
©1996 Integrated Device Technology, Inc. 3174/1 2/96

APPLICATION
NOTE

AN-135

INTRODUCTION
The IDTR4650 is a low cost member of the IDTR4600

(Orion) family, targeted towards a variety of embedded appli-
cations. R4600 features not required in many embedded
systems have been removed in the R4650 to lower device
cost; others have been added to better suit the processor for
its target applications. Given these changes in architecture,
software designed to run on the Orion may need to be slightly
modified to be able to take full advantage of the features of the
R4650.

This Application note discusses the software visible changes
integrated within the R4650; this information is required when
porting existing low-level software (e.g. compilers, debuggers
and other assembly language programs) from the R4600 to
the R4650.

Architectural Differences
While a complete discussion of the architectural differ-

ences between the R4650 and the Orion is beyond the scope
of this note, the relevant differences will be enumerated and
software issues discussed. Some system control registers
have been deleted, some new ones have been added, and
some have been modified. Also, some exceptions are no
longer generated, and some new exceptions can be gener-
ated.

1. Integer Execution Unit
The R4650 uses the same ALU as the Orion, with a few

modifications:
a) Faster MULT/DMULT instructions.

As a result of the faster MULT / DMULT instructions,
assemblers or assembly language programmers need
not wait as many cycles as earlier to retrieve the result
from the HI/LO registers.
For MULT instructions (32x32->64 bits) the R4650
detects the actual size of the operands; the execution
time of the multiply is thus determined by the actual
number of significant bits in the operands. For 16-bit
operands, the time taken to perform a MULT instruction
is 2 pipeline cycles (PCycles) and for 32-bit operands,
the time is 3 PCycles.
The time to perform a DMULT operation(64x64->128
bits) is 5 cycles, irrespective of the size of the operands.

b) New instructions: MUL and MAD.
The MUL instruction can be used to multiply two CPU
general purpose registers (GPRs) and store the result in
another GPR (32x32->64-bits), bypassing the HI/LO pair,
and eliminating the MFHI/MFLO instructions.
The MAD instruction multiplies two (32-bit) GPRs and
adds the product to the contents of the HI/LO registers,

storing the result in the HI/LO pair.
MUL and MAD are defined only for 32-bit numbers; there
are no DMUL / DMAD instructions.

2. Control Processor 0 (CP0)
CP0 has been greatly changed from the original R4600

Orion. Only two modes: user and kernel are supported (se-
lected by setting the UM bit in the STATUS register). All
addresses (virtual and physical) are 32 bits. There is no 64-bit
virtual address mode. All CP0 registers are now 32-bit, and the
DMTC0/DMFC0 instructions are no longer valid. However,
these instructions will not generate a trap.
a) PRId Register:

If the same software will be used to support the Orion
and the R4650, CPU-specific code can be separated on
the basis of the Implementation field of the PRId register
in CP0, which is 0x22 for the R4650, and 0x20 for the
Orion.

b)STATUS Register:
The STATUS register has a different format in the
R4650.
i) It has a bit to lock set A of the I-Cache (the IL bit, bit
23), and one to lock set A of the Dcache (the DL bit, bit
24). Critical sections of the code / data may thus be
locked into the cache for fast access. When locked, this
set will not be chosen for line refill. However, a line in a
locked set will still be chosen for refill if that line is
invalid. Thus locked sets may be flushed without having
to unlock them first. It takes 5 instructions after setting
the IL bit for refills to be disabled, and 3 instructions
after setting the DL bit.

ii) The FR bit (bit 26) can be set to select 16 or 32 32-bit
floating point registers.

c) CAUSE Register:
The CAUSE register has a slightly different format. It has
two new bits that denote whether the exception was due
to IWatch or DWatch (bits 24 & 25 respectively, dis-
cussed below) and one bit (IV bit, bit 23) to force inter-
rupts to use a different exception vector offset. On reset,
Cause.IV is cleared; thus exceptions and interrupts use
the same exception vector offset (0x180). When
Cause.IV is set, interrupts use a new exception vector
offset (0x200). This can be used for faster decoding of
interrupts. This new exception vector did not exist in the
R4600 Orion; thus, the use of a dedicated interrupt vector
is an option, not a mandate, in the R4650. For systems
whose performance is highly dependent on interrupts,
additional software modifications may be desirable, since
there may be code at that location that now needs to be
moved, as well as moving the interrupt management
code to that location.

By Ketan Deshpande

Integrated Device Technology, Inc.

SOFTWARE-VISIBLE DIFFERENCES
BETWEEN THE R4650 AND THE R4600/R4700
ORION FAMILY MEMBERS

157

158

VISIBLE DIFFERENCES BETWEEN THE R4650 AND THE R4600/R4700 ORION FAMILY MEMBERS APPLICATION NOTE AN-135

d) TLB:
The R4650 does not include the R4600 Orion Memory
Management Unit (MMU). The CP0 TLB registers 0-6, 10
and 20 have been removed. The instructions TLBR,
TLBWI, TLBWR are no longer defined, but will not
generate a trap. TLB exceptions like TLBMiss /
XTLBMiss will never be generated. The exception vector
offsets 0x000 and 0x080 are no longer used.
The R4650 performs virtual address translation based on
Base/Bound register pairs. There are two sets of these
pairs: One for Instruction and one for Data. In user mode,
when an address is generated, it is compared with the
base / bound register pair. If the address is “out of
bounds”, an exception is generated, with the appropriate
ExcCode bits set in the Cause register (0x2 for Instruc-
tion, 0x3 for Data). An MTC0 instruction which changes
any base / bound register must be done in unmapped
space and mapped space cannot be entered for 5
instructions following a change to these registers. In
kernel mode, kseg0 & kseg1 addresses undergo a fixed
address translation; kuseg addresses follow the base/
bound translation.

e) Cache Algorithm Register:
The LLAddr register in the Orion has been replaced with
the CAlg register, which defines the Cache Algorithm for
each 512 MB region of the virtual address space. On
reset, it gets initialized to 0x22233333, which is consis-
tent with the Orion’s interpretation of the K0 bits in its
own CONFIG register. An MTC0 instruction should not
change the field corresponding to the address space
currently active. Doing so will cause undefined behavior.

f) Watch Registers:
Two new registers, IWatch and DWatch, greatly facilitate
software debug. By setting the contents of the registers
to the desired watch point and enabling the Watch
Exception, an exception handler can be called every time
the watch point is hit. The exception generated is at the
general exception vector, with ExcCode = 0x23 in the
Cause register. The IW/DW bits in the Cause register are
set to denote whether the exception was caused by a
Data Watch point or Instruction Watch point. The actual
exception will be generated whenever both the ERL &
EXL bits in the STATUS register are cleared. When
DWatch is enabled, the two instructions immediately
following may not be checked for match with the watch
value. When IWatch is enabled, the 5 instructions follow-
ing may not be checked for match with the watch value.

g) CONFIG Register:
The CONFIG register in the R4650 is read-only. The
format has been modified: the IC & DC bits are both now
001, denoting the 8KB:8KB cache sizes. The K0 field has
been deleted since this function has been expanded and
is now performed by the CAlg register.

h) Other Registers:
The BadVAddr, EPC & ErrorEPC registers in the Orion
were 64 bits; in the R4650 they are 32 bits wide.

3. Co-Processor 1 (CP1)
This is the Floating point coprocessor on board the R4650.

The single biggest departure from the Orion is that the R4650
supports single precision operations only. The R4650 does
not support double precision operations, which could be
performed by an emulation library, if required. CP1 has a set
of general purpose registers (FGRs) that are 32-bit wide, and
can be accessed as a group of 16 or a group of 32 registers,
by setting the FR bit in the CP0 STATUS register to 0 or 1,
respectively. If STATUS.FR = 0, only even numbered FGRs
can be accessed, and accessing an odd numbered register
generates a trap. Any double precision operation in CP1
causes a trap to occur; thus a trap-based library could be
written to emulate double-precision operations. DMFC1/
DMTC1 instructions will generate a trap.

There are two floating-point execution units in the R4650:
one multiply unit and one unit for add/convert/divide/SQRT.
As a result, multiplies and add/subtracts can be overlapped.

CONCLUSION
This Application Note discussed the issues involved in

porting assembly code from the R4600 Orion to the R4650.
Some relevant architectural differences were noted, with
implications for software modification.

Corporate Headquarters
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Contact Information
For further information on a product, technology, the most
up-to-date version of a document, or your nearest sales
office, please visit www.renesas.com/contact-us/.

Trademarks
Renesas and the Renesas logo are trademarks of Renesas
Electronics Corporation. All trademarks and registered
trademarks are the property of their respective owners.

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES (“RENESAS”) PROVIDES TECHNICAL
SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING
REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND
OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED,
INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD-PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers who are designing with Renesas products. You are solely responsible for (1)
selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3)
ensuring your application meets applicable standards, and any other safety, security, or other requirements. These
resources are subject to change without notice. Renesas grants you permission to use these resources only to develop an
application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is
granted to any other Renesas intellectual property or to any third-party intellectual property. Renesas disclaims
responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses,
or liabilities arising from your use of these resources. Renesas' products are provided only subject to Renesas' Terms and
Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise
alters any applicable warranties or warranty disclaimers for these products.

(Disclaimer Rev.1.01 Jan 2024)

© 2024 Renesas Electronics Corporation. All rights reserved.

https://www.renesas.com/contact-us
https://www.renesas.com

