
1 Renesas Electronics Corporation. All rights reserved.

Cover

U
s
e
r’s

 M
a
n
u
a

l

All information contained in these materials, including products and product specifications,

represents information on the product at the time of publication and is subject to change by

Renesas Electronics Corp. without notice. Please review the latest information published by

Renesas Electronics Corp. through various means, including the Renesas Electronics Corp.

website (http://www.renesas.com).

www.renesas.com

Renesas Microprocessor

RZ Family RZ/G Series

OPN
US157-G2LSBCPOCZ

RZ/G2L-SBC, Single Board Computer

User’s Manual: Hardware and Software

Rev.1.10 Sep, 2024

© 2024 Renesas Electronics Corporation. All rights reserved.

Notice

1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products

and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your

product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use

of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights,

or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this

document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics

or others.

4. You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export,

manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.

5. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any

and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.

6. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for

each Renesas Electronics product depends on the product’s quality grade, as indicated below.

 "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home

electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.

 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key

financial terminal systems; safety control equipment; etc.

 Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas

Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to

human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space

system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics

disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product

that is inconsistent with any Renesas Electronics data sheet, user’s manual or other Renesas Electronics document.

7. No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics

hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but

not limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS

ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING

RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE,

HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION (“Vulnerability Issues”). RENESAS ELECTRONICS DISCLAIMS ANY AND

ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT

PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH

RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO

THE IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.

8. When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General Notes for

Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by

Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas

Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such

specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific

characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability

product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics

products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily

injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as

safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for

aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are

responsible for evaluating the safety of the final products or systems manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas

Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of

controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these

applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance

with applicable laws and regulations.

11. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is

prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations

promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.

12. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or

transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

13. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

14. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas

Electronics products.

(Note1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled

subsidiaries.

(Note2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

(Rev.5.0-1 October 2020)

Corporate Headquarters Contact information
TOYOSU FORESIA, 3-2-24 Toyosu,

Koto-ku, Tokyo 135-0061, Japan

www.renesas.com

 For further information on a product, technology, the most up-to-date

version of a document, or your nearest sales office, please visit:

www.renesas.com/contact/

Trademarks
Renesas and the Renesas logo are trademarks of Renesas Electronics

Corporation. All trademarks and registered trademarks are the property of

their respective owners.

https://www.renesas.com/
http://www.renesas.com/contact/

© 2024 Renesas Electronics Corporation. All rights reserved.

Trademarks (continued)
For the “Cortex” notation, it is used as follows;

— Arm® Cortex®-A55

— Arm® Cortex®-M33

Note that after this page, they may be noted as Cortex-A55 and Cortex-M33 respectively.

Examples of trademark or registered trademark used in the RZ/G2L SMARC Module Board RTK9744L23C01000BE User’s Manual: Hardware;

 CoreSight™: CoreSight is a trademark of Arm Limited.

 MIPI®: MIPI is a registered trademark of MIPI Alliance, Inc.

 eMMC™: eMMC is a trademark of MultiMediaCard Association.

Note that in each section of the Manual, trademark notation of ® and TM may be omitted.

All other trademarks and registered trademarks are the property of their respective owners.

General Precautions in the Handling of Microprocessing Unit and
Microcontroller Unit Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on
the products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for
the products.

1. Precaution against Electrostatic Discharge (ESD)

A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device

operation. Steps must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs.

Environmental control must be adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can

easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or

conductive material. All test and measurement tools including work benches and floors must be grounded. The operator must also be

grounded using a wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions must be taken for printed

circuit boards with mounted semiconductor devices.

2. Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the

states of register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied

to the external reset pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a

similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power

is supplied until the power reaches the level at which resetting is specified.

3. Input of signal during power-off state

Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a

signal or I/O pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause

degradation of internal elements. Follow the guideline for input signal during power-off state as described in your product documentation.

4. Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products

are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in

the vicinity of the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin

state as an input signal become possible.

5. Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during

program execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an

external oscillator during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when

switching to a clock signal produced with an external resonator or by an external oscillator while program execution is in progress, wait until

the target clock signal is stable.

6. Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area

between VIL (Max.) and VIH (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering

the device when the input level is fixed, and also in the transition period when the input level passes through the area between VIL (Max.) and

VIH (Min.).

7. Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access

these addresses as the correct operation of the LSI is not guaranteed.

8. Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to

problems. The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number

might differ in terms of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics,

such as characteristic values, operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a

different part number, implement a system-evaluation test for the given product.

RZ Family / RZ/G Series RZ/G2L-SBC, Single Board Computer

R12UZ0158EU0101 Rev.1.10 Page 5 of 96

Sep.20.2024

Introduction

This user manual describes the RZ/G2L based single board computer. This system architecture is

of a generic single-board computer based on the Renesas RZ/G2L series SoC. It is a fully capable

general purpose computer module aimed at HMI, industrial, and robotics applications.

This SBC features a Renesas RZ/G2L MPU as the main processor and runs a Linux distro built

on Yocto OE using the Renesas VLP 3.0.5 package as its source.

One of the key highlights is the ease at which the board can be used to quickly create a PoC using

a wide array of peripheral ports and proven accessories / modules. It comes equipped with an

extensive set of features and interfaces, including onboard Wi-Fi, PMOD interface and dual

ethernet ports.

Features

The RZ/G2L-SBC board contains the following features:

• RZ/G2L or Dual core Cortex®A55 SoC with on-chip Cortex M33 core for real time

applications.

• 1 GiB DDR4 (single chip of 4 Gbit)

• Micro SD card socket for OS image and rootfs

• QSPI for boot

• Temperature sensor with on-chip EEPROM holding board configuration data.

• Onboard Laird 802.11 Wi-Fi/BT module

• 40-pin Header connector (Raspberry Pi 3B compatible)

• Four USB 2.0 Type-A ports

• Dual Gigabit Ethernet ports

• 3.5mm Audio Port

• Mini- HDMI supporting full HD displays.

• MIPI-CSI port (Arduino compatible)

• MIPI-DSI port (Raspberry Pi compatible)

• Dual expansion ports for adapter board interfacing:

o 40-pin DSI display modules.

o 6 pin I2C touch modules.

o ADC.

o Bootstrapping.

o External power and ground.

• USB Type-C Power connector

• Status LED indicators

• Board dimensions: 82 mm * 50 mm

• Mount: Double-sided mounting (10 layers)

https://www.renesas.com/us/en/products/microcontrollers-microprocessors/rz-mpus/rzg2l-sbc-rzg2l-single-board-computer

RZ Family / RZ/G Series RZ/G2L-SBC, Single Board Computer

R12UZ0158EU0101 Rev.1.10 Page 6 of 96

Sep.20.2024

Introduction .. 5

Features ... 5

Glossary ... 10

1. Overview ... 12
1.1 Physical View .. 13

2. Required Resources .. 14
2.1 Development Tools and Software ... 14
2.2 Hardware ... 14

3. RZ/G2L SoC MPU Architecture ... 15
3.1 Operational Flow ... 15

4. Functional Overview .. 16
4.1 Overview of Connectors .. 18
4.2 Power Supply .. 20

4.2.1 USB Type-C Power .. 20
4.2.2 Power rails .. 20
4.2.3 Power Supply Regulation ... 22

4.3 Power Management Integrated Circuit- PMIC .. 22
4.4 RESET Control .. 22
4.5 Clock Configuration ... 23
4.6 Peripheral Interface ... 24

4.6.1 Gigabit Ethernet ... 24
4.6.2 USB 2.0 Ports ... 26
4.6.3 MIPI CSI Interface .. 28
4.6.4 MIPI DSI Interface .. 28
4.6.5 Audio DAC with 3.5mm Jack .. 28
4.6.6 HDMI Display Subsystem ... 29
4.6.7 40-pin I/O Header ... 30
4.6.8 PMOD Type 6A Standard Interface ... 31
4.6.9 uSD-Card Interface .. 32
4.6.10 JTAG SWD Debug ... 32
4.6.11 Expansion Connector ... 33

4.7 Memory ... 33
4.7.1 QSPI Flash ... 33
4.7.2 DDR4 SDRAM .. 34
4.7.3 EEPROM with temperature sensor. ... 35

RZ Family / RZ/G Series RZ/G2L-SBC, Single Board Computer

R12UZ0158EU0101 Rev.1.10 Page 7 of 96

Sep.20.2024

4.8 GPIO Internals .. 35

5. Quick Start ... 38
5.1 Hardware requirement .. 38
5.2 Essential Hardware Setup... 38
5.3 Complete Hardware Setup .. 39
5.4 Linux SD Card Creation .. 40
5.5 Booting .. 40

6. Yocto OE Build .. 41
6.1 Build Host Environment Setup .. 41
6.2 Initiate Yocto Build .. 42
6.3 Collect the build output .. 43

7. Creating bootable SD card .. 46
7.1 Linux Host ... 46
7.2 Windows Host ... 46

8. Programming / Flashing Firmware to RZ/G2L-SBC ... 47
8.1 Hardware Setup .. 47
8.2 Flash bootloader on u-boot console .. 47

8.2.1 Linux Host... 48
8.2.2 Windows Host .. 48

9. Accessing Supported Features ... 50
9.1 QT Demo Applications .. 50
9.2 40-Pin IO Expansion Interface .. 52

9.2.1 U-Boot Environment ... 52
9.2.2 GPIO (General Purpose I/O pins) .. 53
9.2.3 Enabling I2C function (channel 3 – RIIC3) ... 55
9.2.4 SPI function (channel 0 – RSPI0) .. 56
9.2.5 CAN function (channel 0,1 - CAN 0,CAN 1) ... 57

9.3 Wi-Fi 802.11 Module ... 57
9.4 On-board Audio Codec with Stereo Jack .. 58
9.5 MIPI DSI Display Touch Panel .. 60

9.5.1 Hardware Interfacing .. 60
9.5.2 Enabling DSI panel drivers ... 64

9.6 Playing Video Files on RZ/G2L-SBC .. 65
9.7 MIPI CSI2 with Arducam 5MP OV5640 Camera Module ... 65

9.7.1 Hardware Interfacing .. 65
9.7.2 Enabling CSI camera drivers.. 68

RZ Family / RZ/G Series RZ/G2L-SBC, Single Board Computer

R12UZ0158EU0101 Rev.1.10 Page 8 of 96

Sep.20.2024

9.7.3 Accessing the Camera ... 68
9.8 Package Management .. 69

9.8.1 Setting up Debian as a backend source .. 69
9.8.2 Using DPKG to install packages .. 70

9.9 Install packages using Python3-pip .. 70
9.10 Python GUI programming with Tkinter .. 71
9.11 Chromium web browser .. 72

10. Building the eSDK ... 74

11. Application Building, Packaging and Running ... 75
11.1 How to extract the eSDK ... 75
11.2 Build a sample application using the eSDK with CMake .. 76
11.3 Package programs with CPack ... 78

11.3.1 Package a C program .. 78
11.3.2 Package a Python program .. 81

11.4 Run sample applications ... 83
11.5 Install and Run Debian application packages by using DPKG ... 84

12. Appendix ... 86
12.1 Factory Firmware Flashing using Serial Downloader (SCIF) mode 86

12.1.1 Required Hardware .. 86
12.1.2 Flashing Bootloader/Firmware using Linux host .. 86
12.1.3 Flashing Bootloader/Firmware using Windows host .. 88

12.2 How to get the console after bootup ... 89

13. Troubleshooting ... 90
13.1 Unable to run support scripts for Bootloader/Firmware flashing on Linux 90
13.2 Flashing tools failing halfway .. 90
13.3 Running many Qt demo apps slow down the system ... 90
13.4 DHCP Failure .. 90
13.5 ‘Ifconfig’ doesn’t list the Wi-Fi interface ... 91
13.6 IP configuration ... 91
13.7 Stuck in U-boot with error “Bad Linux ARM64 Image magic!” .. 91

14. References .. 92
14.1 Git Repositories ... 92
14.2 RZ/G2L SoC .. 92
14.3 External resources .. 92

14.3.1 QT development ... 92
14.3.2 Yocto Project .. 92

RZ Family / RZ/G Series RZ/G2L-SBC, Single Board Computer

R12UZ0158EU0101 Rev.1.10 Page 9 of 96

Sep.20.2024

14.3.3 Linux Kernel Documentation .. 92
14.3.4 Arm Developer Documentation .. 92
14.3.5 JEDEC DDR4 ... 93
14.3.6 PMOD Specification ... 93
14.3.7 Essential Linux Tutorial .. 93
14.3.8 Packaging ... 93
14.3.9 Using the Extensible SDK .. 93
14.3.10 Linux Kernel Development ... 93
14.3.11 Linux Kernel Driver Development .. 93

Revision History ... 94

RZ Family / RZ/G Series RZ/G2L-SBC, Single Board Computer

R12UZ0158EU0101 Rev.1.10 Page 10 of 96

Sep.20.2024

Glossary

Terms Description

802.11 - Wi-Fi
The technical name of the standard specification for Wi-Fi is 802.11. This is also the working group

that develops and maintains the standards for Wi-Fi that everyone conforms to.

ADC – Analog to

digital converter

A hardware unit that converts an input analog signal to a digital value by measuring its immediate

voltage at a fixed resolution.

BSP – Board

Support Package

BSP is an essential software package that has bootloaders, Linux kernel, a minimal user space

and programming tools; allowing the device to boot. This core software allows the system to boot

into an operating system, enables all the features and allows application development.

CAN – Controller

area network

This is a standardized communication protocol used widely on automotive and aerospace

systems. It connects various ECU’s known as nodes and uses two wires / lines as a pair carrying

differential signals. This method of signaling allows long length cable to interface different systems

on the machine with reliable signals. The CAN protocol has multiple specifications and is an ISO

standard. It supports flexible data rates reaching as high as 8Mbps. Most automobiles have CAN

networks in them, and it is a part of OBD-2 specification which is mandatory law in most of the

world for automotive machines like cars.

DAC – Digital to

analog converter

A hardware unit that takes digital value and exerts a corresponding analog voltage on an output

line.

I2C - Inter

Integrated circuit

protocol:

This is a communication protocol used to implement digital communication between two devices

(chips / board) using only two wires. It is a standardized specification and is used widely to

implement low to medium data rate data transfers both among devices on the same circuit board

as well as external add on peripheral boards. I2C can be implemented across a few meters in

distance. I2C is half duplex meaning only one device can communicate at a time. Speeds range

from 100 Kbps to 3Mbps while 100 / 400 Kbps are the typical operating mode. The other major

advantage of this protocol is that it allows many devices to be on the same two lines reducing the

cost of the interfacing. This is ideal when there are many devices like sensors that transfer limited

amounts of data periodically. I2C can support up to 127 independent directly addressable devices

on the same channel.

IEEE- Institute of

Electrical and

Electronics

Engineers

IEEE is the world's largest technical professional organization dedicated to advancing technology

for the benefit of humanity. It is a major technical organization covering vast fields of engineering

and a major standards organization.

MCU – Micro

controller unit

A micro controller unit is a self-contained unit that has the core processing as well as core memory

within the same device. It often contains the core software programmed into the chip itself. This

allows the device to start executing with minimal external devices / circuitry. Some microcontrollers

can be powered on a mere breadboard.

MPU – Micro

processing unit

An MPU is a processing unit is a CPU that contains only the processing core and interfaces for

external peripherals. A microprocessor is usually a powerful CPU in its class. However, it requires

a very large number of external circuitries to achieve its functionality like external memory, disk

drives, etc.

PMIC – Power

management IC

This is a specific chip on the board that manages multiple power supply lines at various levels. It

manages the respective supplies along with sequences which control power on and power off

cycles.

SBC – Single

board computer

It is a standard term that means a tiny computer in the form factor of a single circuit board usually

just inches in area. This board is self-sufficient in every way and can give you a usable computer

with just a power supply, keyboard, mouse, and display.

SiP – System in

Package

SiP is a device where multiple silicon IP’s are combined to form a single device. It’s one of the

densest chips where all the typically external devices like flash memory, DDR RAM and even Wi-

Fi module are all packaged into a single chip. These usually used in very niche application that

require ultra small size and low thermal requirement.

RZ Family / RZ/G Series RZ/G2L-SBC, Single Board Computer

R12UZ0158EU0101 Rev.1.10 Page 11 of 96

Sep.20.2024

SoC- System on

Chip

A system on chip is a complete hardware platform packaged on to a single chip. It contains the

CPU, internal fast memory, interrupt controllers, pin controllers, ROM memory, and a number of

other peripherals and even sensors; all packaged into the same IC. An SoC despite the high level

of integration does not necessarily power on and run by itself. Microcontrollers are often

independent SoC’s that can work on their own. However, SoC’s often combine MPU’s and MCU’s

into the same chip. This allows very powerful systems to be built in a compact form factor but do

require external supporting peripherals like DDR RAM and flash memory and power management

IC’s.

SPI - Serial

Peripheral

interface

SPI is another standard interface used to interface other devices on the board or attaching

peripheral boards. It specifies 3 wires / lines to achieve fast full duplex data transfer. Two devices

can send / receive data at the same time in this protocol. The protocol is also a high-speed protocol

where typical operating speeds start at 5Mbps and go over 50Mbps. This high speed allows

interfacing high speed devices like memory, Wi-Fi, subsystems made of independent

microcontrollers, etc. While only 3 lines are needed to interface two devices, a fourth line is used

as a device selector allowing multiple devices to share the same interface. However, only two

devices may communicate at a time.

R12UZ0158EU0101 Rev.1.10 Page 12 of 96

Sep.20.2024

RZ Family / RZ/G Series

RZ/G2L-SBC, Single Board Computer

1. Overview

RZ/G2L-SBC Board is a power-efficient, graphics-enabled development board in a popular single-board

computer format with well-supported expansion interfaces. This Renesas RZ/G2L processor-based

platform is ideal for developing cost-efficient HMI, industrial, robotics, and a range of energy-efficient

design applications. The RZ/G2L processor has two 1.2GHz Arm® Cortex®-A55 cores, a 200MHz

Cortex-M33 core, a MALI 3D GPU, and an Image Scaling Unit. This processor SoC is equipped with

an on-chip plus H.264 video (1920 x 1080) encode/decode function in silicon, making it ideal for

implementing cost-effective embedded vision and display applications.

RZ/G2L-SBC is engineered in a compact Raspberry Pi form factor with a versatile set of expansion

interfaces, including Gigabit Ethernet, 801.11ac Wi-Fi, four USB 2.0 host ports, a MIPI DSI display with

touch and CSI camera interfaces, a CANFD interface, a PMOD interface, a Pi-HAT-compatible 40-pin

expansion header, and two expansion sockets for a daughter card.

The board supports analog audio applications via audio codec and stereo headphone jack. It also pins

out five 12-bit ADC inputs for interfacing with analog sensors through an expansion module (not

included). A 5V input power is sourced via a USB-C connector and managed via a single-chip Renesas

RAA215300 PMIC device.

The onboard memory includes 1GB DDR4, 64 MiB QSPI NOR flash memory, and a microSD slot for

removable boot media.

Software enablement includes CIP Kernel-based Linux BSP (maintained for 10 years+) plus reference

designs that highlight demo implementations of HMI applications. Onboard 10-pin JTAG/SWD mini-

SMT header (unpopulated) and 40-pin GPIO header enable the use of an external debugger and USB-

serial cable.

RZ Family / RZ/G Series 1. Overview

R12UZ0158EU0101 Rev.1.10 Page 13 of 96

Sep.20.2024

1.1 Physical View

Figure 1: Top side view of the RZ/G2L-SBC

Figure 2: Bottom side of the RZ/G2L-SBC

RZ Family / RZ/G Series 2. Required Resources

R12UZ0158EU0101 Rev.1.10 Page 14 of 96

Sep.20.2024

2. Required Resources

2.1 Development Tools and Software

The following tools are used for development:

• SEGGER JLink software (SEGGER - The Embedded Experts - Downloads - J-Link / J-Trace).

• Tera Term (Download File List - Tera Term - OSDN) on Windows PC for accessing UART.

• Minicom on Ubuntu host machine for accessing UART on Linux.

• Balena Etcher

2.2 Hardware

The following hardware would be needed to work with the RZ/G2L-SBC:

• Renesas RZ/G2L Board.

• Windows PC with Tera Term software and admin privileges.

• Ubuntu 20.04 host environment as native install or VM or docker environment: For working on

Yocto distros.

• UART TTL cables (Raspberry pi compatible) featuring FTDI chipset. We do not recommend

PL2302-based UART TTL cables as they have demonstrated issues with Windows drivers.

• Micro USB cables to interface with a host machine.

• Jumper wires/plugs.

• Mini-HDMI to HDMI display interface cable.

• Ethernet cables for networking.

• Power supply that can provide 5V at 3 A with USB-C pins. (not included in the package).

• Waveshare 5” DSI display module with a capacitive touch interface (optional: not included in

the package).

• OV5640 camera module (optional: not included in the package).

https://www.segger.com/downloads/jlink/
https://osdn.net/projects/ttssh2/releases/
https://etcher.balena.io/#download-etcher
https://www.renesas.com/us/en/products/microcontrollers-microprocessors/rz-mpus/rzg2l-sbc-rzg2l-single-board-computer
https://www.amazon.com/dp/B091FYFNV8/ref=twister_B09PBVTZD8?_encoding=UTF8&th=1
https://www.arducam.com/product/arducam-5mp-mipi-camera-for-rzboard-v2l-with-renesas-rz-v2l-processor/

RZ Family / RZ/G Series 3. RZ/G2L SoC MPU Architecture

R12UZ0158EU0101 Rev.1.10 Page 15 of 96

Sep.20.2024

3. RZ/G2L SoC MPU Architecture

The RZ/G2L MPU is a feature-packed SoC (System on Chip) that can support a variety of applications.

Below is an overview of SoCs.

Figure 3: RZ/G2L SoC (System on Chip) Overview

3.1 Operational Flow

The diagram below will show the operational flow of the RZ/G2L-SBC system during power ON.

Figure 4: RZ/G2L-SBC boot operational flow

By default, the main processor will be in power OFF state to conserve battery. When the power is

supplied, the PMIC immediately cycles power and puts the Cortex A55 into a POR state. This kickstarts

the boot process with the Loader and ends with the Linux booting into user space.

While u-boot passes full control to the Linux kernel, arm trust zone remains active along with op-tee

within the Arm core’s trust zone of operations.

The exact boot time depends on the boot environment and the number of services in the initialization

process.

RZ Family / RZ/G Series 4. Functional Overview

R12UZ0158EU0101 Rev.1.10 Page 16 of 96

Sep.20.2024

4. Functional Overview

This section delves into the functional and design aspects of the RZ/G2L-SBC. The below image

highlights the key hardware components in the RZ/G2L SBC design.

Figure 5: RZ/G2L SBC System Overview

Table 1: Main Components on RZ/G2L-SBC

Component Number Component Name Type (Manufacturer)

U1 Temperature Sensor Digital, Local -55°C ~ 125°C

11 b 8-HWSON (2x3)

CAT34TS02 (Onsemi)

U2 USB Controller UPD720115K8-611-BAK-A-ND (Renesas

Electronics)

U3 MPU RZ/G2L R9A07G044L23GBG (Renesas Electronics)

U4 DDR4 SDRAM 512MB IS43QR16256A-093PBLI-TR (ISSI)

U5 Ethernet Phy 10BASE-TE, 100BASE-TX, 1GBASE-

T

PEF7071VV16 (MaxLinear)

U6 VersaClock® Programmable Clock

Generator

 5P35023B-000NLGI8 (Renesas Electronics)

U7 HDMI Transmitter SiI9022A/4A – QFN (SiliconImage)

U8 PMIC RAA215300 (Renesas Electronics)

U9 AND GATE 2IN SOT-23-5 Vcc 1.65V to 5.5V 7UL1G08FS (Toshiba)

U10 Ethernet Phy 10BASE-TE, 100BASE-TX, 1GBASE-

T

PEF7071VV16 (MaxLinear)

U11 Audio Codec with Advanced Accessory Detect

DA7219 (Renesas Electronics)

U12 Dual USB Port Power Supply Controller - Covering

the Industrial Temperature Range of -40C to +85C

ISL61852FIRZ (Renesas Electronics)

U13 QSPI Flash 512MBIT SPI/QUAD 8WSON S25FS512SDSNFB010 (Infineon)

RZ Family / RZ/G Series 4. Functional Overview

R12UZ0158EU0101 Rev.1.10 Page 17 of 96

Sep.20.2024

U14 Dual USB Port Power Supply Controller - Covering

the Industrial Temperature Range of -40C to +85C

ISL61852FIRZ (Renesas Electronics)

M1 Integrated 802.11 b/g/n Wi-Fi Module

iWi-L-WB (Laird)

Y1 Crystal resonator for XIN XRCGB24M000F0L00R0 (Murata)

Y2 Crystal resonator for XIN ST3215SB32768H5HPWAA (Kyocera-AVW)

Table 2: Primary connectors on RZ/G2L-SBC

Components Number Component Name Type (Manufacturer)

J1 USB 2 & 3 USB-A-D-RA (Adam Tech)

J2 PMOD PPPC062LFBN-RC (Sullins)

J3 40-Pin Header (Raspberry Pi 3B compliant) -

J4 USB 0 &1, 10/100/1000 Ethernet 2 YKGU-6101NL (Ingke)

J5 MIPI-CSI 1-1734248-5 (TE Connectivity)

J6 MIPI-DSI 1-1734248-5 (TE Connectivity)

J7 10/100/1000 Ethernet 1 YKGD-8069NL (Ingke)

J8 Audio I/O (Speaker/Microphone) ASJ-192-Y (Adam Tech)

J9 Mini-HDMI 10029449-001RLF (FCI)

J10 USB-Type-C Power Input C-ARA1-AK515 (CNC Tech)

J11 20-pin JTAG connector 3221-10-0300-00 (CNC Tech)

J12 Expansion Connecter to Display adapter & boot

strapping pins

528850274 (Molex)

J13 Expansion Connecter to Display adapter & boot

strapping pins

528850274 (Molex)

P1 microSD card slot MEM2051-00-195-00-A (GCT)

RZ Family / RZ/G Series 4. Functional Overview

R12UZ0158EU0101 Rev.1.10 Page 18 of 96

Sep.20.2024

4.1 Overview of Connectors

Given below is the basic positioning of the top-level connectors.

Figure 6: RZ/G2L-SBC top side connectors.

RZ Family / RZ/G Series 4. Functional Overview

R12UZ0158EU0101 Rev.1.10 Page 19 of 96

Sep.20.2024

Figure 7: RZ/G2L-SBC Bottom view connectors.

Figure 8: RZ/G2L-SBC side view I/O ports.

RZ Family / RZ/G Series 4. Functional Overview

R12UZ0158EU0101 Rev.1.10 Page 20 of 96

Sep.20.2024

4.2 Power Supply

This section delves into the RZ/G2L-SBC's power supply architecture. The RZ/G2L-SBC uses a simple

design, with a 5V supply as the single external power source.

4.2.1 USB Type-C Power

This board has one USB Type-C receptacle for power input with USB Power Delivery. The USB type–

C power connector is meant to connect to a 5V power supply. The RZ/G2L-SBC requires a minimum

of 3A power to prevent brownouts. However, we recommend a 4.5 -5A power supply as several ports

support peripherals consuming substantial power.

4.2.2 Power rails

Given below is the basic power supply design. It’s a simple design that uses an input power supply from

USB-C or one of the routed pins marked as 5V in the 40-pin GPIO or the adapter board and routes it

through a series of converters to generate different power lines.

RZ Family / RZ/G Series 4. Functional Overview

R12UZ0158EU0101 Rev.1.10 Page 21 of 96

Sep.20.2024

Figure 9: Power supply rails.

The Input power of 5V is used to generate 5 independent power lines:

➢ Two independent 3.3 V lines for peripherals and ethernet.

➢ A 1.8V master supply line

➢ A 1.2V master supply line

➢ A 1.1V master supply line

The 1.2V line is used by the RZ/G2L SoC and the DDR4 SDRAM, while the 1.1V line is exclusively

used by the RZ/G2L SoC. The RZ/G2L also draws power to its internal IP blocks from the 1.8V line.

This design is aimed at simplicity and hence omits the use of any power and reset switches. The POR

behavior is strictly controlled by the PMIC and its passives.

RZ Family / RZ/G Series 4. Functional Overview

R12UZ0158EU0101 Rev.1.10 Page 22 of 96

Sep.20.2024

4.2.3 Power Supply Regulation

The power supply is regulated by Renesas RAA215300 low-cost 9 channel PMIC IC.

Figure 10: Block Diagram of Power Supply Regulation using RAA215300.

4.3 Power Management Integrated Circuit- PMIC

All LDOs are cycled as per the POR cycle. Any control is exercised by the RZ/G2L through the I2C

interface. However, the LDO’s are always turned-on post PoR.

Figure 11: Block diagram of PMIC interface to RZ/G2L

4.4 RESET Control

The RZ/G2L-SBC has a simplified PoR behavior. It’s by default set up to boot from QSPI0 which is

achieved through external pull-up and pull-down resistors to a default code of 011. The default boot

mode of 011 is for booting from QSPI0 but setting the operating voltage to 1.8V. The bootstrapping

lines can be accessed externally through J12 port in the bottom (through an adapter board). This makes

it possible to alter the boot flow using these pins.

RZ Family / RZ/G Series 4. Functional Overview

R12UZ0158EU0101 Rev.1.10 Page 23 of 96

Sep.20.2024

In addition to the boot order, the SoC has two more lines DEBUGEN (BE) & BSCANP (BS). These lines

control the boot mode which can be JTAG boundary scan or a debug mode. The figure below shows

all the necessary information.

Figure 12: Reset Control Logic

4.5 Clock Configuration

The RZ/G2L-SBC design uses a Renesas VersaClock-3S as a singular programmable clock generator

as the master clock source for the entire board. It drives the source clock for not just the RZ/G2L-SoC

but all other devices that use an external clock input. This reduces the design complexity by reducing

the use of passives and PLL’s per peripheral while using a single 24 MHz crystal XTALL.

RZ Family / RZ/G Series 4. Functional Overview

R12UZ0158EU0101 Rev.1.10 Page 24 of 96

Sep.20.2024

Figure 13: Block diagram of Clock interfacing.

4.6 Peripheral Interface

4.6.1 Gigabit Ethernet

The RZ/G2L-SBC comes with two Gigabit ethernet ports. They are identified as Eth 0 and Eth 1 in the

Linux environment. They are both gigabits capable. The Gigabit Ethernet Interface is controlled by the

Ethernet controller (E-MAC) that conforms to the definition of the MAC (Media Access Control) layer

that is built-in to the RZ/G2L. The Ethernet clock is sourced from a clock generator connected to the

Ethernet PHY.

This interface complies with IEEE802.3 PHY RGMII.

ETH0 is connected to PHY 2 and ETH1 is connected to PHY1. Please be mindful of the order.

RZ Family / RZ/G Series 4. Functional Overview

R12UZ0158EU0101 Rev.1.10 Page 25 of 96

Sep.20.2024

Figure 14: Ethernet 0 PHY interfacing.

RZ Family / RZ/G Series 4. Functional Overview

R12UZ0158EU0101 Rev.1.10 Page 26 of 96

Sep.20.2024

Figure 15: Ethernet 1 PHY interfacing.

4.6.2 USB 2.0 Ports

The SBC has 4 USB 2.0 ports which are of type A. The primary USB hub is the Renesas UPD720115

(µPD720115) which is a 4-port hub conforming to USB battery charging specification version 1.2. It has

one upstream port and 4 downstream ports. The USB hub is connected directly to the RZ/G2L SoC’s

USB 1 data ports. The RZ/G2L SoC has a single USB 2.0 Host Interface channel.

The USB 0 channel (OTG interface) is routed to the USB-C power supply port. However, the actual

OTG lines are not connected, and only the data lines are routed to the USB-C port. When is board is

powered through the 40-pin io or the bottom expansion connectors, it frees up the USB-C port. It can

then be used for connecting peripherals. Please note that the USB-C has not been tested as a

peripheral interface so far.

The power supply to the four USB 2.0 ports downstream is controlled through two external power

regulators: Renesas ISL6185. The ISL 6185 isolates and protects the internal circuit from the external

USB peripheral while providing higher levels of 5V power through supply sourcing.

https://www.renesas.com/us/en/products/interface/usb-switches-hubs/upd720115-usb-20-hub-controller#overview
https://www.renesas.com/us/en/products/interface/usb-switches-hubs/upd720115-usb-20-hub-controller#overview
https://www.renesas.com/us/en/document/dst/isl6185-datasheet

RZ Family / RZ/G Series 4. Functional Overview

R12UZ0158EU0101 Rev.1.10 Page 27 of 96

Sep.20.2024

Figure 16: UPD720115 block diagram.

Figure 17: USB 2.0 Hub Block Diagram

RZ Family / RZ/G Series 4. Functional Overview

R12UZ0158EU0101 Rev.1.10 Page 28 of 96

Sep.20.2024

4.6.3 MIPI CSI Interface

The RZ/G2L-SBC comes with a dual channel MIPI CSI port labelled as J6. It’s located right next to the

3.5 mm audio jack. The CSI port 15 pin camera port is verified to work with OV5640 camera module. It

supports two data channels and One I2C channel. It is directly interfaced to the RZ/G2L SoC.

Figure 18: CSI Interface Schematic

4.6.4 MIPI DSI Interface

The RZ/G2L-SBC comes with a dual channel MIPI DSI port labelled as J5. It’s located toward the edge

of the board next to the Wi-Fi chipset. The 15-pin display port is verified to work with Waveshare 5” DSI

display with a capacitive touch interface module. It supports two data channels and One I2C channel.

It is directly interfaced to the RZ/G2L SoC.

Figure 19: DSI Schematic

4.6.5 Audio DAC with 3.5mm Jack

The RZ/G2L-SBC comes with an onboard audio DAC from Renesas: DA7219. The audio DAC is

interfaced to RZ/G2L SoC to its SSI1 and I2C 0. The SSI 1 is used for audio streaming of I2S data while

the I2C interface is used for mux and peripheral control.

RZ Family / RZ/G Series 4. Functional Overview

R12UZ0158EU0101 Rev.1.10 Page 29 of 96

Sep.20.2024

Figure 20: Audio CODEC Interface Block Diagram

4.6.6 HDMI Display Subsystem

The RZ/G2L-SBC comes with a HDMI display output which is derived from the RGB parallel interface

from RZ/G2L SoC through an RGB to HDMI converter interface IC. The physical HDMI port is a mini-

HDMI type (not micro). The HDMI signal source is the RGB parallel LVDS interface. A RGB to HDMI

bridge IC is used to convert RGB to HDMI protocol. The bridge is fully supported, and the HDMI is

enabled with EDID feature.

RZ Family / RZ/G Series 4. Functional Overview

R12UZ0158EU0101 Rev.1.10 Page 30 of 96

Sep.20.2024

Figure 21: HDMI Bridge and mini HDMI port interfacing.

4.6.7 40-pin I/O Header

The RZ/G2L-SBC comes with a 40-pin GPIO interface which is broadly compliant with Raspberry Pi 3

40-pin GPIO interface and provides additional interfaces like two CAN ports. The diagram below shows

the pin configuration along with marking of the bottom I/O ports for reference of the orientation of the

board.

RZ Family / RZ/G Series 4. Functional Overview

R12UZ0158EU0101 Rev.1.10 Page 31 of 96

Sep.20.2024

Figure 22: 40 PIN GPIO map with orientation details.

4.6.8 PMOD Type 6A Standard Interface

The RZ/G2L-SBC is equipped with a 2x6 pin header routed to the PMOD Type-6A interface conforming

to the 1.3.0 specification of PMOD. It includes the alternate pin functions from the specification.

Figure 23: Schematic of PMOD Type 6 A pin header J2.

https://digilent.com/reference/_media/reference/pmod/pmod-interface-specification-1_3_0.pdf

RZ Family / RZ/G Series 4. Functional Overview

R12UZ0158EU0101 Rev.1.10 Page 32 of 96

Sep.20.2024

Figure 24: PMOD Type 6A 2x6 0.1mm pin out with orientation details.

4.6.9 uSD-Card Interface

The RZ/G2L-SBC comes with a spring-loaded micro-sd card slot. This is intended to be the primary

storage as well as the OS boot device. The SD card is connected to channel 0 of the RZ/G2L SoC

SD/MMC interface. The SoC SDIO interface is compliant with memory card standard version 3.0 and

supports UHS-1 mode of 50 MB/s (SDR50) and 104 MB/s (SDR104).

Figure 25: uSD-Card interface block diagram.

4.6.10 JTAG SWD Debug

The JTAG/SWD interface is an SMT pin out on the bottom side of the board marked as J11. It uses the

standard 10-pin interfacing when populated. By default, this is not populated on the board. In addition

to populating the pins of J11, the use of J12 port to set BSCANP is necessary to trigger JTAG boundary

scan of the RZ/G2L SoC. The SBC by itself will not be able to initiate the JTAG boundary scan mode.

All the interface lines have pullups.

RZ Family / RZ/G Series 4. Functional Overview

R12UZ0158EU0101 Rev.1.10 Page 33 of 96

Sep.20.2024

Figure 26: JTAG/SWD Block Diagram

4.6.11 Expansion Connector

The RZ/G2L-SBC has two connectors in the bottom J12 and J13 that contain pin outs for the ADC

inputs, Bootstrapping (boot mode selection), and the QSPI1 interface in addition to a few GPIO’s. This

is meant to be used in conjunction with an adapter/daughter board. The primary uses of this are mostly

on custom versions where factory flashing, and other manufacturing functions are controlled by these

lines. The ADC input lines are also mapped to J13 connector.

Figure 27: Block diagram of Bottom Connectors.

Please refer to the appendix for details on the adaptor board and flashing tools.

4.7 Memory

The RZ/G2L-SBC design uses 4 types of memory.

1. QSPI NOR Flash

2. DDR4 SDRAM

3. EEPROM

4. SD-Card

4.7.1 QSPI Flash

The QSPI flash memory is controlled by the SPI multi-I/O bus controller (SPIBSC) that is built into the

RZ/G2L. This memory supports both single data rate (SDR) and double data rate (DDR) transfers at

66MHz and 50MHz clock frequency. QSPI0 interfaces to a Cyprus S25FS512SDSNFB010 64MiB NOR

RZ Family / RZ/G Series 4. Functional Overview

R12UZ0158EU0101 Rev.1.10 Page 34 of 96

Sep.20.2024

Flash module. The QSPI is the default boot device which contains the firmware: Arm Trusted Firmware

(ATF), OPTEE (loaded but disabled by default) and U-Boot.

Figure 28: QSPI interface.

4.7.2 DDR4 SDRAM

The DDR4 SDRAM is controlled by the DDD3L/DDR4 SDRAM Memory Controller (MEMC) that is built-

in to the RZ/G2L. This interface supports up to DDR4-1600 SDRAM, a data bus width of 16-bit, and

inline ECC.

This interface complies with JEDEC STANDARD JESD79-4C.

Figure 29: DDR4 SDRAM Interface

RZ Family / RZ/G Series 4. Functional Overview

R12UZ0158EU0101 Rev.1.10 Page 35 of 96

Sep.20.2024

4.7.3 EEPROM with temperature sensor.

The RZ/G2L-SBC has an onboard CAT34TS02 I2C Temperature sensor with on-chip EEPROM, which

is meant to hold factory data like Serial number, manufacturer name, etc. It is currently only used to

hold the ethernet MAC ID’s. Please note that each board has its own registered MAC ID, which is stored

on the EEPROM and read by u-boot during bootup. The EEPROM also has a built-in temperature

sensor that can be read over the I2C interface. The EEPROM is configured as 16 pages of 16 bytes

each for a total of 256 KiB (2 kilobits) of memory. Currently, two MAC IDs occupy 6 bytes of memory

each for a total of 12 bytes.

Figure 30: I2C EEPROM Block Diagram

Parameter Value Description

I2C speed 100KHz / 400 KHz It supports the standard and fast modes of operation.

EEPROM memory size 2 kib / 256 bytes

EEPROM memory ordering 16 pages of 16 bytes
each

Page bank array configuration

Temperature range -20 °C to +125 °C

Operating Voltage 3.3V

Temperature alarm Programmable over I2C Three programmable trigger settings for high, low and critical
temperatures to raise interrupt over line IRQ 7.

4.8 GPIO Internals

The RZ/G2L SoC has a unique way of GPIO organization. It’s not the typical banked GPIO interface

that one might be used to. The RZ/G2L has individual GPIO LSI logic directly attached to the register

outputs. This creates a notation for GPIO pins attached to ports which are basically bits in a register.

Px_y :

P= port a.k.a 8 bit register set number.

x= port number

y= port bit

Each bit in a port control register corresponds to a single gpio logic module. While each port has 8 bits,

most of the ports (registers) are only using the lower two to three bits for gpio line outs. The upper bits

are used for other special functions at times. The table below maps all the available ports to bits.

https://www.onsemi.com/pdf/datasheet/cat34ts02-d.pdf

RZ Family / RZ/G Series 4. Functional Overview

R12UZ0158EU0101 Rev.1.10 Page 36 of 96

Sep.20.2024

Figure 31: Multiplexed peripheral functions configuration diagram for GPIO pins

RZ/G2L can support up to 123 general-purpose I/O pins from 49 ports in the following table:

Table 3: GPIO-supported pins in RZ/G2L

Port name External Terminal Name

Bit7-5 Bit4 Bit3 Bit2 Bit1 Bit0

PORT 10 - - - - P0_1 P0_0

PORT 11 - - - - P1_1 P1_0

PORT 12 - - - - P2_1 P2_0

PORT 13 - - - - P3_1 P3_0

PORT 14 - - - - P4_1 P4_0

PORT 15 - - - P5_2 P5_1 P5_0

PORT 16 - - - - P6_1 P6_0

PORT 17 - - - P7_2 P7_1 P7_0

PORT 18 - - - P8_2 P8_1 P8_0

PORT 19 - - - - P9_1 P9_0

PORT 1A - - - - P10_1 P10_0

PORT 1B - - - - P11_1 P11_0

PORT 1C - - - - P12_1 P12_0

PORT 1D - - - P13_2 P13_1 P13_0

PORT 1E - - - - P14_1 P14_0

PORT 1F - - - - P15_1 P15_0

PORT 20 - - - - P16_1 P16_0

PORT 21 - - - P17_2 P17_1 P17_0

PORT 22 - - - - P18_1 P18_0

PORT 23 - - - - P19_1 P19_0

PORT 24 - - - P20_2 P20_1 P20_0

PORT 25 - - - - P21_1 P21_0

PORT 26 - - - - P22_1 P22_0

PORT 27 - - - - P23_1 P23_0

PORT 28 - - - - P24_1 P24_0

PORT 29 - - - - P25_1 P25_0

PORT 2A - - - - P26_1 P26_0

PORT 2B - - - - P27_1 P27_0

PORT 2C - - - - P28_1 P28_0

PORT 2D - - - - P29_1 P29_0

PORT 2E - - - - P30_1 P30_0

PORT 2F - - - - P31_1 P31_0

PORT 30 - - - - P32_1 P32_0

PORT 31 - - - - P33_1 P33_0

PORT 32 - - - - P34_1 P34_0

PORT 33 - - - - P35_1 P35_0

RZ Family / RZ/G Series 4. Functional Overview

R12UZ0158EU0101 Rev.1.10 Page 37 of 96

Sep.20.2024

PORT 34 - - - - P36_1 P36_0

PORT 35 - - - P37_2 P37_1 P37_0

PORT 36 - - - - P38_1 P38_0

PORT 37 - - - P39_2 P39_1 P39_0

PORT 38 - - - P40_2 P40_1 P40_0

PORT 39 - - - - P41_1 P41_0

PORT 3A - P42_4 P42_3 P42_2 P42_1 P42_0

PORT 3B - - P43_3 P43_2 P43_1 P43_0

PORT 3C - - P44_3 P44_2 P44_1 P44_0

PORT 3D - - P45_3 P45_2 P45_1 P45_0

PORT 3E - - P46_3 P46_2 P46_1 P46_0

PORT 3F - - P47_3 P47_2 P47_1 P47_0

PORT 40 - P48_4 P48_3 P48_2 P48_1 P48_0

-: unused pins

RZ Family / RZ/G Series 6. Yocto OE Build

R12UZ0158EU0101 Rev.1.10 Page 38 of 96

Sep.20.2024

5. Quick Start

5.1 Hardware requirement

The basic hardware setup consists of the following:

1. RZ/G2L-SBC

2. FTDI RS232 UART cable

3. USB-C 5V 3A+ power supply

4. SD-mmc card (minimum 8 GB)

5. 1080p HDMI display / Waveshare 5” MIPI DSI display touch panel

6. Ethernet cables.

7. OV5640 MIPI CSI camera

8. USB keyboard and mouse

9. 3.5mm Headphone with microphone

5.2 Essential Hardware Setup

Given below is the basic essential hardware setup. We expect at least the UART cable and an HDMI

display to be available.

Figure 32: Essential minimum interfaces needed

MIPI DSI Display Touch Panel

https://www.renesas.com/us/en/products/microcontrollers-microprocessors/rz-mpus/rzg2l-sbc-rzg2l-single-board-computer
https://www.amazon.com/Touchscreen-Raspberry-Compatible-Raspbian-RetroPie/dp/B091FYFNV8/ref=sr_1_3?crid=3K1QBBJYHG1ID&keywords=waveshare%2B5%22%2Bdsi&qid=1707245876&sprefix=waveshare%2B5%2Bdsi%2Caps%2C195&sr=8-3&th=1
https://www.arducam.com/product/arducam-5mp-ov5640-camera-module-for-renesas-rz-v2l-evaluation-kit/
https://www.amazon.com/Logitech-Wireless-Keyboard-Touchpad-PC-connected/dp/B014EUQOGK/ref=sr_1_4?crid=33FVVZHWTIABG&dib=eyJ2IjoiMSJ9.eRLfEXCz5hs18diT-l0VeJXTwuRLBpfTAxpYh_9zwIwPEWkGhztMsHQKT7rpTkBQ05bweg_1tH1qUC6kEmZPHyc9pVvBiicGJxlgn6ZnoypFjtiW5L16ZjGzis9KlFZqTgjvvrLv7TyHifnK-eoVjPdETb2L9THI4rED_aDdjQrudM3SRDMLx65skQf3KGRQcunYXYjqGHO7dEHDecv-rVWx5sxwjWMh1n3XmdYIOuFOC2KnHrDYDTeKBDsWC6c9OCCgmBtC5rPgW3BUGnlQeOHorPPwon9WL6MZkTTaux8.Lgg800UZ_vm4l8G480JqHnGrcQSkUwsRGUPZsULHKpQ&dib_tag=se&keywords=usb%2Bkeyboard%2Btouch&qid=1725938677&s=electronics&sprefix=usb%2Bkeyboard%2Btouch%2Celectronics%2C166&sr=1-4&th=1

RZ Family / RZ/G Series 6. Yocto OE Build

R12UZ0158EU0101 Rev.1.10 Page 39 of 96

Sep.20.2024

5.3 Complete Hardware Setup

Figure 33: Complete setup

RZ Family / RZ/G Series 6. Yocto OE Build

R12UZ0158EU0101 Rev.1.10 Page 40 of 96

Sep.20.2024

5.4 Linux SD Card Creation

The Linux bootable SD card creation is a very simple process. The idea is to use any filesystem imaging

tool (etcher) to burn the ‘.wic’ file (core-image-qt-rzpi.wic) located in the ‘target/images’ directory of the

release. to the sd card. We recommend that you install Balena etcher which is available for Linux,

MacOS and Windows.

The UI is Straight forward.

Figure 34: Balena etcher UI

Steps:

1. Select “Flash from File”.

2. In popup window, navigate to your release and select the file ‘(core-image-qt-rzpi.wic’.

3. Then click on ‘Select target’ and it will list all available devices. Select your sd card. Be

mindful not to select your primary laptop hard drive.
4. Select ‘Flash’.
5. When Flashing is completed, it will automatically dismount the sd-card device.
6. Insert the sd-card into the RZ/G2L-SBC bottom sd-card connector.

5.5 Booting

The booting is straight forward. Insert the MMc card to the mmc port in the bottom side of the RZ/G2L-

SBC. Connect keyboard, mouse, hdmi display; then insert the USB-C power supply and turn the power

on. You should see the boot log on the UART console and the Weston desktop with qt apps on the

HDMI screen. You can now click on any of the applications and interact with it.

The image is fully featured and has powerful desktop grade features. Explore the rest of the document

to learn about all the features packed into the Linux image.

https://etcher.balena.io/#download-etcher

RZ Family / RZ/G Series 6. Yocto OE Build

R12UZ0158EU0101 Rev.1.10 Page 41 of 96

Sep.20.2024

6. Yocto OE Build

This section describes how to prepare a host system, download dependencies, and then perform a full

yocto build. The following sub-sections are step-by-step process of performing a successful yocto build.

6.1 Build Host Environment Setup

Requirements

• Ubuntu 20.04 LTS (64bit) is recommended as a build environment as we are using ‘Dunfell’

version.

• Development packages for Yocto:

Refer to official Yocto documentation (Yocto Project Documentation) to get started.

Refer to the official Yocto quick build guide (Yocto Project Quick Build — The Yocto Project ®

3.1.27 documentation) for a quick start.

The files listed in the table below are part of the release package. These are essential files to be used

for the RZ/G2L-SBC Yocto build.

File Description

rzsbc_yocto.sh Custom Yocto build script that downloads the base yocto package and other downloaded zip files,
arranges the layers, applies relevant meta layers, sets up the environment and initiates a build.

site.conf An override file that targets for a specific build version.

patches This is a folder contains additional patches that needed for Yocto eSDK build. The patches are organized
as follows:
- meta-summit-radio/

• 0001-meta-classes-esdk-explicitly-address-the-location-of.patch
- poky/

• 0001-rzsbc-summit-radio-pre-3.4-support-eSDK-build.patch

git_patch.json A configuration file contains json keys and repository configuration such as: url, branch, tag, commit, repo
type and patch paths to apply.

jq-linux-amd64 A lightweight and flexible tool that supports parsing json file.

README.md A readme file describing all the necessary info about the build process.

Table 4: Pre-requisite files from release package

Install packages on Ubuntu Host.

1. Update the ubuntu package manager.
$ sudo apt update

2. Install necessary packages and tools which are used by the yocto build.
$ sudo apt install -y gawk wget git-core diffstat unzip texinfo gcc-multilib \
build-essential chrpath socat cpio python python3 python3-pip python3-pexpect \
xz-utils debianutils iputils-ping libsdl1.2-dev xterm p7zip-full libyaml-dev \
rsync curl locales bash-completion

3. Configure local git account for the user.
$ git config --global user.name “Your Name”

$ git config --global user.email “you@example.com”
4. Download the following packages provided by Renesas.

File name Version Download Link Comments

RTK0EF0045Z13001ZJ-
v1.1.2_EN.zip

1.1.2
rz-mpu-graphics-library-
evaluation-version

This is the Mali driver and graphics
package that enables the Mali
GPU in the SoC.

RTK0EF0045Z15001ZJ-
v1.1.0_EN.zip

1.1.0
rz-mpu-video-codec-
library-evaluation-version

Video codec package

Table 5: List of packages to manually download for Yocto Build

https://docs.yoctoproject.org/#brief-build-system-packages
https://docs.yoctoproject.org/3.1.27/brief-yoctoprojectqs/brief-yoctoprojectqs.html
https://docs.yoctoproject.org/3.1.27/brief-yoctoprojectqs/brief-yoctoprojectqs.html
https://www.renesas.com/us/en/document/swo/rz-mpu-graphics-library-evaluation-version-rzg2l-and-rzg2lc-rtk0ef0045z13001zj-v112enzip
https://www.renesas.com/us/en/document/swo/rz-mpu-graphics-library-evaluation-version-rzg2l-and-rzg2lc-rtk0ef0045z13001zj-v112enzip
https://www.renesas.com/us/en/document/sws/rz-mpu-video-codec-library-evaluation-version-rzv2l-rtk0ef0045z15001zj-v110enzip
https://www.renesas.com/us/en/document/sws/rz-mpu-video-codec-library-evaluation-version-rzv2l-rtk0ef0045z15001zj-v110enzip

RZ Family / RZ/G Series 6. Yocto OE Build

R12UZ0158EU0101 Rev.1.10 Page 42 of 96

Sep.20.2024

5. We assume that all the downloaded zip files from Table 5 are collected at the path

‘Downloads/renesas-yocto’ in the user’s home directory creating paths ‘~/Downloads/renesas-

yocto/*.zip’. If your locations are different, you must substitute the appropriate paths in the

following steps.
6. Copy all the above downloaded zip files to a build folder (For e.g., ‘~/yocto’ as shown below)

in Ubuntu Host PC.
$ cd ~/Downloads/renesas-yocto
$ mkdir ~/yocto
$ mv *.zip ~/yocto

7. Copy the files ‘rzsbc_yocto.sh’, ‘site.conf’, ‘README.md’, ‘jq-linux-amd64’ and ‘patches’

folder from the release package into ‘~/yocto’ folder. (This example assumes the Pre-requisite

files that are described in Table 4 are located at package unpacked location

~/Downloads/renesas-yocto/ rz-sbc-qt-v1.1)

$ cd ~/Downloads/renesas-yocto/ rz-sbc-qt-v1.1/host/src
$ cp README.md ~/yocto
$ cp rzsbc_yocto.sh ~/yocto
$ cp site.conf ~/yocto

$ cp jq-linux-amd64 ~/yocto

$ cp git_patch.json ~/yocto

$ cp -r patches ~/yocto
8. Eventually, all the necessary files for the yocto build should be present in ‘~/yocto’ folder as

shown below.
renesas@builder-pc:~/yocto$ tree
.

├── git_patch.json

├── jq-linux-amd64

├── patches

│ ├── meta-summit-radio

│ │ └── 0001-rzsbc-summit-radio-pre-3.4-support-eSDK-build.patch

│ └── poky

│ └── 0001-meta-classes-esdk-explicitly-address-the-location-of.patch

├── README.md

├── rzsbc_yocto.sh

└── site.conf

4 directories, 7 files

6.2 Initiate Yocto Build

Add execute permission to rzsbc_yocto.sh.

renesas@builder-pc:~/yocto$ chmod a+x rzsbc_yocto.sh

Commence build:

renesas@builder-pc:~/yocto$./rzsbc_yocto.sh build

RZ Family / RZ/G Series 6. Yocto OE Build

R12UZ0158EU0101 Rev.1.10 Page 43 of 96

Sep.20.2024

6.3 Collect the build output

After building Yocto, the output folder should be located at:

`~/yocto/yocto_rzsbc_board/build/tmp/deploy/images/rzpi`

The output folder outline should look as follows:

renesas@builder-

pc:~/yocto/yocto_rzsbc_board/build/tmp/deploy/images/rzpi$ tree

.

├── host

│ ├── build

│ │ ├── core-image-qt-rzpi-20240918080332.rootfs.manifest

│ │ ├── core-image-qt-rzpi-20240918080332.testdata.json

│ │ ├── core-image-qt-rzpi.manifest -> core-image-qt-rzpi-

20240918080332.rootfs.manifest

│ │ └── core-image-qt-rzpi.testdata.json -> core-image-qt-rzpi-

20240918080332.testdata.json

│ ├── env

│ │ ├── core-image-qt.env

│ │ └── Readme.md

│ ├── Readme.md

│ ├── src

│ │ ├── git_patch.json

│ │ ├── jq-linux-amd64

│ │ ├── patches

│ │ │ ├── meta-summit-radio

│ │ │ │ └── 0001-rzsbc-summit-radio-pre-3.4-support-eSDK-build.patch

│ │ │ └── poky

│ │ │ └── 0001-meta-classes-esdk-explicitly-address-the-location-

of.patch

│ │ ├── README.md

│ │ ├── rzsbc_yocto.sh

│ │ └── site.conf

│ └── tools

│ ├── bootloader-flasher

│ │ ├── linux

│ │ │ ├── bootloader_flash.py

│ │ │ └── Readme.md

│ │ ├── Readme.md

│ │ └── windows

│ │ ├── config.ini

│ │ ├── flash_bootloader.bat

│ │ ├── Readme.md

│ │ └── tools

│ │ ├── cygterm.cfg

│ │ ├── flash_bootloader.ttl

│ │ ├── TERATERM.INI

│ │ ├── ttermpro.exe

RZ Family / RZ/G Series 6. Yocto OE Build

R12UZ0158EU0101 Rev.1.10 Page 44 of 96

Sep.20.2024

│ │ ├── ttpcmn.dll

│ │ ├── ttpfile.dll

│ │ ├── ttpmacro.exe

│ │ ├── ttpset.dll

│ │ └── ttxssh.dll

│ ├── Readme.md

│ ├── sd-creator

│ │ ├── linux

│ │ │ ├── Readme.md

│ │ │ └── sd_flash.sh

│ │ ├── Readme.md

│ │ └── windows

│ │ ├── config.ini

│ │ ├── flash_filesystem.bat

│ │ ├── Readme.md

│ │ └── tools

│ │ ├── AdbWinApi.dll

│ │ ├── cygterm.cfg

│ │ ├── fastboot.bat

│ │ ├── fastboot.exe

│ │ ├── flash_system_image.ttl

│ │ ├── TERATERM.INI

│ │ ├── ttermpro.exe

│ │ ├── ttpcmn.dll

│ │ ├── ttpfile.dll

│ │ ├── ttpmacro.exe

│ │ ├── ttpset.dll

│ │ └── ttxssh.dll

│ └── uload-bootloader

│ ├── linux

│ │ ├── Readme.md

│ │ └── uload_bootloader_flash.py

│ ├── Readme.md

│ └── windows

│ ├── config.ini

│ ├── Readme.md

│ ├── tools

│ │ ├── cygterm.cfg

│ │ ├── TERATERM.INI

│ │ ├── ttermpro.exe

│ │ ├── ttpcmn.dll

│ │ ├── ttpfile.dll

│ │ ├── ttpmacro.exe

│ │ ├── ttpset.dll

│ │ ├── ttxssh.dll

│ │ └── uload-flash_bootloader.ttl

│ └── uload-flash_bootloader.bat

RZ Family / RZ/G Series 6. Yocto OE Build

R12UZ0158EU0101 Rev.1.10 Page 45 of 96

Sep.20.2024

├── license

│ ├── Disclaimer051.pdf

│ └── Disclaimer052.pdf

├── r12uz0158eu0101-rz-g2l-sbc-single-board-computer.pdf

├── README.md

├── RZG2L-SBC_Evaluation_license.pdf

└── target

 ├── env

 │ ├── Readme.md

 │ └── uEnv.txt

 ├── images

 │ ├── bl2_bp-rzpi.bin

 │ ├── bl2_bp-rzpi.srec

 │ ├── bl2-rzpi.bin

 │ ├── core-image-qt-rzpi.wic

 │ ├── dtbs

 │ │ ├── overlays

 │ │ │ ├── Readme.md

 │ │ │ ├── rzpi-can.dtbo

 │ │ │ ├── rzpi-dsi.dtbo

 │ │ │ ├── rzpi-ext-i2c.dtbo

 │ │ │ ├── rzpi-ext-spi.dtbo

 │ │ │ └── rzpi-ov5640.dtbo

 │ │ ├── Readme.md

 │ │ ├── rzpi--5.10.184-cip36+gitAUTOINC+5f065ec41b-r1-rzpi-

20240918080332.dtb

 │ │ └── rzpi.dtb -> rzpi--5.10.184-cip36+gitAUTOINC+5f065ec41b-r1-

rzpi-20240918080332.dtb

 │ ├── fip-rzpi.bin

 │ ├── fip-rzpi.srec

 │ ├── Flash_Writer_SCIF_rzpi.mot

 │ ├── Image -> Image--5.10.184-cip36+gitAUTOINC+5f065ec41b-r1-rzpi-

20240918080332.bin

 │ ├── Image--5.10.184-cip36+gitAUTOINC+5f065ec41b-r1-rzpi-

20240918080332.bin

 │ ├── Readme.md

 │ └── rootfs

 │ ├── core-image-qt-rzpi.tar.bz2

 │ └── Readme.md

 └── Readme.md

28 directories, 92 files

RZ Family / RZ/G Series 7. Creating bootable SD card

R12UZ0158EU0101 Rev.1.10 Page 46 of 96

Sep.20.2024

7. Creating bootable SD card

This section describes all the tools and methods for creating the Linux bootable SD card under different

environments.

7.1 Linux Host

This section explores the SD-flashing tools available in the Linux environment.

There is a helper script `sd_flash.sh` in the `host/tools/sd-creator/linux` folder of the Yocto build output

/ release directory for this purpose.

Run the following command to learn how to use the script:

$./sd_flash.sh

The script needs an argument to run successfully. The argument is the device to be flashed the rootfs

into. In this case, the device needs to flash its SD card. You will have to identify the correct device name

which represents the SD card on Linux.

The below example shows how to identify an SD card on Ubuntu 22.0.4. The command ‘lsblk’ is

executed to check all available storage devices. You can see that the 32GB SD card is being

represented under the device name ‘sdb’ in the result (its full name is /dev/sdb). The command also

shows you where the drive partitions are mounted in the filesystem.

$ lsblk

NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINTS

sda 8:0 0 119.2G 0 disk

├─sda1 8:1 0 976M 0 part /boot

├─sda2 8:2 0 977M 0 part [SWAP]

├─sda3 8:3 0 977M 0 part /boot/efi

└─sda4 8:4 0 116.4G 0 part /var/snap/firefox/common/host-hunspell

 /
sdb 8:16 1 31.6G 0 disk

nvme0n1 259:0 0 1.1T 0 disk /data1

Please identify the device name of the sd-card to be flashed. Then, pass it to the script as argument

as shown in the example here:

$./sd_flash.sh /dev/sdb

After executing SD card flashing script successfully, the SD card is automatically unmounted.

7.2 Windows Host

The preferred way to flash the image onto the SD card is to simply use Balaena etcher to flash the:

core-image-qt-rzpi.wic image file onto the SD-card. You can use any etcher that can create bootable

media.

Note: Due to the various Linux distributions having different disk management arrangements, the script may

fail to create the card. Hence, we are unable to assure that the script will work in every Linux environment.

In the case where it fails, you might need to modify the call for creating the filesystem like the calls to ext4fs

in the script. Please pay attention to the script and ensure that it succeeds.

The script is tested on ubuntu 22.0.4.

RZ Family / RZ/G Series 8. Programming / Flashing Firmware to RZ/G2L-SBC

R12UZ0158EU0101 Rev.1.10 Page 47 of 96

Sep.20.2024

8. Programming / Flashing Firmware to RZ/G2L-SBC

The RZ/G2L-SBC comes with the most recent firmware images. However, there might be cases where

a firmware update may be needed, such as in a factory setting where volume flashing is being

performed or a custom version designed by the end user. The Renesas BSP provides firmware update

tools to make it seamless to perform these tasks under multiple OS environments.

The RZ/G2L-SBC images consist of:

1. Trusted firmware

2. Multi-stage bootloaders.

3. Linux demo distribution.

The SBC board is designed to boot from QSPI EEPROM containing the trusted firmware and

bootloaders. However, the SBC does not have an emmc storage and the Linux image is expected to

be available on an SD card or on a TFTP server.

8.1 Hardware Setup

To perform a firmware flashing, you need to ensure the following:

1. The board has the UART console connected to the host PC.

Figure 35: Cortex A55 debug UART cable interface

2. The SD card with the Linux boot image from the release.

3. A 5V 3A USB-C power supply.

Other interfaces are not necessary for this purpose.

8.2 Flash bootloader on u-boot console

If users want to update the Bootloader without touching the hardware setup, we support a method for

flashing the Bootloader on the U-Boot console. This is especially useful when end customers need to

update firmware as part of a field service. This is a straightforward method.

RZ Family / RZ/G Series 8. Programming / Flashing Firmware to RZ/G2L-SBC

R12UZ0158EU0101 Rev.1.10 Page 48 of 96

Sep.20.2024

The sub-directory ̀ host/tools/uload-bootloader` in Yocto build output / release folder contains the toolset

for sd-card flashing. The sub-directory contains its readme (Readme.md) file with the flashing procedure.

8.2.1 Linux Host

The Linux flashing script is named: uload_bootloader_flash.py under uload-bootloader/linux folder.

The script has options and the details of using it are provided in the Readme.md file at the same

location. You know more about the command by issuing a `-h` option while invoking the script.

$./uload_bootloader_flash.py -h

Here are the simplest steps to flash:

Step 1. Ensure that the hardware setup is accurate, as described above.

Step 2. Start the script uload_bootloader_flash.py.

renesas@builder-pc:~/yocto/yocto_rzsbc_board/build/tmp/deploy/images/rzpi$ cd

host/tools/uload-bootloader/linux
renesas@builder-pc:~/yocto/yocto_rzsbc_board/build/tmp/deploy/im-

ages/rzpi/host/tools/uload-bootloader/linux$./uload_bootloader_flash.py

Step 3. Power on the board. The flashing should automatically start and complete.

Step 4. Once the flashing is complete, power-cycle the board.

8.2.2 Windows Host

Windows host uses its own script that is cleanly tucked into the sub directory of uload-bootloader called

windows. The sub-directory has its own Readme.md describing everything that’s needed.

The Windows script is also a script that only depends on the teraterm TTL scripting tool.

Default bootloader images (.bin) are in the subdirectory `/boot/uload-bootloader` of the root

filesystem in sd card. You can put your own bootloader images there and perform a flashing.

Before performing the flashing:

✓ Make sure the board is powered off,

✓ Connect the debug serial port (SCIF0 - TXD, RXD, GND) to your Linux PC

✓ Insert the sd-card with the Linux image (you don’t need a separate image for this).

✓ Ensure that Teraterm application is installed on your windows pc.

✓ Ensure that minicom and FTDI drivers are loaded properly on Linux host pc.

✓ Ensure that the scripts in the process have execute permissions.

Please note that the script by default tries to access /dev/ttyUSB0 without any arguments passed.

This works on most systems which have a single FTDI cable attached to a single USB port.

RZ Family / RZ/G Series 8. Programming / Flashing Firmware to RZ/G2L-SBC

R12UZ0158EU0101 Rev.1.10 Page 49 of 96

Sep.20.2024

Step 1. Navigate through the release to the Windows utility directory and update the config.ini

with the COM port number.

Execute the uload-flash_bootloader.bat

Step 2. Notice application windows open and perform flashing. Once the flashing is

completed, it will disconnect from the UART port. Power-cycle the board.

RZ Family / RZ/G Series 9. Accessing Supported Features

R12UZ0158EU0101 Rev.1.10 Page 50 of 96

Sep.20.2024

9. Accessing Supported Features

In this section, we will explore the features and interfaces available on the RZ/G2L-SBC.

9.1 QT Demo Applications

The Linux root file system contains a few QT applications for demo purposes. They can be launched

from the taskbar at the top of the screen. They can also be launched through the UART console. When

you login to the console, you will find all the demo apps in the home directory of root user.

root@rzpi:~# cd /home/root/demo/scripts/
root@rzpi:~/demo/scripts# ls

Help.sh Qmlvideofx-demo.sh QtCinematicExperience-demo.sh Qteverwhere-demo.sh

Qt-launch-demo.sh QtSmarthome-demo.sh

Most of the demo apps are launched through their corresponding shell script or the UI launchers on the

taskbar.

For example, QT smart home demo application can be executed as follows:

root@rzpi:~# cd /home/root/demo/scripts/

root@rzpi:~/demo/scripts# ./QtSmarthome-demo.sh

The following figure shows all the demo apps on the taskbar:

Figure 36: All the demo apps are on the taskbar on the main screen.

Each demo app offers a unique blend of functionality and user interface, catering to diverse needs

and preferences. However, due to the main memory limitation, not all of them can run successfully on

the RZ/G2L-SBC.

The following table describes the details for each demo app.

RZ Family / RZ/G Series 9. Accessing Supported Features

R12UZ0158EU0101 Rev.1.10 Page 51 of 96

Sep.20.2024

Qt demo
application

name

Screenshot Description

Qt Smart Home
(QtSmarthome-
demo.sh)

 - This application shows how you can
control and adjust various home
operations. Some activities are the
control of windows, blinds, heating,
and lighting.

- The operations are activated by a
change in weather conditions, and
you can also adjust the weather as
you like in the "weather god control"
mode.

Qt Graphical
Effects
(Qmlvideofx-
demo.sh)

This demo application does not run properly when rendering
videos due to its heavy size. There is no screenshot for it.

Qt everywhere
(Qteverwhere-
demo.sh)

 - This application contains several Qt
Quick 2 applications which you can
launch by tapping the devices.

- The applications are separated into
several areas such as Games,
Multimedia, Feeds, Canvas,
Applications and Particles & Shaders.

Qt Quick
(Qt-launch-
demo.sh)

 - This demo application shows new
features in QT Quick 2.0.

- There are “Qt Quick - Front” where
font rendering performs, “Qt Quick -
Canvas” where shapes are created
visually, “Qt Quick – Particle System”
where special effects follow your
cursor.

RZ Family / RZ/G Series 9. Accessing Supported Features

R12UZ0158EU0101 Rev.1.10 Page 52 of 96

Sep.20.2024

Qt Cinematic
Experience
(QtCinematic
Experience-
demo.sh)

 - This UX demo application presents
some graphical features of Qt5.

- The name 'Cinematic Experience'
reflects how it's possible to build user
interfaces with increased dynamics.

9.2 40-Pin IO Expansion Interface

The 40 IO Expansion Interface on RZ/G2L-SBC has support for:

• I2C channel 0

• I2C channel 3

• SPI channel 0

• SCIF channel 0

• CAN channel 0

• CAN channel 1

• GPIO pin-function (default).

9.2.1 U-Boot Environment

The u-boot environment file is named ‘uEnv.txt’ and is present in the ‘boot’ directory. It contains boot

configuration settings to be processed by the u-boot and configuration to be passed on to the Linux

kernel. The full description of the U-boot environment is beyond the scope of this document. However,

we cover the necessary aspects and settings that are relevant to the SBC and most frequently used.

The table below provides a list of all the overlay options available in the provided kernel.

Config Value if set Loading Description

fdtfile rzpi.dtb rzpi.dtb Main device tree file to be loaded from the filesystem

enable_overlay_i2c 1 or 'yes'
rzpi-ext-

i2c.dtbo

Enables the i2c driver enumeration and reconfigures

the relevant IO pins to connect to the I2C peripheral.

enable_overlay_spi 1 or 'yes'
rzpi-ext-

spi.dtbo

Enables the SPI driver enumeration and reconfigures

the relevant IO pins to connect to the SPI peripheral.

Note:

The GPIO pin array is multiplexed with peripheral IO lines. However, by default, they are mostly

GPIO’s.

By default, I2C channel 0 and SCIF channel 0 are enabled.

The rest of the pins are GPIO’s by default. Other functions are enabled by editing the uEnv.txt on

the SD-card and enabling the appropriate device tree overlay file (DT overlays). This is also how

some of the dedicated drivers are enabled like display. Please ensure that you reboot the board

for the overlay to take effect.

RZ Family / RZ/G Series 9. Accessing Supported Features

R12UZ0158EU0101 Rev.1.10 Page 53 of 96

Sep.20.2024

enable_overlay_can 1 or 'yes' rzpi-can.dtbo
Enables the CAN driver enumeration and reconfigures

the relevant IO pins to connect to the CAN peripheral.

enable_overlay_dsi 1 or 'yes' rzpi-dsi.dtbo
Enables the waveshare DSI to display touch panel

driver enumeration and reroutes the video to DSI.

enable_overlay_csi_ov5640 1 or 'yes'
rzpi-

ov5640.dtbo

Enables the OV5640 CSI camera driver enumeration

and loads the v4l2 pipelines.

There is a `readme.txt` file in `/boot` folder with the descriptions of the FDT overlay information. This

is usually more up-to-date with the build.

9.2.2 GPIO (General Purpose I/O pins)

By default, most pins are configured as GPIO’s on the SBC’s 40-pin GPIO pin header. This section

describes what those pins are and how to access them. The io pins are explored in detail in Figure 22:

40 PIN GPIO map with orientation details. The explanation of the Linux GPIO framework is beyond the

scope of this document. In this section, we mostly deal with the identification of pin and port numbers

and how to access them.

Linux sysfs uses /sys/class/gpio entries to control the GPIO bank. The following table maps out the

pins and their functions to the IO port header:

GPIO Pin

number
Function group pin

J3

PINs

pin group Function

GPIO

Pin

Number

 Left

side

Right

side

 3.3V 1 2 5V

490 I2C3 SDA 46 2 3 4 5V

491 I2C3 SCL 46 3 5 6 GND

304 GPIO 23 0 7 8 0 38 SCIF0 TX 424

 GND 9 10 1 38 SCIF0 RX 425

456 GPIO 42 0 11 12 2 7 GPIO 178

336 GPIO 27 0 13 14 GND

345 GPIO 28 1 15 16 0 8 GPIO 184

 3.3V 17 18 0 15 GPIO 240

465 SPI0 MOSI 43 1 19 20 GND

Note:

The Linux shell command ‘sync’ needs to be run after changing files on the rootfs to ensure that

the data is flushed to the actual physical storage. Without it there is a possibility that the changes

may not take effect in the actual file.

Device tree file changes require the SBC to be rebooted to take effect.

RZ Family / RZ/G Series 9. Accessing Supported Features

R12UZ0158EU0101 Rev.1.10 Page 54 of 96

Sep.20.2024

466 SPI0 MISO 43 2 21 22 1 14 GPIO 233

464 SPI0 CK 43 0 23 24 3 43 SPI0 CS 467

 GND 25 26 1 11 GPIO 209

 I2C0 SDA 27 28 I2C0 SCL

152 GPIO 4 0 29 30 GND

153 GPIO 4 1 31 32 0 32 GPIO 376

297 GPIO 22 1 33 34 GND

457 CAN0 TX 42 1 35 36 1 23 GPIO 305

208 CAN0 RX 11 0 37 38 0 46 CAN1 TX 488

 GND 39 40 1 46 CAN1 RX 489

The SoC uses bank ID and io line number to identify the GPIO port. The pin mux uses a unique Px_y

notation for the physical pins. Linux, however, uses a linear GPIO pin number list and internally maps

the GPIO numbers to the appropriate GPIO line.

The following method is used to identify the correct Linux pin number:

Step 1: We start with the Px_y io pin from the schematic. Identify the port values as per the table

below.

Table 6: Symbol definition for GPIO Px_y Notation

Symbol /
variable in
notation

Description

x Group number / port number

y Pin number in port (0:8)

G Group in (always 8 bit which is the size of the port register).
Constant 8.

pbase Pin base: starting io pin number (constant 120). All external
Linux gpio pins start from 120.

Step 2: Calculate the Linux port ID using the following formula:

Linux_pin_number = (x * G) + y + Pbase

Example for J3 PIN 7:

(23*8) + 0 + 120 = 304 = pinum

To set the GPIO pin, change the directory to the GPIO sysfs directory and set values as shown below:

root@rzpi:~# cd /sys/class/gpio/
root@rzpi:/sys/class/gpio# echo 304 > export

There will be a new directory that represents the GPIO pin. In this example, it will be the P23_0

directory.

root@rzpi:/sys/class/gpio# ls
P23_0 export gpiochip120 unexport

RZ Family / RZ/G Series 9. Accessing Supported Features

R12UZ0158EU0101 Rev.1.10 Page 55 of 96

Sep.20.2024

Inside the P23_0 directory, some control interfaces are created by the Linux sysfs to manage the

GPIO pin:

root@rzpi:/sys/class/gpio# cd P23_0
root@rzpi:/sys/class/gpio/P23_0# ls

active_low device direction edge power subsystem uevent value

9.2.2.1 Setting I/O pin direction

To control the input/output of the GPIO pin, either “in” or “out” should be written to the “direction”

interface. Writing as “out” defaults to initializing the value as low.

root@rzpi:/sys/class/gpio# echo out > P23_0/direction

9.2.2.2 Reading the GPIO

To read the state high/low of the GPIO pin, print out the value of the “value” interface.

root@rzpi:/sys/class/gpio# cat P23_0/value

0

Value 0 means the I/O pin is low; Value 1 means the I/O pin is high.

9.2.2.3 Setting the GPIO

The ability to control the pin’s output is only available when the direction is set to ‘out’ / output mode.

To set the high/low value of the GPIO pin (output pin), either “1” or “0” should be written to the “value”

interface. Any nonzero value is treated as high.

root@rzpi:/sys/class/gpio# echo 1 > P23_0/value

root@rzpi:/sys/class/gpio# cat P23_0/value

1

root@rzpi:/sys/class/gpio# echo 0 > P23_0/value

root@rzpi:/sys/class/gpio# cat P23_0/value

0

You can always read the current state of the port by reading back the value interface.

9.2.3 Enabling I2C function (channel 3 – RIIC3)

Edit `uEnv.txt` and uncomment the line as follows to enable I2C channel 3 on the 40 IO expansion

interface:

Change the following line:

#enable_overlay_i2c=1

To

Note:

The Linux sysfs is not populated with all the gpio’s. They are usually mapped for use within the

kernel. So, to get the gpio handle, its necessary to call an export on it so that the kernel driver

makes it available by populating a new directory with the pin number and, control handles placed

in it. For detail, refer to the official document: https://docs.kernel.org/5.10/admin-

guide/gpio/sysfs.html

RZ Family / RZ/G Series 9. Accessing Supported Features

R12UZ0158EU0101 Rev.1.10 Page 56 of 96

Sep.20.2024

enable_overlay_i2c=1

Then reboot the RZ/G2L-SBC.

To check if the I2C channel 3 is enabled, run the following command, and check the result:

root@rzpi:~# i2cdetect -l

i2c-3 i2c Renesas RIIC adapter I2C adapter

i2c-1 i2c Renesas RIIC adapter I2C adapter

i2c-4 i2c i2c-1-mux (chan_id 0) I2C adapter

i2c-0 i2c Renesas RIIC adapter I2C adapter

root@rzpi:~#

To map out all the devices present on I2C bus, execute the following command:

root@rzpi:~# i2cdetect -y -r 3

 0 1 2 3 4 5 6 7 8 9 a b c d e f

00: -- -- -- -- -- -- -- -- -- -- -- -- --

10: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

20: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

30: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

40: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

50: 50 -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

60: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

70: -- -- -- -- -- -- -- --

Any device present on the bus will be marked with the appropriate i2c device ID.

9.2.4 SPI function (channel 0 – RSPI0)

Edit `uEnv.txt` as follows to enable SPI channel 0 on the 40 IO expansion interface:

Change the following line:

#enable_overlay_spi=1

To

enable_overlay_spi=1

This will enable the SPI module.

Run the following command to config the SPI:

root@rzpi:~# spi-config -d /dev/spidev0.0 -q

/dev/spidev0.0: mode=0, lsb=0, bits=8, speed=2000000, spiready=0

Connect Pin 19 (RSPI0 MOSI) to Pin 21 (RSPI0 MISO), then run the below command and check the

result. The idea is to transmit on MOSI and read back on MISO to validate the transfer.

root@rzpi:~# echo -n -e "1234567890" | spi-pipe -d /dev/spidev0.0 -s 10000000 |

hexdump

0000000 3231 3433 3635 3837 3039

000000a

RZ Family / RZ/G Series 9. Accessing Supported Features

R12UZ0158EU0101 Rev.1.10 Page 57 of 96

Sep.20.2024

9.2.5 CAN function (channel 0,1 - CAN 0,CAN 1)

Edit `uEnv.txt` as follows to enable CAN channel 0,1 on 40 IO expansion interface:

Change the following line:

#enable_overlay_can=1

To

enable_overlay_can=1

To verify that the CAN channels are enabled, run the following command and check the result:

root@rzpi:~# ip a | grep can

3: can0: <NOARP,ECHO> mtu 16 qdisc noop state DOWN group default qlen 10

 link/can

4: can1: <NOARP,ECHO> mtu 16 qdisc noop state DOWN group default qlen 10

 link/can

root@rzpi:~#

Then set up for CAN devices. Now you can up/down the interface or send data over CAN channels.

The below example shows the communication between two CAN channels.

root@rzpi:~# ip link set can0 down

root@rzpi:~# ip link set can0 type can bitrate 500000

root@rzpi:~# ip link set can0 up

[48.120419] IPv6: ADDRCONF(NETDEV_CHANGE): can0: link becomes ready

root@rzpi:~# ip link set can1 down

root@rzpi:~# ip link set can1 type can bitrate 500000

root@rzpi:~# ip link set can1 up

[69.906039] IPv6: ADDRCONF(NETDEV_CHANGE): can1: link becomes ready

root@rzpi:~# candump can0 & cansend can1 123#01020304050607

[1] 271

 can0 123 [7] 01 02 03 04 05 06 07

root@rzpi:~# candump can1 & cansend can0 123#01020304050607

[2] 273

 can0 123 [7] 01 02 03 04 05 06 07

 can1 123 [7] 01 02 03 04 05 06 07

root@rzpi:~#

9.3 Wi-Fi 802.11 Module

RZ/G2L-SBC comes equipped with an onboard wireless 802.11 module. The image is ready with all

the necessary tools to connect to Wi-Fi. The Wi-Fi can be configured on the command line, which can

either be on the desktop UI or the UART tty from the host.

The following shows how to enable the 802.11 Wi-Fi module and connect to a network.

RZ Family / RZ/G Series 9. Accessing Supported Features

R12UZ0158EU0101 Rev.1.10 Page 58 of 96

Sep.20.2024

root@rzpi:~# connmanctl
connmanctl> enable wifi
Enabled wifi
connmanctl> agent on
Agent registered
connmanctl> scan wifi
Scan completed for wifi
connmanctl> services
 xDredme10zW wifi_0025ca329da3_78447265646d6531307a57_managed_psk
 wifi_0025ca329da3_hidden_managed_psk
 REL-GLOBAL wifi_0025ca329da3_52454c2d474c4f42414c_managed_ieee8021x
 R-GUEST wifi_0025ca329da3_522d4755455354_managed_none
 RVC-WLS wifi_0025ca329da3_5256432d574c53_managed_ieee8021x
connmanctl> connect wifi_0025ca329da3_78447265646d6531307a57_managed_psk
Agent RequestInput wifi_0025ca329da3_78447265646d6531307a57_managed_psk
 Passphrase = [Type=psk, Requirement=mandatory]
Passphrase? nFjey48aT9pk
connmanctl> exit

To confirm the Wi-Fi is connected, ping to the outside world:

root@rzpi:~# ping www.google.com
PING www.google.com(hkg07s39-in-x04.1e100.net (2404:6800:4005:813::2004)) 56 data bytes
64 bytes from hkg07s39-in-x04.1e100.net (2404:6800:4005:813::2004): icmp_seq=1 ttl=57

time=43.2 ms
64 bytes from hkg07s39-in-x04.1e100.net (2404:6800:4005:813::2004): icmp_seq=2 ttl=57

time=81.1 ms
64 bytes from hkg07s39-in-x04.1e100.net (2404:6800:4005:813::2004): icmp_seq=3 ttl=57 time=124

ms

9.4 On-board Audio Codec with Stereo Jack

The RZ/G2L-SBC comes equipped with an onboard audio codec: Renesas DA7219. The audio codec

is connected to the DAI interface (SSI 1) of the SoC configured to I2S data format for the audio data

while the control interface is on the I2C 0 interface.

The SBC board has a 3.5mm headset Jack labeled J8. It uses a 6-pin connector.

You can play and record audio directly using ALSA tools. However, it’s restricted to PCM wave files

only. The image comes equipped with a fully configured GStreamer that lets you play other types of

audio files like MP3.

Note:

The ethernet interfaces may potentially interfere with the routing the communication

through the Wi-Fi. If issues start appearing, use the following to disable the ethernet

ports.

root@rzpi:~# ifconfig eth0 down

root@rzpi:~# ifconfig eth1 down

RZ Family / RZ/G Series 9. Accessing Supported Features

R12UZ0158EU0101 Rev.1.10 Page 59 of 96

Sep.20.2024

The following shows the two commands to play audio files.

root@rzpi:~# aplay /home/root/audios/04_16KH_2ch_bgm_maoudamashii_healing01.wav

root@rzpi:~# gst-play-1.0 /home/root/audios/COMMON6_MPEG2_L3_24KHZ_160_2.mp3

`aplay` command supports only `wav` format audio files.

`gst-play-1.0` command supports `wav`, `mp3` and `aac` formats.

The following shows commands to record an audio.

root@rzpi:~# arecord -f S16_LE -r 48000 audio_capture.wav

Press Ctrl+C if you want to stop recording.

In the above command:

-f S16_LE : audio format (signed 16 bit little endian)

-r 48000 : sample rate of the audio file (48KHz)

To verify the recorded file, you can play it by the following command:

root@rzpi:~# aplay audio_capture.wav

To adjust the level of the audio record/playback, use the following command to open the ALSA mixer
GUI:

root@rzpi:~# alsamixer

Figure 37: ALSA Mixer GUI on RZ/G2L-SBC

RZ Family / RZ/G Series 9. Accessing Supported Features

R12UZ0158EU0101 Rev.1.10 Page 60 of 96

Sep.20.2024

9.5 MIPI DSI Display Touch Panel

RZ/G2L-SBC has a MIPI DSI interface that supports both a display module and a touch interface. The

DSI port supports dual-channel DSI and one I2C interface in the connector.

9.5.1 Hardware Interfacing

Given below are pictures of Waveshare 5” DSI display panel with touch screen assembly. The

pictures are self-explanatory.

Figure 38: Waveshare 5" DSI touch panel read side picture with flat ribbon cable.

FPC connector locking and unlocking is done by pulling up the black notch or pushing it down. Unlock

the connector by pulling up the notch as shown below.

RZ Family / RZ/G Series 9. Accessing Supported Features

R12UZ0158EU0101 Rev.1.10 Page 61 of 96

Sep.20.2024

Figure 39: DSI port notch lock open by pulling it up.

RZ Family / RZ/G Series 9. Accessing Supported Features

R12UZ0158EU0101 Rev.1.10 Page 62 of 96

Sep.20.2024

Figure 40: Waveshare DSI touch display DSI port interfacing cable orientation.

Mount the RZ/G2L-SBC on to the rear end of the display panel.

RZ Family / RZ/G Series 9. Accessing Supported Features

R12UZ0158EU0101 Rev.1.10 Page 63 of 96

Sep.20.2024

Figure 41: RZ/G2L-SBC mounted to the Waveshare DSI panel and interfaced.

Insert the other end of the FPC cable into the RZ/G2L-SBC DSI port and lock it. The locking

mechanism is shown below.

Figure 42: DSI port notch in the lock position. The cable is not shown to keep the notch in
clear view.

RZ Family / RZ/G Series 9. Accessing Supported Features

R12UZ0158EU0101 Rev.1.10 Page 64 of 96

Sep.20.2024

Figure 43: Metal support screws supplied by Waveshare

The Waveshare DSI display panel comes with four metal supports that raise the display along with the

rear attached SBC off the surface to provide sturdy support with clearance. However, these are not high

enough for the RZ/G2L-SBC due to the SBC having dual ethernet ports where one port is too high

sitting on the two USB ports. We still recommend that you use a support stand, even an off-market

custom one, to ensure that the DSI cable is off the ground.

Remember that the DSI port includes an I2C two-wire interface that supports a touch panel interface

without any extra cabling.

9.5.2 Enabling DSI panel drivers
The Linux distribution supports the Waveshare 5-inch Touchscreen MIPI-DSI LCD capacitive touch

panel.

By default, the video output is directed toward the mini-HDMI port. To enable the panel drivers and

reroute the display to the DSI panel, you need to enable the panel driver DT overlay in uEnv.txt.

Open the `uEnv.txt` and change the following line:

#enable_overlay_dsi=1

To

enable_overlay_dsi=1
Reboot the SBC board.

Note:

The dark solid stripe on the flat cable always faces the black locking mechanism of the

connector. Do not insert the cable in reverse as this could potentially damage the board due to

wrong electricals.

Note:

Enabling the MIPI DSI panel overlay disables the HDMI display. You can only use one at a time.

RZ Family / RZ/G Series 9. Accessing Supported Features

R12UZ0158EU0101 Rev.1.10 Page 65 of 96

Sep.20.2024

9.6 Playing Video Files on RZ/G2L-SBC

Use gst-launch-1.0 to play video files. The playbin element in GStreamer makes it easy to play

multimedia content. Run the following command:

root@rzpi:~# gst-launch-1.0 playbin uri=file:///<path/to/your/video/path>

We have prepared some test videos in the /home/root/videos folder. You can use these for testing. For

example:

root@rzpi:~# gst-launch-1.0 playbin uri=file:///home/root/videos/h264-hd-30.mp4

This will start an MP4 video and display it on the screen.

Figure 44: Playing an MP4 video on the RZ/G2L-SBC

9.7 MIPI CSI2 with Arducam 5MP OV5640 Camera Module

RZ/G2L-SBC supports the MIPI CSI-2 camera interface. The Linux distribution supports the Arducam

5MP MIPI OV5640 image sensor-based module.

9.7.1 Hardware Interfacing

The Arducam OV5640 camera module is easily installed into the RZ/G2L-SBC.

RZ Family / RZ/G Series 9. Accessing Supported Features

R12UZ0158EU0101 Rev.1.10 Page 66 of 96

Sep.20.2024

Figure 45: Orientation of the camera module. Blue stripe upward.

The black notch must be pulled up to unlock it.

Figure 46: Pull the notch up to unlock it.

Insert the flat cable in the correct orientation, as depicted in the pictures.

RZ Family / RZ/G Series 9. Accessing Supported Features

R12UZ0158EU0101 Rev.1.10 Page 67 of 96

Sep.20.2024

Figure 47: CSI module inserted.

Push down on the notch to lock it with the flat cable inserted.

Figure 48: Push down the notch to lock it when you have inserted the flat cable

RZ Family / RZ/G Series 9. Accessing Supported Features

R12UZ0158EU0101 Rev.1.10 Page 68 of 96

Sep.20.2024

9.7.2 Enabling CSI camera drivers

To enable the camera, edit the uEnv.txt and enable the following line:

#enable_overlay_csi_ov5640=1

To

enable_overlay_csi_ov5640=1

Reboot the board.

9.7.3 Accessing the Camera

Before initializing the camera capture, it needs to be enabled and configured. The Linux distribution

has a helper script (v4l2-init.sh) in the /home/root directory to enable and configure the camera.

root@rzpi:~# cd /home/root/
root@rzpi:~# ./v4l2-init.sh <resolution>

The argument <resolution> specifies the resolution for the camera. Valid resolutions are:

• 1280x720

• 1280x960

• 1600x900

• 1920x1080

• 1920x1200

• 2560x1080

If no resolution is specified or an invalid resolution is provided, the default resolution 1280x960 will be

used. For example:

When use a valid resolution:

root@rzpi:~# ./v4l2-init.sh 1920x1080

Link CRU/CSI2 to ov5640 1-003c with format UYVY8_2X8 and resolution 1920x1080
When no resolution is specified:

root@rzpi:~# ./v4l2-init.sh

No resolution specified. Using default resolution: 1280x960

Link CRU/CSI2 to ov5640 1-003c with format UYVY8_2X8 and resolution 1280x960

The `v4l2-init.sh` script helps enable the CSI-2 module and select the camera's supported display

resolution.

Run the following to initiate a video capture session and preview the video on the screen.

root@rzpi:~# gst-launch-1.0 v4l2src device=/dev/video0 ! videoconvert !

waylandsink

This will start a continuous stream of camera feed to the active video display.

RZ Family / RZ/G Series 9. Accessing Supported Features

R12UZ0158EU0101 Rev.1.10 Page 69 of 96

Sep.20.2024

9.8 Package Management

The distribution comes with Debian package manager ‘apt-get’ and ‘dpkg’ for binary package

handling.

9.8.1 Setting up Debian as a backend source

Follow the steps below to modify the Debian package repository and install packages according to

your needs.

1. Add/modify sources.list file to address packages repository:

The ‘sources.list’ is a critical configuration file for package installation and updates used by

package managers on Debian-based Linux distributions. The ‘sources.list’ file contains a list

of URLs for repository addresses where the package manager can find software packages.

These repositories may be maintained by the Linux distribution itself or by third-party

individuals or organizations.

Currently, the default `sources.list` which is located in /etc/apt/sources.list.d/sources.list/

directory is as below.

deb [arch=arm64] http://ports.ubuntu.com/ focal main multiverse universe

deb [arch=arm64] http://ports.ubuntu.com/ focal-security main multiverse universe

deb [arch=arm64] http://ports.ubuntu.com/ focal-backports main multiverse universe

deb [arch=arm64] http://ports.ubuntu.com/ focal-updates main multiverse universe

2. Update the defined package index for apt-get.

root@rzpi:~# apt-get update

Please make sure you have internet access before running apt-get update.

In the contents of sources.list file, each line has [arch=arm64]. This is because the RZ/G2L

SoC is an ARM 64 (aarch64) core. This can be verified by the lscpu command:

root@rzpi:~# lscpu

Architecture: aarch64

CPU op-mode(s): 32-bit, 64-bit

Byte Order: Little Endian

CPU(s): 2

...

Vendor ID: ARM

By specifying [arch=arm64] in sources.list file, apt-get will filter for the proper binary packages

in the repository. This will limit the existing APT sources to arm64 only. However, if we use a

repository which is entirely hosting ARM 64 bit (aarch64) packages, we don't need to

specify [arch=arm64] in the sources.list entry. For example:

deb http://deb.debian.org/debian bullseye main contrib non-free
Remember that sources don’t have to be a single origin. It’s very common to add multiple

repositories and sources for packages and manage them using keys.

The source management is beyond the scope of this document.

3. Installing packages using apt-get:

To install a package using apt-get, use the following command:

root@rzpi:~# apt-get install <package-name>

RZ Family / RZ/G Series 9. Accessing Supported Features

R12UZ0158EU0101 Rev.1.10 Page 70 of 96

Sep.20.2024

9.8.2 Using DPKG to install packages

The utility ‘dpkg’ is the low-level package manager for Debian-based systems. It is the local system

wide package manager. It handles installation, removal, provisioning, indexing and other aspects of

packages installed on the system. However, it does not perform any cloud operations. Dpkg also doesn’t

handle dependency resolution. This is another task handled by a high-level manager like ‘apt-get’. In

fact, ‘dpkg’ is the backend for ‘apt-get’. While ‘apt-get’ handles fetching and indexing, the local

installations and management of the packages are performed by the ‘dpkg’ manager.

Basic dpkg commands:

• dpkg -i <package.deb>: Installs a package.deb package.

• dpkg -r <package>: Removes a package.

• dpkg -l <pattern>: Lists installed packages matching <pattern>.

• dpkg -s <package>: Provides information about an installed package.

You can install any <package>.deb (where ‘<package>’ is a placeholder for the name of the real

package being installed) using dpkg with the following command:

root@rzpi:~# dpkg -i <package>.deb

After installing a package using dpkg, if you need to resolve dependency issues, use the following

command:

root@rzpi:~# apt-get install -f

9.9 Install packages using Python3-pip

The distribution includes Python 3 along with useful libraries/modules/packages such as Pip3, Numpy,

Pandas, PySerial, Matplotlib, etc. This section will focus on using Pip3, the package installer for Python

3, to manage additional packages.

Python3-pip allows you to install, update, and manage Python packages from the Python Package

Index (PyPI) and other repositories.

To install a new package using pip3, use the following command:

root@rzpi:~# pip3 install <package_name>

For example, to install the `requests` package, you would run:

root@rzpi:~# pip3 install requests

To verify that the `requests` package (or any other installed package) is correctly installed, you can

use:

root@rzpi:~# pip3 show requests

This command provides details about the requests package, including its version and installation

location.

Alternatively, you can list all installed packages and check if the `requests` package is included:

root@rzpi:~# pip3 list

This will confirm that the package is installed and available for use.

RZ Family / RZ/G Series 9. Accessing Supported Features

R12UZ0158EU0101 Rev.1.10 Page 71 of 96

Sep.20.2024

9.10 Python GUI programming with Tkinter

This section provides a step-by-step guide on creating a basic graphical user interface (GUI) application

using Tkinter; the standard Python interface to the Tk GUI toolkit. Tkinter is included with Python, so

you don't need to install any additional libraries. It's a great choice for building desktop applications due

to its simplicity and ease of use.

The following steps will show how to create a new Tkinter application:

Step 1. Create a working directory on the RZ/G2L-SBC where you will develop and store your Python

application.

root@rzpi:~# mkdir ~/python_apl

root@rzpi:~# cd ~/python_apl

Step 2. Create a new Python file (e.g., main.py) in your work directory.

root@rzpi:~/python_apl# vi main.py

Step 3. Develop a Simple Python GUI Application with tkinter

- Import the tkinter module:

import tkinter as tk
This imports the Tkinter module and gives you access to its classes and functions.

- Create a main window

root = tk.Tk()
This creates the main application window

- Change the window title and resolution as desired

root.title(“Sample application”)
root.geometry(“200x100”)

- Create and place a label

label = tk.Label(root, text="Press the button", width=20, height=2)

label.pack()
- Create and place a button

button = tk.Button(root, text="Click Me", command=on_button_click, width=10,height=2)

button.pack()
This creates a button with the text "Click Me" and associates it with the on_button_click function.

When the button is pressed, the function is called.

- Define a user function which helps to handle on click event and shows “Hello, Tkinter!” on the

application’s window.

def on_button_click():
 label.config(text="Hello, Tkinter!")

- Run the application

root.mainloop()
This starts the Tkinter event loop, which waits for user interactions and updates the UI

accordingly.

- The completed Python program: “main.py”

RZ Family / RZ/G Series 9. Accessing Supported Features

R12UZ0158EU0101 Rev.1.10 Page 72 of 96

Sep.20.2024

import tkinter as tk

def on_button_click():
 label.config(text="Hello, Tkinter!")

root = tk.Tk()
root.title("Sample application")
root.geometry("200x100")

Create a label

label = tk.Label(root, text="Press the button", width=20, height=2)
label.pack()

Create a button

button = tk.Button(root, text="Click Me", command=on_button_click, width=10,height=2)
button.pack()

Run the application

root.mainloop()

Step 4. Run the application

- Ensure the RZ/G2L SBC is connected to an external display. If you're using an environment

where the display is not automatically set, you may need to set the DISPLAY environment

variable as follows:

root@rzpi:~# export DISPLAY=:0
- Run the Python application:

root@rzpi:~# python3 main.py

Figure 49: Initial GUI layout

Figure 50: After the button ‘Click me’ is

clicked

9.11 Chromium web browser

The distro image in this release comes with open-source chromium browser. It is a fully featured version.

You can use the following command line to launch a chromium window with a url it will load on launch.

root@rzpi:~# chromium --no-sandbox --in-process-gpu https://google.com

Please note that

RZ Family / RZ/G Series 9. Accessing Supported Features

R12UZ0158EU0101 Rev.1.10 Page 73 of 96

Sep.20.2024

Chromium can be launched from the taskbar at the top of the screen as shown below:

Figure 51: Chromium web browser on RZ/G2L-SBC

Note:

It is a must to have an input device (USB mouse or touchscreen) plugged in before you start the browser.

The lack of an input device will cause a "Segmentation fault".

RZ Family / RZ/G Series 10. Building the eSDK

R12UZ0158EU0101 Rev.1.10 Page 74 of 96

Sep.20.2024

10. Building the eSDK

The extensible SDK makes it easy to add new applications and libraries to an image, modify the source

for an existing component, test changes on the RZ/G2L-SBC, and ease integration into the rest of the

OpenEmbedded Build System.

The eSDK build generates an installer, which you will use to install the eSDK on the same PC where

your Yocto environment is set up.

In Section 5.2, the support script was copied from release package which helped commencing images

build. The script can also support eSDK build, run the following command to start the build:

renesas@builder-pc:~/yocto$./rzsbc_yocto.sh build-sdk

The resulting eSDK installer will be located in `~/yocto/yocto_rzsbc_board/build/tmp/deploy/sdk`.

The eSDK installer will have the extension “.sh”.

renesas@builder-pc:~/yocto/yocto_rzsbc_board/build/tmp/deploy/sdk$ ls
poky-glibc-x86_64-core-image-qt-aarch64-rzpi-toolchain-ext-3.1.26.sh

poky-glibc-x86_64-core-image-qt-aarch64-rzpi-toolchain-ext-3.1.26.host.manifest

poky-glibc-x86_64-core-image-qt-aarch64-rzpi-toolchain-ext-3.1.26.testdata.json

poky-glibc-x86_64-core-image-qt-aarch64-rzpi-toolchain-ext-3.1.26.target.manifest

Note:

The SDK build may fail depending on the build environment. At that time, please run the build

again after a period of time.

RZ Family / RZ/G Series 11. Application Building, Packaging and Running

R12UZ0158EU0101 Rev.1.10 Page 75 of 96

Sep.20.2024

11. Application Building, Packaging and Running

The SDK allows you to develop and test custom applications for the RZ/G2L-SBC on different systems.

This section covers setting up your development environment and running your applications.

11.1 How to extract the eSDK

To get started, extract the eSDK and install the toolchain on your host PC. This step provides the

necessary tools for cross compiling your applications.

Follow the steps below to set up your environment:

Step 1. Install toolchain on a Host PC.

renesas@builder-pc:~/yocto$ sh ./build/tmp/deploy/sdk/rzpi/ sdk/poky-glibc-
x86_64-core-image-qt-aarch64-rzpi-toolchain-ext-3.1.26.sh

Note: You cannot install the eSDK as root because BitBake won't run with root privileges. Therefore,

attempting to install the extensible SDK as root is counterproductive.

If the installation is successful, the following messages will appear:

renesas@builder-pc:~/yocto$ sh ./build/tmp/deploy/sdk/poky-glibc-x86_64-core-

image-qt-aarch64-rzpi-toolchain-ext-3.1.26.sh
Poky (Yocto Project Reference Distro) Extensible SDK installer version 3.1.26

==

Enter target directory for SDK (default: ~/poky_sdk): ~/esdk/3.1.26

You are about to install the SDK to "/home/renesas/esdk/3.1.26". Proceed [Y/n]? Y

Extracting SDK..............done

Setting it up...

Extracting buildtools...

Preparing build system...

Parsing recipes: 100% |##| Time: 0:00:52

Initialising tasks: 100% |#######################################| Time: 0:00:00

Checking sstate mirror object availability: 100% |###############| Time: 0:00:00

Loading cache: 100% |##| Time: 0:00:00

Initialising tasks: 100% |#######################################| Time: 0:00:00

done

SDK has been successfully set up and is ready to be used.

Each time you wish to use the SDK in a new shell session, you need to source the

environment setup script e.g.

$. ~/esdk/3.1.26/environment-setup-aarch64-poky-linux

$. ~/esdk/3.1.26/environment-setup-armv7vet2hf-neon-vfpv4-pokymllib32-linux-

gnueabi

Step 2. Set up cross-compile environment. The following command assumes that you installed the SDK

in `~/esdk/3.1.26`.

RZ Family / RZ/G Series 11. Application Building, Packaging and Running

R12UZ0158EU0101 Rev.1.10 Page 76 of 96

Sep.20.2024

renesas@builder-pc:~$ source ~/esdk/3.1.26/environment-setup-aarch64-poky-linux
SDK environment now set up; additionally you may now run devtool to perform

development tasks.

Run devtool --help for further details.

To get started with the Extensible Software Development Kit (eSDK) in Yocto, you can refer to the

official documentation provided by the Yocto Project. This guide will help you understand how to

configure and use the eSDK effectively.

You can access the official eSDK documentation by following this URL: Using the Extensible SDK

11.2 Build a sample application using the eSDK with CMake

CMake is cross-platform free and open-source software for build automation, testing, packaging and

installation of software by using a compiler-independent method

If your host PC doesn’t have CMake installed, you can install it using the following command:

renesas@builder-pc:~$ sudo apt-get install cmake

The following steps will include instructions for setting up the project, editing the CMakeLists.txt file, and

performing the build and installation.

Step 1: Create the project structure:

renesas@builder-pc:~$ mkdir ~/cmake_helloworld
renesas@builder-pc:~$ cd ~/cmake_helloworld
renesas@builder-pc:~/cmake_helloworld$ mkdir build src

Step 2: Organize the project structure as shown below:

renesas@builder-pc:~/cmake_helloworld$ tree
.

├── build

├── CMakeLists.txt

└── src

 └── helloworld.c

`CMakeLists.txt` and `helloworld.c` will be created later.

Step 3: Create your application

renesas@builder-pc:~/cmake_helloworld$ vi src/helloworld.c

Then, copy the below contents to the file:

Note:

User needs to run the above command once for each shell session. In addition, ‘source’ is a bash

specific call. The POSIX convention is to use ‘. ~/esdk/3.1.26/environment-setup-aarch64-poky-

linux’. Bash equates ‘source’ to ‘.’ .

https://docs.yoctoproject.org/3.1.33/sdk-manual/sdk-extensible.html
https://cmake.org/cmake/help/latest/index.html
https://cmake.org/cmake/help/latest/index.html

RZ Family / RZ/G Series 11. Application Building, Packaging and Running

R12UZ0158EU0101 Rev.1.10 Page 77 of 96

Sep.20.2024

#include <stdio.h>

int main(int argc, char** argv)

{

 printf("\nHello World!\n");

 return 0;

}

Step 4: Create CMake configuration file

renesas@builder-pc:~/cmake_helloworld$ vi CMakeLists.txt

Edit the following configuration file to match your SDK paths, you can refer to section 9. Building the

eSDK for building the SDK and 10.1 How to extract the eSDK to know how to install SDK on your host

PC.

cmake_minimum_required(VERSION 3.10)

project(HelloWorld C)

Set the path to your C compiler

set(CMAKE_C_COMPILER /path/to/your/sdk/bin/gcc)

Set the path to your C++ compiler (if needed)

set(CMAKE_CXX_COMPILER /path/to/your/sdk/bin/g++)

Define the sysroot path for cross-compilation

set(CMAKE_SYSROOT /path/to/your/sysroot)

Add the executable target “helloworld”

add_executable(helloworld src/helloworld.c)

For example, if you have installed the SDK in “/home/renesas/esdk/3.1.26”, the completed configuration

file will be the same as below:

cmake_minimum_required(VERSION 3.10)

project(HelloWorld C)

set(CMAKE_C_COMPILER

/home/renesas/esdk/3.1.26/tmp/sysroots/x86_64/usr/bin/aarch64-poky-linux/aarch64-

poky-linux-gcc)
set(CMAKE_CXX_COMPILER

/home/renesas/esdk/3.1.26/tmp/sysroots/x86_64/usr/bin/aarch64-poky-linux/aarch64-

poky-linux-g++)

Sysroot path

set(CMAKE_SYSROOT /home/renesas/esdk/3.1.26/tmp/sysroots/rzpi)

add_executable(helloworld src/helloworld.c)

RZ Family / RZ/G Series 11. Application Building, Packaging and Running

R12UZ0158EU0101 Rev.1.10 Page 78 of 96

Sep.20.2024

Step 5: Build your application

renesas@builder-pc:~/cmake_helloworld$ cd build/

renesas@builder-pc:~/cmake_helloworld/build$ cmake ../
-- The C compiler identification is GNU 9.4.0

-- Detecting C compiler ABI info
-- Detecting C compiler ABI info - done
-- Check for working C compiler: /usr/bin/cc - skipped

-- Detecting C compile features

-- Detecting C compile features - done

-- Configuring done

-- Generating done

-- Build files have been written to: /home/renesas/cmake_helloworld/build

renesas@builder-pc:~/cmake_helloworld/build$ cmake --build .
[50%] Building C object CMakeFiles/hello.dir/src/helloworld.c.o
[100%] Linking C executable helloworld
[100%] Built target helloworld

After complete, confirm that the execute application `helloworld` is generated in the build folder.

renesas@builder-pc:~/cmake_helloworld/build$ ls
CMakeCache.txt CMakeFiles cmake_install.cmake CPackConfig.cmake

CPackSourceConfig.cmake helloworld Makefile

Also, this application must be cross-compiled for aarch64.

renesas@builder-pc:~/cmake_helloworld/build$ file helloworld
helloworld: ELF 64-bit LSB pie executable, ARM aarch64, version 1 (SYSV),

dynamically linked, interpreter /lib64/ld-linux-aarch64.so.1,

BuildID[sha1]=436a40422c25d0eb57771b5cda061b49e5c197e7, for GNU/Linux 3.14.0,

with debug_info, not stripped

11.3 Package programs with CPack

This section provides a step-by-step guide on how to configure CMake to package your application into

a .deb file which is a Debian package file. And you can then install them on the RZ/G2L SBC as an

application. CPack is a CMake module that handles packaging.

11.3.1 Package a C program

The following steps provide detailed instructions for using CPack to package a C program into a .deb

file, including configuring CMake and preparing the necessary files for packaging.

Step 1: Add CPack configuration to CMakeLists.txt from the previous chapter: 10.2 Build a sample

application with Cmake

renesas@builder-pc:~/cmake_helloworld$ vi CMakeLists.txt

Then, edit your CMakelists.txt file to include CPack configuration.

https://cmake.org/cmake/help/latest/index.html
https://cmake.org/cmake/help/latest/module/CPack.html

RZ Family / RZ/G Series 11. Application Building, Packaging and Running

R12UZ0158EU0101 Rev.1.10 Page 79 of 96

Sep.20.2024

cmake_minimum_required(VERSION 3.10)

project(HelloWorld C)

set(CMAKE_C_COMPILER

/home/renesas/esdk/3.1.26/tmp/sysroots/x86_64/usr/bin/aarch64-poky-linux/aarch64-

poky-linux-gcc)
set(CMAKE_CXX_COMPILER

/home/renesas/esdk/3.1.26/tmp/sysroots/x86_64/usr/bin/aarch64-poky-linux/aarch64-

poky-linux-g++)

Sysroot path

set(CMAKE_SYSROOT /home/renesas/esdk/3.1.26/tmp/sysroots/rzpi)

add_executable(helloworld src/helloworld.c)

Specify the installation path

install(TARGETS helloworld DESTINATION /usr/local/bin)

CPack configuration

set(CPACK_GENERATOR "DEB")

set(CPACK_PACKAGE_NAME "helloworld")

set(CPACK_PACKAGE_VERSION "1.0.0")

set(CPACK_DEBIAN_PACKAGE_ARCHITECTURE "arm64")

set(CPACK_PACKAGE_CONTACT "Your Name <your.email@example.com>")

set(CPACK_DEBIAN_PACKAGE_MAINTAINER "Your name")

include(CPack)

Step 2: Package the C program into Debian package installer

RZ Family / RZ/G Series 11. Application Building, Packaging and Running

R12UZ0158EU0101 Rev.1.10 Page 80 of 96

Sep.20.2024

renesas@builder-pc:~/cmake_helloworld$ cd build/

renesas@builder-pc:~/cmake_helloworld$ cmake ../

-- Toolchain file defaulted to

'/home/renesas/esdk/3.1.26/tmp/sysroots/x86_64/usr/share/cmake/OEToolchainConfig.

cmake'

-- The C compiler identification is GNU 9.5.0

-- Check for working C compiler:

/home/renesas/esdk/3.1.26/tmp/sysroots/x86_64/usr/bin/aarch64-poky-linux/aarch64-

poky-linux-gcc

-- Check for working C compiler:

/home/renesas/esdk/3.1.26/tmp/sysroots/x86_64/usr/bin/aarch64-poky-linux/aarch64-

poky-linux-gcc -- works

-- Detecting C compiler ABI info

-- Detecting C compiler ABI info - done

-- Detecting C compile features

-- Detecting C compile features - done

-- Configuring done

-- Generating done

-- Build files have been written to: /home/renesas/cmake_helloworld/build

renesas@builder-pc:~/cmake_helloworld/build$ cpack
CPack: Create package using DEB

CPack: Install projects

CPack: - Run preinstall target for: HelloWorld

CPack: - Install project: HelloWorld []

CPack: Create package

-- CPACK_DEBIAN_PACKAGE_DEPENDS not set, the package will have no dependencies.

CPack: - package: /home/renesas/cmake_helloworld/build/helloworld-1.0.0-Linux.deb

generated.

After complete, confirm that the Debian package (.deb) is generated in the build folder.

renesas@builder-pc:~/cmake_helloworld/build$ ls
CMakeCache.txt cmake_install.cmake _CPack_Packages helloworld

install_manifest.txt CMakeFiles CPackConfig.cmake

CPackSourceConfig.cmake helloworld-1.0.0-Linux.deb Makefile

Step 3: Ship the Debian package installer to RZ/G2L-SBC.

You can transfer the Debian package installer “helloworld-1.0.0-Linux.deb” to the RZ/G2L-SBC using

SCP tool as below or other methods, such as an USB drive or NFS (Network File System).

renesas@builder-pc:~/cmake_helloworld/build$ scp helloworld-1.0.0-Linux.deb

root@<board_IP_address>:<destination>

For example,

renesas@builder-pc:~/cmake_helloworld/build$ scp helloworld-1.0.0-Linux.deb

root@192.168.5.58:/home/root

RZ Family / RZ/G Series 11. Application Building, Packaging and Running

R12UZ0158EU0101 Rev.1.10 Page 81 of 96

Sep.20.2024

11.3.2 Package a Python program

This section explains how to package Python scripts into a .deb file using CPack, focusing on the

necessary configurations and packaging steps.

You have two options for running a Python script:

1. Directly with Python: Use the command `python3 script.py` to execute the script directly.

2. By shell script: Use a shell script to run the Python script. This approach can be useful for

adding additional setup or configuration steps.

If you want to run the application without using the python3 command directly, you can create a shell

script that already includes the necessary command to execute the Python script.

The steps below are similar to those for packaging a C program, with differences primarily in the source

code and CPack configuration within the CMakeLists.txt file.

Step 1: Create a workspace for CMake

renesas@builder-pc:~$ mkdir ~/cmake_python
renesas@builder-pc:~$ cd ~/cmake_python
renesas@builder-pc:~/cmake_python$ mkdir build src

Step 2: Organize the project structure as shown below:

renesas@builder-pc:~/cmake_python$ tree
.

├── build

├── CMakeLists.txt

└── src

 ├── tkinter_wrapper.sh

 └── main.py
`CMakeLists.txt`, `tkinter_wrapper.sh` and `main.py` will be created later in the next steps.

Step 3: Modify the python program, this program same as Tkinter example in section 8.9 Python GUI

programming with Tkinter

Copy this example content and paste to this python file

renesas@builder-pc:~/cmake_python$ vi src/main.py

Step 4: Create a Tkinter wrapper shell script to run the application.

renesas@builder-pc:~/cmake_python$ vi src/tkinter_wrapper.sh

Then, copy the content below to the script.

#!/bin/bash

python3 /usr/local/share/tkinter_example/main.py

Step 5: Configure the CMakeLists.txt for packaging Python program

renesas@builder-pc:~/cmake_python$ vi CMakeLists.txt

Then, copy the below contents to the file:

RZ Family / RZ/G Series 11. Application Building, Packaging and Running

R12UZ0158EU0101 Rev.1.10 Page 82 of 96

Sep.20.2024

cmake_minimum_required(VERSION 3.10)

project(TkinterExample)

Define script and wrapper

set(SCRIPT_NAME "src/main.py")

set(WRAPPER_SCRIPT "src/tkinter_wrapper.sh")

set(EXEC_NAME "tkinter_example")

Define installation paths

set(INSTALL_DIR "/usr/local/bin")

set(INSTALL_SCRIPT_DIR "/usr/local/share/tkinter_example")

Install the wrapper script

configure_file(${CMAKE_SOURCE_DIR}/${WRAPPER_SCRIPT} ${CMAKE_BINARY_DIR}/${EXEC_NAME} @ONLY)

install(PROGRAMS ${CMAKE_BINARY_DIR}/${EXEC_NAME} DESTINATION ${INSTALL_DIR})

install(FILES ${CMAKE_SOURCE_DIR}/${SCRIPT_NAME} DESTINATION ${INSTALL_SCRIPT_DIR})

Packaging configuration

set(CPACK_GENERATOR "DEB")

set(CPACK_PACKAGE_NAME "tkinter_example")

set(CPACK_PACKAGE_VERSION "1.0.0")

set(CPACK_PACKAGE_CONTACT "your-email@example.com")

set(CPACK_DEBIAN_PACKAGE_ARCHITECTURE "arm64")

include(CPack)

Step 6: Packaging the program

RZ Family / RZ/G Series 11. Application Building, Packaging and Running

R12UZ0158EU0101 Rev.1.10 Page 83 of 96

Sep.20.2024

renesas@builder-pc:~/cmake_python$ cd build/
renesas@builder-pc:~/cmake_python/build$ cmake ../
-- The C compiler identification is GNU 11.4.0

-- The CXX compiler identification is GNU 11.4.0

-- Detecting C compiler ABI info

-- Detecting C compiler ABI info - done

-- Check for working C compiler: /usr/bin/cc - skipped

-- Detecting C compile features

-- Detecting C compile features - done

-- Detecting CXX compiler ABI info

-- Detecting CXX compiler ABI info - done

-- Check for working CXX compiler: /usr/bin/c++ - skipped

-- Detecting CXX compile features

-- Detecting CXX compile features - done

-- Configuring done

-- Generating done

-- Build files have been written to: /home/renesas/cmake_python/build

renesas@builder-pc:~/cmake_python/build$ cpack
CPack: Create package using DEB

CPack: Install projects

CPack: - Run preinstall target for: TkinterExample

CPack: - Install project: TkinterExample []

CPack: Create package

-- CPACK_DEBIAN_PACKAGE_DEPENDS not set, the package will have no dependencies.

CPack: - package: /home/renesas/cmake_python/build/tkinter_example-1.0.0-

Linux.deb generated.

After complete, confirm that the Debian package (.deb) is generated in the build folder.

renesas@builder-pc:~/cmake_python/build$ ls
CMakeCache.txt cmake_install.cmake _CPack_Packages

install_manifest.txt tkinter_example
CMakeFiles CPackConfig.cmake CPackSourceConfig.cmake Makefile

tkinter_example-1.0.0-Linux.deb

Then, you can transfer the Debian package installer “tkinter_example-1.0.0-Linux.deb” to the RZ/G2L-

SBC using SCP tool as below or other methods, such as an USB drive or NFS (Network File System).

renesas@builder-pc:~/cmake_python/build$ scp tkinter_example-1.0.0-Linux.deb

root@192.168.5.58:/home/root

11.4 Run sample applications
Power on the RZ/G2L-SBC and start the system. Once the system has booted, transfer the binary

package that you built using SDK with CMake which is mentioned in chapter 10.2 Build a sample

application with CMake. Then, run the sample application as follows:

RZ Family / RZ/G Series 11. Application Building, Packaging and Running

R12UZ0158EU0101 Rev.1.10 Page 84 of 96

Sep.20.2024

NOTICE: BL2: <version>

NOTICE: BL2: Built : <date>

NOTICE: BL2: Booting BL31

NOTICE: BL31: <version>

NOTICE: BL31: Built : <date>

…

rzpi login: root

root@rzpi:~# ./helloworld

Hello, World!
root@rzpi:~#

11.5 Install and Run Debian application packages by using DPKG

After shipping the Debian package installer to the RZ/G2L-SBC, you can use dpkg to install the package.

The steps are:

Step 1: List out all available .deb files to make sure all .deb file have been shipped to the RZ/G2L-SBC

Step 2: Install the C program by running `dpkg -i helloworld-1.0.0-Linux.deb`

Step 3: Install the Python program by running `dpkg -i tkinter_example-1.0.0-Linux.deb`

NOTICE: BL2: <version>

NOTICE: BL2: Built : <date>

NOTICE: BL2: Booting BL31

NOTICE: BL31: <version>

NOTICE: BL31: Built : <date>

…

rzpi login: root

root@rzpi:~# ls
audios demo helloworld-1.0.0-Linux.deb tkinter_example-1.0.0-Linux.deb images

info v4l2-init.sh videos
root@rzpi:~# dpkg -i helloworld-1.0.0-Linux.deb
Selecting previously unselected package helloworld.

(Reading database ... 4 files and directories currently installed.)

Preparing to unpack helloworld-1.0.0-Linux.deb ...

Unpacking helloworld (1.0.0) ...

Setting up helloworld (1.0.0) ...

root@rzpi:~#
root@rzpi:~# dpkg -i tkinter_example-1.0.0-Linux.deb
Selecting previously unselected package tkinter_example.

(Reading database ... 4 files and directories currently installed.)

Preparing to unpack tkinter_example-1.0.0-Linux.deb ...

Unpacking tkinter_example (1.0.0) ...

Setting up tkinter_example (1.0.0) ...

RZ Family / RZ/G Series 11. Application Building, Packaging and Running

R12UZ0158EU0101 Rev.1.10 Page 85 of 96

Sep.20.2024

After install, confirm that the package is correctly install or not

root@rzpi:~# dpkg -l
ii helloworld 1.0.0 arm64 HelloWorld built using CMake

ii tkinter_example 1.0.0 arm64 TkinterExample built using CMake

Finally, run the installed applications

Find the location of the package and execute the application. There are two ways to run the application:

you can either execute the program directly or call it from /usr/local/bin/<your_application>.

root@rzpi:~# dpkg -L helloworld
/usr

/usr/local

/usr/local/bin

/usr/local/bin/hello

root@rzpi:~# /usr/local/bin/hello
Hello, World!

For Python application, export the DISPLAY if you're using an environment where the display is not

automatically set.

root@rzpi:~# export DISPLAY=:0
root@rzpi:~# dpkg -L tkinter_example
/usr

/usr/local

/usr/local/bin

/usr/local/bin/tkinter_example

/usr/local/share

/usr/local/share/tkinter_example

/usr/local/share/tkinter_example/main.py

root@rzpi:~# /usr/local/bin/tkinter_example

RZ Family / RZ/G Series 12. Appendix

R12UZ0158EU0101 Rev.1.10 Page 86 of 96

Sep.20.2024

12. Appendix

12.1 Factory Firmware Flashing using Serial Downloader (SCIF) mode

In most cases, the RZ/G2L-SBC comes preloaded with the latest firmware. The preferred method of

updating the firmware is through the SD card flashing method, as described in Programming / Flashing

Firmware to RZ/G2L-SBC.

However, there are cases where you might require the use of a serial downloader. This is more common

in a factory environment where the boards are being programmed for the first time or in cases where

the board is bricked.

This is considered hardware flashing because it requires the board to be put into the SCIF a.k.a serial

download mode by altering the bootstrapping pins.

12.1.1 Required Hardware

This flashing process requires the use of boot mode change, which is achieved using an adapter

board (not included in the package).

Figure 52: Adaptor board

12.1.2 Flashing Bootloader/Firmware using Linux host

The build contains a support script `bootloader_flash.py` for flashing bootloader on Linux. The script is

part of the Yocto build. The official release is a qualified yocto build from Renesas and is a full

package with all tools and scripts.

The Python script is present at the root of the release directory.

Please run the following command to learn how to use the script:

$./bootloader_flash.py -h

Note:

The RZ/G2L-SBC does not have any interfaces in the main board to alter the boot mode. The boot

strapping pins are routed through the bottom connectors J12 & J13. Hence the process requires the use of

an adapter board which is not included in the package.

RZ Family / RZ/G Series 12. Appendix

R12UZ0158EU0101 Rev.1.10 Page 87 of 96

Sep.20.2024

By default, the script uses /dev/ttyUSB0 when no arguments are passed.

Here are the steps:

Step 1. Ensure that the hardware setup is accurate.

Step 2. Start the script.

Step 3. Power on the board

renesas@builder-

pc:~/yocto/yocto_rzsbc_board/build/tmp/deploy/images/rzpi/host/tools/bootloade

r-flasher/linux$./bootloader_flash.py

Please power on board. Make sure you changed switches to SCIF download mode.

 SCIF Download mode

 (C) Renesas Electronics Corp.

-- Load Program to System RAM ---------------

please send !

Writing Flash Writer application...

Flash writer for RZ/G2 Series V1.06 Aug.10,2022

 Product Code : RZ/G2L

>

Elapsed time: Flash Writer: 23.976105 seconds

true

command not found

>

SUP

Scif speed UP

Please change to 921.6Kbps baud rate setting of the terminal.

>

>

>XLS2

===== Qspi writing of RZ/G2 Board Command =============

Load Program to Spiflash

Writes to any of SPI address.

 ISS : IS25WP256

Program Top Address & Qspi Save Address

===== Please Input Program Top Address ============

 Please Input : H

Before performing a flashing:

✓ Make sure the board is powered off,

✓ Connect the debug serial port (SCIF0 - TXD, RXD, GND) to your Linux PC

✓ Connect the adapter board with jumpers set to serial load boot mode.

RZ Family / RZ/G Series 12. Appendix

R12UZ0158EU0101 Rev.1.10 Page 88 of 96

Sep.20.2024

'11E00

===== Please Input Qspi Save Address ===

 Please Input : H

'

 Please Input : H'00000

Work RAM(H'50000000-H'53FFFFFF) Clear....

please send !

Writing BL2...

 ('.' & CR stop load)

SPI Data Clear(H'FF) Check :H'00000000-0000CFFF,Clear OK

H'00000000-0000CFFF Erasing..............Erase Completed

SAVE SPI-FLASH.......

======= Qspi Save Information =================

 SpiFlashMemory Stat Address : H'00000000

 SpiFlashMemory End Address : H'0000CB28

===

>

>XLS2

===== Qspi writing of RZ/G2 Board Command =============

Load Program to Spiflash

Writes to any of SPI address.

 ISS : IS25WP256

Program Top Address & Qspi Save Address

===== Please Input Program Top Address ============

 Please Input : H

'00000

===== Please Input Qspi Save Address ===

 Please Input : H

'1D200

Work RAM(H'50000000-H'53FFFFFF) Clear....

please send !

Writing fip ...

 ('.' & CR stop load)

SPI Data Clear(H'FF) Check :H'0001D000-000D7FFF,Clear OK

H'0001D000-000D7FFF

Erasing...

..

Closed serial port.

Elapsed time: 81.550220 seconds

Power cycle the board after the script completes.

12.1.3 Flashing Bootloader/Firmware using Windows host

The subdirectory `windows` from Yocto build output/release directory contains the Windows scripts.

The Windows tool has its own `Readme.md` file with the necessary information about the scripts.

RZ Family / RZ/G Series 12. Appendix

R12UZ0158EU0101 Rev.1.10 Page 89 of 96

Sep.20.2024

Here are the steps:

Step 1. Ensure that the hardware setup is accurate.

Step 2. Edit config.ini and set the correct com port number.

Step 3. Start the script flash_bootloader.bat.

Step 4. Power on the board

The script uses Tera Term’s TTL to complete the flashing of the firmware. Upon completion, it will

disconnect the port.

Power cycle the SBC to boot new firmware.

12.2 How to get the console after bootup

Once the RZ/G2L-SBC has booted, on the UART terminal you will be able to login using the default

user ‘root’. There is no password. Leave the password field empty and just hit the return / enter key.

Figure 53: Root login of Linux console over UART 0.

Before performing a flashing:

✓ Make sure the board is powered off,

✓ Connect the debug serial port (SCIF0 - TXD,RXD,GND) to your Linux PC

✓ Connect the adapter board with jumpers set to serial load boot mode.

✓ Ensure that Teraterm application is installed on your windows pc.

RZ Family / RZ/G Series 13. Troubleshooting

R12UZ0158EU0101 Rev.1.10 Page 90 of 96

Sep.20.2024

13. Troubleshooting

13.1 Unable to run support scripts for Bootloader/Firmware flashing on Linux

Not all Linux distributions ship with the Python3 package and its modules, which are required to run the

support scripts described in the Programming / Flashing Firmware to RZ/G2L-SBC section ‘Flash

bootloader on u-boot console— and in the appendix section ‘Flashing Bootloader/Firmware using Linux

host’.

To make sure your Linux machine can run the support scripts successfully, execute the following

commands (This example is for Ubuntu 20.04):

$ sudo apt update

$ sudo apt install -y python3 python3-pip

$ pip3 install pyserial==3.5 argparse==1.4.0

The above commands try to update packages on your Linux machine to the latest. Then, they install

the python3 package and the python3 pip tool which is used to install python3’s modules. And finally,

they install the necessary modules (‘pyserial’ and ‘argparse’) with the specific versions for running the

support scripts.

13.2 Flashing tools failing halfway

The flashing tools are used to update the core firmware in the QSPI memory, which forms the core part

of the booting process. This should never fail. When a firmware flashing tool fails, the result is often an

unbootable a.k.a ‘bricked’ device. The only way to recover from this is to use a SCIF boot and the

respective flashing process described in the appendix section ‘Factory Firmware Flashing using Serial

Downloader (SCIF) mode’.

13.3 Running many Qt demo apps slow down the system

QT applications are generally RAM-heavy, and their memory requirement scales up with display

characteristics and object complexity. The Qt demo applications in the Linux distro image have been

validated to work on the RZ/G2L-SBC over a 10” 1080p HDMI and the Waveshare 5” DSI touch display

units. However, some applications can freeze or stutter, especially when other processes are running,

the screen size is large, or the framerates are high. One of the limitations in this regard is the 1GiB DDR

memory, which limits usable memory for GFX.

Methods to enhance QT application performance:

1. Reduce the application's memory consumption by optimizing QT for using the MALI GPU for

animations and reducing the number of objects to be rendered. Simply reducing the framerate

can often achieve better performance.

2. Custom board for a custom application: The RZ/G2L SoC supports 2GiB DDR4 SDRAM. If the

application requires it, we recommend a custom version of the board with 2GiB DDR SDRAM

memory. Please be advised that the existing board is still highly capable of running high GFX

applications, as seen in the demos.

13.4 DHCP Failure

DHCP depends on the network infrastructure and sometimes takes over 30 seconds or fails completely.

When the DHCP fails, the SBC will self-assign an IP address from the address range 169.254.x.y

pattern series. This series of addresses is called the automatic private IP addresses.

This is often a network issue. At times, eth0 can take longer to get the IP address. If eth0 is not

responding, please recheck with eth1. Your individual network topology will affect the board's ability to

get an IP address through DHCP.

https://pyserial.readthedocs.io/en/latest/pyserial.html
https://docs.python.org/3/library/argparse.html

RZ Family / RZ/G Series 14. References

R12UZ0158EU0101 Rev.1.10 Page 91 of 96

Sep.20.2024

13.5 ‘Ifconfig’ doesn’t list the Wi-Fi interface

The Wi-Fi is not active by default at boot. While all the drivers and subsystems are loaded, the Wi-Fi

must be enabled with the command ‘enable Wi-Fi’ in conmanctl utility as described in the section ‘Wi-

Fi 802.11 Module’.

13.6 IP configuration

IP address is a bit tricky to get right. It often won’t show up unless the port is powered up, and it gets
complicated to identify the interface name and ensure there is an address on it. There is some trial and
error involved in this step for flashing the system image. You can manually assign the IP address to
your host if necessary. Refer to the following for more info on Windows IP settings:

1. How to configure a static IP on Windows 10 or 11 | Windows Central

2. Change TCP/IP settings - Microsoft Support

13.7 Stuck in U-boot with error “Bad Linux ARM64 Image magic!”

There is a very rare situation in which a board might refuse to boot the Linux image. It usually displays

the following in the uart in the uart:

NOTICE: BL2: v2.5(release):
NOTICE: BL2: Built : 14:13:21, Aug 7 2023
NOTICE: BL2: Booting BL31
NOTICE: BL31: v2.5(release):
NOTICE: BL31: Built : 22:50:40, Aug 27 2023

U-Boot 2020.10 (Sep 08 2023 - 17:04:31 -0400)

CPU: Renesas Electronics E rev 15.4
Model: RZpi
DRAM: 896 MiB
MMC: sh-sdhi: 0
Loading Environment from SPIFlash... SF: Detected is25wp256 with page size 256 Bytes, erase size 4 KiB,
total 32 MiB
*** Warning - bad CRC, using default environment

In: serial@1004b800
Out: serial@1004b800
Err: serial@1004b800
Net: eth0: ethernet@11c20000, eth1: ethernet@11c30000
Hit any key to stop autoboot: 0
Failed to load 'boot/Image.gz'
44855 bytes read in 20 ms (2.1 MiB/s)
Error: Bad gzipped data
Bad Linux ARM64 Image magic!
=>

Congratulations on receiving a factory board. This is a board not updated with the newest u-boot. This

is also your chance to try the steps from section Flash bootloader on u-boot console. Once

“u-boot” is updated, this issue will be resolved.

https://www.windowscentral.com/software-apps/windows-11/how-to-configure-a-static-ip-on-windows-10-or-11
https://support.microsoft.com/en-us/windows/change-tcp-ip-settings-bd0a07af-15f5-cd6a-363f-ca2b6f391ace

RZ Family / RZ/G Series 14. References

R12UZ0158EU0101 Rev.1.10 Page 92 of 96

Sep.20.2024

14. References

14.1 Git Repositories

Build scripts: Renesas-SST/rz-build-scripts: Build scripts for rz projects (github.com)

Yocto board meta layer: Renesas-SST/meta-renesas: Yocto meta layer for Renesas System

Solutions (github.com)

Linux Kernel: Renesas-SST/linux-rz: Linux kernel for System and Solutions Products (github.com)

Arm trusted firmware – A: Renesas-SST/rz-atf: Arm Trusted Firmware implementation for System &

Solutions products (github.com)

u-boot: Renesas-SST/u-boot: A u-boot suporting System & Solutions Products (github.com)

flash-writer: Renesas-SST/flash-writer: Serial flashing utility to load into blank boards supporting

System & Solutions Products (github.com)

14.2 RZ/G2L SoC

Product page: RZ/G Series (Linux-based MPU) | Renesas

Wiki: RZ/G Series 32/64-bit MPU - Renesas-wiki

Other RZ topics: RZ Topics - Renesas-wiki

14.3 External resources

14.3.1 QT development

Qt official page: Qt | Tools for Each Stage of Software Development Lifecycle

Qt documentation: Qt Documentation | Home

14.3.2 Yocto Project

Official Yocto manual: Yocto Project Reference Manual — The Yocto Project ® 4.3.999

documentation

14.3.3 Linux Kernel Documentation

The Linux Kernel documentation — The Linux Kernel documentation

14.3.4 Arm Developer Documentation

Main page: https://developer.arm.com/documentation/

Armv8 Architecture manual: Arm Architecture Reference Manual for A-profile architecture

Generic Interrupt Controller (GIC) architecture specification: Arm Generic Interrupt Controller (GIC)

Architecture Specification

Armv8-A Register manual: Arm Armv8-A Architecture Registers

Armv8-A Known issues: Arm Architecture Reference Manual for A-profile architecture: Known issues

Arm Yocto SystemReady IR implimetnation: Deploying Yocto on SystemReady IR compliant

hardware (arm.com)

Arm TrustZone SMCC protocol: SMC Calling Convention (SMCCC) (arm.com)

Arm 64-bit ISA architecture: Arm A64 Instruction Set Architecture

https://github.com/Renesas-SST/rz-build-scripts
https://github.com/Renesas-SST/meta-renesas
https://github.com/Renesas-SST/meta-renesas
https://github.com/Renesas-SST/linux-rz
https://github.com/Renesas-SST/rz-atf
https://github.com/Renesas-SST/rz-atf
https://github.com/Renesas-SST/u-boot
https://github.com/Renesas-SST/flash-writer
https://github.com/Renesas-SST/flash-writer
https://www.renesas.com/us/en/products/microcontrollers-microprocessors/rz-mpus/rzg-series
https://jira-gasg.renesas.eu/confluence/pages/viewpage.action?pageId=184060061
https://jira-gasg.renesas.eu/confluence/display/REN/RZ+Topics
https://www.qt.io/
https://doc.qt.io/
https://docs.yoctoproject.org/ref-manual/index.html
https://docs.yoctoproject.org/ref-manual/index.html
https://docs.kernel.org/
https://developer.arm.com/documentation/
https://developer.arm.com/documentation/ddi0487/ka/?lang=en
https://developer.arm.com/documentation/ihi0069/hb/?lang=en
https://developer.arm.com/documentation/ihi0069/hb/?lang=en
https://developer.arm.com/documentation/ddi0595/2021-12/?lang=en
https://developer.arm.com/documentation/102105/ka-00/?lang=en
https://developer.arm.com/documentation/DUI1102/0101/?lang=en
https://developer.arm.com/documentation/DUI1102/0101/?lang=en
https://developer.arm.com/documentation/den0028/f/?lang=en
https://developer.arm.com/documentation/ddi0596/2021-12/?lang=en

RZ Family / RZ/G Series 14. References

R12UZ0158EU0101 Rev.1.10 Page 93 of 96

Sep.20.2024

14.3.5 JEDEC DDR4

DDR4 SDRAM STANDARD | JEDEC

14.3.6 PMOD Specification

Wiki: Pmod Interface - Wikipedia

Specification document: pmod-interface-specification-1_3_1.pdf (digilent.com)

14.3.7 Essential Linux Tutorial

Linux/Unix Tutorial (geeksforgeeks.org)

Linux/Unix Tutorial - javatpoint

UNIX / LINUX Tutorial (tutorialspoint.com)

14.3.8 Packaging

CMake Reference Documentation — CMake 3.30.2 Documentation

CPack — CMake 3.30.2 Documentation

14.3.9 Using the Extensible SDK

Using the Extensible SDK

14.3.10 Linux Kernel Development

HOWTO do Linux kernel development — The Linux Kernel documentation

Linux Kernel - GeeksforGeeks

The Linux Kernel Module Programming Guide (sysprog21.github.io)

A Beginner’s Guide to Linux Kernel Development (LFD103) - Linux Foundation - Training

14.3.11 Linux Kernel Driver Development

Basic intro: Device Drivers in Linux - GeeksforGeeks

Drive docs: Driver Basics — The Linux Kernel documentation

Kernel docs: Device Drivers — The Linux Kernel documentation

Lab: Character device drivers — The Linux Kernel documentation (linux-kernel-labs.github.io)

https://www.jedec.org/standards-documents/docs/jesd79-4a
https://en.wikipedia.org/wiki/Pmod_Interface
https://digilent.com/reference/_media/reference/pmod/pmod-interface-specification-1_3_1.pdf
https://www.geeksforgeeks.org/linux-tutorial/
https://www.javatpoint.com/linux-tutorial
https://www.tutorialspoint.com/unix/index.htm
https://cmake.org/cmake/help/latest/index.html
https://cmake.org/cmake/help/latest/module/CPack.html
https://docs.yoctoproject.org/3.1.33/sdk-manual/sdk-extensible.html
https://www.kernel.org/doc/html/v4.18/process/howto.html
https://www.geeksforgeeks.org/the-linux-kernel/
https://sysprog21.github.io/lkmpg/
https://training.linuxfoundation.org/training/a-beginners-guide-to-linux-kernel-development-lfd103/
https://www.geeksforgeeks.org/device-drivers-in-linux/
https://www.kernel.org/doc/html/next/driver-api/basics.html
https://docs.kernel.org/driver-api/driver-model/driver.html
https://linux-kernel-labs.github.io/refs/heads/master/labs/device_drivers.html

RZ Family / RZ/G Series Revision History

R12UZ0158EU0101 Rev.1.10 Page 94 of 96

Sep.20.2024

Revision History

Rev. Date

Description

Page Summary

1.00 Jul.12.24 — Initial release

1.1 Sep.20.24 —

- Update:

o Yocto build output hierarchy

o Add ALSA Mixer figure for Audio feature

o New Arducam 5MP OV5640 resolutions supported

o Chromium web browser

o Debian Package Manager

- Add new sections:

o Playing videos

o Python3-pip installation

o Python Tkinter programming

o Building the eSDK

o Example for using the eSDK, build and run a sample

application

RZ/G2L-SBC, Single Board Computer – User Manual

Publication Date: Sep.20.2024

Published by: Renesas Electronics Corporation

R20QSxxxxEU0100

RZ Family/ RZ/G Series

	Introduction
	Features
	Glossary
	1. Overview
	1.1 Physical View

	2. Required Resources
	2.1 Development Tools and Software
	2.2 Hardware

	3. RZ/G2L SoC MPU Architecture
	3.1 Operational Flow

	4. Functional Overview
	4.1 Overview of Connectors
	4.2 Power Supply
	4.2.1 USB Type-C Power
	4.2.2 Power rails
	4.2.3 Power Supply Regulation

	4.3 Power Management Integrated Circuit- PMIC
	4.4 RESET Control
	4.5 Clock Configuration
	4.6 Peripheral Interface
	4.6.1 Gigabit Ethernet
	4.6.2 USB 2.0 Ports
	4.6.3 MIPI CSI Interface
	4.6.4 MIPI DSI Interface
	4.6.5 Audio DAC with 3.5mm Jack
	4.6.6 HDMI Display Subsystem
	4.6.7 40-pin I/O Header
	4.6.8 PMOD Type 6A Standard Interface
	4.6.9 uSD-Card Interface
	4.6.10 JTAG SWD Debug
	4.6.11 Expansion Connector

	4.7 Memory
	4.7.1 QSPI Flash
	4.7.2 DDR4 SDRAM
	4.7.3 EEPROM with temperature sensor.

	4.8 GPIO Internals

	5. Quick Start
	5.1 Hardware requirement
	5.2 Essential Hardware Setup
	5.3 Complete Hardware Setup
	5.4 Linux SD Card Creation
	5.5 Booting

	6. Yocto OE Build
	6.1 Build Host Environment Setup
	6.2 Initiate Yocto Build
	6.3 Collect the build output

	7. Creating bootable SD card
	7.1 Linux Host
	7.2 Windows Host

	8. Programming / Flashing Firmware to RZ/G2L-SBC
	8.1 Hardware Setup
	8.2 Flash bootloader on u-boot console
	8.2.1 Linux Host
	8.2.2 Windows Host

	9. Accessing Supported Features
	9.1 QT Demo Applications
	9.2 40-Pin IO Expansion Interface
	9.2.1 U-Boot Environment
	9.2.2 GPIO (General Purpose I/O pins)
	9.2.2.1 Setting I/O pin direction
	9.2.2.2 Reading the GPIO
	9.2.2.3 Setting the GPIO

	9.2.3 Enabling I2C function (channel 3 – RIIC3)
	9.2.4 SPI function (channel 0 – RSPI0)
	9.2.5 CAN function (channel 0,1 - CAN 0,CAN 1)

	9.3 Wi-Fi 802.11 Module
	9.4 On-board Audio Codec with Stereo Jack
	9.5 MIPI DSI Display Touch Panel
	9.5.1 Hardware Interfacing
	9.5.2 Enabling DSI panel drivers

	9.6 Playing Video Files on RZ/G2L-SBC
	9.7 MIPI CSI2 with Arducam 5MP OV5640 Camera Module
	9.7.1 Hardware Interfacing
	9.7.2 Enabling CSI camera drivers
	9.7.3 Accessing the Camera

	9.8 Package Management
	9.8.1 Setting up Debian as a backend source
	9.8.2 Using DPKG to install packages

	9.9 Install packages using Python3-pip
	9.10 Python GUI programming with Tkinter
	9.11 Chromium web browser

	10. Building the eSDK
	11. Application Building, Packaging and Running
	11.1 How to extract the eSDK
	11.2 Build a sample application using the eSDK with CMake
	11.3 Package programs with CPack
	11.3.1 Package a C program
	11.3.2 Package a Python program

	11.4 Run sample applications
	11.5 Install and Run Debian application packages by using DPKG

	12. Appendix
	12.1 Factory Firmware Flashing using Serial Downloader (SCIF) mode
	12.1.1 Required Hardware
	12.1.2 Flashing Bootloader/Firmware using Linux host
	12.1.3 Flashing Bootloader/Firmware using Windows host

	12.2 How to get the console after bootup

	13. Troubleshooting
	13.1 Unable to run support scripts for Bootloader/Firmware flashing on Linux
	13.2 Flashing tools failing halfway
	13.3 Running many Qt demo apps slow down the system
	13.4 DHCP Failure
	13.5 ‘Ifconfig’ doesn’t list the Wi-Fi interface
	13.6 IP configuration
	13.7 Stuck in U-boot with error “Bad Linux ARM64 Image magic!”

	14. References
	14.1 Git Repositories
	14.2 RZ/G2L SoC
	14.3 External resources
	14.3.1 QT development
	14.3.2 Yocto Project
	14.3.3 Linux Kernel Documentation
	14.3.4 Arm Developer Documentation
	14.3.5 JEDEC DDR4
	14.3.6 PMOD Specification
	14.3.7 Essential Linux Tutorial
	14.3.8 Packaging
	14.3.9 Using the Extensible SDK
	14.3.10 Linux Kernel Development
	14.3.11 Linux Kernel Driver Development

	Revision History

