1LENESAS Application Note

Renesas RA Family
Getting Started with the Graphics Application

Introduction

This application note describes creation of an application that uses Graphical User Interfaces with an
EK-RA6M3G kit, referred to as ‘graphics application’. This application is geared towards providing a reference
for developing complex multi-threaded applications with a touch screen graphical Human Machine Interface
(HMI) by using the Renesas Flexible Software Package (FSP) and SEGGER AppWizard.

09:32:02 AM 17 Mar 2020

74°F

84/73 _77/67 | 76/65 || 68/60 76470 _83f72 '3 9277

I s a0

Figure 1. Weather Panel of the Graphics Application on Renesas EK-RA6M3G

This application is developed using the Renesas RA Flexible Software Package (FSP), which provides a quick
and versatile way to build secure connected Internet of Things (I0T) devices using the Renesas RA family of
Arm®-based microcontrollers (MCUs). RA FSP provides production ready peripheral drivers to take advantage
of the RA FSP ecosystem along with SEGGER emWin library and FreeRTOS. In addition, Ethernet, USB, and
file system stacks support are also available. This powerful suite of tools provides a comprehensive, integrated
framework for rapid development of complex embedded applications.

This application note assumes that you are familiar with the concepts associated with writing multi-threaded
applications under a Real Time Operating System (RTOS) environment, such as FreeRTOS. This application
note makes use of RTOS features such as threads and semaphores. Knowledge of operating these with
FreeRTOS can help in understanding the supplied application project in source. For more detailed information
on FreeRTOS features, refer to the FreeRTOS User Manual.

The graphics application is developed using the Renesas e? studio Integrated Development Environment (IDE).
This e? studio is a free application that you can download from the Renesas website. While building
applications under the Renesas FSP Platform is considerably faster than developing similar applications in
other environments, there is still a learning curve to understand the steps necessary to construct complex
multi-threaded HMI applications quickly. This application note walks you through all the steps necessary,
including the following:

e Board setup.

e Application overview.

o Detailed explanation uses of the graphical screens.

e SEGGER AppWizard project integration.

o SEGGER AppWizard interactions setup.

e Adding an emWin widget that is not yet available in AppWizard.

e FSP configuration.

e Application design highlights.

e Using the General-Purpose Timer to drive a PWM backlight control signal.
¢ Importing, loading, and running the project.

R11ANO463EU0220 Rev.2.20 Page 1 of 39
May.20.24 RENESAS

Renesas RA Family Getting Started with the Graphics Application

Required Resources
Development tools and software

e 2 studio v2024-01.1
e Renesas Flexible Software Package (FSP) v5.2.0
e AppWizard V1.42_6.36

Hardware

e Renesas EK-RA6M3G kit (RA6M3 MCU Group)
(https://lwww.renesas.com/us/en/products/software-tools/boards-and-kits/eval-kits/ek-ra6m3g.html)

Reference Manuals

¢ RA Flexible Software Package Documentation Release v5.2.0
e AppWizard User Guide & Reference Manual Version 1.42_6.36
e emWin User Guide & Reference Manual Version 6.36

e Renesas RA6M3 Group User’'s Manual Rev.1.20

¢ EK-RA6M3G-v1.0 Schematics

Contents

I = To =T o RS- (1] o PPN 4
P Y o o] o= 10T B @ AV =T V=P 5
2.1 RAG6M3 MCU Peripherals used by the Graphics ApPpliCatioNcoiiiiiiiiiiie e 5
2.2 Human-Maching INterface (HMI)ooi ittt e e e e e e e be e e e e e e e e e aanes 6
2.3 Graphics APPlICAtION PANEISoooiiiiiiiiiiii ettt e aane 7
T Y o o XAV 2= T o @ AV =T V= 7
3.1 Create New Project Using the APPWIZAIcooiieiiiiiiie ettt e e e e 10
3.2 Design Weather Panel Buttons USiNg APPWIZAIdcoooiiiiiiiiiiiiiiiiie e 12
3.3 Setup APPWIZArd INTEIACHIONScciii ittt e e e e st e e e e e e saab bt et e e e e e e e snbbeaeeeaaeeaannnes 13
3.4 Add emWin Widget to APPWIZArd PrOJECE........ccoiiiiiiiiiie e e s et r e e e e e e e e e s e st re e e e e e e e e nnnes 14
4. Understanding the Graphics APPIICALIONu s 14
o R S o 1U | (ot =l @ To [=Y o 11 | RPN 14
VN2 Y o) o o= 1410] g I = (0Tt QI = o | = 1o PR 16
e N I == Yol @Y= YT O TP PP PPPTPTRRPRI 17
4.3.1 €MWIN TRIEAU ..ottt e e r e e s e s e e nn e e s e e e ne e e nn e e e re e e nnnee e 17
O T 01U 1o B I 1 == To RPN 18
5. FSP CONfIQUIALION ...t e e e e e e e e e 18
S0 A O a1 o Yo T 1=] £ I o T PR 19
N A = (o] L T I | o PO OTPUPPPPTN 20
RS T I 01 (=T Vo J @ o] =T od £ UP T UOTUUPPPPT 22
5.4 Module CONFIQUIALIONcoiiiiiiiiii ettt et e e e ettt e e e e e e s nb bt e eeaa e e e e snbbebeeeaaeaaannes 23
Y S A €I T @3 0] oo U = 1110 o PR 23
R11ANO463EU0220 Rev.2.20 Page 2 of 39

May.20.24 RENESAS

https://www.renesas.com/us/en/products/software-tools/boards-and-kits/eval-kits/ek-ra6m3g.html

Renesas RA Family Getting Started with the Graphics Application

L S K O @]\ I 0] o1l U =110 o ISP 24
5.4.3 Touch Controller CONFIQUIALIONcoiieeiiiiiii ettt e et e e e e e e s snb e e e e e e e e aananes 27
5.4.4 PWM CONFIQUIALIONeiiiiiiiiiiitie ittt ettt e ettt e e e e e e e sab bttt e e e e e e aanbbbeeeaaaeeesnbbsbeeaaaeeaannes 29
6. Application Code HIighlIghtS..........oooeiiiiii e 32
6.1 THreads AN MaIN.........cooi ettt e e oottt e e e e e s e aab b bt e e e e e e e e s nnbbbeeeaaeeeaaanbbeeeeeaeeaaanne 32
6.1.1 AppWizard/emWin INItTAlIZAtION ...ttt e e e e seb e e e e e e e anes 33
6.1.2 eMWIN EVENLS QNG IMESSAGES .. eeiiiieiiiiitieiteae e e ettt ettt e e e e e st ettt e e e e e s e absbeaeeaaeeeaaabbbeeeeaaeasaansbsseeeaaeeaaannes 33
6.1.3 APPWIzZArd VAriA@bIES ..ot e e e e e e e e e e e nan i rrr e e e e e aaane 34
7. Importing and Building the ProjJECTuuiiii s 35
8. Downloading the Executable to the EK-RABM3G Kit...........ovuiiiiiiiiiiiiiiii e, 35
T S (1 o 1o T o) TSRS 36
10. WEDSItE AN SUDPPOIT ...ceeeieiiiiieieee ettt s 38
YAV] To] T 151 (o] Y2 39
R11ANO463EU0220 Rev.2.20 Page 3 of 39

May.20.24 RENESAS

Renesas RA Family Getting Started with the Graphics Application

1. Board Setup

The EK-RABM3G kit contains a few switch settings which must be configured prior to running the application
associated with this application note. In addition to these switch settings, the boards also contain a USB debug
port and connectors to access the J-Link® programming interface.

Table 1. Switch Settings for EK-RA6M3G

Switch Setting
J8 Jumper on pins 1-2
J9 Open

Figure 2. J8 and J9 on EK-RA6M3

The EK-RA6M3G kit consists of two boards: the EK-RA6M3 board featuring the RA6M3 MCU with an on-chip
Graphics LCD Controller and a Graphics Expansion Board featuring a 4.3-inch 480 x 272-pixel TFT color LCD
with capacitive touch overlay. The GPIO port pin driving the backlight controller is capable of PWM output
using a timer peripheral in the MCU. As a result, the intensity of the LED backlight can be adjusted by the
RA6M3 MCU.

o Tt e,

LED Backlight
Controller

TFT Display with
Capacitive Touch
Overlay

Figure 3. EK-RABM3G Kit

R11ANO463EU0220 Rev.2.20 Page 4 of 39
May.20.24 RENESAS

Renesas RA Family Getting Started with the Graphics Application

2. Application Overview

One of the key goals of the provided graphics application is to demonstrate how to build applications which
require complex HMI screens using SEGGER AppWizard and emWin library. The following list highlights all
the key features of the graphics application:

Complex HMI design using AppWizard.
Multi-threaded applications using the FreeRTOS
— Semaphore object.

GLCDC configuration

— Framebuffer configuration.

— TCON configuration.

Touch Panel, I12C touch controller driver ft5 x 06.
— External IRQ mapping required.

In any software design, there are many ways to solve the same problem. The solution given in this application
note is one approach.

2.1 RAG6M3 MCU Peripherals used by the Graphics Application

The graphics application is complex and it uses the Renesas RA6M3 MCU. This MCU is built around an Arm®
Cortex®-M4 device. Developing complex microcontroller-based applications is usually a multi-step process:

1.

The first step usually involves gathering the application requirements and performing a high-level system
design that maps the requirements onto the set of hardware components. The components are necessary
to fulfill those requirements including the target MCU that will be used in the design, the tool chains required
to build/debug the applications, and so forth.

The next step usually determines which on-board peripherals of the target MCU are used. In this step, it
is often necessary to spend a considerable amount of time understanding the register map of the on-board
peripherals and writing lower-level driver code necessary to expose the peripheral to the upper level
application code. Most of this work has already been done in the FSP, considerably streamlining
application development.

In addition to the on-board peripherals of the target MCU, the design often encompasses external
hardware and how it is controlled. As an example, the EK-RA6M3G has the Graphics Expansion board,
which is controlled directly by the on-chip Graphics LCD Controller (GLCDC) of the RA6M3 MCU.

The last step usually details how an application will be structured on top of the selected hardware to
accomplish the initial requirements.

The graphics application requirements were first mapped to the on-board peripherals of the EK-RA6M3G
kit. Figure 4 shows all the internal hardware peripherals used by the graphics application. This application
note describes how each of these peripherals is configured using the FSP, and the considerations that
were used for each peripheral as the application is being developed.

R11ANO463EU0220 Rev.2.20 Page 5 of 39
May.20.24 RENESAS

Renesas RA Family Getting Started with the Graphics Application

m 120MHz 32-Bit Arm™ Cortex®M4 Core NVIC | JTAG | SWD | ETM

@ Memory 'H' Analogue 0 Timers & HMI
Code Flash {TME, 2MB) 12-bit AL {13ch) 35H GPT HighRes 32-bit (4ch) Graphes LCD Controller
lor TF1
SRAM (4B0KE) P 12-pil AD (11ch) 35H GPT Enh. 32-hit {dch
!) Parity) - n—m 20 Drawang Engine
SRAMHS (128KB) Parity 12 5 DAC (i) GPT 32-bit {Bch) JPEE Codec
deh PGA for gach ADC R
SRAM (32kB) ECC Low Power GPT (2ch) Capacilive Toudh Sensing
High Spesd Comparator (Geh) Unit {18ct
Draia Flash (G4kB) WOT nit { 1)
Temperature Sensor | Parallel Capbure Lini
Slandby SRAM (3k8) RIC, Calendar, Vbat

@)Communicalion 1@} System @ Safety & Security

AES (128/102/258)

Ethemet MAC with DA DA (Bch) Memaory Protecton Lnit TRMG
ISB2.0 F5 x1 prc SEAM Parity Chack Ky 't-:f:'l:;florﬂw
USBZOHS | Clock Generafion | ECE in SRAM SHAT/SHAZ24/SHAZSS

CAN x2 On-Chip Oscillator POE ECC/RSADSA
126 x3 HOCO (16,18, 20MHz), Clock Frequency ADESIARCA
S x10 MOCO (BMHZ Accuracy Moasurement
LOCO (32kHz), CRC Calculator #

SP1x2 —LOCO (TSR = Package
QSPl xl ! DT

Low Power Mode 5
SOHI 2 o Tower = ':rmtir‘;ﬂrm;"&:c”" LOFE 100, 144, 176

ELC ash Arga Protection
551 x2 and SRC - e
Intermupt Controlles ADLC Salf Test LGA 145, BGA 176

Extomal Memory Bus

Figure 4. RA6M3 MCU Peripherals Used in the Graphics Application

2.2 Human-Machine Interface (HMI)

In many HMI applications, the most daunting task may be the GUI itself. In applications requiring a graphical
HMI, it is generally considered best practice to separate the business logic from presentation. This abstracts
the GUI from making decisions on what to display. Instead, it is now only concerned about how to display it. It
relies on external logic to tell it what to display and when to display it.

Once you have gathered the requirements, achieved a top-level design, and identified the hardware necessary
to implement that design, it is often beneficial to construct a GUI (Graphical User Interface) to help quickly
communicate the look and feel of the system to others. This is where the SEGGER AppWizard comes into
play.

The FSP natively supports the use of AppWizard and emWin library from SEGGER. You may choose to use
emWin primitive calls directly in your application or choose to use the AppWizard to design your screens.
AppWizard is a stand-alone tool that provides a point and click environment for generating all the screens
necessary for your embedded application. Once designed, the tool outputs .c and .h files, which you then
include into your application. All the application screens in the graphics application were built using the
AppWizard.

R11ANO463EU0220 Rev.2.20 Page 6 of 39
May.20.24 RENESAS

Renesas RA Family Getting Started with the Graphics Application

2.3 Graphics Application Panels

The graphics application consists of two graphical panels, Weather Panel, and Logging Panel. In this
application, we build separate static display designs for these two panels. The screen resolution on the EK-

RABM3G kit is 480 x 272 pixels.

~ I5 Graphics_ App_EK_RA6M3G [Debug]
> wlY Includes
v (2 AppWizard

> (&= Resource

Weather Panel

17 Mar 2020

THERMOSTAT

» (&= Source
5 (% Simulation
> b Target 84/73 'l 77/67 g 74 165 | 68760 ?bnu ‘p au?z 92/77_
!AppWizard.AppWizard B . — -
 FileListbd
> EBra
» &5 ra_gen
> (2 sre
> (= ra_cfg Application Event
» [script
4% configuration.xml Init Dialog
= Graphics_App_EK_RABM3G Debug.jlink Forecast:MON
| Graphics_App_EK_RABM3G Debug.launch ForecastTHU
) RTFABM3AH3CFC pincfg HETECe T
) ra_cfgoa Furemst.MUN
el . Target Temp:71
=] RABM3G-EK.pincfg Target Temp:72
» (2) Developer Assistance Init Dialog

ForecastFRI
Target Ternp:73

Logging Panel

Figure 5. Screenshot of the Graphics Application

Weather Panel This is the first screen that appears on the kit on boot up. It shows Weather forecasts
by selecting days or increase/decrease Temperature.
This panel shows events that occur in the Weather Panel, adjusts LCD backlight,

or text color and background color of the Logging Editor.

Logging Panel

3. AppWizard Overview

This section provides an overview of how graphical screens are designed and integrated into an FSP
application using the AppWizard and emWin library. It is not meant as a replacement for the AppWizard or
emWin documentation. When designing graphical interfaces for the Renesas FSP platform, you are
encouraged to refer to the documentation for the AppWizard and emWin library.

The AppWizard presents a graphical point and click environment that allows you to quickly create all the
screens needed for your embedded application. You can specify the screen resolution, color depth, and
various other parameters such that what you see in the AppWizard that is running on your PC is what you will
get on your embedded screens.

The AppWizard comes as a standard with some fonts and basic graphics for interfaces such as image, text,
button, rotary, slider, and so forth. During your screen creation phase, you may provide the AppWizard with
your own external images and font files to make your displays as fancy as needed.

R11AN0463EU0220 Rev.2.20
May.20.24

Re Page 7 of 39
RENESAS

Renesas RA Family Getting Started with the Graphics Application

AppWizard V1.42_6.36 - AppWizard - & “

File Edit Project Resource Help
Add objects Properties

Id ID_IMAGE_SUNN'

E[['Jh,.‘ = - z - e Position: 0
A/ w |

Screen Box Bution
[THERMOSTAT

Abc e=(p @ 2 65°F

Text Slider Rotary

[JEHE

Multiedit Window

Top: Width:

Hierarchic tree 0 ¥ Right: 480

® | *

Object
¥ Screen ID_SCREEN_MAIN

3
-

NNANANNANNNNNNAN N

Emitter Signal Job a % Bottom: Height:
INITD... SETV. d T
INITD... SETV. G

... INITD... SETV... Set JPEG

ID_TEXT_

RRENT_DA.. o
.. INITD.

INITD... 8
. INITD... SETV...

INITD... SETV.

¥

[
=
5
E
£
R
15
r
£
r
L
r
| 5%
r
| %

AXXAXAXKAKX X AKX AXXX XXX

Figure 6. Screenshot of the Weather Panel being designed in the AppWizard

The organization of the AppWizard is straightforward. The top center window, known as the Editor window,
contains the screen being designed. On the upper left corner, you will find the Add objects window. This
window shows the supported window objects in the AppWizard. It allows you to click on the object icons, and
drag and place them in the Editor window. On the center left is Hierarchic tree window. The order in which
you add items in the same level/parent determines the order that they are drawn in the final screens, so some
planning is necessary. However, you still can change the order by using drag and drop or the Move Up and
Move Down buttons. As is the case with most graphical design environments, screens are laid out in a
hierarchy where the main window is usually the parent and all graphical objects contained in the window are
children of that parent. The Properties window on the right side displays properties associated with a selected
object. You may select objects from the Hierarchic tree window or from the Editor window.

The bottom left of the AppWizard screen contains Quick Access Buttons for managing resources such as
Texts, Fonts, Images, Animations and Variables you used to create and interact with the screens. AppWizard
supports multi-language designs as well.

The key to making any graphical design interactive is to associate events like button touches with the event
handling code that implements the appropriate functionality. The Interactions window on the bottom center
makes it easy for you to define the application’s behavior on certain actions. These interactions can be done
without any extra code, but AppWizard allows you to add your code to handle these actions and respond to
GUI events.

R11ANO463EU0220 Rev.2.20 Page 8 of 39
May.20.24 RENESAS

Renesas RA Family Getting Started with the Graphics Application

Emitter Signal Job Receiver Comment
ID_SCREEN_MAIN INITDIALOG SETVIS ID_IMAGE_SUN_PRI
] REEN_MAIN INITDIA SETVIS ID_IMAGE_SUN
CREEN_MAIN INITDIALOG SETVIS ID_IMAGE_MON_|
INITDIALOG SETVIS 1D_IMAGE_MON
SETVIS ID_IMAGE_TUE_|
SCREEN_MAIN O SETVIS ID_IMAGE_TUE
REEN_MAIN SETVIS
INITDIALOG SETVIS ID_IMAGE_WED
INITDIALOG SETVIS ID_IMAGE_THU_PRESSED
SETVIS
SCREEN_MAIN O SETVIS
REEN_MAIN SETVIS
SCREEN_MAIN SETVIS
SCREEN_MAIN SETVIS
REEN_MAIN SETVALUE
ID_VAR_TIME_UPDATE G Update time when this changed
ID_VAR_TARGET_TEMP SETVALUE _ _ _ Set Them t Target temp
ID_BUTTON_TEMP_UP ADDVALUE ID_VAR_TARGET_TEMP Increase Thermostat target temp
DDVALUE ID_VAR_TA| T_TEMP Reduce Then
SETVIS
SETVIS ID_IMAGE_SUN_PRESSED
OUD_M...

M e e e e

m

W oww W B

RELEASED
RELEASED

)

[

ANIM
RELEASED SETVIS
RELEASED SETVIS

SETVIS

SETVIS

++/‘

AATHTLETETLALTHTLLLLTLLRALLLRALRLLLVURLVLNOUNNNNNNN NN S

AXKAAKMAUAAXMM AKX AMAHAXARKAHAAAXRAAHAXAXAAAHAXARKAANAAANX
—— 1 r-/ r——"°r——"—"—""/"7°r———/° r—/1

RELEASED SETVIS
RELEASED SETVIS
CKED SETVIS £
SETVIS ID_IMAGE_
SE ID_IMAGE_ANIM
RELEASED SETVIS ID_IMAGE_WED
RELEASED SETVIS ID_IMAGE_WED_PRESSED
SETVIS ID_IMAGE_THU
SETVIS ID_IMAGE_THU_PRESSED
ID_BUTTON_THU SE OUD_M...
»
Figure 7. AppW.izard Interactions Window
R11ANO0463EU0220 Rev.2.20 Page 9 of 39

May.20.24 RENESAS

Renesas RA Family Getting Started with the Graphics Application

3.1 Create New Project Using the AppWizard

The Create New Project dialog box is as shown in Figure 8. This dialog box is where you specify the project
specific information such as the basic display settings as well as the path information for where AppWizard
locates the files that result from the Export & Save process. The AppWizard also generates a simulation
project in the folder \Simulation located in the project folder.

When you perform Export & Save, the AppWizard creates .c and _h files that contain all the information
necessary to render the screens you built with AppWizard on the LCD in your embedded application. The
Project Path is where you specify the default output directory for the Source, Header, and Resource files.

E Create new project X

Project
Project path: 3eu0210-fsp-graphics-app\Graphics_App_EK_RAGM3G\AppWizard Browse

Project name: AppWizard

BSP
Selected BSP: RAGM3G_EZ2S Select BSP |

Color scheme and display options
Disp X

Display size y:
Color format:

Enable Multibuffering:

xt from SD-card:
Show missing characters:
Enable bi-directional text:

Enable Thai support:

Focus
Enable focus s

Select foc

Animations
Minimum time per frame:

Scroller
Enable scroller support:

Simulation
Enable simulation:

Stay alive loop

/ devices:

Run script
Script to be executed after export:

Cancel

Figure 8. Create New Project Dialog Box

It is a good practice to save the Source, Header, and Resource files relative to the e? studio location. This
makes it easy to move projects from one location to another or from one PC to another. In the case of the
graphics application, you can see that all the directories are located under the AppWizard folder in the project
directory created by e? studio. We recommend creating the e2 studio project first, then creating the AppWizard
folder as an e? studio source folder before creating an AppWizard project named AppWizard under the e?
studio project folder.

R11ANO463EU0220 Rev.2.20 Page 10 of 39
May.20.24 RENESAS

Renesas RA Family Getting Started with the Graphics Application

After generating the AppWizard, you should exclude the Simulation and Target folders from Build before
building the e? studio project. All the necessary library and header files for the target board are generated after
you finish adding the emWin stack to your e2? studio project.

~ 1= Graphics_App_EK_RA6M3G [Debug]
it Includes
w B AppWizard
[== Resource
[= Source
@ Simulation
(2% Target
AppWizard AppWizard
|=| FileList.txt
2 ra
i ra_gen
2 src
[= ra_cfg
[= script
fia:g cenfiguration.xml
Graphics_App_EK_RABM3G Debug,jlink
Graphics_App_EK_RAEBM3G Debug.aunch
R7FABM3IAHICFC pincfg
ra_cfg.tat
|| RABM3G-EK.pincfg
{?) Developer Assistance

1IF ['III' ['|||' ['|||' ['|||'

Figure 9. AppWizard Project File View in the Graphics Application Folder

Go to Project > Properties > C/C++ Build > Settings > GNU ARM Cross C Compiler > Includes to add the
newly created AppWizard folder and its subfolders to the e2 studio project include path as shown in Figure 10.

Add directory path >

Directory:

| “Sworkspace_loc/S{ProjMame}l/AppWizard}"

[]i&dd subdirectories

Cancel Waorkspace.., File systerm...

Figure 10. Adding the AppWizard Folder to the e? studio Project Include Path

R11ANO463EU0220 Rev.2.20 Page 11 of 39
May.20.24 RENESAS

Renesas RA Family Getting Started with the Graphics Application

3.2 Design Weather Panel Buttons Using AppWizard

The AppWizard User Manual and Quick Start Guide cover basic designs. The Weather Panel buttons, on the
other hand, are more complex and are the target of this application note. These buttons are grouped in a
Window widget that includes multiple objects. For example, the window ID_WINDOW_SUN consists of:

e ID_WINDOW_SUN
— Window widget. The place holder to group the other widgets.

e ID_MAGE_SUN_PRESSED
— Image widget. Visible when the ID_BUTTON_SUN pressed, invisible when the ID_BUTTON_SUN

released. Set bitmap using bottom_button_trans_pressed.png.

W Set bitmap

P Enable tiling

Figure 11. ID_MAGE_SUN_PRESSED Bitmap Setting

e ID_IMAGE_SUN
— Image widget. Invisible when the ID_BUTTON_SUN is pressed, visible when the ID_BUTTON_SUN

released. Set bitmap using bottom_button_trans.png.

¥ Set bitmap

P Enable tiling

Figure 12. ID_MAGE_SUN Bitmap Setting

e ID_IMAGE_SUNNY_SUN
— Image widget. Sunny icon. Set bitmap using icon_sunny.png.

¥ Set bitmap

P Enable tiling

Figure 13. ID_IMAGE_SUNNY_SUN Bitmap Setting

e |ID_TEXT_SUN
— Text widget. The “SUN" text.
e ID_TEXT_SUN_RANGE
— Text widget. Shows temperature range.
e ID_BUTTON_SUN
— Button widget. A transparent button without a bitmap image, placed on top of the other widgets. Some
AppWizard interaction setups must be in place to create button pressed/release impression.

R11ANO463EU0220 Rev.2.20 Page 12 of 39
May.20.24 RENESAS

Renesas RA Family Getting Started with the Graphics Application

THERMOSTAT

i;

& (FTEE

Figure 14. Design of the SUN Button Group

3.3 Setup AppWizard Interactions

Set the following interaction for the ID_BUTTON_SUN to create the button pressed/release as mentioned
earlier in the Weather Panel Button Design section:

e The ID_IMAGE_SUN widget is invisible, toggling from visible to invisible when the transparent

ID_BUTTON_SUN pressed.

e The ID_IMAGE_SUN widget is visible, toggling from invisible to visible when the transparent
ID_BUTTON_SUN released.

Toggle v
Slot: |D_SCREEN_MAIN_ID_BUTTON_SUN_WM_NOTIFICATION_CLICKED__ID_IMAGE_SUN__APPW_JOBE_SETVIS

Code: Edit code

Figure 15. ID_BUTTON_SUN Interaction When Clicked

I ID_BUT TON_SUN RELEASED SETVIS ID_IMAGE_SUN
L Ip_BUTTON_SUN RELEASED SETVIS ID_IMAGE_SUN_PRESSED

Toggle
EEN_MAIN__ID_BUT TON_SUN_WM_MNOTIFICATION_RELEASED__ID_IMAGE_SUN_PRESSED__APPW_JOB_SETVIS

Code: |$ |

| Cancel - |

CRXHKAXAKAEAAAX
R ST S o S S S

Figure 16. ID_BUTTON_SUN Interaction When Released

R11ANO463EU0220 Rev.2.20 Page 13 of 39
May.20.24 RENESAS

Renesas RA Family Getting Started with the Graphics Application

3.4 Add emWin Widget to AppWizard Project

You may need to use an emWin widget that is not yet supported by the AppWizard or need to create one in
your custom code. The AppWizard allows that capability via the emWin API calls.

The Logging Panel in this graphics application features a Logging dialog created by using the Multiline Text
widget.

The steps to add an emWin widget to AppWizard project are as follows:
e Create an emWin widget by using emWin APIs in the slot routine for the AppWizard screen in the

CustomCode folder.

¢ Handle GUI events/message if needed via slot routines in the file <ScreenlD > _Slots.c located in the
\AppWizard\Source\CustomCode folder.

e Figure 17 shows the function that creates the Multiline Text widget by using MULTIEDIT_CreateEx API
and other APIs.

griwltiEdit = MULTIEDIT Create€x(1l, 93, 212, 170, pMsg->hWin, WM_CF_SHOM,

MULTIEDIT CF_AUTOSCROLLBAR v | MULTIEOIT CE_READONLY, GUI_ID MULTIEDITE, 16, MULL);
if{ghMultifdit)

MULTIEDIT_SetBkColor(ghMuleiEdie, MULTIEDIT_CI_READOWLY, GUI_CUSTOM_COLOR);
MULTIEDIT_Setwraphord(ghrultiEdit);

MULTIEDIT_SetMaxbusChars (ghtultiEdit, LOG_CHAR Max);

MULTIEDIT SetTextColor(ghMultiEdit, MULTIEDIT CI_READONLY, GUI_WHITE);

v 2 AppWizard | #include “Application.h™
& Resource 18 #include "../Generated/Resource.h”
~ (= Source 19 #include "../Generated/ID SCREEN_LOG.h"
w (2= CustomCode Ee _) B
_— 21 ® /*** Begin of user code area **=/f
] Application.c o
b Application.h B Public codel]
\.c| ID_SCREEN_LOG_ Slots.c 32 & cbID_SCREEN_LOG
.| ID_SCREEN_MAIN_Slots.c 34 = void cbID_SCREEN_LOG(WM_MESSAGE * pMsg) {
.£] Log_Panel_Widget.c : - Lustom code °
c] Weather_Panel_Widget.c cuschID SCREEN_LOG(pMsg);
= Generated 4

Figure 17. Adding Multiline Text Widget to AppWizard Application by using emWin APIs
4. Understanding the Graphics Application

While the HMI is certainly a large part of understanding any HMI application, there are many other areas that
you must understand while developing with the Renesas FSP applications. These include how the project is
physically structured in e2 studio, how threads and thread resources are added to the project, how threads

communicate, the state machine design, and how state data is shared among cooperating threads, and
especially emWin thread.

4.1 Source Code Layout

Prior to diving into the actual application code, it is best to first understand the overall source code layout of
an FSP project. Renesas FSP applications generally consist of two different types of code, your code, and
auto-generated code. The auto-generated code can be further broken down into two sub-categories, code that
is auto-generated by the FSP, and code that is auto-generated by AppWizard.

R11ANO463EU0220 Rev.2.20 Page 14 of 39
May.20.24 RENESAS

Renesas RA Family Getting Started with the Graphics Application

v (= Resource
(= Font
(= Image
= Text

v = Source

w (= CustomCode
lc] Application.c
ln Application.h
lc] ID_SCREEN_LOG_Slots.c
l€] ID_SCREEN_MAIN_Slots.c
lc| Log_Panel_Widget.c

v 1% Graphics_App_EK_RA6M3G [Debug]

&J. Includes
v (2 AppWizard
(= Resource

"j ?ourl:le . L] Weather_Panel_Widget.c
(> Simulation

'Z‘/: :I_1_| _3 . v = Generated

\=» Target , T APPWCont.c
AppWizard. AppWizard

B Appyeas _“g ID_SCREEN_LOG.c
i ID_SCREEN_LOG.h
& ra £€| ID_SCREEN_MAIN.c
5 ra_ge [n ID_SCREEN_MAIM.h

€S sre L€] Resource.c
= ra__cfg \h| Resource.h
& scrpt [§) APPW_MainTask.c
52 configuration.xml
|=| Graphics_App_EK_RABM3G Debug.jlink v [ra_gen
\=| Graphics_App_EK_RABM3G Debug.launch [bsp_clock_cfg.h
= R7FABM3AH3CFC. pincfg [€ common_data.c
2| ra_cfg.bt [n common_data.h
|=| RABM3G-EK.pincfg [€ emWin_thread.c
(7) Developer Assistance [emWin_thread.h
[g] hal_data.c
[5] hal_data.h
L] main.c
[£] pin_data.c
[timer_thread.c
[H] timer_thread.h

€] touch_thread.c
[B touch_thread.h
[g] vector_data.c
[vector_data.h

Figure 18. Graphics Application Project Source File Layout

Figure 18 above shows the source code layout for the EK-RA6M3G board. FSP auto-generated code is in the
ra_gen folder, AppWizard auto-generated code is highlighted in the Generated folder, and the code you
generated is in the CustomCode folder.

Your generated code /AppWizard/Source/CustomCode is mainly for HMI event handling. Your code in the
/src folder is related to MCU peripherals and other functionalities.

R11ANO463EU0220 Rev.2.20 Page 15 of 39
May.20.24 RENESAS

Renesas RA Family Getting Started with the Graphics Application

4.2 Application Block Diagram

As mentioned, the graphics application consists of two panels, the Weather Panel and the Logging Panel.
The two application panels interface with the graphics framework through interaction such as touch events,
and data (variables) changes. It communicates with FSP and HAL drivers to send and receive touch sensing
data, GPT PWM duty cycle, and RTC date and time.

The graphics framework includes the SEGGER AppWizard framework, emWin library, emWin RA port, and
interfaces with several HAL drivers such as GLCDC, JPEG CODEC, and D/AVE 2D. Figure 19 shows the
application diagram.

Graphics Application

Weather Panel

Logging Panel

Interactions

¥

Graphics Framework

SEGGER AppWizard/emWin

FreeRTOS SEGGER emWin RA Port

ry

Touch sensor/PWM Control/Date, Time

Renesas Flexible Software Package (FSP)/HAL

i
|
M GLcDC IPEG D/AVE 2D 12C/Touch m
|
|
|

Renesas RA6M3 MCU

Figure 19. Application Block Diagram

R11ANO463EU0220 Rev.2.20 Page 16 of 39
May.20.24 RENESAS

Renesas RA Family Getting Started with the Graphics Application

4.3 Thread Overview

As mentioned in the introduction, the graphics application is a multi-threaded application, running under
FreeRTOS. There are two types of threads found in an FSP application, those created by you, and those
created automatically to support operation of FSP. While it is obvious as to what threads you created, it is not
always obvious as to what threads are created by FSP. The graphics application uses both user-created
threads and FSP threads. Threads communicate through the emWin type events using AppWizard and emWin
APIs. The emWin thread processes data and touch events that are sent by the Touch thread and Timer thread.
The FSP Configuration section details how to add your threads to your application. Figure 20 shows a high-
level diagram of the threads and event flow in the graphics application. Notice the distinction between your
threads and FSP threads.

User

<Thread> [Function] -

Initializes

emWin
Thread

Initializes

GUI Events

emWin Events
Executes

Touch
Thread

/ Timer \
\ Thread /

Custom Event

Handlers

Figure 20. Graphics Application Event Flow

4.3.1 emWin Thread

The emWin thread is an HMI thread that initializes various services and resources used by the graphics
application. Once this initialization is complete, the emWin thread processes touch events and window
messages. If any of these inputs result in a change to the system state, the emWin invokes the AppWizard
Slot routines, which are the callback routines, resulting in changes to the graphical HMI. The flowchart in Figure
21 gives the high-level view of the emWin Thread.

Setup AppWizard
Data, Resources

Initialize emWin
Internal Data,

Create Initial
Screen
~.

< >

(" Execute one job if any h

(Typically redrawing a
window)

p

Process Messages

vy

Figure 21. High-Level View of the emWin Thread

R11AN0463EU0220 Rev.2.20
May.20.24

RENESAS

Page 17 of 39

Renesas RA Family Getting Started with the Graphics Application

4.3.2 Touch Thread

A separate touch thread is created to read the touch sensor data. The touch sensor IC signals an event, such
as a user interaction on the LCD screen, by toggling a pin connected to the MCU. In response, the touch thread
reads the information from the touch sensor IC registers. Figure 21 shows the flowchart of the touch thread.

Initialize Touch
Driver
y
\
Initialize External Wait for Touch External
IRQ, IRQ

h

Read Touch Sensing
Data

3

Send touch Sensing
Data to emWin Thread

Figure 22. Touch Thread Flowchart
5. FSP Configuration

One of the first things you must do when writing an FSP application is to configure the FSP. To properly
configure the FSP, you must have detailed knowledge of both the software design that you will be implementing
along with the specific hardware it will be running on. For the hardware, this includes the types of peripherals
to be used on the hardware, the pins they are mapped to, if they are internal or external to the MCU, and so
on. From the software perspective, you need to decide how many threads will be used, which threads need
access to what hardware components, and what additional software objects like semaphores and queues, that
each thread will require. Once you have this information, you will be ready to successfully configure the FSP
for your specific application needs.

In the graphics application, the FSP configuration is stored in a file named configuration.xml. Double-
clicking on this file brings up the RA Configuration tab for the project.

w = Graphics_App_EK_RABM3G

[Includes

2 AppWizard

2 ra

2 =rc

[= script

io% configuration.ml

=| Graphics_App_EK_RAEM3G Debug.jlink
=| Graphics_App_EK_RAEM3G Debug.launch
= R7FABM3IAHICFC. pincfg

= ra_cfg.bd

=| RAEM3G-EK.pincfy

(7) Developer Assistance

Figure 23. configuration.xml on the Project Plane

R11ANO463EU0220 Rev.2.20 Page 18 of 39
May.20.24 RENESAS

Renesas RA Family Getting Started with the Graphics Application

When a project is built from scratch, this configuration tab is where you will perform the initial configuration of
the FSP. As you can see in Figure 24, the RA Configuration pane contains a Summary tab highlighting the
items you may configure along with a scrolling window that lists all the software components currently selected
for this project. Below this scrolling window are tabs that allow you to tailor the FSP to the needs of your specific
application.

For the purposes of this application note, we will highlight a few of the details of the FSP configuration such as
SEGGER emWin, the r_glcdc driver, touch controller, and PWM timer as they pertain to the graphics
application. For additional details, refer to the Renesas Flexible Software Package (FSP) User's Manual on
how to configure the FSP.

When you have configured the project appropriately, click the Generate Project Content, the green arrow
button above the summary screen, to build all the auto-generated files necessary to implement the components
you defined.

0
Summary Generate Project Content
Project Summary A
Board: EK-RAGM3G RENESAS
Device: R7FAEM3AH3CFC
Toolchain: GCC ARM Embedded
Toolchain Version: 13.2.1.arm-13-7
FSP Version: 5.2.0
Project Type: Flat
Location: C:/IFSP_GIT/ra-solutions-rvc/appli.../r11an0463/Graphics_App_EK_RABM3G -
Selected software components
FreeRTOS v10.6.1+fsp.5.2.0
FreeRTOS - Memory Management - Heap 4 v10.6.1+fsp.5.2.0
SEGGER emWin Library v6.36.0+fsp.5.2.0
Board support package for RTFABM3AH3CFC v5.2.0
Board support package for RABM3 v5.2.0
Board support package for RA6M3 - FSP Data v5.2.0
Board support package for RABM3 - Events v5.2.0
Arm CMSIS Version 5 - Core (M) v5.9.0+renesas.1.fsp.5.2.0
RABM3G-EK Board Support Files v5.2.0
TES DAVE 2D Drawing Engine v3.8.0+fsp.5.2.0
Board Support Package Common Files v5.2.0
TES D/AVE 2D Port v52.0
Data Transfer Controller v5.2.0
Graphics LCD Contraller v5.2.0
General PWM Timer v5.2.0
External Interrupt v5.2.0 v

Q=0

Summa[z BSP Clocks Pins | Interrupts| Event Links | Stacks Components

Figure 24. Summary of the Graphics Application Configuration

5.1 Components Tab

Even though the Components tab is the last tab showing, it is one of the first things you should configure.
Selecting components first makes them available in subsequent operations such as mapping hardware
resources to specific threads in the Stacks tab. One of the advantages of FSP is that it will only compile in the
components you choose, thereby reducing the size of your overall application. As shown in Figure 25,
components are broken down into several categories.

R11ANO463EU0220 Rev.2.20 Page 19 of 39
May.20.24 RENESAS

Renesas RA Family

Getting Started with the Graphics Application

Components Configuration

-k

Component

v

v o

Arm

@ Abstractions
% CMSIS

&% mbed

% Mbed

o PSA

o AWS

@ Abstractions
& c_sdk

&% FreeRTOS

@% FreeRTOS_Plus

v % Heaps

¥ FreeRTOS
@ Libraries

v % RTOS

v ¥ FreeRTOS
v all
= an

all

Version

10.6.1+f5p.5.20
10.6.1+f5p.5.1.0
10.6.1+fsp.5.2.0.rc 0

o

Generate Project Content
Group by: Vendor ~ Filter: All ~ ‘Search

Description Variant A

FreeRTOS
FreeRTOS
FreeRTOS

o Intel

v Linaro

1 Microsoft

an Renesas
v o SEGGER

~ ¥ GUI

v @ all
¥ emWin

6.36.0+f5p.5.2.0

Summary BSP Clocks Pins | Interrupts | Event Links Stacks Components

SEGGER emWin Library

Figure 25. Components Tab Categories

You may expand any of the categories by clicking the arrow to the left of the category name.

The following table highlights the selections used for the graphics application.

Table 2. Components Used in the Graphics Application

Category Component Version Description
BSP raém3g_ek 5.2.0 RAB6M3G-EK Board Support Package
Files
CMSIS CoreM 5.9.0+fsp.5.2.0 Arm CMSIS Version 5 - Core (M)
Common fsp_common 5.2.0 Board Support Package Common Files
GUI emWin 6.36.0+fsp5.2.0 SEGGER emWin Library
HAL r_drw 5.2.0 TES D/AVE 2D Port
Drivers r_dtc 5.2.0 Data Transfer Controller
r_glcdc 5.2.0 Graphics LCD Controller
r_icu 5.2.0 External Interrupt
r_iic_master 5.2.0 I2C Master Interface
r_ioport 5.2.0 I/O Port
r_jpeg 5.2.0 JPEG Codec
r_rtc 5.2.0 Real Time Clock
Heaps heap_4 10.6.1+fsp.5.2.0 FreeRTOS - Memory Management —
Heap 4
Middleware | rm_emwin_port | 5.2.0 SEGGER emWin RA Port
RTOS FreeRTOS 10.6.1+fsp.5.2.0 FreeRTOS
TES dave2d 3.8.0+fsp.5.2.0 TES DAVE 2D Drawing Engine

5.2 Stacks Tab

The Stacks tab is where you can add and configure the threads that the FSP automatically creates for your

application. You define a new thread by clicking the x

button and then entering a unique name for your new

R11AN0463EU0220 Rev.2.20

May.20.24

RENESAS

Page 20 of 39

Renesas RA Family Getting Started with the Graphics Application

thread. Once you add a new thread, you must define the modules that the thread will use along with any thread
objects that will be used by your thread.

As an example, if you click the Threads panel and then single click on the emWin Thread, you should see
something like the screen capture shown in Figure 26. This shows that the emWin thread requires multiple
modules, for example, the GLCDC driver which is used to control the LCD screen on the Graphics expansion

board of the EK-RA6M3G Kit.

A [Graphics_App_EK_RAGBM3G] FSP Configuration

Stacks Configuration

Threads 4] New Thread #Remaove =

w -':? HAL/Commaon
4 g _ioport 170 Port ir_ioport)
¥ i emWin Thread
47 SEGGER emWin
4 FreeRTOS Heap 4
v @ Touch Thread
4% g_touch_irq External IRQ (r_icu)
& g_i2c_touch 12C Master (r_iic_master)
v @ Timer Thread
4 g_rte_timer Realtime Clack (r_rtc)
& g_timer_PWM Timer, General PWM (r_gpt)

Objects

@ g_touch_semaphore Binary Semaphore

% | New Object > %

® g_i2c_semaphore Binary Semaphore

emWin Thread Stacks

=gl
o

Generate Project Content

% | New Stack >

4 SEGGER emWin

)]

& FreerTos Heap 4

()]

A
1

®©

47 SEGGER emWin RA Port {rm_emwin_port)

A

4 g_display0 Graphics LCD
(r_gledc)

®

4% D/AVE 2D Port Interface
(r_drw)

®

4 g jpect JPEG Codec
(r_jpeq)

®

4 D/AVE 2D (r_drw)

@ g_timer_semaphore Binary Semaphore

@

Summary BSP Clocks Pins Interrupts EventLinks Stacks Components
. 2 T™ Froperties > | } 15
=L Problems Console | Properties Smart Browser ~ Smart Manual % Debug

emWin Thread
Settings Property Value
~ Commaon
General
Hooks
Stats
Memary Allocation
Timers
Optional Functions
RA
Logging
~ Thread
Symbaol emWin_thread
Name emWin Thread
Stack size [bytes) 2048
Pricrity 1
Thread Context MULL
Memory Allocation Static
Allocate Secure Context Enable

Figure 26. emWin Thread Properties and Modules Used for the Graphics Application

You can add additional modules to any thread by clicking the “ putton. If you have chosen the appropriate
components prior to adding modules to your threads, you should not receive any errors. As an example, Figure
27 shows you how to add a GPT timer to the Timer Thread. The timer is added by choosing (+) New Stack >
Timers > Timer, General PWM (r_gpt)

If you have not preselected the appropriate component for a module that you select, the FSP automatically
selects the component for you. If the FSP detects errors with the module addition, it prefaces the module with
an error. You may examine the errors by hovering over the module name.

R11AN0463EU0220 Rev.2.20
May.20.24

Re Page 21 of 39
KENESAS

Renesas RA Family

Getting Started with the Graphics Application

5 [Graphics_App_EK_RABM3IG] FSP Configuration

= L rreral
O | g% Qutline > | g Doc

Stacks Configuration e —— There is no active edito
Threads % | Mew Thread ®|Remove = SEGGER emWin Stacks &) Mow l:;:rlf -
~ m HAL/Common A -
4 g_ioport 10 Port {r_iopert) % SEGGER emin :::g X
v @ emWin Thread Bootloader 2
47 SEGGER emWin ® CapTouch :
4 FreeRTOS Heap 4 e Connectivity »
w [Touch Thread 1 Dse 2
42 5 touch i External IRO (F icul » 4% SEGGER emWin RA Port (rm_emwin_port) Graphics 3
< > Input &
Manitoring 2
Objects % | New Object > ®_ Remave 6] Mator »
® g_touch_semaphore Binary Semaphore T T T l:-lp:lw\:t:mng ’
® g_i2¢_semaphore Binary Semaphore 4 g_displayd Graphics LCD | | @ D/AVE 2D Port Interface | | # g joeg0 JPEG Codec RTOS
@ g_timer_semaphore Binary Semaphore {r_glede) (r_drw) (ripeg) Security
Sensor
@ @ @ Storage
1 System >
4 D/AVE 2D {r_drw) Timers 2 4 Port Output Enable for GPT ir_poeg)
Transfer > 4 Realtime Clock (r_rtc)
¥ Search 4 Three-Phase PWM (r_gpt_three_phase)
@ 4 Timer, General PWM (r_gpt)
& Timer, Low-Power (1_agt)

Summary | BSP Clocks Pins Interrupts Event Links Stacks Components

Figure 27. Adding r_gpt driver

5.3 Thread Objects

FreeRTOS supports various objects such as mutexes, queues, semaphores, and timers. In the Objects
window, you will see that there are three semaphore objects, g_touch_semaphore, g_i2c_semaphore,
g_timer_semaphore created for this application.

You can allocate additional thread objects by clicking on the “. button next to the Objects window. As you

can see in Figure 28, after clicking the button *1in the Objects window, you are presented with a drop-down

list that allows you to add the standard thread objects supported by FreeRTOS.

Objects 4] New O @ Binary Semaphore
@ g_touch_semaphore Binary Semaphore @ Counting Semaphore
@ g_i2c_semaphore Binary Semaphore @ Event Group
@ g_timer_semaphore Binary Semaphore ® Message Buffer

& Mutex
& Queue
& Streamn Buffer
& Timer
[
Summary | B5P | Clecks | Pins | Interrupts | Event Links | Stacks | Components

Figure 28. Objects window

R11AN0463EU0220 Rev.2.20
May.20.24

Re Page 22 of 39
KENESAS

Renesas RA Family Getting Started with the Graphics Application

Objects % | New Object > # | Remove

@ g_touch_semaphore Binary Semaphore
@ g_i2c_semaphore Binary Semaphore
@ g_timer_semaphore Binary Semaphore

Summary | BSP | Clocks | Pins | Interrupts | Event Links | Stacks Components
[£ Problems & Console [] Properties > | &% Smart Browser L) Smart Manual Debug

g_touch_semaphore Binary Semaphore

Settings Property Value
Symbol g_touch_semaphore
Memory Allocation Static

Figure 29. g touch_semaphore Properties

5.4 Module Configuration

Once you have added a module to your project, you need to configure its properties. The properties are
dependent on the module(s) that you have added. Use the Properties tab to configure them. The graphics
application adds the r_glcd driver module as part of SEGGER emWin stack. This module is used to configure
the GLCDC peripheral of the Renesas RA6M3 MCU.

5.4.1 GLCDC Configuration

As you can see in Figure 30, selecting the g_display0 Graphics LCD on the g_glcdc module under the
emWin Thread > Modules tab brings up the associated properties under the Properties tab. The first thing
you will notice is that it is a lengthy list of properties within the module group. The module group is where you
configure the GLCDC controller. These properties can be a bit daunting at first but can be broken down. First,
you will notice a few broad categories inside the module grouping.

Name: The name given to this instance of the module g_display0 by default.

Interrupts: You set the Line Detect interrupt and other interrupts here.

Input: This block of module properties defines the input to the graphics controller, most notably, the
framebuffer name and the number of the framebuffers, the memory address where the frame buffer is
located, and others.

Output: This is the area where you define the output properties of the GLCD. This includes properties such
as the total horizontal and video cycles, the active video cycles, both horizontal and vertical, front and back
porch duration, and so on.

TCON: You use these lines in conjunction with the Pins tab, to map the Horizontal Sync (Hsync), Vertical
Sync (Vsync), and Data Enable signals. You can specify the LCD Panel clock divisor that divides the clock
input to the GCLD. This divisor ratio currently ranges from 1/1 to 1/32.

Color Correction: This is where you can add various levels of color correction, for example, brightness,
contrast, and gamma, to your display. Color, contrast, and gamma correction of LCD screens are outside
the scope of this application note, but this is the area where you would do that type of adjustment.

R11ANO463EU0220 Rev.2.20 Page 23 of 39
May.20.24 RENESAS

Renesas RA Family Getting Started with the Graphics Application

Stacks Configuration

Threads % | New Thread % | Remove |- SEGGER emWin Stacks

v g HAL/Common

& g_ioport /O Port (r_ioport)
v & emWin Thread

47 SEGGER emWin ®

4 FreerRTOS Heap 4 i
v & Touch Thread I

49 g touch_irq External IRQ (r_icu) 4 SEGGER emWin RA Port (rm_emwin_port)

47 SEGGER emWin

$ g_i2e_touch 12C Master (r_iic_master)
v & Timer Thread

@

& g_rtc_timer Realtime Clock {r_rtc)
P g_timer_PWM Timer, General PWM (r_gpt)

A

L I [
“i= g_display0 Graphics LCD 4 D/AVE 2D Port Interface @ g_jpegl IPEG Codec
(r_gledc) (r_drw) (r_jpeg)
Objects % | New Object > #] Remove ® @ @
Y]

® g_touch_semaphore Binary Semaphare I

® g_i2c_semaphore Binary Semaphore & D/AVE 2D (r_drw)

@ g_timer_semaphore Binary Semaphore

6]

Summary BSP Clocks Pins Interrupts Event Links | Stacks Components

[£] Problems B consale @ smart Browser L) smart Manual| 35 Debug

g_display0 Graphics LCD (r_glcdc)

Settings Property Value
ARl ¥ Common
nfo)
Parameter Checking Default (B5P)
Color Correction Off

~ Module g_display0 Graphics LCD (r_glcdc)
General
Interrupts
Input
Qutput
CLUT
TCON
Color Carrection
Dithering

Pins

Figure 30. GLCD Properties Configuration using the Properties Tab

5.4.2 TCON Configuration

If you scroll down a little further in the Properties tab, you will see four TCON properties. One of these is
associated with the Panel clock division ratio. This allows additional division of the pixel clock that is driven
directly from the PLLOUT branch of the clock tree. The other three are associated with the LCD sync signals.
These three signals can be confusing to new users, so how these signals map to the physical pins they are
connected to, is discussed here.

w TCOM
Hsync pin select LCD_TCOMND
Ysynec pin select LCD_TCONT
Data enable (DE) pin select LCD_TCOMZ
Panel clock source Internal clock (GLCDMCLE])
Panel clock division ratio 1724

Figure 31. TCON Configuration for EK-RA6M3G Kit

To provide flexibility, the GLCD controller of the RA6M3 MCU provides two pin grouping options. Each option
uses different pins on the MCU to drive the data lines connected to the LCD display. It is up to the hardware
designer to pick the group of pins they want to use. Picking one or the other may free up MCU pins that are
necessary in some other part of the hardware design.

R11ANO463EU0220 Rev.2.20 Page 24 of 39
May.20.24 RENESAS

Renesas RA Family Getting Started with the Graphics Application

If you look at the schematics for the EK-RA6M3G kit, you can see the pins header for the LCD board. You will
also notice the three pins connected to the sync signals that are highlighted in red. The data lines chosen by
the hardware designer must match one of the two pin groupings available under the GLCD module.

LCD Module connected as Parallel RGB565 color depth.

71
1 2
[p1o4 DE | 3 :: 3 B0
P512/5CL0 SCL S ool Bl
DATA1 PI107 B4 [-4 I B3 P106 DATAO
DATA2 P600 B5 7 | ool 10 B2
DATA4 D602 |~ B 1| gal 12 B6 P601 DATA3
DATAS D610 G2 El 4L GO
DATA7 D608 Ga | ool 1t G3 P609 DATAG
DATA8 PIls G5 17 | o gl I8 Gl
DATA10 P113 G7 0 | ool 20 G6 Pl14 DATAS
P511/SDA? SDA 21 | o ol 22 i
DATA12 PIil R4 3 | ool 2 R3 P112 DATAII
DATA13 P301 RS 25 | o el 26 RO
DATA15 P303 |] 27 | o @l 28 R6 P302 DATA14
[FI02 HSYNC] 29 | o @] 20
51 | o @l 32 |[VSYNC PI03 | +3V3
RO EEH -4l HEE +5V
P304 RST 35 | o el 20
P101 CLK 7 | o@l 2t RO 206
P603 BLEN 30 | o @] 20

Figure 32. EK-RA6M3G LCD-Specific Signals from the Schematics

The easiest way to understand this is to go to the Pins tab in the RA Configuration. You will see selections for
Ports, Peripherals, and Other Pins, as shown in Figure 33. If you expand the Peripherals dialog, you will
see all the various MCU peripherals that can be configured from this screen.

If you scroll down to the Graphics:GLCDC entry and click to expand it, you will see two options GLCDO Pin
Group Selection A and GLCDO Pin Group Selection B. For the EK-RA6M3G kit, the GLCDO Pin Group
Selection A selected to drive the LCD display.

Notice that TCONO is associated with the Port 1 Pin 02 (P102). On the schematic (P102) we see that it is
connected to HSYNC, which is the horizontal synchronization pin for this LCD screen. Referring to Figure 31,
we see TCONO has been selected to drive the HSYNC signal.

R11ANO463EU0220 Rev.2.20 Page 25 of 39
May.20.24 RENESAS

Renesas RA Family

Getting Started with the Graphics Application

Pins Configuration

Select pin configuration

RABM3G-EK. pincfg e Generate data: | g_bsp_pin_cfg

Pin Selection Pin Configuration

typefiltertet | /7 | =)

v Ports
+ Peripherals
Other Pins

Summary |BSP | Clocks | Pins | Interrupts | Event Links | Stacks | Components

Generate Project Content

28 ~ 4l

Figure 33. Pin Configuration Tab

If you look at all the LCD data lines such as LCD_DATA DATAO0O, and the pins they are connected to, they
should match the pins they are connected to on the schematic. Clicking on the arrow to the right of the pin
brings you directly to the associated Pin Configuration dialog just as if you had selected the Ports Group,

and then the specific port and pin that you are interested in.

Pin Configuration

Select Pin Configuration [Export to CsV file 5] Configure Pin Driver Warnings

Generate Project Content

RAGM3G-EK pincfg | Manage 7 Generate data W‘
Riniseiection = 141 511% Pin Configuration 3 Cyce P Group
Type filter text Name Value Lock e -
v P7 Py Pin Group Selection _Aonly
7 P8 Operation Mode Custom
7 P3 ~ Input/Output) <D)
PA LCD_CLK v p101 & D
¥ PB LCD_DATAQO # P106 & =]
v ¢ Peripherals LCD_DATAO1 ¥ P107 &)
Monitoring:CAC LCD_DATAD2 PEOD & =)
7 Analog:ADC LCD_DATAD3 P01 & =
Analog ACMP LCD_DATAD4 P02 a7 >
AnalogDAC12 LCD_DATADS 7 P610 & =)
Connectivity:CAN LCD_DATAOG P609 5 =
¥ Connectivity: ETHERC LCD_DATAO7 ¥ P608 M =)
¥ Connectivity:IIC LCD_DATAOE < P15 m =)
¥ Connectivity:5C| LCD_DATAOY P114 of o)
¥ Connectivity:SPI LCD_DATA10 ‘P13 o =)
Connectivity:S5| LCD_DATAT1 7 P112 \u =)
¥ Connectivity:USBFS LCD_DATA12 P11 w)
Connectivity:USBHS LCD_DATA13 / p301 &)
Input:CTSU LCD_DATA14 v P302 & =3
¥ InputiRQ LCD_DATA1S ¥ p303 5 o
INpUtKINT LCD_DATATE None
v ¥ Graphics:GLCDC LCD_DATA1? None
GLEDCO LCD_DATA18 None
Graphics:PDC LCD_DATA19 None
¥ Storage:QSPI LCD DATA20 Nane
Storage:SDHI LCD_DATA21 None
System:BUS LCD_DATA22 None
¥ System:CGC LCD_DATAZ23 None]
7 System:DEBUG LCD_TCONO v P102 of N
¥ System:TRACE LCD_TCON1 v P103 & &
TimerAGT LCD_TCON2 ¥ P104 & =) .
" TimerGPT Module name: GLCDCO
Timer:OPS
Timer:POEG
Timer:RTC .

Pin Function | Pin Number

Summary | BSP Clocks Pins Interrupts Event Links| Stacks Components

Figure 34. LCD Pin Configuration Using Configurator

R11ANO463EU0220 Rev.2.20
May.20.24 RENESAS

Page 26 of 39

Renesas RA Family Getting Started with the Graphics Application

For example, clicking on this arrow to the right of the LCD_TCONO pin should bring you to the Pin Selection
Screen that looks like Figure 35. Notice that the pin is appropriately set to the Peripheral mode. At the time
of writing this application note, the pins default to no pull up, high drive capacity, and CMOS output type.
Clicking on the arrow button to the right of this screen brings you back to the associated peripheral screen.

Select Pin Configuration L Expert to CSVfile 5= Configure Pin Driver Warnings

RAGI3G-EK pincfg ~ | Manage [l Generate data: | g_bsp_pin_cg
Pin Selection i 4 =11% Pin Configuration ~Jdcycle Pin Group
Type filter text Name Value Link
o — " symbolic Mame
PO Comment.
vem Mode Peripheral mode
100 Pull up Mane
P01 Drive Capacity High
e B Qutput type cMos
03 ¥ Input/Output -
P104 P102 GLCDCO.LCD_TCONO =3
P105
Module name: P02
7 P106
P07 Port Capabilities: ADCO: ADTRG
AGTO: AGTO
:gg BUS0: D2_DQ2
. CANQ: CRX
P GLEDCD: LED_TCONO
Pm GPTZ: GTIOCB
7 P12 KINTO: KRM2
7 P113 OPS0: GTOWLO
P14 SCI0: SCK
p115 SPIO: RSPCK
P2
P3
P4
5
PG v
Pin Function | Pin Number

Summary BSP | Clocks Pins Interrupts Event Links Stacks Components

Figure 35. LCD_TCONO Settings in Pin Selection window

5.4.3 Touch Controller Configuration

The touch event on the LCD screen is sensed by the RA6M3 MCU external IRQ pin, and the touch sensor is
read via I12C master.

As shown in Figure 38, the interrupt signal of the Touch Controller on the LCD screen connected to P206 on
header J1 of the EK-RA6M3 board, which is MCU IRQ channel 0. The r_icu and r_iic_master drivers are
added to a Touch Thread to handle the IRQ channel 0 and I12C Master Channel 2, respectively.

(]

Stacks Configuration Generate Project Cantent

Threads % | New Thread % | Remove = Touch Thread Stacks 4 New Stack > = Extend Stack >] Remove

¥ = HAL/Commen
& g_iopert I/Q Port (r_iopary
~ & emWin Thread
49 SEGGER emWin o ®
42 FreeRTOS Heap 4 _
v & Touch Thread T T
 g_touch_irq External IRQ (r_icu)
 g_i2c_touch |2C Master (r_iic_master)

12 g touch_irg External IRQ : | # g_izc_touch 12C Master (r_iic_master)

(r_icu)

$ g_transfer0 Transfer
(r_dite) 11C2 TXI (Transmit

© g_transfer1 Transfer
(r_dte) IC2 RX| (Receive
data full)

®

data empty)

@

v @ Timer Thread

g_rtc_timer Realtime Clack (r_rtc)
$ g_timer_PWM Timer, General PWM (r_gpt)

Objects 4 New Object > | Remove
@ g_touch_semaphore Binary Semaphore
® g_i2c_semaphore Binary Semaphare

@ g_timer_semaphore Binary Semaphore

Summary | BSP | Clocks Pins | Interrupts Event Links Stacks Companents
[£! problems | & Console [Properties @4 Smart Browser - Smart Manual| 45 Debug
g_touch_irq External IRQ (r_icu)

Property value

~ Comman

Settings

APl Info

Parameter Checking Default (BSP)

~ Module g_touch_irq External IRQ (r_icu)

Name
Channel
Trigger

Digital Filtering

Digital Filtering Sample Clock (Only valid when Digital Filtering is Enabled)

Callback

Pin Interrupt Priofity
¥ Pins

IRQOD

g_touch_irg
0

Falling
Enabled
PCLK /64
touch_irq_cb
Priority 5

None

Figure 36. External Interrupt Configuration

R11AN0463EU0220 Rev.2.20

May.20.24

Page 27 of 39

RENESAS

Renesas RA Family

Getting Started with the Graphics Application

Stacks Configuration

Threads & New Thread ®) Remove

v i HAL/Common ~
47 g iopart /0 Port (r_iopert)
~ @ emWin Thread
& SEGGER emWin
4 FreeRTOS Heap 4
~) Touch Thread
g_touch_irg External IRQ (r_icu)
@ g i%c_towch 12€ Master (r_jic_master)

Touch Thread Stacks

& g_touch_irg External IRQ

tr_iew)

[0

A

L2 g_transferd Transfer
{r_dtc) NC2 TXI (Transmit

& g transfer] Transfer
{r_te) 1IC2 R [Receive

(+]

Generate Project Content

& New Stack > == Extend Stack > # | Remove

. e " data empty] data full)
@ nread @ ®
Objects 4| New Object » %] Remove
g touch_semaphore Binary Semaphore
® g i2c_semaphore Binary Semaphore
@ g_timer_semaphare Binary Semaphore
Summary BSF Clocks Pins Interrupts Event Links Stacks Components
[*7 probiems & Console T Froperties | @ Smart Srowser| < Smart Manual £ Debug
g_i2c_touch 12C Master (r_iic_master)
Settings ToPeMY Value
~ Common
el Parameter Checking Default (B5P)
DTC en Transmission and Reception Enabled
10-bit stave addressing Disabled
~ Medule g_i2c_touch 12C Master {r_iic_master)
Mame q_i2c_touch
Channel 2
Rate Fast-mode
Rise Time {ns) 120
Fall Time (ns) 120
Duty Cycle (%) 50
Shave Address O3
Address Mode T-Bit
Timeout Mode Short Mode
Timeout during SCL Law Enabled
Callback touch_i2c_callback
Interrupt Priority Level Priatity &
 Pins
SDA P51t
SCL P512
Figure 37. 12C Master Driver Configuration
LCD Module connected as Parallel RGB565 color depth.
1
1 . 2.
DE 3 o0 47~ B0
[Es1275c2 SCL] S1oglt Bl
DATA1 P10V B4 7 P 8 B3 P1046 DATAQ
DATA2 P00 B3 9 ee 10 B2
DATA4 Pel2 B7 11 ey 13 B& P&01 DATA3
DATAS P6l0 G2 13 oo GO
DATAT Pels 4 15 se 16 G3 P&09 DATAS
DATAR PI15 G 1V e 18 Gl
DATALD P113 G7 19 Pt 20 Gb Pl14 DATAS
| E311iSDA2 DA | N iyt 12 El
DATA12™TFTIIT S I] ey 24 B3 Pl12 DATAILL
DATA13 P301 RS 25 g 38 ;%]
DATA1S P303 E7 27 o0 28 R& P302 DATAL4
P102 HSYNC 2% P 30
; él g il VSYNC P103 +3V3
RO 33 34, ¢ +V
= BST] 355 [geli6
P10 37 1 oot I[E P00
03 BLEN E1] se 40

Figure 38. Touch Controller Signals

The EK-RA6M3G User Manual recommends the touch interrupt input must have the internal pull-up feature
enabled. Use Ports Configuration for this setting instead of Peripherals Configuration.

R11AN0463EU0220 Rev.2.20
May.20.24

RENESAS

Page 28 of 39

Renesas RA Family

Getting Started with the Graphics Application

Pin Configuration

Select Pin Configuration

RABM3G-EK pincfg

Pin Selection

P200
F2m

+ p2a02
¢ P03
< P204
+ p205
¥ P206

P207

“ P20
< p209
¢ p210
¥ P21
7 P212
+ p213
v P214

¥ P3
v P4
¥ P
¥ PB
+ pT
/P
v pa

PA

Fin Function Pin Number

~ .z Pin Configuration

Mame

Symbalic Name
Comment

Generate Project Content

A Export to CSV file 5-| Configure Pin Driver Warnings

vl Generate data: | g_bsp_pin_cfg

Value

Maode
Pull up
IRC

Input mode
input pull-up

Drrive Capacity
Cutput type
~ Input/Cutput
P206

Maodule name.

Port Capabilities:

IRQ0-DS

P206

BUSD: WAIT
CTSUD: TS
ETHERCO: LINKSTA
ETHERCO: LINKSTA
1C1: SDA

1RQO: IRCOD
QPS5 GTIU

SCHd: RXD_MISO
SCid: SCL

SDHIO0: DATZ

SPI1: SSLY

5511: 55IDATA
USBFSO: VBUSEM

Link

“J Cycle Pin Group

Figure 39. Touch Controller Interrupt Configuration

Note: When creating a project from scratch, you must add the touch driver to your project by copying the
touch_Tt5x06 folder in this application note project to the new project. Go to Project > Properties >
C/C++ Build > Settings > GNU ARM Cross C Compiler > Includes to add its include path.

1= Graphics_App_EK_RAGM3G

;;';? Binaries
i Includes
& AppWizard
= ra
2 ra_gen

v [src

v = touch_ft5x06

[touch_ft5x06.c
[H] touch_ft5x06.h

[€] APPW_X_NoFS.c
[emWin_thread_entry.c

[hal_entry.c

[timer_thread_entry.c
[touch_thread_entry.c

Figure 40. Backlight Control Pin on EK-RA6M3G

Directory:

E Add directory path

*

| S{workspace_loc:/S{P rojName}_a'src_a'touch_ftﬁx{)ﬁ}{

[] Add subdirectories

Workspace...

File system...

Figure 41. Add Touch Driver Folder to the List of Include Paths

5.4.4 PWM Configuration

The LCD_BLEN signal (Blanking Enable), which is connected to the P603 on the RA6M3 MCU, is configuring
in PWM mode to control the intensity of LCD backlight. Figure 42 shows an excerpt from the Graphics
Expansion board schematic, which shows the LCD_BLEN signal connected to the backlight controller.

R11AN0463EU0220 Rev.2.20
May.20.24

RENESAS

Page 29 of 39

Renesas RA Family

Getting Started with the Graphics Application

LCD_BLEN

vees
—‘7 SO D1
~v 1 LEDA
33uH
MBR140
C1 =—C2
7 22
AToE UL CAT4237 0230
S lviv swld e
GND SH gnp FB GiD
. 3 LEDK
R13 R12
100K 200km
L (Led current 15mA)
GND e
GFD 6D

[BACK LIGHT DRIVER]

Figure 42. Backlight Control Pin on EK-RA6M3G

In Pin Configuration, set P603 as GTIOCA output of the GPT channel 7. The Pin Group Selection is set as
mixed and the Operation Mode as GTIOCA or GTIOCB.

Pin Configuration

Salect Pin Configuration
RASM3IG-EK pincfg

Pin Selection

GPT2
GPT3
GPT4
GPTS
GPT6
* GPTT
GPTE
GPT9
GPTI0
GPTI1
GPTI2
GPT13
TimerQPS
Timer POEG
Timer.RTC
¥ Qther Pins

Pin Function | Fin Number

Pin Configuration

Hame
PFin Group Selection
Operation Mode
¥ Input/Cutput
GTIOCA
GTIOCE

Module name: GPT

e Expoet to CSV file [1-| Configure Pin Driver Warnings

I Generate data: g _bsp_pin_cfg

Value
Mixed
GTICCA or GTIOCE

Lock

+ PE03
MNong

Generate Project Content

=) Cycle Pin Group

Figure 43. GPT PWM Channel 7 Pin Configuration

The r_gpt in the Timer thread is set in PWM mode to modulate LCD backlight intensity. In this graphics

application, moving a slider in the Logging Panel will generate a duty cycle percentage that will be calculated
into the GPT timer period and written to the counter register.

R11AN0463EU0220 Rev.2.20
May.20.24

RENESAS

Page 30 of 39

Renesas RA Family

Getting Started with the Graphics Application

Stacks Configuration

Threads % | New Thread % | Remove —

~ i HAL/Comman
¥ g_iopert 1O Port ir_ioport)
~ & emWin Thread
45 SEGGER emWin
4 FreeRTOS Heap 4
~ i Touch Thread
¥ g_touch_irq External IRQ (r_icu)
¥ g i2c touch 12C Master (r_iic_master)
~ & Timer Thread
g_rtc_timer Realtime Clock {r_rtc)
“#* g_timer PWM Timer, General PWM ir_gpt]

Objects
® g_touch_semaphore Binary Semaphore
@ g i2c_semaphore Binary Semaphore
@ g_timer_semaphore Binary Semaphore

% New Object > & | Remove

g_timer PWM Timer, General PWM (r_gpt) Stacks

L a_timer_PWh Timer,
General PWM r_gpt)

@

Summary | BSP Clocks Pins | Interrupts Event Links Stacks | Components

2! problems | 2 console [

| Properties
g_timer_PWM Timer, General PWM (r_gpt)

Settings Propesty
AP Info “ Common
Parameter Checking

Pin Cutput Support
'Write Protect Enable

* | @ Smart Browser ~' Smart Manual %F Debug

~ Module g_timer_PWM Timer, General PWM ir_gpt]

~ Genera
Mame
Channel
Mode
Period
Period Unit
* Output
* Custom Waveform

Duty Cycle Percent (only applicable in PWM mode)

GTIOCA Qutput Enabled
GTIOCA S1op Level
GTIOCE Qutput Enabled
GTIOCE Stop Level

Input

Intemrupts

Extra Features

~ Pins
GTIOCA
GTIOCE

4| New Stack = =

Value

Default (B5P)
Enabled
Disabled

g.timer_PWM

T

Saw-wave PWM
50
Micreseconds

50

True

Pin Leve! Low
False

Pin Level Low

Ps03
Mane

Generate Project Content

®

Figure 44. GPT Driver Configuration in PWM Mode

Figure 45 and Figure 46 show the AppWizard configuration for the backlight slider. Its range limits are from 5
to 100. Some interactions and custom code are needed to control the duty cycle of PWM output as well.

/s
/
7
/s
Vs
Ve
s
7
Vs

P MUK XM N -

Figure 45. Slider Setup to Control LCD Backlight Intensity

R11AN0463EU0220 Rev.2.20

May.20.24

RENESAS

Page 31 of 39

Renesas RA Family Getting Started with the Graphics Application

/* Get the Sllider/ID_VAR_BACKLIGHT value*/
ghatafApp.pwm_duty_cycle = (uintd_t)APPW_GetVarData(ID_VAR_BACKLIGHT, &gui_err);
if(gui_err)

APP_ERR_TRAP(gui_err);

}

current_period_count = info.period_counts;
* Calculate the desired duty cycle based on the current period. Note that if the period could be larger than
* UINT32_MAX / 188, this calculation could overflow. A cast to uintf4 t is used to prevent this. The cast is
not required for 16-bit timers. */

duty_cycle_count = {(uint32_t) (({uint4_t) current_period_count * gDatafpp.pwm_duty cycle)/GPT_PWM_MAX_PERCENT);
R_GPT_DutyCycleSet(&g_timer_PWM_ctrl, duty cycle_count, GPT_IO PIN GTIOCA);

Figure 46. Custom Code Controls PWM Update GPT Timer Duty Cycle
6. Application Code Highlights

This section details the highlights of the graphics application. The goal of the graphics application is to show
you how to develop more complex multi-threaded HMI applications using the FSP, AppWizard, and emWin
library.

The key goal of the FSP is to abstract much of the complexity of interfacing with various Renesas peripherals
and to quickly get you to the point where you can simply focus on constructing more complex applications as
quickly as possible.

6.1 Threads and Main

In the FSP, main() is an auto-generated file which looks like the following code. The threads and objects
specified during the FSP configuration are initialized in the main().

int main(void)

g_fsp_common_thread_count = @;
g_fsp_common_initialized = false;

* Create semaphore to make sure common inif is done before threads start running. */
g_fsp_common_initialized_semaphore =
#if configSUPPORT_STATIC_ALLOCATION
xSemaphoreCreateCountingStatic(
#else
xSemaphoreCreateCounting (
#endif
256,
1
#if configSUPPORT_STATIC_ALLOCATION
, &g fsp_common_initialized_semaphore_memory

#endif
'H
if (NULL == g_fsp_common_initialized_semaphore)
{

rtos_startup_err_callback (g_fsp_common_initialized semaphore, @);

}

* Init RTOS tasks. */
emlin_thread_create ()
touch_thread_create ()
timer_thread_create ()

3
]

3

/* Start the scheduler. */
vTaskStartskheduler ();
return 8;

Figure 47. The main () function in FSP with FreeRTOS Enabled

When you create a thread using the New Threads tab, the FSP creates several files. As an example, when
the emWin Thread is added, the FSP created three files for you: emWin_thread.h, emWin_thread.c, and
emWin_thread_entry.c, as shown in Figure 48.

The first two files are auto generated and therefore put into the ra_gen folder. The emWin_thread_entry.c
file is the entry point for the emWin Thread, and this is where you put your application code. Auto-generated
files should not be updated by the user since they will be re-generated every time you build the project or click
the Generate Project Content button. Auto-generated files always contain some form of do not edit message
at the top of the file.

R11ANO463EU0220 Rev.2.20 Page 32 of 39
May.20.24 RENESAS

Renesas RA Family Getting Started with the Graphics Application

v (=% Graphics_App_EK_RA6M3G

[l Includes

[AppWizard

[ra

w 2 ra_gen

bsp_clock_cfg.h
[£] commen_data.c
common_data.h
€] emWin_thread.c
emWin_thread.h
[hal_data.c
hal_data.h
[main.c

[pin_data.c
[£] timer_thread.c

timer_thread.h
[touch_thread.c
touch_thread.h
[vector_data.c
vector_data.h
w (2 src

= touch_ft3x06
[APPW_X_NoFS.c

| [£] emWin_thread_entry.c
|| hal_entry.c
[tirner_thread_entry.c
[touch_thread_entry.c

= ra_cfg

Figure 48. FSP Generated Source File Organization

6.1.1 AppWizard/emWin Initialization
The FSP does not automatically initialize the AppWizard system. To initialize it, simply include GUI . h and add
the MainTask() API call to emWin_thread_entry() located in the emWin_thread_entry._c file.

#include "emWin thread.h™
[#include "GUI.h" |
* emWin thread entry function */
/* pvParameters contains TaskHandle_t */
void emWin_thread_entry(void *pvParameters)

{

FSP_PARAMETER_NOT_USED (pvParameters);

2 @ WO oo

MainTask();

woRa

while (1)

[NT R T RN RN)
[

vTaskDelay (1);

o

}
}

Figure 49. Backlight Control Pin on EK-RA6M3G

6.1.2 emWin Events and Messages
Touching the screen in the graphics application causes emWin to invoke the specific callback function

generated for that screen in the AppWizard. AppWizard provides the callback function with specific information
about the window that caused the event, and the actual event that occurred. These events are defined in WM_h.

You can add your code to slot routines in the file <ScreenlD > Slots.c located in the
\AppWizard\Source\CustomCode folder to handle window events. The slot routines are actual callback
routines generated by AppWizard. Since the <ScreenlD > _Slots.c is updated whenever you add and
generate new widgets or AppWizard interactions using AppWizard. Although custom code will be retained. It
is a good practice to create your custom code in a separate file and call it in the appropriate slot routine.

R11ANO463EU0220 Rev.2.20 Page 33 of 39
May.20.24 RENESAS

Renesas RA Family Getting Started with the Graphics Application

@ * gbrief Custom code for cbID_SCREEN_MAIN in ID_SCREEN_MAIN_Slots.c[]
= void cuschID_SCREEN_MAIN(IM MESSAGE * pMsg) {

int wId =8;

int wMsg =8;

switch(pMsg->MsgId) {
= case WM_INIT_DIALOG:
/* Get and store Images's handles */
= if{ImageHandleGet(pMsg))

APP_ERR_TRAP(F5P_ERR_INVALID POINTER);

/* set default weather forecast */
= if(WeatherForecastInit(pMsg))

APP_ERR_TRAP(FSP_ERR_INVALID POINTER);

9
@
1
2
3

/* set Thermostat target temperature */
APPM_SetVarData(ID VAR_TARGET_TEMP, gDataApp.thermo_target_temp);
/* save logging */
LogDataAppend(gDatalog, sizeof(gDatalog),”\nks", "Init Dialeg");
/* Create timer to contrel effects/animation®/
ghTimer = WM _CreateTimer(pMsg-»hliin, €], ANIM TIMER_PERIOD, @);
break;

= case WM_TIMER:
/* Rainy effect®/

= if(5YS_WEATHER RAINY == gDatafpp.sys_weather_type)
{

= if(@ == AnimRainystate)

/* Hide 1st animation image, show 2nd animation image */
WM_HideWindow(hImageAnimBGRD[gDataApp.sys_weather_type]);
WM_Showkindow(hImageAnimBGRD[IMAGE_ANIM RAINY_BGRD_2]);

O~ B W R P @D 0O

Figure 50. Custom Code for The Slot Routine cb_ID_SCREEN_MAIN

6.1.3 AppWizard Variables

Variables in the AppWizard can be used to store a value. They can be accessed and changed by the GUI or
from outside of the GUI. The GUI can react to a change of a variable using interactions. One of typical uses is
update the variables in a non-GUI thread to trigger data exchange between the AppWizard and non-GUI
threads.

125 & /* Timer Thread entry function */

126 /* pvParameters contains TaskHandle_t */

127 “void timer_thread entry(void *pvParameters)

128 {

129 FSP_PARAMETER_NOT_USED (pvParameters);

13@

131 f* Set up GPT/PWM timer using for LCD back light control */
132 = if(gpt_timer_PWwM_setup())

133

134 APP_ERR_TRAP (FSP_ERR_ASSERTION);

135

136

137 /* Set up RTC timer */

138 © if(rtc_timer_setup())

139

140 APP_ERR_TRAP (FSP_ERR_ASSERTION);

141

142

143 = while (1)

144

145 /* Wait for interrupt from RTC timer */
146 xSemaphoreTake(g_timer_semaphore, portMAX DELAY);
147

148 /* Get date, time */

149 R_RTC_CalendarTimeGet(&g_rtc_timer_ctrl, &RtcTimeCurrent);
158 [Trigger GUT update®/

151 APPW_SetVarData (ID_VAR_TIME_UPDATE, 1);
152

153 wTaskDelay (1);

154 ¥

155 ¥

Figure 51. AppWizard Variable Update in Timer Thread

ID_VAR_TIME_UPDATE VALUE_CHANGED Update time when t

- ID_SCREEN_MAIN_WM_NOTIFICATION_VALUE_CHANGED_ID_VAR_TIME_UPDATE

Edit code

e

X
X
X
b 4
X
X
X
X
X

Figure 52. Setup Interaction to perform Date, Time Update when ID_VAR_TIME_UPDATE is changed
in AppWizard

R11ANO463EU0220 Rev.2.20 Page 34 of 39
May.20.24 RENESAS

Renesas RA Family Getting Started with the Graphics Application

7. Importing and Building the Project
To bring the graphics application into the e2studio, follow these steps:

Launch e? studio.

In the workspace launcher, browse to the workspace location of your choice.
Close the Welcome window.

In e? studio, go to File > Import.

In the Import dialog box pick Existing Projects into Workspace.

Select archive file.

Select the Graphics_App_EK_RA6M3G project and click Finish.

Open configuration.xml.

Click on Generate Project Content on the FSP configurator window.

10 Now build the project.

8. Downloading the Executable to the EK-RA6M3G Kit

To connect and run the code, follow these steps:

©oOoNOOR~ODNE

Connect your PC to the USB port next to the Ethernet jack silkscreened DEBUG using a USB cable.

Go to Run > Debug configurations.

Click Debug. The program will break at the reset handler.

Click Switch to the Debug perspective when prompted by the e? studio.

Click Run > Resume.

The Weather Panel will show as in Figure 53. You can select forecast day or adjust the thermostat
temperature. Touch the top right corner to move to the Logging Panel.

oukrwnhE

17 Mar 2020

THERMOSTAT

81°F Y 70°F

72 % Humidity

Tﬁ'ﬁ’:_’_""

! ! 76770 : 33:71 92/77

"
| 77767 ?-u’bJ

Figure 53. The Weather Panel

The Logging Panel allows you to adjust the LCD backlight using the slider or change Logging Dialog text
color and background color using the rotary and the switch, respectively. The logging buffer resets when it
reaches the limit of 256 bytes. Touch the Renesas logo to go back to the Weather Panel.

Application Event

Init Dialog
MON
THU

Fl 1MeC EIStZMU”
Target Temp:71
Target Temp:72
Init Dialog
ForecastFRI
Target Temp:73

Figure 54. The Logging Panel

R11ANO463EU0220 Rev.2.20 Page 35 of 39
May.20.24 RENESAS

Renesas RA Family

9.

The e? studio IDE has a handy feature that you can use to ensure that the images you are seeing on your LCD
screen are coming from your framebuffer. To use this feature, make sure to connect the e? studio to your board
and run the program under the debugger. Ensure that your Memory tab is open in the Console window,
normally located to the bottom of the screen in Debug view. Click the small green plus (+) sign in the Monitors
Pane to add a memory monitor. You should see a Monitor Memory dialog as shown in . Enter the Framebuffer

e? studio Tricks

fb_background[0] or fb_background[1] and click the OK key.

A new tab should now appear under the Memory tab that displays the contents of the memory area you

specified for the memory monitor.

Getting Started with the Graphics Application

File Edit Source Refactor Mavigate Search Project Renesas Views Run Window Help

|

‘ 45 Debug [Graphics_App_EK_RAGM3G Debug i | B~/ ~-EBiw|® Cs
v [OB EESS AR SRR FR [Quick Access] || ¢

; %5 Debug 2 ‘ s ¥ = O ®=Van. 3 e 2
~ [Graphics_App_EK_RAEM3G Debug [Renesas GDB Hardware Debugging] ~

v [Graphics_App_EK_RA6M3G.elf [1] [cores: 0] . -
w @ Thread #1 1 (sinale corel [eare: 01 (Susnended : Sional : SIGTRAP: Trace/hreaknaint tramt ¥ €
[startup.c 2 A er_thre testn] RA B = _e T = O
51 int32 t main(veoid); A
52
54 ® * MCU starts executing here out of reset. Main stack pointer is set up already.[]
=~ wvoid Reset_Handler (void)

'* Initialize system using BSP. */

SystemInit();

/* Call user application. */ Monitor Memeory x L4

< >
Enter address or expression to monitor:

t Console J=| Tasks 5| Problems Debugger Console & Smart Browse: Memory £3 g my
2 L) = 2L . 0 v b_background[1] ~ _% £
Monitors &= 8 % fb_background[0] : 0x1FFF2C30 <Raw Ima teger> 537

@ fb_background[0] Address B -3 4 -
@ Concel
ellelle el Ul gl G1F101F1

E eepeeeeRlFFF2C9e @211e1Fe UIFIEZIT BITTEZIT YZITEZIT

egpeeeRRlFFF2CAR @1F18211 82118211 821181F1 @z11e8211
egpeeeeRlFFF2CEe 82118211 @1Feazll 82118211 @lFealrl

Figure 55. Using the Memory Monitor to Display the Framebuffer Contents

You should now see the contents of the selected framebuffer memory area displayed in the memory monitor
you just created. If you know what the hex value of every pixel should be on your display, you
to use this memory monitor to definitively say that your image is being stored in the framebuffer. However, as
most of us do not know the hex values associated with our pixels, we will let the memory monit

would be able

or do the work

&) Console J&| Tasks 5. Problems E Debugger Console @& Smart Browser | [J Memory 53

Monitars ds 3¢ % (fb_background[1]: (520032880 <Hex Integer> 52 . b New Renderings...
@ fb_background[0] Address e -3 4-7 8 -B C-F
il lEd gl 980DOBEB2603 2558 921101F1 ©1F181F® B1F18211
@e@0EEEe20032899 021191F6 @1F16211 02116211 62118211
PeEPEEEE200325A0 QLF1E211 82118211 ©21101F1 82118211
0e@DOEEe20032850 02110211 @1F@E211 02110211 OLFELFL
@e@000Ee200328C8 O1FEE211 @LFPALFe OLFIGIF1 @1F1A1Fe
@eEPEEEe20032808 ©21181F1 @1F181F1 @1F1@IF1 @1F1@1F1
0e@POEEe200328E0 OLF1e1FL @1F1@1F1 O1F1@1Fe ©21101F9
PeEDPEEe200328F QIFEE211 82116211 @1F1Q1F1 B1FE82ll
@eEPEEEA20032080 OLFEA211 @1F@E211 @1F1GIF1 @1F1A1F1
@e@00Eee20032918 O1F1e211 @1F1G1F1 O1F@ELFl @1F1e1Fl
PeEPEEEe20032920 Q21181F8 ©21181F@ 02110211 82118211
@e@PEEee20032930 OLFEe211 @1F161F1 ©1F@ELFl B1F1A1F1
@e@0EEEe20032948 O21191F1 @21181F1 OLF@QLFe G1F1@1Fl
PeEPAEAe20032950 OLFER1FE @1FAELFl @1FEELFE B1DEALF1
0e@DHEEe20032960 OLF1P1FG @LF@ELFl ©1F@OLFl ©1F1e1F1
@e@000ee20032970 OLFEPlFL @1F@ELFl O1F@QLFl @1F1elFl
@eEEHERE20032980 OLFEElFE @LFP@lFe O1FE@LFe @IF1A1Fe
ARRRARAGE T AR 20060 A1F1A1F1 ATF1ATET A1 FRA1 FA ATF1ATET

Figure 56. Framebuffer 1 Contents
R11ANO463EU0220 Rev.2.20 Page 36 of 39
May.20.24 RENESAS

Renesas RA Family Getting Started with the Graphics Application

Select the New Renderings tab next to the memory monitor you just created, select Raw Image type from
the list of options, and press the Add Rendering(s) button off to the right side of the screen.

) Console = Tasks I:': Problems [} Debugger Console @ Smart Browser [Memory 2 B g s [!| t‘-?l 55| 4:{')‘ - =08
Monitors 9= % ¥ [fo_background[1] <Hex Integer> | New Renderings..
@ fb_background[0] |Memory Monitor: fb_background[1]: 0x20032880

@ fb_background[1] Select rendering(s) to create:
Waveform

Hex Integer

Fixed Floating Point

Fixed Point

ImaiE

Fleating Point
Traditicnal

Raw Hex

ASCH

Signed Integer
Unsigned Integer

Add Rendering(s)

Figure 57. Rendering Format Selection

The Raw Image Format dialog box appears, that lets you enter the screen resolution Width and Height, along
with the Encoding that is 16 bpp (5:6:5), in our case.

& Console £ Tasks [Problems [} Debugger Conscle @ Smart Browser | [J Memory 52 o g e S [T 'j| E:l] %‘ ggr T = 0
Monitors 5 X & fb_background[1] <Hex Integer> (fb,backgmundﬂ]:ﬂﬂmaﬂ <Raw Image> 3 . oa Mew REnderiﬂgsﬂ
@ fb_background[0] RawlmagEFormat...J RawlmageFormat X
% fb_background[1]
Dimensions
width: | 480 |
Height: | 272 |
Encoding
(O Monochrome: 1bpp
(®) RGE: 16bpp (5:6:3) ~ |
() BGR: 32bpp (8:3:8:8)
[@)le e 32bpp (¥12-UVE semi-planar)
Line alignment: 4 bytes ~

Start Position

®Top
(O Bottom
@

Figure 58. Raw Image Format for Graphics Application on EK-RA6M3G

Once you press the OK key, the memory monitor presents you with the image that would be displayed at that
memory address, based on the parameters you entered.

B Console £ Tasks [Problems G Debugger Console @ Smart Browser | [J Memory 52 o mg e ['j| 't:‘ (£ Qéﬂ B~ T = 0O
Monitors = B & fb_background[1] <Hex Integer> fb_background(1] : (k20032880 <Raw Image> &7 - 5= Mew Randermg;ﬂ

@ fb_background[0]
@ fb_background[1]

BISE

Sunny

Humidity

Figure 59. Image Rendering Using Seen Using e? studio Memory Monitor

R11ANO463EU0220 Rev.2.20 Page 37 of 39
May.20.24 RENESAS

Renesas RA Family Getting Started with the Graphics Application

10. Website and Support

Visit the following URLs to learn about key elements of the RA family, download components and related
documentation, and get support.

RA Product Information www.renesas.com/ra

RA Product Support Forum www.renesas.com/ra/forum

RA Flexible Software Package www.renesas.com/FSP

Renesas Support Www.renesas.com/support

R11ANO0463EU0220 Rev.2.20 Page 38 of 39

May.20.24 RENESAS

http://www.renesas.com/ra
https://www.renesas.com/ra/forum
http://www.renesas.com/FSP
https://www.renesas.com/support

Renesas RA Family Getting Started with the Graphics Application

Revision History

Description
Rev. Date Page Summary
1.00 Jul.13.20 - Initial version
2.00 Nov.11.21 - Major updates for AppWizard v1.24 6.20
2.10 Jun.28.23 - Minor updates for AppWizard v1.36a_6.32a + FSP v4.4.0
2.20 May.20.24 - Minor updates for AppWizard v1.42_6.36 + FSP v5.2.0
R11ANO463EU0220 Rev.2.20 Page 39 of 39

May.20.24 RENESAS

General Precautions in the Handling of Microprocessing Unit and Microcontroller
Unit Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the
products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.
1. Precaution against Electrostatic Discharge (ESD)
A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps
must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be
adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity.
Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and
measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor

devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.
2. Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of
register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external
reset pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states
of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power

reaches the level at which resetting is specified.
3. Input of signal during power-off state

Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or /O
pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal

elements. Follow the guideline for input signal during power-off state as described in your product documentation.
4. Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are
generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity
of the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal

become possible.
5. Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program
execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator
during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal

produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.
6. Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between V.
(Max.) and Vin (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the

input level is fixed, and also in the transition period when the input level passes through the area between V. (Max.) and Vix (Min.).
7. Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these

addresses as the correct operation of the LSl is not guaranteed.
8. Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems.
The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in
terms of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic
values, operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a
system-evaluation test for the given product.

Notice

Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and

10.

11.

12.

13.
14.

(Notel)

application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your
product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use
of these circuits, software, or information.
Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights,
or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this
document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics
or others.
You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export,
manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.
You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any
and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.
Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for
each Renesas Electronics product depends on the product’s quality grade, as indicated below.

"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home

electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key
financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas
Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to
human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space
system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics
disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product
that is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document.
No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics
hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but
not limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS
ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING
RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE,
HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION (“Vulnerability Issues”). RENESAS ELECTRONICS DISCLAIMS ANY AND
ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT
PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH
RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO
THE IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.
When using Renesas Electronics products, refer to the latest product information (data sheets, user’'s manuals, application notes, “General Notes for
Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by
Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas
Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such
specified ranges.
Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific
characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability
product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics
products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily
injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as
safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for
aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are
responsible for evaluating the safety of the final products or systems manufactured by you.
Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas
Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of
controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these
applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance
with applicable laws and regulations.
Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is
prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations
promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.
It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or
transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.
This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas
Electronics products.

“Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled
subsidiaries.

(Note2)

Corporate Headquarters
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics
Corporation. All trademarks and registered trademarks are the property
of their respective owners.

“Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

(Rev.5.0-1 October 2020)

Contact information

For further information on a product, technology, the most up-to-date
version of a document, or your nearest sales office, please visit:
Www.renesas.com/contact/.

© 2024 Renesas Electronics Corporation. All rights reserved.

https://www.renesas.com/
https://www.renesas.com/contact/

	1. Board Setup
	2. Application Overview
	2.1 RA6M3 MCU Peripherals used by the Graphics Application
	2.2 Human-Machine Interface (HMI)
	2.3 Graphics Application Panels

	3. AppWizard Overview
	3.1 Create New Project Using the AppWizard
	3.2 Design Weather Panel Buttons Using AppWizard
	3.3 Setup AppWizard Interactions
	3.4 Add emWin Widget to AppWizard Project

	4. Understanding the Graphics Application
	4.1 Source Code Layout
	4.2 Application Block Diagram
	4.3 Thread Overview
	4.3.1 emWin Thread
	4.3.2 Touch Thread

	5. FSP Configuration
	5.1 Components Tab
	5.2 Stacks Tab
	5.3 Thread Objects
	5.4 Module Configuration
	5.4.1 GLCDC Configuration
	5.4.2 TCON Configuration
	5.4.3 Touch Controller Configuration
	5.4.4 PWM Configuration

	6. Application Code Highlights
	6.1 Threads and Main
	6.1.1 AppWizard/emWin Initialization
	emWin Events and Messages
	6.1.3 AppWizard Variables

	7. Importing and Building the Project
	8. Downloading the Executable to the EK-RA6M3G Kit
	9. e2 studio Tricks
	10. Website and Support
	Revision History
	General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products
	Notice

