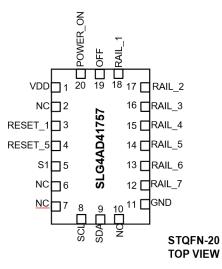
SLG4AD41757

Power Sequencer

General Description

Silego SLG4AD41757 is a low power and small form device. The SoC is housed in a 2mm x 3mm STQFN package which is optimal for using with small devices.


Features

- Low Power Consumption
- Pb-Free / RoHS Compliant
- Halogen-Free
- STQFN-20 Package

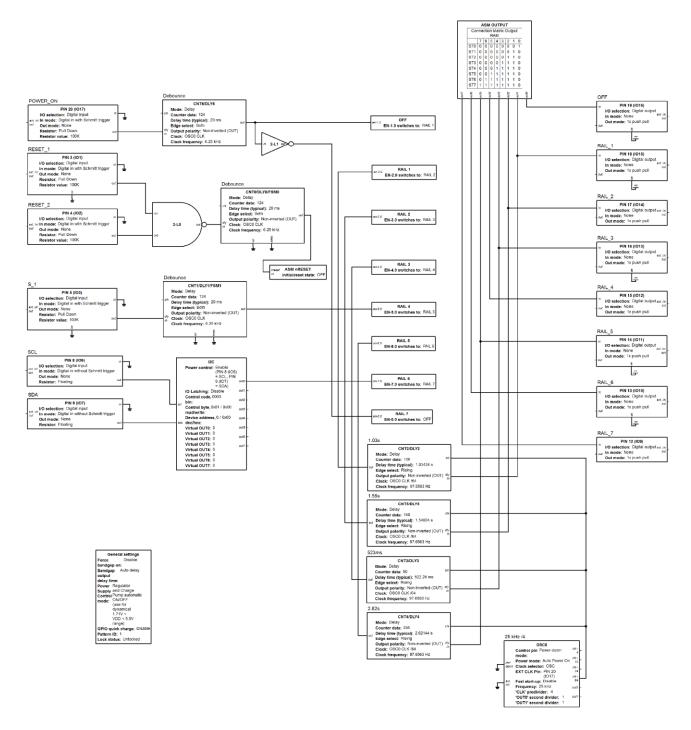
Output Summary

• 8 Outputs — Push Pull 1X

Pin Configuration

SLG4AD41757 Power Sequencer (Rev 0.10)

Revised April 03, 2017


SLG4AD41757_DS_r010

SLG4AD41757_GP_r001

Page 1 of 14

Block Diagram

Pin Configuration

Pin #	Pin Name	Туре	Pin Description
1	VDD	PWR	Supply Voltage
2	NC		Keep Floating or Connect to GND
3	RESET_1	Digital Input	Digital Input with Schmitt trigger
4	RESET_5	Digital Input	Digital Input with Schmitt trigger
5	S1	Digital Input	Digital Input with Schmitt trigger
6	NC		Keep Floating or Connect to GND
7	NC		Keep Floating or Connect to GND
8	SCL	Digital Input	Digital Input without Schmitt trigger
9	SDA	Digital Input	Digital Input without Schmitt trigger
10	NC		Keep Floating or Connect to GND
11	GND	GND	Ground
12	RAIL_7	Digital Output	Push Pull 1X
13	RAIL_6	Digital Output	Push Pull 1X
14	RAIL_5	Digital Output	Push Pull 1X
15	RAIL_4	Digital Output	Push Pull 1X
16	RAIL_3	Digital Output	Push Pull 1X
17	RAIL_2	Digital Output	Push Pull 1X
18	RAIL_1	Digital Output	Push Pull 1X
19	OFF	Digital Output	Push Pull 1X
20	POWER_ON	Digital Input	Digital Input with Schmitt trigger

Ordering Information

Part Number	Package Type
SLG4AD41757V	V=STQFN-20
SLG4AD41757VTR	VTR=STQFN-20 – Tape and Reel (3k units)

Absolute Maximum Conditions

Parameter	Min.	Max.	Unit
V _{HIGH} to GND	-0.3	7	V
Voltage at input pins	-0.3	7	V
Current at input pin	-1.0	1.0	mA
Storage temperature range	-65	125	°C
Junction temperature		150	°C
ESD Protection (Human Body Model)	2000		V
ESD Protection (Charged Device Model)	1300		V
Moisture Sensitivity Level	1		

Electrical Characteristics

(@ 25°C, unless otherwise sta

Symbol	Parameter	Condition/Note	Min.	Тур.	Max.	Unit	
Vdd	Supply Voltage		3	5	5.5	V	
TA	Operating Temperature		-40	25	85	°C	
Q	Quiescent Current	Static inputs and floating outputs		1		μA	
Vo	Maximal Voltage Appliedto any PIN in High- Impedance State				VDD	V	
lo	Maximal Average or DCCurrent (note 1)	Per Each Chip Side (PIN2-PIN10, PIN12-PIN20)			90	mA	
		Logic Input, at VDD=3.3V	1.81		VDD		
N/		Logic Input with Schmitt Trigger,at VDD=3.3V	2.14		VDD		
VIH	HIGH-Level Input Voltage	Logic Input, at VDD=5.0V	2.68		VDD	V	
		Logic Input with Schmitt Trigger, at VDD=5.0V	3.34		VDD		
		Logic Input, at VDD=3.3V	0		1.31		
		Logic Input with Schmitt Trigger, at VDD=3.3V	0		0.97		
VIL	LOW-Level Input Voltage	Logic Input, at VDD=5.0V	0		1.96	- V	
		Logic Input with Schmitt Trigger,at VDD=5.0V	0		1.41		
Mana	Schmitt Trigger HysteresisVoltage	Logic Input with Schmitt Triggerat VDD=3.3V	0.29	0.62	0.94	V	
V _{HYS}		Logic Input with Schmitt Triggerat VDD=5.0V	0.44	0.90	1.38		
Ιн	HIGH-Level Input Current	Logic Input PINs; V _{IN} = VDD	-1.0		1.0	μA	
١L	LOW-Level Input Current	Logic Input PINs; V _{IN} = 0V	-1.0		1.0	μA	
Mau	HIGH-Level OutputVoltage	Push Pull & PMOS OD, I _{OH} = 3mA, 1X Driver, at VDD=3.3 V	2.70	3.12		V	
Vон		Push Pull & PMOS OD, Іон = 5mA, 1X Driver, at VDD=5.0 V	4.15	4.76		V	

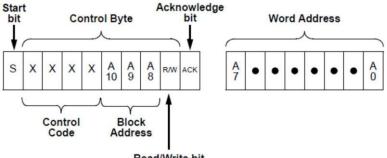
	LOW-Level Output	Push Pull, Io∟ = 3mA, 1X Driver, at VDD=3.3 V		0.13	0.23	
Vol	Voltage	Push Pull, $I_{OL} = 5mA$, 1X Driver, at VDD=5.0 V		0.19	0.24	V
Іон	HIGH-Level Output	Push Pull & PMOS OD, $V_{OH} = 2.4 V$, 1X Driver, at VDD=3.3 V	6.05	12.08		mA
ЮН	Current	Push Pull & PMOS OD, V _{OH} = 2.4 V, 1X Driver, at VDD=5.0 V	22.08	34.04		mA
IOL	LOW-Level Output	Push Pull, V _{OL} = 0.4V, 1X Driver, at VDD=3.3 V	4.88	8.24		mA
IOL	Current	Push Pull, V _{OL} = 0.4V, 1X Driver, at VDD=5.0 V	7.22	11.58		
Rpull_down	Internal Pull Down Resistance	Pull down on PINs 3, 4, 5, 20	87.5	109.7	136.6	kΩ
T _{DLY0}	Delay0 Time	At temperature 25°C At temperature -40°C +85°C (note 1)	19.22 18.33	20 20.05	20.66 21.52	ms
T _{DLY1}	Delay1 Time	At temperature 25°C At temperature -40°C +85°C (note 1)	19.22 18.33	20 20.05	20.66 21.52	ms
T _{DLY2}	Delay2 Time	At temperature 25°C At temperature -40°C +85°C (note 1)	996.74 951.20	1035.75 1046.93	1065.92 1109.34	ms
T _{DLY3}	Delay3 Time	At temperature 25°C At temperature -40°C +85°C (note 1)	503.27 480.28	523 524.12	538.25 560.20	s
T _{DLY4}	Delay4 Time	At temperature 25°C At temperature -40°C +85°C (note 1)	2.53 2.41	2.62 2.63	2.071 2.82	ms
T _{DLY5}	Delay5 Time	At temperature 25°C At temperature -40°C +85°C (note 1)	1.49 1.42	1.55 1.55	1.60 1.66	s
T _{DLY6}	Delay6 Time	At temperature 25°C At temperature -40°C +85°C (note 1)	19.22 18.33	20 20.05	20.66 21.52	ms
Tsu	Start up Time	From VDD rising past PONTHR	0.526	1.4	5.148	ms
PONTHR	Power On Threshold	VDD Level Required to Start Up the Chip	0.950	1.462	1.708	V
POFFTHR	Power Off Threshold	VDD Level Required to Switch Off the Chip	0.935	1.103	1.281	V
Fscl	Clock Frequency, SCL	V _{DD} = (1.71) V			400	kHz
tLOW	Clock Pulse Width Low	V _{DD} = (1.71) V	1300			ns
tнıgн	Clock Pulse Width High	V _{DD} = (1.71) V	600			ns
	Input Filter Spike	$V_{DD} = 1.8 V \pm 5 \%$			168	
tı	Suppression (SCL,	$V_{DD} = 3.3 \text{ V} \pm 10 \%$			157	ns
	SDA)	$V_{DD} = 5.0 \text{ V} \pm 10 \%$			156	
t _{AA}	Clock Low to Data Out Valid	V _{DD} = (1.71) V			900	ns
t BUF	Bus Free Time between Stop and Start	V _{DD} = (1.71) V	1300			ns
t hd_sta	Start Hold Time	V _{DD} = (1.71) V	600			ns
tsu_sta	Start Set-up Time	V _{DD} = (1.71) V	600			ns
thd_dat	Data Hold Time	$V_{DD} = (1.71) V$	0			ns
tsu_dat	Data Set-up Time	$V_{DD} = (1.71) V$	100			ns
tR	Inputs Rise Time	$V_{DD} = (1.71) V$			300	ns
tF	Inputs Fall Time	$V_{DD} = (1.71) V$			300	ns
tsu_std	Stop Set-up Time	$V_{DD} = (1.71) V$	600			ns
tDH	Data Out Hold Time	V _{DD} = (1.71) V	50			ns

		VDD = 1.8 V ± 5 %	255	 275	
tst_out_del	State Machine Output Delay				ns
ay	Time	VDD = 3.3 V ± 10 %	95	 118	
		VDD = 5.0 V ± 10 %	67	 77	
		VDD = 1.8 V ± 5 %		 165	
tst_out	State Machine Output				ns
	Transition Time	VDD = 3.3 V ± 10 %		 70	
		VDD = 5.0 V ± 10 %		 46	
		VDD = 1.8 V ± 5 %	29	 	
tst_pulse	State Machine Input Pulse				ns
	Acceptance Time	VDD = 3.3 V ± 10 %	14	 	
		VDD = 5.0 V ± 10 %	9.2	 	
	State Machine Input Compete	VDD = 1.8 V ± 5 %		 29	
tst_comp	Time				ns

1. Guaranteed by Design.

Chip address

HEX	BIN	DEC
0	0000000	0


Description

1. I2C Basic Command Structure

Each command to the I2C Serial Communications block begins with a Control Byte. The bits inside this Control Byte areshown in Figure 1. After the Start bit, the first four bits are a control code, which can be set by the user in reg<xx:yy>.

The Block Address is the next three bits (A10, A9, A8), which will define the most significant bits in the addressing of thedata to be read ("1") or written ("0") by the command. This Control Byte will be followed by an Acknowledge bit (ACK).

With the exception of the Current Address Read command, all commands will have the Control Byte followed by the Word Address. The Word Address, in conjunction with the three address bits in the Control Byte, will define the specificdata byte to be read or written in the command. Figure 1 shows this basic command structure.

Read/Write bit

Figure 1. I2C Basic Command Structure

2. I2C Serial General Timing

Shown in Figure 2 is the general timing characteristics for the I2C Serial Communications block.

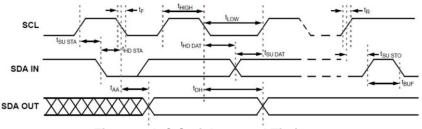


Figure 2. I2C Serial General Timing

3. I2C Serial Communications: Read and Write Commands

Following the Start condition from the master, the Control Code [4 bits], the block address [3 bits] and the R/W bit (set to"0"), is placed onto the bus by the Bus Master. After the I2C Serial Communications block has provided an Acknowledgebit (ACK) the next byte transmitted by the master is the Word Address. The Block Address is the next three bits, and is the higher order addressing bits (A10, A9, A8), which when added to the Word Address will together set the internal address pointer in the SLG46533 to the correct data byte to be written. After the SLG46533 sends another Acknowledgebit, the Bus Master will transmit the data byte to be written into the addressed memory location. The SLG46533 again provides an Acknowledge bit and then the Bus Master generates a Stop condition. The internal write cycle for the data will take place at the time that the SLG46533 generates the Acknowledge bit.

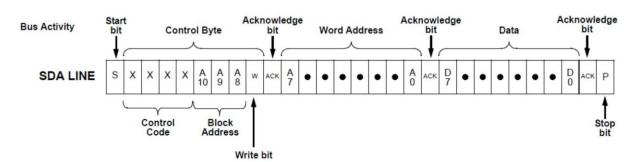


Figure 3. I2C Write Command

The Random Read command starts with a Control Byte (with R/W bit set to "0", indicating a write command) and Word Address to set the internal byte address, followed by a Start bit, and then the Control Byte for the read (exactly the sameas the Byte Write command). The Start bit in the middle of the command will halt the decoding of a Write command, but will set the internal address counter in preparation for the second half of the command. After the Start bit, the Bus Master issues a second control byte with the R/W bit set to "1", after which the SLG46533 issues an Acknowledge bit, followed by the requested eight data bits.

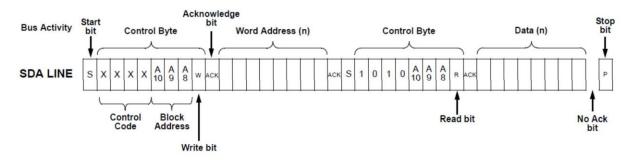
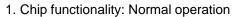
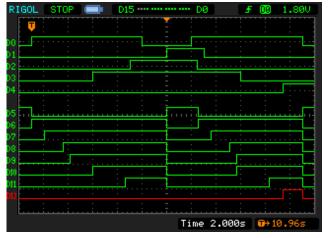


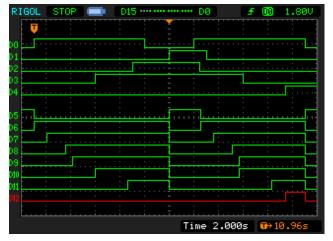
Figure 4. I2C Random Read Command

4. CNT/DLY Settings


The CNT/DLY block registers can be used to change the individual delay times of the delay blocks by changing the control data and the frequency of the clock according to Equation 1. The clock frequency can also be changed by using a clock pre-divider in the OSC0 block.

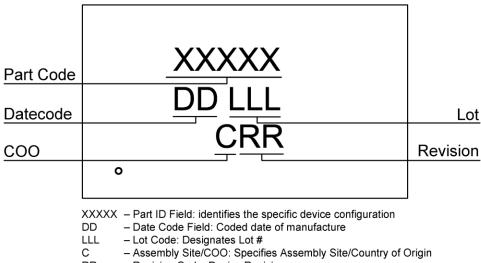

			Equation 1: CNT/DLY Time	
Address Byte	Register Bit	Block	Function	Range
0xC0	reg<1543:1536>	DLY2	Counter data from 1 to 255 (default setting is 100)	0x01 to 0xFF
0xC1	reg<1543:1536>	DLY3	Counter data from 1 to 255 (default setting is 50)	0x01 to 0xFF
0xC2	reg<1559:1552>	DLY4	Counter data from 1 to 255 (default setting is 255)	0x01 to 0xFF
0xC3	reg<1567:1560>	CNT5	Counter data from 1 to 255 (default setting is 150)	0x01 to 0xFF

Delay time: [(Counter Control Data + 1 + variable) / Frequency], where $0 \le variable \le 1$;


Functionality Waveforms

- $\begin{array}{l} \mathsf{D0}-\mathsf{PIN\#20} \ (\mathsf{POWER_ON}) \\ \mathsf{D1}-\mathsf{PIN\#3} \ (\mathsf{RESET_1}) \\ \mathsf{D2}-\mathsf{PIN\#4} \ (\mathsf{RESET_2}) \\ \mathsf{D3}-\mathsf{PIN\#5} \ (\mathsf{S1}) \\ \mathsf{D4}-\mathsf{OUT0} \ internal signal, output I2C \ Serial \ Communication \ Block \\ \mathsf{D5}-\mathsf{PIN\#19} \ (\mathsf{OFF}) \\ \mathsf{D6}-\mathsf{PIN\#18} \ (\mathsf{RAIL_1}) \\ \mathsf{D7}-\mathsf{PIN\#17} \ (\mathsf{RAIL_2}) \\ \mathsf{D8}-\mathsf{PIN\#16} \ (\mathsf{RAIL_3}) \\ \mathsf{D9}-\mathsf{PIN\#15} \ (\mathsf{RAIL_4}) \\ \mathsf{D10}-\mathsf{PIN\#14} \ (\mathsf{RAIL_5}) \\ \mathsf{D11}-\mathsf{PIN\#13} \ (\mathsf{RAIL_6}) \end{array}$
- D12 PIN#12 (RAIL_7)

2. Reset function diagram, RESET_1 and RESET_2 are HIGH


SLG4AD41757 Power Sequencer (Rev 0.10)

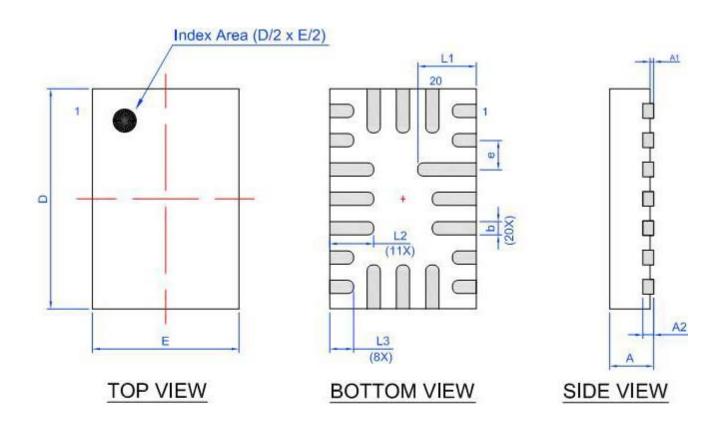
- $\begin{array}{l} \text{D0} \text{PIN#20} \ (\text{POWER}_{ON}) \\ \text{D1} \text{PIN#3} \ (\text{RESET}_{1}) \\ \text{D2} \text{PIN#4} \ (\text{RESET}_{2}) \\ \text{D3} \text{PIN#5} \ (\text{S1}) \\ \text{D4} \text{OUT0} \ \text{internal signal, output I2C Serial Communication Block} \\ \text{D5} \text{PIN#19} \ (\text{OFF}) \\ \text{D6} \text{PIN#18} \ (\text{RAIL}_{1}) \\ \text{D7} \text{PIN#17} \ (\text{RAIL}_{2}) \\ \text{D8} \text{PIN#16} \ (\text{RAIL}_{3}) \\ \text{D9} \text{PIN#15} \ (\text{RAIL}_{4}) \\ \text{D10} \text{PIN#14} \ (\text{RAIL}_{5}) \\ \text{D11} \text{PIN#13} \ (\text{RAIL}_{6}) \end{array}$
- D12 PIN#12 (RAIL_7)

3. Chip functionality: Short signal POWER_ON

RIGOL STOP	D15 D0) <u> </u>	🕕 1.80V
Ţ			
00			
D1			
02			
D4			
D5	<u></u>	ابتيتيني	ninninne.
	· · · · ·		
08	· · · · · · · · · · · · · · · · · · ·		
D9	<u> </u>		
D10			
D12			
	<u></u>		
	Time	1.000s	∰⇒5.000s

Package Top Marking

RR – Revision Code: Device Revision


Datasheet Revision	Programming Code Number	Locked Status	Part Code	Revision	Date
0.10	001	U			04/03/2017

Lock coverage for this part is indicated by $\sqrt{}$, from one of the following options:

\checkmark	Unlocked
	Locked for read, bits <1535:0>
	Locked for write, bits <1535:0>
	Locked for read and write, bits <1535:0>

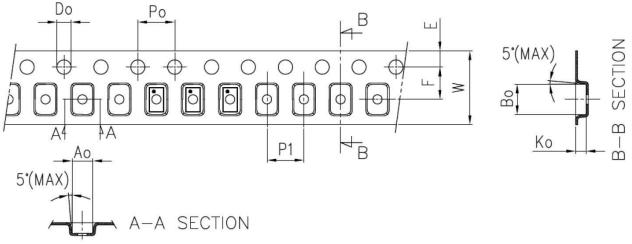
The IC security bit is locked/set for code security for production unless otherwise specified. Revisionnumber is not changed for bit locking.

Package Drawing and Dimensions

20 Lead STQFN Package JEDEC MO-220, Variation WECE

Symbol	Min	Nom.	Max	Symbol	Min	Nom.	Max
A	0.50	0.55	0.60	D	2.95	3.00	3.05
A1	0.005	-	0.050	E	1.95	2.00	2.05
A2	0.10	0.15	0.20	L1	0.75	0.80	0.85
b	0.13	0.18	0.23	L2	0.55	0.60	0.65
е	().40 BSC	;	L3	0.275	0.325	0.37

SLG4AD41757 Power Sequencer (Rev 0.10)

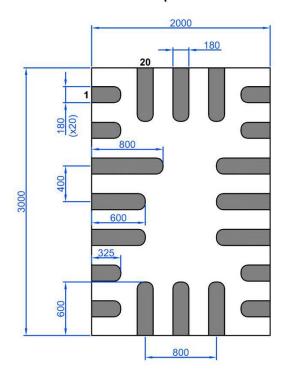

Tape and Reel Specification

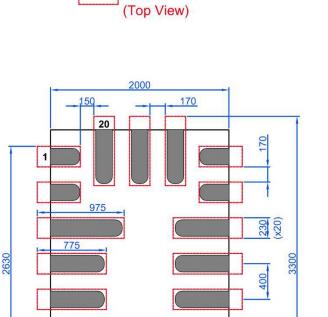
Package Type	# of Pins	Nominal Package Size (mm)	Max Units		Reel &	Trailer A		Leader B		Pocket (mm)	
			per reel	per box	Hub Size (mm)	Pockets	Length (mm)	Pockets	Length (mm)	Width	Pitch
STQFN 20L 2x3mm 0.4P Green	20	2x3x0.55	3000	3000	178/60	100	400	100	400	8	4

Carrier Tape Drawing and Dimensions

Package Type	Pocket BTM Length (mm)	Pocket BTM Width (mm)	Pocket Depth (mm)	Index Hole Pitch (mm)	Pocket Pitch (mm)	Index Hole Diameter (mm)	Index Hole to Tape Edge (mm)	Index Hole to Pocket Center (mm)	Tape Width (mm)	
	A0	B0	K0	P0	P1	D0	E	F	w	
STQFN 20L 2x3mm 0.4P Green	2.2	3.15	0.76	4	4	1.5	1.75	3.5	8	

Refer to EIA-481 Specifications


Recommended Reflow Soldering Profile


Please see IPC/JEDEC J-STD-020: latest revision for reflow profile based on package volume of 3.3 mm³ (nominal).More information can be found at <u>www.jedec.org</u>.

Recommended Land Pattern

Units: µm

230

800

485

Recommended Land Pattern

775

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD-PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers who are designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only to develop an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third-party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising from your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

(Disclaimer Rev.1.01)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit <u>www.renesas.com/contact-us/</u>.