
  User Guide

ForgeFPGA Software Simulation User Guide 
 

  

R19US0011EU0100   Rev.1.0 
May 20, 2024 

 Page 1
© 2024 Renesas Electronics

 

 

Simulation is a technique of applying different input stimulus to the design at different times to check if the RTL 
code behaves the intended way. It is used to verify the robustness of the design. Simulation allows the user to 
view the timing diagram of the related signals to understand how the design description in the design file 
behaves.  

Testbenches are pieces of code that are used for simulation. A simple testbench will instantiate the Unit Under 
Test (UUT) and drives the input. GoConfigure software uses Icarus Verilog (iVerilog) and GTKWave to observe 
the simulation waveforms with the stimulus provided in the testbench.  

This document describes the steps that need to be taken while installing Icarus on your system and how to run a 
successful simulation.   

Contents 
1. Installing Icarus Verilog ................................................................................................................................ 3 

2. Testbench ....................................................................................................................................................... 5 
2.1 Understanding a Testbench .................................................................................................................. 6 
2.2 Timescale Definition in Testbench ......................................................................................................... 7 
2.3 Module Declaration ................................................................................................................................ 7 
2.4 DUT Instantiation ................................................................................................................................... 8 
2.5 Always & Initial Block in a Testbench .................................................................................................... 8 

2.5.1 Initial block............................................................................................................................... 8 
2.5.2 Dump Files .............................................................................................................................. 9 
2.5.3 Always Block ......................................................................................................................... 10 

2.6 Self-Checking Testbench .................................................................................................................... 10 

3. GTKWave Software ...................................................................................................................................... 12 
3.1 Signal Values ....................................................................................................................................... 14 
3.2 GTKWave Toolbar ............................................................................................................................... 15 
3.3 Menu Options ...................................................................................................................................... 15 

3.3.1 File ......................................................................................................................................... 16 
3.3.2 Edit ........................................................................................................................................ 16 
3.3.3 Search ................................................................................................................................... 16 
3.3.4 Time ...................................................................................................................................... 16 
3.3.5 Marker ................................................................................................................................... 16 
3.3.6 View ....................................................................................................................................... 18 
3.3.7 Help ....................................................................................................................................... 18 

4. Conclusion ................................................................................................................................................... 18 

5. Revision History .......................................................................................................................................... 19 
  
 

 



ForgeFPGA Software Simulation User Guide 

 

R19US0011EU0100   Rev.1.0 
May 20, 2024 

 Page 2

 

Figures 
Figure 1. Go Configure Software Hub User Interface .............................................................................................. 3 
Figure 2. Select SLG47910 ...................................................................................................................................... 3 
Figure 3. FPGA Editor Button ................................................................................................................................... 4 
Figure 4. Configure Tools ......................................................................................................................................... 4 
Figure 5. Parts of a Testbench ................................................................................................................................. 6 
Figure 6. DUT and initial block relation ..................................................................................................................... 9 
Figure 7: Self-checking testbench example statements .........................................................................................11 
Figure 8: Simulation Log of printed values .............................................................................................................12 
Figure 9: Signal selection .......................................................................................................................................14 
Figure 10: GTKWave Toolbar .................................................................................................................................15 
Figure 11: Menu Options ........................................................................................................................................16 
Figure 12: Marker Options ......................................................................................................................................17 
Figure 13: Collecting data from Markers ................................................................................................................18 
 

Reference 
For related documents and software, please visit our website: 

Download our free ForgeFPGA Designer software [1] and follow the steps in this user guide. User can 
reference [2] for the datasheet. Use Configuration Document to understand the different modes of 
configuration [3]. Renesas Electronics provides a complete library of application notes [4] featuring design 
examples as well as explanations of features and blocks within the Renesas IC. 

[1] Go Configure Software Hub, Software Download, Renesas Electronics 

[2] ForgeFPGA SLG47910 Datasheet, Renesas Electronics 

[3] SLG47910, Configuration Document, Renesas Electronics 

[4] Application Notes, ForgeFPGA Application Notes & Design Files, Renesas Electronics 

[5] ForgeFPGA Development Board User Manual, Renesas Electronics 

[6] ForgeFPGA Socket Adapter User Manual, Renesas Electronics 

[7] ForgeFPGA Evaluation Board User Manual , Renesas Electronics 

[8] ForgeFPGA Software Simulation User Manual, Renesas Electronics  
  



ForgeFPGA Software Simulation User Guide 

 

R19US0011EU0100   Rev.1.0 
May 20, 2024 

 Page 3

 

1. Installing Icarus Verilog  
a. Install the latest version of Icarus Verilog (IVerilog) from https://bleyer.org/icarus/  

b. Be sure to add IVerilog to the PATH and let it install GTKWave (See Figure 1)  

 

Figure 1. Go Configure Software Hub User Interface 

c. Open the Go Configure Software and select the part:  SLG47910(Rev BB) to open the Forge Workshop 
(see Figure 2). 

 

Figure 2. Select SLG47910 

d. Click on the FPGA Editor in the middle of the toolbar at top or user can also double-click on the FPGA 
Core structure in the middle of the window. 

  



ForgeFPGA Software Simulation User Guide 

 

R19US0011EU0100   Rev.1.0 
May 20, 2024 

 Page 4

 

 

Figure 3. FPGA Editor Button 

e. A new window opens called the Forge Workshop. In the menu toolbar on the top, click on Options  
Settings. In the Settings dialog box, go to Tools under User Settings tab. Unselect the Use "system 
environment box" for both Icarus Verilog and GTKWave. Add the path to Iverilog and GTKWave saved 
in your system into the space given (see Figure 4).  

 

Figure 4. Configure Tools 

You are all set down to simulate a testbench and the above steps ensure that the GTKWave launches 
automatically when simulating a testbench on Go Configure software.  

  



ForgeFPGA Software Simulation User Guide 

 

R19US0011EU0100   Rev.1.0 
May 20, 2024 

 Page 5

 

2. Testbench 
The most crucial step in successfully implementing any system is to verify the design and its functionality. Verifying 
a complex system after implementing the hardware is not a wise choice. It is ineffective in terms of money, time, 
and resources. Hence, in the case of FPGA, a testbench is used to test the Verilog source code.  

Suppose we have an input which is of 11 bits, and we want to test the device for all the possible input combination 
values i.e. (211). As this is a very large number of combinations, it is impossible to test it manually. In such cases, 
testbenches are very useful as you can test the design automatically for all the possible values and hence, confirm 
the reliability of the test design. Verilog Testbenches are used to simulate and analyze designs without the need 
for any physical hardware device.    

A design under test, abbreviated as DUT, is a synthesizable module of the functionality we want to test. In other 
words, it is the circuit design that we would like to test. We can describe our DUT using one of the three modeling 
styles in Verilog – Gate-level, Dataflow, or Behavioral. 

A testbench is not synthesizable, hence it is used for simulation purposes only. This allows the user to use a full 
range of Verilog constructs e.g., keywords such as “for”, “$display” and “$monitor” etc. for writing testbenches.  A 
simple testbench will instantiate the Unit Under Test (UUT) or Device Under Test (DUT) and drive inputs. 



ForgeFPGA Software Simulation User Guide 

 

R19US0011EU0100   Rev.1.0 
May 20, 2024 

 Page 6

 

2.1 Understanding a Testbench 

 

Figure 5. Parts of a Testbench 

  

Time Scale Definition 

Module Definition 

- Inputs  

- Outputs 

DUT Instantiation 

Clock Definition 

Dump files  

Stimulus Definition 



ForgeFPGA Software Simulation User Guide 

 

R19US0011EU0100   Rev.1.0 
May 20, 2024 

 Page 7

 

2.2 Timescale Definition in Testbench 
When simulating, the software needs to know how the time has been defined. The delay unit is specified using 
the `timescale directive, which specifies the time unit and the precision for the modules that follow it. The 
`timescale helps in determining what #1 means in terms of time. # is used to define the delay to be introduced in 
the system in accordance with time unit specified in timescale. So, #1 means 1 ns of delay if the time_unit is in 
ns. 

Syntax :  

`timescale <time_unit>/<time_precision>  

time_unit is the amount of time a delay of #1 represents. The time_precision base represents how many decimal 
points of precision to use relative to the time units. (See line 23 in Figure 5)  

We can use the timescale constructs to use different time units in the same design. The user needs to remember 
that delay specifications are not synthesizable and cannot be converted to hardware logic. The delay functions 
are entirely for simulation purposes. $time  and $realtime  system functions return the current time and the 
default reporting format can be changed with another system task $timeformat . 

Example:  

 `timescale 10us/100ns  

 `timescale 1ns/1ps 

 #10 reset = 1;  // delays the signal by 10 ns  

 #0.49  $display( “T = %0t at Time #0.49”, $realtime) ; 

The delay specified is #0.49 which is less than the half a unit time. However, the time precision is specified to be 
1ps and hence the simulator cannot go smaller than 1ns which makes it to round the given delay statement and 
yield 0ns. So, this statement fails to provide any delay.  

 Simulation Log: 

 T = 1 at Time #0.49 

2.3 Module Declaration  
Module declaration in any testbench is unlike the main Verilog code. In a testbench, the module is declared without 
any terminal ports along with it. (See line 25 in Figure 5) 

 Syntax:  

 module <modulename_tb>; 

 

The module declaration is followed by defining the input and output signals defined earlier in the main design file. 
We use two signal types for driving and monitoring signals during the simulation. The reg datatype will hold the 
value until a new value is assigned to it. This datatype can be assigned a value only in always or initial block.  

The wire datatype is like that of a physical connection. It will hold the value that is driven by a port, assign 
statement, or reg. This data type cannot be used in initial or always block.  Any parameter and integer 
declaration are also done in this section.  

Example:  

 Reg a,b; // the input in the HDL code is defined as reg in testbench 

 Wire y; // output signal in HDL is defined as wire in testbench  



ForgeFPGA Software Simulation User Guide 

 

R19US0011EU0100   Rev.1.0 
May 20, 2024 

 Page 8

 

2.4 DUT Instantiation  
The purpose of a testbench is to verify whether our DUT module is functioning. Hence, we need to instantiate 
our design module to test module.  

 Syntax:  

 <dut_module><instance_name> (. <signal1> (signal1), . signal2> (signal2)); 

 Example:  

 ALU d0 (.a(a), // signal “a” in ALU should be connected to “a” in ALU_tb module  

  .b(b),  // signal “b” in ALU should be connected to “b” in ALU_tb module 

  .c(c)) ;// signal “c” in ALU should be connected to “c” in ALU_tb module 

We have instantiated the DUT module ALU to the test module. The instance name (d0) is the user’s choice. The 
signals with a period “.” in front of them are the names for the signals inside the ALU module, while 
the wire or reg they connect to in the test bench is next to the signal in parenthesis (). It is recommended to code 
each port connection in a separate line so that any compilation error message will correctly point to the line 
number where the error occurred. Because these connections are made by name, the order in which they 
appear is irrelevant.  

DUT instantiation can also be made for the modules where the testbench module has different signal names. The 
correct mapping of the signals is what is important when instantiating.  

Example :  

ALU d0 (.a(A),  // signal “a” in ALU should be connected to “A” in ALU_tb module  

 .clk(clock),  // signal “clk” in ALU should be connected to “clock” ALU_tb module 

  .out(OUT)) ;     // signal “out” in ALU should be connected to “OUT” in ALU_tb module 

2.5 Always & Initial Block in a Testbench 
There are two sequential blocks in Verilog, initial and always. It is in these blocks that we apply the stimulus.  

2.5.1 Initial block  
The initial block which is executed only once and terminated when the last line of the block is executed. The 
stimulus is written into the initial block. (See line 54-72 in Figure 5) 

Syntax:  

.. 

initial begin  

$dumpfile(); 

$dumpvars(); 

..(enter stimulus)  

end  

the initial block begins its execution at the start of the simulation at time t = 0. Starting with the first line between 

the begin and end, each line executes from top to bottom until a delay is reached. When the delay is reached, the 

execution of this block waits until the delay time (10-time units) has passed and then picks up execution again.  
User can define stimuli using loops (for, while, if-else) as well inside this initial block instead of entering all the 
combinations manually.  

 



ForgeFPGA Software Simulation User Guide 

 

R19US0011EU0100   Rev.1.0 
May 20, 2024 

 Page 9

 

 

 

Figure 6. DUT and initial block relation 

Example :  

Initial Begin  

A = 0; b = 0;   // start execution  

#10 a = 0; b = 1;  // execution is at t = 10-unit time  

#10 a = 1; b = 0;  // execution is at t = 20-unit time 

end  

2.5.2 Dump Files 

Another thing to keep in mind is the declaration of $dumpfiles and $dumpvars inside the initial block (see line 55-
56 in Figure 5). The $dumpfile is used to dump the changes in the values of nets and registers in a file that is 
named as its argument.  

For example: 

$dumpfile(“alu_tb.vcd”); 

will dump the changes in a file named alu_tb.vcd. The changes are recorded in a file called VCD file that stands 
for value change dump. A VCD (value change dump) stores all the information about value changes. We cannot 
have more than one $dumpfile statements in Verilog simulation. 

The $dumpvars is used to specify which variables are to be dumped (in the file mentioned by $dumpfile). The 
simplest way to use it is without any argument. The general syntax of the $dumpvars is 

$dumpvars(<levels> <, <module_or_variable>>); 

We basically can specify which modules, and which variables in modules will be dumped. The simplest way to 
use this is to set the level to 0 and module name as the top module (typically the top testbench module). 

$dumpvars(0, alu_tb); 

When level is set to 0, and only the module name is specified, it dumps ALL the variables of that module and all 
the variables in ALL lower-level modules instantiated by this top module. If any module in not instantiated by this 
top module, then its variable will not be covered. One more thing, the declaration of $dumpfile must come before 
the $dumpvars or any other system tasks that specifies dump. These dumpfiles must be declared before the 
stimulus inputs else, no value will be saved in these dumpfiles. 

 

 



ForgeFPGA Software Simulation User Guide 

 

R19US0011EU0100   Rev.1.0 
May 20, 2024 

 Page 10

 

2.5.3 Always Block 

Contrary to the initial statements, an always block repeatedly executes, although the execution starts at time t = 
0. For example, the clock signal is essential for the operation of sequential circuits like Flip-flops. It needs to be 
supplied continuously. Hence, we can write the code for operation of the clock in a testbench as (see line 52 in 
Figure 5):  

always  

#10 clk = ~clk; 

endmodule  

The above statement gets executed after 10 ns starting from t = 0. The value of the clk will get inverted after 10 
ns from the previous value. Thus, generating a clock signal of 20 ns pulse width. Therefore, this statement 
generates a signal of frequency 50 MHz. It is important to note that, the initialization of the signal is done before 
the always block. If we do not do the initialization part, the clk signal will be x from t - 0, and after 10 ns, it will be 
inverted to another x. 

2.6 Self-Checking Testbench  
A self-checking testbench includes a statement to check the current state. 

 $display  system task are mainly used to display debug messages to track the flow of simulation  
 

initial begin  

A = 0 ; b = 0  ; c = 0;   #10;   // apply input, wait  

if( y ! == 1)  begin  

     $display( “000 failed”) ;  //check  

     c = 1; #10 ;     //apply input, wait  

     end  

else if ( y ! == 0) begin 

     $display(“001 failed”)   // check  

     b = 1; c = 0; #10 ;  end  

else if(y!==0)  

     $display (“ 010 failed”);   //check  

     end  

endmodule  

$display is used for displaying values of variables, strings, or expressions. From the above example, 
whenever any of the if-else loop is satisfied, then the simulator log will display its respective $display 
statement. There is a newline by default at the end of the strings.  

$display (“time = %t , A = %b, B = %b, C = % b”, $time, A,B,C);   

The characters mentioned in the quotes will be printed as they are. The letter along with % denotes the string 
format. We use %b to represent binary data. We can use  %d,  %h,  %o  for representing decimal, hexadecimal, 
and octal, respectively. The %g is used for expressing real numbers. These will be replaced with the values 
outside the quote in the order mentioned. For example, the above statement will be displayed in the simulation 
log as: 

time = 20, A = 0, B =1, C = 0 



ForgeFPGA Software Simulation User Guide 

 

R19US0011EU0100   Rev.1.0 
May 20, 2024 

 Page 11

 

Table 1. Verilog Table Formats 

Argument Description 
%h, %H Display in Hexadecimal format 

%d, %D Display in decimal forma 

%b, %B Display in binary format 

%m, %M Display hierarchical name 

%s, %S Display as string 

%t, %T Display in time format 

%f, %F Display ‘real’ in decimal format 

%e, %E Display ‘real’ in an exponential format 

 

$display mainly prints the data or variable as it is at that instant of that time like the printf in C. We must 
mention $display for whatever text we have to view in the simulation log. 

 $time  
$time is a system task that will return the current time of the simulation. 

 
 $monitor  
$monitor will monitor the data or variable for which it is written and whenever the variable changes, it will print 

the changed value. It achieves a similar effect of calling $display after every time any of its arguments get 

updated. $monitor is like a task that is spawned to run in the background of the main thread which monitors and 

displays value changes of its argument variables. $monitor has the same syntax as $display. 

$monitor(“ time = %t, A = %b, B = %b, C = % b”, $time, A,B,C); 

 

Figure 7: Self-checking testbench example statements 

From Figure 7 you can observe that new lines of codes have been added to self-evaluate the testbench. The 

placement of the $display and $monitor statements in different sections of the testbench will yield different 

results (see Figure 8). $time mentioned in these statements prints the time at which the value is being printed 



ForgeFPGA Software Simulation User Guide 

 

R19US0011EU0100   Rev.1.0 
May 20, 2024 

 Page 12

 

for. At the same time unit say 170000, we can see how there is a difference in the value for A and B due to the 
$display and $monitor statements. 

 

Figure 8: Simulation Log of printed values 

3. GTKWave Software  
GTKWave is a fully featured GTK+ wave viewer for Unix, Win32, and Mac OSX which reads LXT, LXT2, VZT, 
FST, and GHW files as well as standard VCD/EVCD files and allows their viewing. Its official website is at  
http://gtkwave.sourceforge.net/ . GTKWave is the recommended viewer by Icarus Verilog simulation tool. 

Once the user is successfully created a testbench to test the functionality of the design, the user can now use 
the GTKWave software to view the waveforms.  



ForgeFPGA Software Simulation User Guide 

 

R19US0011EU0100   Rev.1.0 
May 20, 2024 

 Page 13

 

To launch the GTKWave software to view the waveforms, the user needs to click on Simulate Testbench button 
on the top of the toolbar or from the main menu Tools Simulation  Simulate Testbench. If there are no syntax 
errors then depending on the design, the GTKWave should be launched automatically or the results of the 
stimuli in the testbench will be displayed in the Logger section of the window.  

The GTKWave software opens the .vcd format dumpfile automatically. The GTKWave window does not display 
the waveform when its opens. This gives the user an opportunity to select which signals it wants to view and 
observe. To choose the signal, the user needs to display, the user needs click on the name of their 
module/instance on the left side of the window under the SST tab. By clicking the + of every instance, you can 
see the signals that are related wit that instance in the bottom section. Then you can drag & drop the desired 
signal or double-click them to be displayed in the Signals window. You can also select all (CTRL + A) and insert 
them to the signals window (see Figure 9).  

The signals are now added to the signal window but its yet to be simulated. After adding the desired signals to 
the signal window, click on  to fit the signals to the current width of the window and then reload the signals 
from the reload symbol present on the toolbar. You can now see the signals with their respective values.  



ForgeFPGA Software Simulation User Guide 

 

R19US0011EU0100   Rev.1.0 
May 20, 2024 

 Page 14

 

 

Figure 9: Signal selection  

3.1 Signal Values  
By default, the values of the signals are in hexadecimal format and all the waves are colored green (if correctly 
running).  



ForgeFPGA Software Simulation User Guide 

 

R19US0011EU0100   Rev.1.0 
May 20, 2024 

 Page 15

 

User can change the properties of these signal by right-clicking on the signal and choosing Data Format or Color 
Format. User can also insert a blank signal to make sections between group of signals. When you have the desired 
optical result, you can save your configurations by going File  Write Save File. 

3.2 GTKWave Toolbar 

  

Figure 10: GTKWave Toolbar 

The toolbar (see Figure 10) allows the user to perform basic functions for the signal. Let us discuss each option 
on the toolbar from left to right.  

1. Menu Options: Under this option we can view all the various features of the software that can be used 
to play around with the software. The details under this menu option are covered under Section 8 of this 
user guide.  

2. Cut Traces: It is used to delete/cut the select signal from the signal window 

3. Copy Traces: It is used to copy the selected signal from the signal window  

4. Paste Traces: The copied/cut trace can be pasted at a different location in the signal window  

5. Zoom Fit: It is used to fit the signals according to the size of the window the user chooses to display 

6. Zoom In: It is used to zoom in the signal window  

7. Zoom Out: It is used to zoom out the signal window  

8. Zoom Undo: it is used to undo the zoom in/out on the signal window  

9. Zoom to Start: this will zoom the signal window, displaying the start time of the signals.  

10. Zoom to End: this will zoom the signal window displaying the end time of the signals  

11. Find previous edge: This shifts the marker to the left side indicating the previous edge  

12. Find next edge: This shifts the marker to the right indicating the next edge  

13. Scroll lower/upper bond: using this we can set the time frame in which the user wants to display. For 
example, we can set the time frame to 0 sec to 500 ns, it will display the signals under that duration only.  

14. Reload: The reload is pressed whenever there is a change to the displayed signal. It will reload and 
display the signal according to the new parameters. For example, after changing the time frame of the 
signal, we need to reload the signal to display the signal in the new set time frame.  

3.3 Menu Options 
From the left top corner of the GTKWave software, user can access the menu options by clicking the three 
vertical lines (see Figure 11). The user can find the following options under the Menu options:  



ForgeFPGA Software Simulation User Guide 

 

R19US0011EU0100   Rev.1.0 
May 20, 2024 

 Page 16

 

 

Figure 11: Menu Options 

3.3.1 File  
The File submenu contains various items related to accessing files, importing-exporting VCD files, printing, and 
reading/writing files and exiting.  

3.3.2 Edit  
The Edit submenu is used to perform various utility functions such as changing the data representation of values 
in the wave subwindow. Using the options under the Edit submenu, user can change the data format of the signals, 
rearrange them, shift them, trim it, highlight it, group signals, comment on signals, change the color of the signals, 
etc.  

3.3.3 Search  
The Search submenu is used to perform searches on net names and values. It helps to perform functions on 
different hierarchy levels of the signals and instances in the VCD file.  

3.3.4 Time  
The time submenu contains a superset of the functions performed by the Navigations and the Status Panel buttons. 
It enables simple, time related, functions like zooming, moving to a particular time point, shifting the signal in a 
certain direction, etc. 

3.3.5 Marker  
The marker submenu is used to perform various manipulations on the marker as well as control scrolling offscreen. 
It enables the functionality of adding numerous markers on the signal window. A maximum of 26 names markers 
are allowed and the times for all must be different. 

a. To add Markers in the signal window 

Left click at the required point where you want the Marker to be placed and press ALT + N. This will place 
a named marker (A,B,C, etc.) at the required point. User can continue to do this for 26 different time 
locations.  

To compare the time value at all the places markers, Menu  Markers  Show Change Marker Data. 
This will open a window with the time value at each Marker. The user can manually note the time value at 
each marker placed and subtract them to calculate the time difference between 2 markers.  

b. To remove Marker in the signal window  



ForgeFPGA Software Simulation User Guide 

 

R19US0011EU0100   Rev.1.0 
May 20, 2024 

 Page 17

 

User can go to Menu  Markers  Collect Named Marker. This will remove the last-named Marker 
placed in the signal window. User can remove all the named Markers by going to Menu  Markers  
Collect All Named Marker (Figure 12). 

 

Figure 12: Marker Options 

In Figure 13, we can see how the signal colors have been changed. You can observe a Blank Signal added to the 
signal window as well with a comment - Blank Signal. 

Also note the presence of 6 Named Markers (A - E) and the comparation of the time value between these Markers 
in ps. 



ForgeFPGA Software Simulation User Guide 

 

R19US0011EU0100   Rev.1.0 
May 20, 2024 

 Page 18

 

 

Figure 13: Collecting data from Markers 

3.3.6 View 
The View submenu is used to control various attributes dealing with the graphical rendering of status items as well 
as values in the signal sub window. From this menu, you can convert the signal window to Black & White or colored 
as well. The View submenu also enables you to change the time Dimension ranging from seconds (secs) to 
ficoseconds (fs). The user can find this option View  Scale to Time Dimension  fs. 

3.3.7 Help  
The help submenu contains options for enabling on-line help as well as displaying program version information.  

4. Conclusion 
This document was created   to assist the user in successfully simulating their design and verifying the 
functionality by correcting drafting the needed testbench and using Icarus Verilog along with GTKWave to 
display the waveforms and observe the results.   

  



ForgeFPGA Software Simulation User Guide 

 

R19US0011EU0100   Rev.1.0 
May 20, 2024 

 Page 19

 

5. Revision History 
 

Revision Date Description 

1.00 May 20, 2024 Initial release.  

 

 


