information source outside of Dialog Semiconductor.

Dialog Semiconductor reserves the right to change without notice the information published in this document, including without limitation the specification and the design of the related semiconductor products, software and applications.

Applications, software, and semiconductor products described in this document are for illustrative purposes only. Dialog Semiconductor makes no representation or warranty that such applications, software and semiconductor products will be suitable for the specified use without further testing or modification. Unless otherwise agreed in writing, such testing or modification is the sole responsibility of the customer and Dialog Semiconductor excludes all liability in this respect.

Customer notes that nothing in this document may be construed as a license for customer to use the Dialog Semiconductor products, software and applications referred to in this document. Such license must be separately sought by customer with Dialog Semiconductor.

All use of Dialog Semiconductor products, software and applications referred to in this document are subject to Dialog Semiconductor's Standard Terms and Conditions of Sale, unless otherwise stated.

© Dialog Semiconductor. All rights reserved.

RoHS Compliance

Dialog Semiconductor complies to European Directive 2001/95/EC and from 2 January 2013 onwards to European Directive 2011/65/EU concerning Restriction of Hazardous Substances (RoHS/RoHS2). Dialog Semiconductor's statement on RoHS can be found on the customer portal https://support.diasemi.com/. RoHS certificates from our suppliers are available on request.

Contacting Dialog Semiconductor

United Kingdom (Headquarters) Dialog Semiconductor (UK) LTD Phone: +44 1793 757700

Germany

Dialog Semiconductor GmbH Phone: +49 7021 805-0

The Netherlands

Dialog Semiconductor B.V. Phone: +31 73 640 8822

Email: enquiry@diasemi.com

User manual

North America

Dialog Semiconductor Inc. Phone: +1 408 845 8500

Japan

Dialog Semiconductor K. K. Phone: +81 3 5425 4567

Taiwan

Dialog Semiconductor Taiwan Phone: +886 281 786 222 Web site:

www.dialog-semiconductor.com

Singapore Dialog Semiconductor Singapore Phone: +65 64 8499 29

Hona Kona

Dialog Semiconductor Hong Kong Phone: +852 3769 5200

Korea

Dialog Semiconductor Korea Phone: +82 2 3469 8200

China (Shenzhen)

Dialog Semiconductor China Phone: +86 755 2981 3669

China (Shanghai) Dialog Semiconductor China Phone: +86 21 5424 9058

11-10-2015

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD-PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers who are designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only to develop an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third-party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising from your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

(Disclaimer Rev.1.01)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit <u>www.renesas.com/contact-us/</u>.