

Programming Manual – Read Me

ZMOD4410 - Indoor Air Quality Sensor Platform

R36US0001EU0116 Rev.1.16
Jun.20.24

 Page 1
© 2018-2024 Renesas Electronics

1. Introduction
The ZMOD4410 Gas Sensor Module is highly configurable to meet various application needs. This document
describes the general program flow to set up ZMOD4410 Gas Sensor Modules for gas measurements in a
customer environment. It also describes the function of example code provided as C code, which can be
executed using the ZMOD4410 evaluation kit (EVK), Arduino®, and Raspberry Pi® hardware.

The corresponding firmware package is provided on the Renesas ZMOD4410 product page under the
Software Downloads section. For various Renesas microcontrollers, ready-to-use code (ZMOD4xxx Sample
application) is provided on the Sensor Software Modules for Renesas MCU Platforms product page.

For instructions on assembly, connection, and installation of the EVK hardware and software, see the document
titled Environmental Sensors Evaluation Kit Manual on the ZMOD4410 EVK product page.

The ZMOD4410 has several modes of operation:
■ IAQ 2nd Gen – The embedded artificial intelligence (AI) algorithm (“iaq_2nd_gen”) derived from machine

learning outputs total volatile organic compounds (TVOC), equivalent ethanol (EtOH) concentration, estimated
carbon dioxide level (eCO2), and an absolute and relative rating for the indoor air quality (IAQ). This operation
mode is for highly accurate and consistent sensor readings. This is the recommended operation mode for
IAQ.

■ IAQ 2nd Gen Ultra-Low Power (ULP) – The embedded artificial intelligence (AI) algorithm (“iaq_2nd_gen_ulp”)
derived from machine learning outputs total volatile organic compounds (TVOC), equivalent ethanol (EtOH)
concentration, estimated carbon dioxide level (eCO2), and an absolute and relative rating for the indoor air
quality (IAQ). This operation mode offers a much lower power consumption while keeping accurate and
consistent sensor readings.

■ Public Building AQ Standard (PBAQ) – The embedded artificial intelligence (AI) algorithm derived from
machine learning outputs total volatile organic compounds (TVOC), equivalent ethanol (EtOH) concentration,
and an absolute and relative rating for the indoor air quality (IAQ). This operation mode is for highly accurate
and consistent sensor readings to fulfill several public building standards.

■ Sulfur Odor – This semi-selective detection method for gas species allows discrimination between sulfur odors
in the air. Odors are classified as “Acceptable” and “Sulfur” with an intensity level. For description of the
firmware of this operation mode, see the ZMOD4410 Programming Manual – Read Me included in this
Firmware package.

The previous Odor Firmware and output was replaced by the Relative IAQ output included in the other
firmwares.

Note: This document is generic and valid for several firmware examples. Whenever the placeholder ”XXX” is
used, replace the name (iaq_2nd_gen, iaq_2nd_gen_ulp, pbaq) corresponding to the chosen package.

Recommendation: Before using this document, read the ZMOD4410 Datasheet and corresponding
documentation on the ZMOD4410 product page.

http://www.renesas.com/zmod4410
https://www.renesas.com/software-tool/sensor-software-modules-renesas-mcu-platforms
http://www.renesas.com/zmod4410-evk
http://www.renesas.com/zmod4410

ZMOD4410 Programming Manual – Read Me

R36US0001EU0116 Rev.1.16
Jun.20.24

 Page 2

Contents
1. Introduction .. 1

2. Hardware Requirements to Operate ZMOD4410 ... 3

3. Structure of ZMOD4410 Firmware .. 5

4. Description of the Programming Examples .. 6
4.1 IAQ 2nd Gen Example for EVK ... 6
4.2 ULP Example for EVK (IAQ 2nd Gen ULP) .. 8
4.3 PBAQ Example for EVK .. 9
4.4 Compile for EVK Hardware ... 10
4.5 Arduino Examples .. 11
4.6 Raspberry Pi Examples ... 15
4.7 Compile for Raspberry Pi Hardware .. 16
4.8 Error Codes ... 16

5. Adapting the Firmware Example for Target Hardware .. 18
5.1 System Hierarchy and Implementation Steps ... 18
5.2 Interrupt Usage and Measurement Timing .. 19

6. Revision History .. 20

Figures
Figure 1. File Overview for ZMOD4410 Firmware .. 5
Figure 2. System Hierarchy .. 18
Figure 3. Measurement Sequences ... 19

Tables
Table 1. Exemplary Memory Footprint of ZMOD4410 Implementation on a Renesas RL78-G13 MCU [1] 3
Table 2. Targets and Compilers Supported by Default (Cont. on Next Page) ... 3
Table 3. IAQ 2nd Gen Program Flow using ZMOD4410 ... 6
Table 4. IAQ 2nd Gen Program Flow using ZMOD4410 and ZMOD4510 .. 7
Table 5. ULP Program Flow (IAQ 2nd Gen ULP) .. 8
Table 6. PBAQ Program Flow using ZMOD4410 ... 9
Table 7. PBAQ Program Flow using ZMOD4410 and ZMOD4510 (Cont. on Next Page) 9
Table 8. Connection of Sensor Board to Raspberry Pi .. 15
Table 9. Error Codes (Cont. on Next Page) ... 16

ZMOD4410 Programming Manual – Read Me

R36US0001EU0116 Rev.1.16
Jun.20.24

 Page 3

2. Hardware Requirements to Operate ZMOD4410
To operate the ZMOD4410, customer-specific hardware with a microcontroller unit (MCU) is needed. Depending
on the sensor configuration and the hardware itself, the requirements differ. The following minimum
requirements are provided as an orientation only:
■ 20 to 40kB program flash for ZMOD4410-related firmware code (MCU architecture and compiler dependent),

see Table 1.
■ 1.5kB RAM for ZMOD4410-related operations (see Table 1).
■ Capability to perform I²C communication, timing functions (5% precision), and floating-point instructions.
■ The algorithm functions work with variables saved in background and require memory retention between each

call.

Table 1. Exemplary Memory Footprint of ZMOD4410 Implementation on a Renesas RL78-G13 MCU [1]

 IAQ 2nd Gen IAQ 2nd Gen ULP PBAQ

Program flash usage in kB 19.6 17.2 18.2

RAM usage (required variables) in bytes 726 448 702

RAM usage (stack size for library functions, worst case) in bytes 560 256 576

1. This example does not contain hardware-specific I²C and delay functions. CCRL compiler used.

The ZMOD4410 firmware can be downloaded from the ZMOD4410 product page. To get access to the firmware,
a Software License Agreement (SLA) has to be accepted. The firmware uses floating-point calculations with
various integer and floating-point variables. A part of the firmware are precompiled libraries for many standard
targets (microcontrollers), as listed in the following table.

Table 2. Targets and Compilers Supported by Default (Cont. on Next Page)

Target Compiler

Arduino (Cortex-M0+) arm-none-eabi-gcc (Arduino IDE)

Arm Cortex-A

arm-none-eabi-gcc (all others)

iar-ew-arm (IAR Embedded Workbench)

aarch64-linux-gnu-gcc

Arm Cortex-M

armcc (Keil MDK with Keil Legacy Arm Compiler 5 settings)

armclang (Arm Developer Studio, Keil MDK)

arm-none-eabi-gcc (all others)

iar-ew-arm (IAR Embedded Workbench)

iar-ew-synergy-arm (IAR Embedded Workbench)

Arm Cortex-R4
arm-none-eabi-gcc (all others)

iar-ew-arm (IAR Embedded Workbench)

Arm Linux arm-linux-gcc

Espressif ESP

xtensa-esp32-elf-gcc

xtensa-esp32s2-elf-gcc

xtensa-esp32s3-elf-gcc

http://www.renesas.com/zmod4410

ZMOD4410 Programming Manual – Read Me

R36US0001EU0116 Rev.1.16
Jun.20.24

 Page 4

Target Compiler

xtensa-lx106-elf-gcc

riscv32-esp-elf-gcc

Intel 8051 iar-ew-8051 (IAR Embedded Workbench)

Microchip ATmega32 and AVR avr-gcc (AVR-Studio, AVR-Eclipse, MPLAB, Atmel Studio)

Microchip PIC

xc8-cc (MPLAB)

xc16-gcc (MPLAB)

xc32-gcc (MPLAB)

Raspberry Pi
arm-linux-gnueabihf-gcc

aarch64-linux-gnu-gcc

Renesas RL78

ccrl (e²studio, CS+)

iar-ew-rl (IAR Embedded Workbench)

rl78-elf-gcc

Renesas RX

ccrx (e²studio, CS+)

iar-ew-rx (IAR Embedded Workbench)

rx-elf-gcc

Texas Instruments MSP430 msp430-elf-gcc

Windows
mingw32

mingw64

Note: For other platforms (e.g., other Linux platforms) and other Arduino boards, contact Renesas Technical
Support.

ZMOD4410 Programming Manual – Read Me

R36US0001EU0116 Rev.1.16
Jun.20.24

 Page 5

3. Structure of ZMOD4410 Firmware
To operate the ZMOD4410 and use its full functionality, the following five code blocks are required (see
Figure 1):

1. The “Target Specific I2C and Low-Level Functions” block is the hardware-specific implementation of the I2C
interface. This block contains read and write functions to communicate with the ZMOD4410 and a delay
function. For the use with Renesas EVKs, there are implementations for ESCom and HiCom boards
provided with the ZMOD4410 firmware packages. Using the user’s own target hardware requires
implementing the user’s target-specific I2C and low-level functions (this is highlighted in light blue in
Figure 1).

2. The “Hardware Abstraction Layer (HAL)” block contains hardware-specific initialization and de-initialization
functions. For the use with Renesas EVKs the Communication Board HAL is provided, which supports
ESCom and HiCom boards. The HAL is described in the document ZMOD4410-XXX-
Documentation.pdf/.html, which is included in the firmware packages.

3. The “Application Programming Interface (API)” block contains the functions needed to operate the
ZMOD4410. The API should not be modified! A detailed description of the API is located in the document
ZMOD4410-XXX-Firmware-Documentation.pdf/.html, which is included in the firmware packages.

4. The example.c file in the “Programming Example” block demonstrates the sensor initialization, sensor
cleaning, raw sensor data readout, and algorithm results computation. For more information, see
“Description of the Programming Examples”.

5. The “Gas Measurement Libraries” block contains one configuration file (zmod4410_config_XXX.h) that
should not be modified! Furthermore, a library needed to calculate the firmware-specific results for the Indoor
Air Quality related parameters is provided, such as IAQ, TVOC, EtOH, rel IAQ and eCO2 (the latter only for
IAQ 2nd Gen and IAQ 2nd Gen ULP). The algorithms cannot be used together because the gas sensor must
be configured differently for each algorithm. This block also contains the cleaning library. The libraries are
described in more detail in the ZMOD4410-XXX-Firmware-Documentation.pdf/.html.

To avoid naming conflicts, all API function names start with the prefix “zmod4xxx” in the ZMOD4410 code. The
Arduino and Raspberry Pi examples have a similar structure but have some other features that facilitate
operation with the corresponding hardware (see “Arduino Examples“ and “Raspberry Pi Example”).

Figure 1. File Overview for ZMOD4410 Firmware

All files are part of a zipped firmware packages available on the ZMOD4410 product page under the
Software Downloads section. Note that not all configurations and libraries are available for all operation modes;
the individual library documentation will provide detailed insight on possible settings.

Hardware Abstrac�on Layer (HAL)
General Files:

hal.h
hal.c
zmod4xxx_hal.h
zmod4xxx_hal.c

EVK-specific Files:
comboard.c

Custom Files:
template.c

Documenta�on:
ZMOD4410-XXX-Firmware-
Documenta�on.pdf/-htmlTarget Specific HAL

Implementa�on

Customer-Specific
Microcontroller

Customer
implementa�on

required

Applica�on Programming
Interface (API)

Files:
zmod4xxx.c
zmod4xxx.h
zmod4xxx_types.h

Documenta�on:
ZMOD4410-XXX-Firmware-
Documenta�on.pdf/-html

Programming Example

example.c
Files:

Gas Measurement Libraries

Files for IAQ 2nd Gen ULP:

iaq_2nd_gen_ulp.h
lib_iaq_2nd_gen_ulp.lib

zmod4410_config_iaq2_ulp.h

Files for PBAQ:

pbaq.h
lib_pbaq.lib

zmod4410_config_pbaq.h

Cleaning Libraries:
zmod4xxx_cleaning.h
lib_zmod4xxx_cleaning.lib

Files for IAQ 2nd Gen:

iaq_2nd_gen.h
lib_iaq_2nd_gen.lib

zmod4410_config_iaq2.h

Documenta�on:
ZMOD4410-XXX-Firmware-
Documenta�on.pdf/-html

Files:
escom.h
escom.c

Renesas Evalua�on Kit

Renesas EVK HAL
Implementa�on

http://www.renesas.com/zmod4410

ZMOD4410 Programming Manual – Read Me

R36US0001EU0116 Rev.1.16
Jun.20.24

 Page 6

4. Description of the Programming Examples
This section describes the structure of the firmware examples and the steps needed to operate the sensor
module. In the examples, the ZMOD4410 is initialized, the measurement is started, and measured values are
outputted. They are intended to work on a Windows® computer in combination with the Renesas Environmental
Sensor-EVK, however it can be easily adjusted to operate on other platforms (see “Adapting the Firmware
Example for Target Hardware”). To run each example using the EVK without further configuration, start the file
XXX_example.exe, which is included in the firmware packages. Examples for Arduino and Raspberry Pi
hardware are also introduced (see “Arduino Examples“ and “Raspberry Pi Example”).

Note: Running an executable with legacy EVKs (HiCom) requires an FTDI driver to be available on the host
computer.

4.1 IAQ 2nd Gen Example for EVK
The example.c file of the example contains the main program flow. First, the target-specific initializations are
performed. The ZMOD4410 is configured by reading device parameters as well as Final Module Test
parameters from the sensor’s non-volatile memory (NVM), and then initializing it. A measurement loop
continuously checks the status and errors of the ZMOD4410 and reads its data. The raw data is subsequently
processed. The TVOC, EtOH, IAQ, rel IAQ, and eCO2 algorithm results are calculated with the embedded
neural net machine learning algorithm. All values are printed in the command line window. To stop the loop,
press Ctrl+C, which releases the hardware and stops the program. For more information, refer to the example
code. Table 3 shows the necessary function calls to operate the ZMOD4410. In Table 4, the combined use of the
ZMOD4410 and ZMOD4510 is shown for compensation of oxidizing gases. This flow corresponds to the
example provided in the firmware package.

Note: The blue colored lines in the following table can be run in an endless loop.

Table 3. IAQ 2nd Gen Program Flow using ZMOD4410

Line Program Actions Notes Function

1 Reset the sensor.
Before configuring the sensor, reset the
sensor by powering it off/on or toggling the
reset pin.

-

2 Detect and initialize the ZMOD4410
sensor. This function must be used after each start-up. detect_and_configure

3 Initialize the IAQ (TVOC, EtOH, rel IAQ,
eCO2) algorithm. Gas Algorithm Library function. init_iaq_2nd_gen

4 Start the ZMOD4410 measurement. One measurement is started every 3 seconds
and takes 1010ms. zmod4xxx_start_measurement

5 Delay (3000ms).

This delay is necessary to keep the right
measurement timing and to call a
measurement every 3 seconds with a
maximum deviation of 5% to keep the
algorithm accuracy.

-

6 Read the ZMOD4410 measurement. Read every 3 seconds. read_and_verify

7 Algorithm calculation and sensor self-
check.

Calculate current MOx resistance Rmox, clean
dry air resistance Rcda, IAQ, TVOC, EtOH, rel
IAQ and eCO2. Relative humidity (in % RH)
and temperature values (in °C) and ADC
results need to be passed as algo_input. First
300 samples (15 minutes) are used for
minimal, hard-coded sensor warm-up and
output is frozen. Actual warm-up can take
longer (up to 48 hours).

calc_iaq_2nd_gen

ZMOD4410 Programming Manual – Read Me

R36US0001EU0116 Rev.1.16
Jun.20.24

 Page 7

Table 4. IAQ 2nd Gen Program Flow using ZMOD4410 and ZMOD4510

Line Program Actions Notes Function

1 Reset the sensor.
Before configuring the sensor, reset the
sensor by powering it off/on or toggling the
reset pin.

-

2 Detect and initialize the ZMOD4410
sensor. This function must be used after each start-up. detect_and_configure

3 Detect and initialize the ZMOD4510
sensor. This function must be used after each start-up. detect_and_configure

4 Initialize the IAQ (TVOC, EtOH, rel IAQ,
eCO2) algorithm. Gas Algorithm Library function. init_iaq_2nd_gen

5

Start the ZMOD4510 measurement. One measurement is started for compensation
every 6 seconds and takes 4020ms. zmod4xxx_start_measurement

Start the ZMOD4410 measurement. One measurement is started every 3 seconds
and takes 1010ms. zmod4xxx_start_measurement

6 Delay ().

This delay is necessary to keep the right
measurement timing and to call this loop every
3 seconds with a maximum deviation of 5% to
keep the algorithm accuracy.

-

7

Read the ZMOD4510 measurement. Read every 6 seconds for compensation. read_and_verify

Read the ZMOD4410 measurement. Read every 3 seconds after the measurement
finished. read_and_verify

8 Algorithm calculation and sensor self-
check.

If measurement was read, calculate current
MOx resistance Rmox, clean dry air resistance
Rcda, IAQ, TVOC, EtOH, rel IAQ and eCO2.
adc_rmox3_4510 value, relative humidity (in
% RH) and temperature values (in °C) and
ADC results need to be passed as algo_input.
First 300 samples (15 minutes) are used for
minimal, hard-coded sensor warm-up and
output is frozen. Actual warm-up can take
longer (up to 48 hours).

calc_iaq_2nd_gen

ZMOD4410 Programming Manual – Read Me

R36US0001EU0116 Rev.1.16
Jun.20.24

 Page 8

4.2 ULP Example for EVK (IAQ 2nd Gen ULP)
The example.c file of the example contains the main program flow. First, the target-specific initializations are
performed. The ZMOD4410 is configured by reading device parameters as well as Final Module Test
parameters from the sensor’s non-volatile memory (NVM) and initializing it. An endless measurement loop
continuously checks the status of the ZMOD4410 and reads its data. The raw data is subsequently processed.
The TVOC, EtOH, IAQ, rel IAQ, and eCO2 algorithm results are calculated with the embedded neural net
machine learning algorithm. All values are printed in the command line window. To stop the loop, press Ctrl+C,
which releases the hardware and stops the program. For more information, refer to the example code.

Note: The blue colored lines in the following table can be run in an endless loop.

Table 5. ULP Program Flow (IAQ 2nd Gen ULP)

Line Program Actions Notes Function

1 Reset the sensor.
Before configuring the sensor, reset the
sensor by powering it off/on or toggling the
reset pin.

-

2 Detect and initialize the ZMOD4410
sensor. This function must be used after each start-up. detect_and_configure

3 Initialize the IAQ (TVOC, EtOH, eCO2)
algorithm. Gas Algorithm Library function. init_iaq_2nd_gen_ulp

4 Start the measurement. One measurement is started. zmod4xxx_start_measurement

5 Delay ().
Wait until the measurement is done. This is
the first delay. It should be longer than
1010 ms.

-

6 Read the ZMOD4410 measurement. Read and verify the validity of the results. read_and_verify

7 Algorithm calculation and sensor self-
check.

Calculate current MOx resistance Rmox, clean
dry air resistance Rcda, IAQ, TVOC, EtOH, rel
IAQ and eCO2. Relative humidity (in % RH)
and temperature values (in °C) need to be
passed as arguments. First 10 samples
(15 minutes) are used for minimal, hard-coded
sensor warm-up. Actual warm-up can take
longer (up to 48 hours).

calc_iaq_2nd_gen_ulp

8 Delay ().

This second delay is necessary to keep the
right measurement timing. The sum of the first
and second delay should amount 90 seconds
to call a measurement every 90 seconds with
a maximum deviation of 5% to keep the
algorithm accuracy.

-

ZMOD4410 Programming Manual – Read Me

R36US0001EU0116 Rev.1.16
Jun.20.24

 Page 9

4.3 PBAQ Example for EVK
The example.c file of the example contains the main program flow. First, the target-specific initializations are
performed. The ZMOD4410 is configured by reading device parameters as well as Final Module Test
parameters from the sensor’s non-volatile memory (NVM), and then initializing it. A measurement loop
continuously checks the status of the ZMOD4410 and reads its data. The raw data is subsequently processed.
The TVOC, EtOH, IAQ, and rel IAQ algorithm results are calculated with the embedded neural net machine
learning algorithm. All values are printed in the command line window. To stop the loop, press Ctrl+C, which
releases the hardware and stops the program. For more information, see the example code. Table 6 shows the
necessary function calls to operate the ZMOD4410. In Table 7, the combined use of the ZMOD4410 and
ZMOD4510 is shown for compensation of oxidizing gases. This flow corresponds to the example provided in the
firmware package.

Note: The blue colored lines in the following table can be run in an endless loop.

Table 6. PBAQ Program Flow using ZMOD4410

Line Program Actions Notes Function

1 Reset the sensor.
Before configuring the sensor, reset the
sensor by powering it off/on or toggling the
reset pin.

-

2 Detect and initialize the ZMOD4410
sensor. This function must be used after each start-up. detect_and_configure

3 Initialize the PBAQ (TVOC, EtOH, IAQ,
rel IAQ) algorithm. Gas Algorithm Library function. init_pbaq

4 Start the ZMOD4410 measurement. One measurement is started every 5 seconds
and takes 256ms. zmod4xxx_start_measurement

5 Delay ().

This delay is necessary to keep the right
measurement timing and to call a
measurement every 5 seconds with a
maximum deviation of 5% to keep the
algorithm accuracy.

-

6 Read the ZMOD4410 measurement. Read every 5 seconds. read_and_verify

7 Algorithm calculation and sensor self-
check.

Calculate current MOx resistance Rmox, clean
dry air resistance Rcda, IAQ, TVOC, EtOH,
and rel IAQ. Relative humidity (in % RH) and
temperature values (in °C) and ADC results
need to be passed as algo_input. First 300
samples (25 minutes) are used for minimal,
hard-coded sensor warm-up and output is
frozen. Actual warm-up can take longer (up to
48 hours).

calc_pbaq

Table 7. PBAQ Program Flow using ZMOD4410 and ZMOD4510 (Cont. on Next Page)

Line Program Actions Notes Function

1 Reset the sensor.
Before configuring the sensor, reset the
sensor by powering it off/on or toggling the
reset pin.

-

2 Detect and initialize the ZMOD4410
sensor. This function must be used after each start-up. detect_and_configure

ZMOD4410 Programming Manual – Read Me

R36US0001EU0116 Rev.1.16
Jun.20.24

 Page 10

Line Program Actions Notes Function

3 Detect and initialize the ZMOD4510
sensor. This function must be used after each start-up. detect_and_configure

4 Initialize the PBAQ (TVOC, EtOH, IAQ,
rel IAQ) algorithm. Gas Algorithm Library function. init_pbaq

5
Start the ZMOD4510 measurement. One measurement is started for compensation

every 6 seconds and takes 4020ms. zmod4xxx_start_measurement

Read the ZMOD4510 measurement. Read 5 seconds after measurement start. read_and_verify

6
Start the ZMOD4410 measurement. One measurement is started every 5 seconds

and takes 256ms. zmod4xxx_start_measurement

Read the ZMOD4410 measurement. Read 4 seconds after measurement start. read_and_verify

7 Algorithm calculation and sensor self-
check.

If measurement was read, calculate current
MOx resistance Rmox, clean dry air resistance
Rcda, IAQ, TVOC, EtOH, and rel IAQ.
adc_rmox3_4510 value, relative humidity (in
% RH) and temperature values (in °C) and
ADC results need to be passed as algo_input.
First 300 samples (25 minutes) are used for
minimal, hard-coded sensor warm-up and
output (IAQ, TVOC, EtOH) is frozen. Actual
warm-up can take longer (up to 48 hours).

calc_pbaq

8 Delay ().

This delay is necessary to keep the right
measurement timing and to call this loop every
1 second with a maximum deviation of 5% to
keep the algorithm accuracy.

-

4.4 Compile for EVK Hardware
The EVK firmware example is designed to work with the EVK hardware. To evaluate the impact of code changes
on sensor performance, it is possible to use the EVK as reference. This section describes how to compile the
adapted source code into an executable file, which can then be used with the EVK on a Windows platform. The
firmware folder structure should be identical to that in the download package.

To compile for 64-bit Windows, “skeeto/w64devkit” must be downloaded and unzipped:

1. Install skeeto/w64devkit:
a. Download the latest version of w64devkit-<VERSION>.zip and unzip it.

2. Compiling:
a. Go to the Command Prompt and add skeeto/w64devkit to the system path in command line by using:

set PATH=<PATH_TO_W64DEVKIT>\bin;%PATH%
b. Change to the following directory of the firmware folder:

[...]\Renesas-ZMOD4410-XXX-Firmware\src
c. Execute the following command:

make
d. An executable file called XXX-example.exe will be created in folder build.

ZMOD4410 Programming Manual – Read Me

R36US0001EU0116 Rev.1.16
Jun.20.24

 Page 11

To compile for 32-bit Windows, “MinGW” must be installed:

1. Install MinGW:
a. MinGW (32 bit) must be used.
b. Download mingw-get-setup.exe from https://osdn.net/projects/mingw/releases/.
c. The downloaded executable file installs “Install MinGW Installation Manager”.
d. Select the required packages:

i. mingw-developer-toolkit-bin
ii. mingw32-base-bin
iii. mingw32-gcc-g++-bin
iv. msys-base-bin.

e. Click “Installation” from the top-left corner and select “Update Catalogue”.
f. Finish installation.

2. Compiling:
a. Go to the Command Prompt and add MinGW to the system path in command line by using:

set PATH=<PATH_TO_MinGW>\bin;<PATH_TO_MinGW>\msys\1.0\bin;%PATH%
b. Change to the following directory of the example folder: [...]\Renesas-ZMOD4410-XXX-Firmware\src
c. Execute the following command:

make ARCH=32 GCC=mingw32-gcc

An executable file called XXX-example.exe will be created in folder build.

Note: Running compiled executable with legacy EVKs (HiCom) requires an FTDI driver to be available on the
host computer.

4.5 Arduino Examples
To set up firmware for an Arduino target, Renesas provides the above-mentioned EVK examples also as an
Arduino example. These example are high-level Arduino libraries and have a similar structure as shown in
Figure 1 but with a HAL dedicated for Arduino, an Arduino-compatible structure, and Arduino-specific files. An
Arduino IDE with version 2.0.0 or higher is needed. The Program Flows correspond to those depicted in the EVK
examples. To get the Arduino example started, complete the following steps (example shown for SAMD 32-bit
ARM Cortex-M0+ based Arduino-hardware):

1. Connect the ZMOD4410 to the Arduino board. To connect the EVK Sensor Board, check the pin
configuration on connector “X1” in the Environmental Sensors Evaluation Kit Manual on ZMOD4410 EVK
product page.

2. Go to the Arduino example path (for example […]\Documents\Arduino\libraries) and check if a ZMOD4410
example exists. Old example folders must be deleted.

https://osdn.net/projects/mingw/releases/
http://www.renesas.com/zmod4410-evk

ZMOD4410 Programming Manual – Read Me

R36US0001EU0116 Rev.1.16
Jun.20.24

 Page 12

3. Open Arduino IDE. Select “Sketch > Include Library > Add .ZIP Library”.

4. Select the Renesas-ZMOD4410-XXX-Firmware-Arduino.zip file.

5. Select “File > Examples > Renesas- ZMOD4410-XXX.” A new Arduino IDE window opens automatically with
examples main file.

ZMOD4410 Programming Manual – Read Me

R36US0001EU0116 Rev.1.16
Jun.20.24

 Page 13

6. (This step may not be required for other Arduino hardware.) Install “Arduino SAMD (32-bit ARM Cortex-
M0+)” Boards library under “Tools > Board > Board Manager”.

If it already exists, skip this step. Type “Arduino SAMD Boards” in search field and click the “Install” button in
“Arduino SAMD (32-bits ARM Cortex-M0+)” field.

ZMOD4410 Programming Manual – Read Me

R36US0001EU0116 Rev.1.16
Jun.20.24

 Page 14

7. Select the target board under “Tools > Board > Arduino SAMD (32-bits ARM Cortex-M0+) > Arduino
MKRZERO”.

8. Compile the example with the “Verify” icon.

9. Select the connected port with “Tools > Port > (Connected Port)”. The correct COM-Port should show your
Arduinos board name.

10. Load the program into the target hardware with the “Upload” icon.

11. Check the results with the Serial Monitor (Tools > Serial Monitor).

Note: The sensor may execute the cleaning procedure during the first operation, which takes one minute to
complete. Afterwards, the results are shown.

ZMOD4410 Programming Manual – Read Me

R36US0001EU0116 Rev.1.16
Jun.20.24

 Page 15

4.6 Raspberry Pi Examples
To set up a firmware for a Raspberry Pi based target, Renesas provides the above-mentioned EVK examples
also as Raspberry Pi examples. These examples have a similar structure as shown in Figure 1 but with a HAL
dedicated for Raspberry Pi and a Makefile to easily compile the code. The example is based on the pigpio library
and Raspberry Pi OS (previously called Raspbian).

The example is tested on the following Raspberry Pi models on Raspberry Pi OS:
■ Raspberry Pi 3 B, B+
■ Raspberry Pi 4 B

The following table describes the connection of the Sensor Board connector “X1” and the Raspberry Pi GPIO
Connector. Documentation of X1 can be found in the Environmental Sensor Evaluation Kit Manual.
Documentation of Raspberry Pi GPIO can be found on command line typing “pinout” or online.

Table 8. Connection of Sensor Board to Raspberry Pi

Sensor Board Pin (X1) Sensor Board Description Raspberry Pi Pin Raspberry Pi Description

1 VDD 1, 17 3V3 power

7 SDA 3 GPIO 2 (SDA)

5 SCL 5 GPIO 3 (SCL)

14 GND 6, 9, 14, 20, 25, 30, 34, 39 Ground

The Program flows correspond to those displayed in the EVK examples. To get the Raspberry Pi example
started, complete the following steps:

1. Install the Raspberry Pi operating system on the Raspberry Pi. An imager tool is available to easily flash the
operating system to SD card.

2. To configure the I2C interface go to /boot directory and open the configuration file:
sudo nano config.txt

3. Enable the I2C interface and change the baud rate by uncommenting the line #dtparam=i2c_arm=on and
changing it to:
dtparam=i2c_arm=on,i2c_arm_baudrate=200000

4. Reboot the Raspberry Pi to complete the initial setup. Once done, the example code can be started.
5. Copy the whole Renesas firmware package to your Raspberry Pi and extract it to your preferred location

(e.g., “Downloads”).
6. Open the Terminal and go to the directory containing the executable.:

cd ~/Downloads/Renesas-ZMOD4410-XXX-Firmware/raspberrypi/
7. Start the example with the following command (sudo is required for pigpio package):

sudo ./XXX_example
You may have to assign yourself execute permissions with chmod 544 XXX-example. If you get an error
“Can't lock /var/run/pigpio.pid”, run the following command:
sudo killall pigpiod.

You can also try to establish an internet connection via Wi-Fi or LAN and install updates on the Raspberry Pi
using the command sudo apt update && sudo apt upgrade -y on the Terminal. The updates may
take some time to finish.

https://abyz.me.uk/rpi/pigpio/
https://pinout.xyz/
https://www.raspberrypi.com/software/

ZMOD4410 Programming Manual – Read Me

R36US0001EU0116 Rev.1.16
Jun.20.24

 Page 16

4.7 Compile for Raspberry Pi Hardware
This section provides guidelines for compiling the adapted source code into an executable file. This executable
can be used on the Raspberry Pi like the original provided executable file. The compile method is working for the
following Raspberry Pi models 3 and 4. For compiling, “make” must be installed, which is a standard package in
Raspberry Pi OS. The folder structure should be identical to that in the downloaded package.

1. Complete your code changes in the source code of the firmware package.

2. Open the Terminal and go to the directory containing the example code. For example,
cd ~/Downloads/Renesas-ZMOD4410-XXX-Firmware/src

3. Type make, and a file called XXX-example will be generated in the folder named build.

4. Start the example with the following command (sudo is required for pigpio package). Make sure to have the
I²C interface enabled (for instructions, see “Raspberry Pi Examples”.
sudo build/XXX-example

4.8 Error Codes
All API functions return a code to indicate the success of the operation. If no error occurred, the return code is
zero. If an error occurs, a negative number is returned. The API has predefined symbols zmod4xxx_err for the
error codes defined in zmod4xxx_types.h. If an error occurs, check the following table for solutions. Note that the
ZMOD API cannot detect an incorrect I²C implementation. Each error may occur also with an incorrect I²C
implementation.

Table 9. Error Codes (Cont. on Next Page)

Error
Code Error Description Solution

1 XXX_STABILIZATION Sensor is in stabilization. Algorithm results obtained during this period should not be
considered as valid outputs. Ignore the outputs.

0 ZMOD4XXX_OK No error.

-1 ERROR_INIT_OUT_OF_
RANGE

The initialization value is
out of range. Not used.

-2 ERROR_GAS_TIMEOUT

A previous measurement
is running that could not
be stopped or sensor
does not respond.

1. Try to reset the sensor by powering it off/on or toggling the
reset pin. Then, start the usual Program Flow as shown in
“Description of the Programming Examples”.

2. Check your I²C wrapper functions for I²C read and write. It is
best to analyze the voltage levels of the SDA/SCL line and
check if they match the pattern described in figure “I2C Data
Transmission Protocol” in the datasheet. Do a register check
as requested in “I2C Interface and Data Transmission
Protocol” in the datasheet. Also check multiple register write
and read out.

-3 ERROR_I2C I²C communication was
not successful.

1. If available, check the error code of your parent I²C functions
used in the ZMOD HAL for I2C_write/I2C_read
implementation.

2. Check if the sensor correctly wired and if the voltage levels are
appropriate.

3. Check your I²C wrapper functions for I²C read and write. It is
best to analyze the voltage levels of the SDA/SCL line and
check if they match the pattern described in figure “I2C Data
Transmission Protocol” in the datasheet. Do a register check
as requested in “I2C Interface and Data Transmission
Protocol” in the datasheet. Also check multiple register write
and read out.

ZMOD4410 Programming Manual – Read Me

R36US0001EU0116 Rev.1.16
Jun.20.24

 Page 17

Error
Code Error Description Solution

-4 ERROR_SENSOR_UNS
UPPORTED

The Firmware
configuration used does
not match the sensor
module.

1. Check the part number of your device. Go to the product page
at www.renesas.com/zmod4410. Under the “Downloads”, you
will find the right firmware for ZMOD4410. Replace it.

2. Check your I²C wrapper functions for I²C read and write. It is
best to analyze the voltage levels of the SDA/SCL line and
check if they match the pattern described in figure “I2C Data
Transmission Protocol” in the datasheet. Do a register check
as requested in “I2C Interface and Data Transmission
Protocol” in the datasheet. Also check multiple register write
and read out.

-5 ERROR_CONFIG_MISSI
NG

There is no pointer to a
valid configuration. Not used.

-6 ERROR_ACCESS_CON
FLICT

Invalid ADC results due
to a still running
measurement while
results readout.

1. Check if the delay function is correctly implemented. You can
use a scope plot of a GPIO pin that is switched on and off. The
delay function must introduce delays in milliseconds.

2. Check measurement timing by comparing your flow with the
Program Flow as shown in “Description of the Programming
Examples”. Figure 3 shows graphically the correct timing.
Make sure to start a result readout after active measurement
phase finished. See hints on measurement timing in “Interrupt
Usage and Measurement Timing”.

3. Check your I²C wrapper functions for I²C read and write. It is
best to analyze the voltage levels of the SDA/SCL line and
check if they match the pattern described in figure “I2C Data
Transmission Protocol” in the datasheet. Do a register check
as requested in “I2C Interface and Data Transmission
Protocol” in the datasheet. Also check multiple register write
and read out.

-7 ERROR_POR_EVENT An unexpected reset of
the sensor occurred.

Check stability of power supply and power/reset lines (e.g., for
crosstalk). After a Power-On reset the sensor lost its configuration
and must be reconfigured. If the host-controller did not lose its
memory due to a restart, start with zmod4xxx_prepare_sensor
function and continue in the Program flow as shown in
“Description of the Programming Examples”.

-8 ERROR_CLEANING

The maximum numbers
of cleaning cycles ran on
this sensor.
zmod4xxx_cleaning_run
function has no effect
anymore.

Using cleaning too often can harm the sensor module. The
cleaning cannot be used anymore on this sensor module.
Comment out the function zmod4xxx_cleaning_run if not needed.

-9 ERROR_NULL_PTR

The hal structure did not
receive the pointers for
I2C read, write, delay
and/or reset.

The HAL_Init function contains assigning the variable of hal
i2cRead, i2cWrite and msSleep function pointers. These three
functions have to be generated for the corresponding hardware
and assigned in the init_hardware function. This is exemplary
shown in template.c:
 hal -> msSleep = _Sleep;
 hal -> i2cRead = _I2CRead;
 hal -> i2cWrite = _I2CWrite;
Check if the assignment was done.

-102 XXX_DAMAGE
Sensor is probably
damaged.

If an error occurs at the beginning of a sensor’s lifetime, wait for
60 minutes and check if the error disappears. For more
information, see “General Characteristics” in the ZMOD4410
Datasheet.

http://www.renesas.com/zmod4410

ZMOD4410 Programming Manual – Read Me

R36US0001EU0116 Rev.1.16
Jun.20.24

 Page 18

5. Adapting the Firmware Example for Target Hardware

5.1 System Hierarchy and Implementation Steps
The Renesas ZMOD4410 C API is located between the application and the hardware level.

Customer Application

Application-Specific Configuration of the Firmware Example

ZMOD4410 API and Libraries (Algorithms)

Hardware Abstraction Layer (HAL)

Hardware Level (ZMOD4410 and Target)

Figure 2. System Hierarchy

The ZMOD4410 example code uses a Hardware Abstraction Layer to separate target hardware implementation
details from the actual sensor interface. To transfer the example to a different hardware platform, the following
steps are recommended:

1. Recursively copy everything from src folder into your project.
2. Remove all subdirectories from src/hal except custom.
3. Adapt the file src/hal/custom/template.c to work with your hardware. This requires customized

implementations of the _I2CRead, _I2CWrite, and _Sleep functions. For more information, see the “I2C
Interface and Data Transmission Protocol” section of the ZMOD4410 Datasheet and the ZMOD4410-XXX-
Firmware-Documentation.pdf and .html. If possible, try to verify your implementation with a scope or logic
analyzer. Conduct a register test as described in the datasheet.

4. Modify the file src/example.c as required or copy its functionality to your own application code. Make sure to
leave the order of operations and timing unchanged.
Before continuing to the next step, you can also try compiling and running the application without the
algorithm libraries. Comment out calls to zmod4xxx_cleaning_run, init_* and calc_* functions and check if
zmod4xxx_read_adc_results() function outputs changing ADC values in main measurement loop.

5. Link the application code with the algorithm and cleaning libraries matching your microcontroller and
compiler. A list of supported MCUs and compilers is provided in Table 2.

ZMOD4410 Programming Manual – Read Me

R36US0001EU0116 Rev.1.16
Jun.20.24

 Page 19

5.2 Interrupt Usage and Measurement Timing
The firmware examples are written with delays. The microcontroller is blocked during these time periods.
Depending on target hardware and the application, this can be avoided by using interrupts. The measurement
sequences for each algorithm are displayed in the following figure.

Figure 3. Measurement Sequences

An active measurement is indicated with a heater target temperature greater than zero. To lower power
consumption a Sleep phase follows. When using ZMOD4410 together with ZMOD4510 for compensation of
oxidizing gases, the ZMOD4510 measurement interval (sample rate) of 6 seconds should be considered. The
timing must be kept exactly with a maximum deviation of 5% to keep the algorithm accuracy. Each measurement
must be restarted with the API command zmod4xxx_start_measurement.

A timer interrupt can be used to start each measurement sequence. Note that an ADC read-out just before the
end of the active measurement phase when results are written to the registers will lead to an error. When
replacing the delay make sure that the measurement is completed before the ADC readout by checking with API
function zmod4xxx_read_status and compare the output variable zmod4xxx_status with
STATUS_SEQUENCER_RUNNING_MASK. An AND link of both should give zero, otherwise the measurement
was not completed.

Instead of reading out the results directly after the measurement, another option is to use just one timer interrupt
with the measurement interval. Then, the ADC result read-out, error check, and algorithm calculation is done just
before starting the next measurement (default for IAQ 2nd Gen and PBAQ). This option will increase the sensor
response time with the measurement interval length.

ZMOD4410 Programming Manual – Read Me

R36US0001EU0116 Rev.1.16
Jun.20.24

 Page 20

6. Revision History
Revision Date Description

1.16 June 20, 2024
 Updated ZMOD4510 sequence for IAQ 2nd Gen.
 Added ozone compensation mode for PBAQ.
 Completed other minor changes.

1.15 Mar 12, 2024

 Updated IAQ 2nd Gen and ULP description.
 Removed Sulfur Odor description (to be maintained in firmware package).
 Moved cleaning and self-check description to the ZMOD4410 Datasheet.
 Updated compiling strategies.
 Restructured various sections and completed minor edits.

1.14 Jul 13, 2023
 Completed several changes to support new EVK hardware
 Updated target and compiler list

1.13 Mar 7, 2023 Updated to include a broader definition of Public Building Air Quality (PBAQ)

1.12 Jan 30, 2023
 Added PBAQ example description
 Removed Arduino ATmega32 support
 Completed other minor changes

1.11 Nov 7, 2022 Completed minor edits.

1.10 Oct 12, 2022

 Added Rel IAQ and Rel IAQ ULP description
 Added Raspberry Pi description
 Updated cleaning functionality
 Added sensor damage self-check functionality
 Added RH/T compensation functionality for IAQ 2nd Gen
 Removed C90 support
 Removed Odor descriptions (legacy)
 Completed other minor changes

1.09 Dec 2, 2021

 Added IAQ 2nd Gen ULP Operation Mode description
 Added error code description
 Removed IAQ 1st Gen descriptions (legacy)
 Completed other minor changes

1.08 Aug 19, 2021

 Added Arduino description and updated target and compiler list.
 Added stack RAM usage.
 Corrected and reworked Program Flows.
 Extended “Interrupt Usage” description.
 Completed other minor changes

1.07 Sep 24, 2020

 Add sections “Interrupt Usage”, “Adaptions to Follow C90 Standard”, “How to Compile for
EVK Hardware”.

 Add example for memory footprint and update target and compiler list.
 Refined implementation steps.
 Minor edits in text.

1.06 May 27, 2020 Completed many changes throughout the document.

1.05 Nov 14, 2019
 Cleaning procedure added and explained.
 Figure for file overview updated.

ZMOD4410 Programming Manual – Read Me

R36US0001EU0116 Rev.1.16
Jun.20.24

 Page 21

Revision Date Description

1.04 Feb 12, 2019

 Update for change in the program flow for Continuous (skip the first 10 samples) and Low
Power (skip the first 5 samples) Operation Modes.

 Implementation of plain trim value calibration.
 Minor edits in text.

1.03 Dec 5, 2018
 Update for Low Power Operation.
 Minor edits.

1.02 Sep 27, 2018

 Revision of document title from ZMOD44xx Programming Manual with ZMOD4410 Example
to ZMOD4410 Programming Manual – Read Me.

 Full update for Odor Operation Mode 2.
 Minor edits.

1.00 Jun 11, 2018 Initial release.

Corporate Headquarters
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Contact Information
For further information on a product, technology, the most
up-to-date version of a document, or your nearest sales
office, please visit www.renesas.com/contact-us/.

Trademarks
Renesas and the Renesas logo are trademarks of Renesas
Electronics Corporation. All trademarks and registered
trademarks are the property of their respective owners.

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES (“RENESAS”) PROVIDES TECHNICAL
SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING
REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND
OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED,
INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD-PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers who are designing with Renesas products. You are solely responsible for (1)
selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3)
ensuring your application meets applicable standards, and any other safety, security, or other requirements. These
resources are subject to change without notice. Renesas grants you permission to use these resources only to develop an
application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is
granted to any other Renesas intellectual property or to any third-party intellectual property. Renesas disclaims
responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses,
or liabilities arising from your use of these resources. Renesas' products are provided only subject to Renesas' Terms and
Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise
alters any applicable warranties or warranty disclaimers for these products.

(Disclaimer Rev.1.01 Jan 2024)

© 2024 Renesas Electronics Corporation. All rights reserved.

https://www.renesas.com/contact-us
https://www.renesas.com

	1. Introduction
	2. Hardware Requirements to Operate ZMOD4410
	3. Structure of ZMOD4410 Firmware
	4. Description of the Programming Examples
	4.1 IAQ 2nd Gen Example for EVK
	4.2 ULP Example for EVK (IAQ 2nd Gen ULP)
	4.3 PBAQ Example for EVK
	4.4 Compile for EVK Hardware
	4.5 Arduino Examples
	4.6 Raspberry Pi Examples
	4.7 Compile for Raspberry Pi Hardware
	4.8 Error Codes

	5. Adapting the Firmware Example for Target Hardware
	5.1 System Hierarchy and Implementation Steps
	5.2 Interrupt Usage and Measurement Timing

	6. Revision History

