
 Application Note

R20AN0749EJ0100 Rev.1.00 Page 1 of 102
Jun.14.24

RX Family
OTA Update in FreeRTOS by Implementing TLS Communication Using the
TSIP Driver
Introduction
For IoT devices, security and real time processing are critical factors.

This application note describes how to manage keys safely and speed up the encryption/description
processing in TLS communication by using the Trusted Secure IP (TSIP) module, which is security hardware
built into RX Family MCUs. This application note also provides concrete implementation examples and
sample code. With this information, the reader will be able to build an efficient and safe IoT system.

Operation of the application described in this application note has been verified in FreeRTOS with IoT
Libraries in which the TSIP driver is installed. Note that “FreeRTOS with IoT Libraries” is FreeRTOS in which
the libraries required to use IoT services on AWS are installed.

This allows the OTA demo application to run on FreeRTOS with IoT Libraries in which the TSIP driver is
installed.

Note: The application described in this application note uses the iot-reference-rx demo project, which is an

RX-compatible version of FreeRTOS with IoT Libraries.
Note that the application described in this application note supports v202210.01-LTS-rx-1.3.0 or a
later version of iot-reference-rx.

Note : This application note shows an implementation example based on the operating environment of the
CK-RX65N v1 board and the RYZ014A PMOD module,
but it can also be utilized with other boards and communication control combinations.
For each board and communication control combination, please see:

[GitHub] iot-reference-rx/Getting_Started_Guide.md at main · renesas/iot-reference-rx (github.com)

Note : Renesas announces to discontinue the existing Sequans-sourced LTE module known as the part
number RYZ014A and will no longer be shipping this product.
With the discontinuation of RYZ014A, the CK-RX65N v1 board will also be discontinued.
If you are using RYZ014A in a current design or production, the Sequans part numbers, GM01Q is a
pin and functionally compatible replacement for RYZ014A.

Below Cellular driver of RX family works the below alternate product combination.

- RYZ014A Cellular Module Control Module ： Sequans GM01Q is the compatible module.

Regarding EOL notice of the RYZ014A, please see :
[The link] https://www.renesas.com/document/eln/plc-240004-end-life-eol-process-select-part-

numbers?r=1503996
[The product page] https://www.renesas.com/products/wireless-connectivity/cellular-iot-

modules/ryz014a-lte-cat-m1-cellular-iot-module

Target Device
RX65N: R5F565NEHDF

https://github.com/renesas/iot-reference-rx/releases
https://github.com/renesas/iot-reference-rx/releases
https://github.com/renesas/iot-reference-rx/releases
https://github.com/renesas/iot-reference-rx/blob/main/Getting_Started_Guide.md#getting-started-guide
https://www.renesas.com/document/eln/plc-240004-end-life-eol-process-select-part-numbers?r=1503996
https://www.renesas.com/document/eln/plc-240004-end-life-eol-process-select-part-numbers?r=1503996
https://www.renesas.com/products/wireless-connectivity/cellular-iot-modules/ryz014a-lte-cat-m1-cellular-iot-module
https://www.renesas.com/products/wireless-connectivity/cellular-iot-modules/ryz014a-lte-cat-m1-cellular-iot-module
https://www.renesas.com/products/microcontrollers-microprocessors/rx-32-bit-performance-efficiency-mcus/rx65n-32-bit-microcontrollers-rxv2-core-large-capacity-ram-and-enhanced-security-connectivity-and-hmi

RX Family
OTA Update in FreeRTOS by Implementing TLS Communication Using the TSIP Driver

R20AN0749EJ0100 Rev.1.00 Page 2 of 102
Jun.14.24

Documents for Reference
The application provided by this application note demonstrates an OTA update.
For detailed procedures for OTA update, refer to the following application note:

• How to implement FreeRTOS OTA using Amazon Web Services in RX65N (for v202210.01-LTS-rx-1.1.3
or later) (R01AN7037)

For details on TLS communication using the TSIP driver and the driver’s API, refer to the following
application note:

• RX Family TSIP (Trusted Secure IP) Module Firmware Integration Technology (R20AN0548)

For details on firmware update, refer to the following application note:

• Renesas MCU Firmware Update Design Policy (R01AN5548)

https://www.renesas.com/search?keywords=r01AN7037
https://www.renesas.com/search?keywords=R20AN0548
https://www.renesas.com/search?keywords=R01AN5548

RX Family
OTA Update in FreeRTOS by Implementing TLS Communication Using the TSIP Driver

R20AN0749EJ0100 Rev.1.00 Page 3 of 102
Jun.14.24

Contents

1. Overview ... 6
1.1 Advantages of TLS Communication Using the TSIP .. 6
1.2 Flow of TLS Communication Using the TSIP .. 6
1.3 Cipher Suites Supported by the TSIP Driver ... 6
1.4 Definition of Terms .. 7
1.5 Environment in Which Operation Was Verified (Hardware) .. 8
1.6 Environment in Which Operation Was Verified (Software) ... 8

2. Preparation .. 9
2.1 Installing Gpg4win (Kleopatra) .. 10
2.2 Initial Setup of the Renesas Key Wrap Service and Kleopatra ... 13
2.3 Installing Cygwin .. 19
2.4 Installing Security Key Management Tool ... 20

3. AWS Setup .. 21
3.1 Settings That Must Be Specified from the AWS Console ... 21

4. Preparing for the Demo Project.. 22
4.1 Creating a Workspace ... 24
4.2 Downloading the Demo Project ... 24
4.3 Importing a Project .. 27

5. Creating Keys and Certificates .. 31
5.1 Preparing the Keys and Certificates for the TSIP ... 31
5.1.1 Flows of Creating Certificates and Keys ... 32
5.1.2 Obtaining a Root CA Certificate .. 34
5.1.3 Obtaining a Key Pair and Client Certificate for RSA ... 35
5.1.4 Generating a Signature of the Root CA Certificate ... 38
5.1.5 Wrapping Keys and Registering Them in the Project ... 40
5.1.5.1 Overview of Wrapping Keys .. 40
5.1.5.2 Generating a UFPK and W-UFPK ... 42
5.1.5.3 Wrapping Key Data ... 51
5.2 Generating a Key Pair and Certificates for an OTA Update.. 64

6. Building a Project ... 65
6.1 Building and Executing the Initial Version of Firmware ... 65
6.1.1 Importing Projects ... 65
6.1.2 Setting Up and Building the Projects ... 66
6.1.3 Creating the Initial Firmware ... 76
6.1.4 Executing the Initial Firmware ... 82
6.1.5 Registering the AWS IoT Information .. 84

RX Family
OTA Update in FreeRTOS by Implementing TLS Communication Using the TSIP Driver

R20AN0749EJ0100 Rev.1.00 Page 4 of 102
Jun.14.24

6.1.6 Verifying the Status of MQTT Communication .. 90
6.2 Building and Executing Update Firmware ... 94
6.2.1 Creating Update Firmware .. 94
6.2.2 Updating the Firmware .. 95

7. Appendix ... 98
7.1 Notes on Executing the Sample Program on Multiple Devices Concurrently in the Same LAN

Environment .. 98

8. Troubleshooting ... 100

Revision History .. 102

RX Family
OTA Update in FreeRTOS by Implementing TLS Communication Using the TSIP Driver

R20AN0749EJ0100 Rev.1.00 Page 5 of 102
Jun.14.24

Notes:
• AWS™ is a trademark of Amazon.com, Inc. or its affiliates. (https://aws.amazon.com/trademark-

guidelines)
• FreeRTOS™ is a trademark of Amazon Web Services, Inc. (https://freertos.org/copyright.html)
• Git® is a trademark of Software Freedom Conservancy, Inc.

(https://www.git-scm.com/about/trademark)
• GitHub® is a trademark of GitHub, Inc. (https://github.com/logos)
• Arm® is a trademark of Arm Limited or its subsidiaries.

(https://www.arm.com/company/policies/trademarks/guidelines-trademarks)
• Mbed™ is a trademark of Arm Limited or its subsidiaries.

(https://www.arm.com/company/policies/trademarks/guidelines-trademarks)
• OpenSSL™ is a trademark of OpenSSL Software Foundation.

(https://www.openssl.org/policies/general/TrademarkPolicy.html)

https://aws.amazon.com/trademark-guidelines
https://aws.amazon.com/trademark-guidelines
https://freertos.org/copyright.html
https://www.git-scm.com/about/trademark
https://github.com/logos
https://www.arm.com/company/policies/trademarks/guidelines-trademarks
https://www.arm.com/company/policies/trademarks/guidelines-trademarks
https://www.openssl.org/policies/general/TrademarkPolicy.html

RX Family
OTA Update in FreeRTOS by Implementing TLS Communication Using the TSIP Driver

R20AN0749EJ0100 Rev.1.00 Page 6 of 102
Jun.14.24

1. Overview
1.1 Advantages of TLS Communication Using the TSIP
The TSIP driver supports API functions related to TLS communication. Using this API offers the following two
advantages:

• Advantage 1: Key information in plaintext format is not handled in the TLS protocol processing.
Therefore, the risk of leaking the customer’s key information stored on the device can be
reduced.

• Advantage 2: Hardware acceleration of cryptographic processing is faster than full software
processing.

1.2 Flow of TLS Communication Using the TSIP
The following figure shows the flow of TLS communication performed by the demo project provided by this
application note.
Note that this flow applies when the RSA key exchange method is used.

Figure 1-1 Flow of TLS Communication Using the TSIP

1.3 Cipher Suites Supported by the TSIP Driver
The TSIP driver supports the following cipher suites that are compliant with TLS 1.2:

• TLS_RSA_WITH_AES_128_CBC_SHA
• TLS_RSA_WITH_AES_256_CBC_SHA
• TLS_RSA_WITH_AES_128_CBC_SHA256
• TLS_RSA_WITH_AES_256_CBC_SHA256
• TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256
• TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256
• TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256
• TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256

RX Family
OTA Update in FreeRTOS by Implementing TLS Communication Using the TSIP Driver

R20AN0749EJ0100 Rev.1.00 Page 7 of 102
Jun.14.24

1.4 Definition of Terms
The following table defines the terms used in this application note.
For the sections where the listed items are used, refer to Figure 1-1, Flow of TLS Communication Using the
TSIP.

Table 1-1 Terms

Term Description
Key injection To inject a wrapped key into a device at the factory.
User key A plaintext crypto key used by the user. This is not used on a device.

If the key exchange method is RSA or ECC, public and private keys
are user keys.

Encrypted key Key information generated by encrypting a user key by UFPK and
adding a message authentication code (MAC) to it. Encrypted keys
for the same user key share the same value for each device.

Wrapped Key Data converted from an encrypted key by key injection so that it can
be used for the TSIP. Because a wrapped key is wrapped by HUK,
wrapped keys converted from the same encrypted key have device-
specific values.

UFPK
(User Factory Programming Key)

A user-configured key ring used to generate an encrypted key from a
user key in key injection. This is not used on a device.

W-UFPK
(Wrapped UFPK)

Key information generated by wrapping a UFPK by HRK on the
Renesas DLM server. This is decrypted by HRK into a UFPK inside
the TSIP.

Hardware Root Key
(HRK)

A common crypto key that exists in the TSIP and Renesas secure
rooms only.

Hardware Unique Key
(HUK)

A device-specific crypto key that is derived in the TSIP and used for
key protection.

Wrap (wrapping) In this application note, “wrapping” refers to a process that performs
UFPK-based encryption and adds a message authentication code
(MAC) during generation of an encrypted key.
Because the TSIP driver does not accept a plaintext user key as an
input, the crypto key to be input must be wrapped.

Renesas DLM (Device Lifecycle
Management) server
(https://dlm.renesas.com/)

The Renesas key management server used by the Renesas Key
Wrap service. This is used for UFPK-based wrapping.

https://dlm.renesas.com/

RX Family
OTA Update in FreeRTOS by Implementing TLS Communication Using the TSIP Driver

R20AN0749EJ0100 Rev.1.00 Page 8 of 102
Jun.14.24

1.5 Environment in Which Operation Was Verified (Hardware)
The following table shows the (hardware) environment in which operation of this demo project was verified.

Table 1-2 Environment in Which Operation Was Verified (Hardware)

Item Description
Board used CK-RX65N v1 (Cellular / Ethernet)*1
Cellular module RYZ014A PMOD module (bundled with CK-RX65N v1)
SIM SIM (microSIM) card supporting LTE Cat-M1*2
Debugger Debugger built into the E2 Lite emulator (CK-RX65N v1)

Notes: 1. The application described in this application note uses cellular communication.
 2. If you use the SIM card that is bundled with the CK-RX65N v1, activate the SIM card. For details,

refer to “4.1.5 Activating SIM card” in the following application note:
SIM activation, Creating the trial account and using Dashboard with RYZ014A or Ethernet
Application for AWS - Getting Started Guide (R01QS0064)

1.6 Environment in Which Operation Was Verified (Software)
The following table shows the (software) environment in which operation of this demo project was verified.

Table 1-3 Environment in Which Operation Was Verified (Software)

Item Description
Integrated development environment e2 studio 2024-01
Compiler RX compiler CC-RX V3.06.00 for e² studio
FreeRTOS v202210.01-LTS-rx-1.3.0
Driver package (RDP) RX Driver Package V1.42
TSIP driver RX Family TSIP (Trusted Secure IP) Module Firmware

Integration Technology Rev.1.20
Firmware update module RX Family Firmware Update Module Firmware Integration

Technology Rev.2.02
Log monitor tool Tera Term v4.106
Python runtime environment Python 3.11.0
Key generation tool Win64 OpenSSL v3.2.1
PGP encryption/decryption tool Gpg4win (Kleopatra) v4.3.1
Shell script (bash) execution environment Cygwin version 3.4.6
Flash memory programming tool Renesas Flash Programmer v3.14.00
Renesas Image Generator Version 3.03 (bundled with Firmware Update Module

Rev.2.02)
Key creation tool Security Key Management Tool V.1.06

https://www.renesas.com/products/microcontrollers-microprocessors/rx-32-bit-performance-efficiency-mcus/ck-rx65n-cloud-kit-based-rx65n-mcu-group
https://www.renesas.com/products/wireless-connectivity/cellular-iot-modules/rtkyz014a0b00000be-pmod-expansion-board-ryz014a
https://www.renesas.com/document/qsg/sim-activation-creating-trial-account-and-using-dashboard-ryz014a-or-ethernet-application-aws?r=1611756
https://www.renesas.com/document/qsg/sim-activation-creating-trial-account-and-using-dashboard-ryz014a-or-ethernet-application-aws?r=1611756
https://www.renesas.com/software-tool/e-studio
https://www.renesas.com/software-tool/cc-compiler-package-rx-family#download
https://github.com/renesas/iot-reference-rx/tree/v202210.01-LTS-rx-1.3.0
https://www.renesas.com/software-tool/rx-driver-package
https://www.renesas.com/software-tool/trusted-secure-ip-driver#documents
https://www.renesas.com/software-tool/trusted-secure-ip-driver#documents
https://www.renesas.com/search?keywords=r01an6850
https://www.renesas.com/search?keywords=r01an6850
https://github.com/TeraTermProject/osdn-download/releases
https://www.python.org/downloads/
https://slproweb.com/products/Win32OpenSSL.html
https://www.gpg4win.org/
https://www.cygwin.com/
https://www.renesas.com/software-tool/renesas-flash-programmer-programming-gui
https://www.renesas.com/search?keywords=r01AN6850
https://www.renesas.com/search?keywords=r01AN6850
https://www.renesas.com/software-tool/security-key-management-tool#downloads

RX Family
OTA Update in FreeRTOS by Implementing TLS Communication Using the TSIP Driver

R20AN0749EJ0100 Rev.1.00 Page 9 of 102
Jun.14.24

2. Preparation
Execution of the demo project described in this application note requires the software tools listed in the
following table.

Table 2-1 List of Software Tools Required

Software Tool Name Purpose
Tera Term This tool is used to view the serial operation log of programs.
Python This tool is used as an interpreter for running the Renesas Image

Generator program.
OpenSSL This tool is used to exchange keys for the TSIP and to generate keys

for OTA update.
Gpg4win (Kleopatra) This tool is used to perform PGP-based encryption for a UFPK that is

used to wrap a key for the TSIP.
Cygwin This tool is used to execute Bash scripts.
Renesas Image Generator This tool is used to create a firmware image to be used for OTA

update.
Security Key Management Tool This is used to wrap a key for the TSIP.

Some of the above listed software tools are also used for AWS IoT OTA update. For the installation
procedures of such software tools, refer to the corresponding sections in Chapter 2 in the following
application note:
“RX Family How to implement FreeRTOS OTA using Amazon Web Services in RX65N (for v202210.01-LTS-
rx-1.1.3 or later)” (R01AN7037)
The following shows the relevant software tools and the sections describing the installation procedures:

• Tera Term: Section 2.1
• Python: Section 2.2
• OpenSSL: Section 2.3
• Renesas Image Generator: Section 2.4

Connection of the target board CK-RX65N v1 is described in section 2.5. When you connect the CK-RX65N
v1, follow the procedure described in this section.

https://www.renesas.com/search?keywords=r01an7037

RX Family
OTA Update in FreeRTOS by Implementing TLS Communication Using the TSIP Driver

R20AN0749EJ0100 Rev.1.00 Page 10 of 102
Jun.14.24

2.1 Installing Gpg4win (Kleopatra)
In this application note, Gpg4win (Kleopatra) is used in the procedure for encrypting/decrypting a UFPK by
PGP to generate W-UFPK.

Install Gpg4win 4.3.1 by using the procedure described below.

(1) Downloading Gpg4win

Access the following website that provides GnuPG for Windows:
https://www.gpg4win.org/

Click the Download button shown in the following figure.

Figure 2-1 Downloading Gpg4win (1)

In the window that appears, select $0, and then click the Download button. The installation file is
downloaded.

Figure 2-2 Downloading Gpg4win (2)

https://www.gpg4win.org/

RX Family
OTA Update in FreeRTOS by Implementing TLS Communication Using the TSIP Driver

R20AN0749EJ0100 Rev.1.00 Page 11 of 102
Jun.14.24

(2) Executing the Gpg4win installation

Make sure that you have the installation file you obtained in section (1), and then run it as administrator. The
installer starts. Click the Next button. When the following dialog box appears, select the language you want
to use, and then click the OK button.

Figure 2-3 Installing Gpg4win (1)
(3) Selecting components

When the window for selecting the components to be installed appears as shown in the following figure, click
Next without changing the initial settings.

In this application note, Kleopatra is used to manage key pairs. Therefore, do not clear the check box of
Kleopatra.

Figure 2-4 Installing Gpg4win (2)

RX Family
OTA Update in FreeRTOS by Implementing TLS Communication Using the TSIP Driver

R20AN0749EJ0100 Rev.1.00 Page 12 of 102
Jun.14.24

(4) Completing installation

In all windows that appear before installation finishes, click the Next button.

When installation is complete, Kleopatra starts.

Figure 2-5 Window for Executing Kleopatra

RX Family
OTA Update in FreeRTOS by Implementing TLS Communication Using the TSIP Driver

R20AN0749EJ0100 Rev.1.00 Page 13 of 102
Jun.14.24

2.2 Initial Setup of the Renesas Key Wrap Service and Kleopatra
The TSIP adopts a mechanism that prevents plaintext user keys from being exposed externally to protect
user keys against leakage. This application note shows a method that uses the Renesas Key Wrap service
to encrypt a UFPK (to generate W-UFPK).
This section describes the procedure for specifying the initial settings of the Renesas Key Wrap service. This
section also describes the procedure for using Kleopatra to generate the PGP key that is used during UFPK
encryption for exchanging files with the service and registering the generated key.

Use the following procedure to configure and register a key. The information created in this section is used in
the procedure described in section 5.1.5, Wrapping Keys and Registering Them in the Project. For details on
keys, refer also to section 5.1.5.

(1) Registering the Renesas Key Wrap service

When you use the Renesas Key Wrap service for the first time, you must perform user registration and PGP
key exchange. These tasks are required only the first time. Perform initial registration by logging in at the
following URL:
Key Wrap Service Login (renesas.com)

For details on the Renesas Key Wrap service, refer to the following operation manual:
KeyWrap Service Operation Manual.pdf (renesas.com)

When you have completed user registration and the first-time PGP key exchange, log in to the Renesas Key
Wrap service.

(2) Creating an OpenPGP key pair

Use Kleopatra to create a key pair in order to exchange public keys with the Renesas DLM server.
Start Kleopatra, and then, on the page that opens, click the New Key Pair button. The Create OpenPGP
Certificate dialog box appears. You can create an OpenPGP certificate from this dialog box. Fill in the Name
and Email address fields. You can optionally select the Protect the generated key with a passphrase
check box to strengthen security by using a passphrase. Do not forget the passphrase if you set it.

↓

Figure 2-6 Creating an OpenPGP Key Pair (1)

https://dlm.renesas.com/keywrap/toEnglish
https://dlm.renesas.com/manual/KeyWrap_Service_Operation_Manual.pdf

RX Family
OTA Update in FreeRTOS by Implementing TLS Communication Using the TSIP Driver

R20AN0749EJ0100 Rev.1.00 Page 14 of 102
Jun.14.24

Then, click the Advanced Settings button.

Figure 2-7 Creating an OpenPGP Key Pair (2)
In the Advanced Settings dialog box that appears, in the Key Material area, select the RSA radio button,
and then select 4,096 bits. Do not change the other setting items from their initial settings.
When you have completed the settings, click the OK button.

Note: Only RSA keys can be exchanged with the Renesas DLM server.

Figure 2-8 Creating an OpenPGP Key Pair - Advanced Settings
When the Create OpenPGP Certificate dialog box appears again, click the OK button. Then, the following
dialog box appears, and generation of a key pair starts. Generation of a key pair takes some time.

Figure 2-9 Generating a PGP Key Pair
If you have set a passphrase, the window for entering the passphrase appears next. When this window
appears, enter the passphrase.

RX Family
OTA Update in FreeRTOS by Implementing TLS Communication Using the TSIP Driver

R20AN0749EJ0100 Rev.1.00 Page 15 of 102
Jun.14.24

When the following dialog box appears, a key pair has successfully been created. Click the OK button. The
Kleopatra main window appears again.

Figure 2-10 Dialog Box Appearing When a Key Pair Was Created Successfully
The information about created key pairs is registered in the Kleopatra window. Select a key pair, and then
click the Export button to output the OpenPGP public key. The key pair is saved in a file with the extension
“.asc”.

Figure 2-11 Registered OpenPGP Key Pair

RX Family
OTA Update in FreeRTOS by Implementing TLS Communication Using the TSIP Driver

R20AN0749EJ0100 Rev.1.00 Page 16 of 102
Jun.14.24

(3) Exchanging PGP public key with the Renesas DLM server

Now you have an OpenPGP public key that was output in section (2). Exchange it for Renesas' PGP public
key by using the Renesas DLM server. Access the Renesas Key Wrap Service website that you registered in
section (1), and then click PGP key exchange to register the OpenPGP public key that you created.
When registration is completed successfully, a Renesas PGP public key (keywrap-pub.key) is sent to your
email address. When you receive it, save it in any folder of your choice.

↓

Figure 2-12 Exchanging PGP public Key with the Renesas DLM Server
(4) Registering the Renesas OpenPGP public key

The Renesas PGP public key is used to decrypt the key encrypted by PGP on the Renesas DLM server.
In Kleopatra, register the Renesas PGP public key (keywrap-pub.key) that you received by email.
In the Kleopatra window, click Import.

Figure 2-13 Registering the Renesas OpenPGP Public Key

https://dlm.renesas.com/keywrap/menu/select/

RX Family
OTA Update in FreeRTOS by Implementing TLS Communication Using the TSIP Driver

R20AN0749EJ0100 Rev.1.00 Page 17 of 102
Jun.14.24

When the Select Certificate File dialog box appears, select Any files (*) as the file extension, specify
keywrap-pub.key, which is the PGP public key sent from Renesas, and then click the Open button.

Figure 2-14 Specifying the OpenPGP Public Key Sent from Renesas

RX Family
OTA Update in FreeRTOS by Implementing TLS Communication Using the TSIP Driver

R20AN0749EJ0100 Rev.1.00 Page 18 of 102
Jun.14.24

If the You have imported a new certificate (public key) dialog box shown in the following figure appears,
click the Certify button. In the Certify Certification dialog box that appears, confirm that the certificate that
you registered yourself is selected, and then click the Certify button.
If you have registered a passphrase in section (2), enter the passphrase.

↓

Figure 2-15 Importing the OpenPGP Public Key

When the Certification successful message box appears, close it by clicking the OK button. Confirm that
an entry named “keywrap” has been added. If “certified” is displayed in the User-IDs column, import is
completed.

Figure 2-16 Registered OpenPGP Public Key

RX Family
OTA Update in FreeRTOS by Implementing TLS Communication Using the TSIP Driver

R20AN0749EJ0100 Rev.1.00 Page 19 of 102
Jun.14.24

2.3 Installing Cygwin
The application described in this application note uses Bash scripts when registering certificates and keys in
a project (source code). Cygwin is used as the script execution environment.

Use the following procedure to install Cygwin.

(1) Access the Cygwin download website.

Cygwin download website

(2) In the download website, click the following link to download the installer.

Figure 2-17 Downloading Cygwin
(3) Start the installer, and install Cygwin as instructed by the installer.

During installation, accept all initial settings in principle except when selecting packages. If necessary
packages are missing, obtain them.

Figure 2-18 Installing Cygwin
(4) In the Start menu, click the Cygwin65 Terminal icon, and then confirm that the Cygwin terminal screen

is displayed.

https://www.cygwin.com/

RX Family
OTA Update in FreeRTOS by Implementing TLS Communication Using the TSIP Driver

R20AN0749EJ0100 Rev.1.00 Page 20 of 102
Jun.14.24

2.4 Installing Security Key Management Tool
The application described in this application note uses Security Key Management Tool to convert key
information so that it can be used with the TSIP.

Use the following procedure to install Security Key Management Tool.

(1) Download Security Key Management Tool

Access the Security Key Management Tool download website, and download the latest version of Security
Key management Tool for Windows.

In the following example, version 1.06 is the latest version of Security Key Management Tool.

Figure 2-19 Downloading Security Key Management Tool
(2) When the download is completed, start the installer, and install Security Key Management Tool as

instructed by the installer.

(3) After installation is completed, confirm that Security Key Management Tool can be started from the
Start menu.

https://www.renesas.com/software-tool/security-key-management-tool#downloads

RX Family
OTA Update in FreeRTOS by Implementing TLS Communication Using the TSIP Driver

R20AN0749EJ0100 Rev.1.00 Page 21 of 102
Jun.14.24

3. AWS Setup
To perform demonstration of OTA update as in this application note, you must have an account for
connecting to AWS. This account is a root user or an IAM user authorized to access AWS IoT and the
FreeRTOS cloud service.

For details on the AWS setup procedure, refer to the following application note: “RX Family How to
implement FreeRTOS OTA using Amazon Web Services in RX65N (for v202210.01-LTS-rx-1.1.3 or later)”
(R01AN7037). The information on the following AWS webpage will also be helpful:

• “Setting up your AWS account and permissions”
https://docs.aws.amazon.com/freertos/latest/userguide/freertos-prereqs.html

For the demo application described in this application note to be able to communicate with AWS, the source
code must be modified. For details on modifying the source code, refer to Chapter 4, Preparing for the Demo
Project and subsequent sections.

3.1 Settings That Must Be Specified from the AWS Console
Log in to AWS Console, and then specify the initial settings and other necessary settings. To do so, perform
the procedure described in Chapter 3 in the following application note: “RX Family How to implement
FreeRTOS OTA using Amazon Web Services in RX65N (for v202210.01-LTS-rx-1.1.3 or later)”
(R01AN7037).

The following table lists the AWS settings that must be specified to set up the source code of the project in
this application note.

Table 3-1 List of Settings Required for AWS

Name in AWS Description Remarks
Things*1 Register the name of a device (thing) to be

connected to AWS.
Record the name of the
thing that you set.
Refer to: 3.3.2(3)

Endpoint*1 Register the connection destination (URL)
in AWS.

Record the endpoint name
that you set.
Refer to: 3.3.3(1)

Device certificate A client certificate used for connection to
AWS.
In this application note, this item is called a
“client certificate”.

Download it from AWS and
save it.*2
Refer to: 3.3.2(6)

Public key file A public key used for connection to AWS.
In this application note, this item is called a
“client certificate public key”.

Download it from AWS and
save it.*2
Refer to: 3.3.2(6)

Private key file A private key used for connection to AWS.
In this application note, this item is called a
“client certificate private key”.

Download it from AWS and
save it.*2
Refer to: 3.3.2(6)

Root CA certificate*3 A root CA certificate used for connection to
AWS.

Download it from AWS and
save it.

Notes: 1. The thing and endpoint names must be registered in the project that is executed later. Record the
registered names.

 2. Note that you can download the public and private keys for the client certificate only when
registering devices in AWS.

 3. The procedure for downloading a root CA certificate is not covered in the following application
note: “RX Family How to implement FreeRTOS OTA using Amazon Web Services in RX65N (for
v202210.01-LTS-rx-1.1.3 or later)” (R01AN7037). The download procedure is described in section
5.1.2 in this application note.

https://www.renesas.com/search?keywords=r01an7037
https://docs.aws.amazon.com/freertos/latest/userguide/freertos-prereqs.html#freertos-account-and-permissions
https://aws.amazon.com/
https://www.renesas.com/search?keywords=r01an7037
https://www.renesas.com/search?keywords=r01an7037

RX Family
OTA Update in FreeRTOS by Implementing TLS Communication Using the TSIP Driver

R20AN0749EJ0100 Rev.1.00 Page 22 of 102
Jun.14.24

4. Preparing for the Demo Project
This chapter describes how to create the project used for demonstration.

The CK-RX65N v1 board described in this application note is the cellular version. The RYZ014A board is
bundled with the CK-RX65N v1 board. Connect the RYZ014A board to the PMOD1 pin of the CK-RX65N v1
so that the CK-RX65N v1 board can connect to a mobile network.

For details on connection, refer to section 2.5 in the following application note: “RX Family How to implement
FreeRTOS OTA using Amazon Web Services in RX65N (for v202210.01-LTS-rx-1.1.3 or later)”
(R01AN7037).

Figure 4-1 Overview of Connections in the Demo Project
The Demo project is based on the FreeRTOS project. FreeRTOS provides IoT Libraries, which contain
source code necessary for IoT devices. Mbed TLS in these libraries is used as an open-source cryptographic
library.

https://www.renesas.com/search?keywords=r01an7037

RX Family
OTA Update in FreeRTOS by Implementing TLS Communication Using the TSIP Driver

R20AN0749EJ0100 Rev.1.00 Page 23 of 102
Jun.14.24

In this Demo project, the processing in the Mbed TLS library is partially replaced by TSIP driver’s API
functions related to TLS communication. The following figure shows the software structure of the Demo
project.

Figure 4-2 Software Structure of the Demo Project
The Demo project uses version 1.3.0 of the FreeRTOS project for the RX Family MCU provided by the
following GitHub repository.

https://github.com/renesas/iot-reference-rx

https://github.com/renesas/iot-reference-rx
https://github.com/renesas/iot-reference-rx

RX Family
OTA Update in FreeRTOS by Implementing TLS Communication Using the TSIP Driver

R20AN0749EJ0100 Rev.1.00 Page 24 of 102
Jun.14.24

4.1 Creating a Workspace
Start e2 studio and create a new workspace.
Make sure that the length of the path name (including the folder name) of the workspace does not exceed 35
characters. This is due to restrictions in e2 studio. Specifying a path name longer than 35 characters causes
an error when building a project. Also make sure that the path name consists of only ASCII characters.

The following figure shows an example of creating “C:\workspace” as a new workspace.

Figure 4-3 Dialog Box for Creating a Workspace

4.2 Downloading the Demo Project
(1) Cloning the demo project

Clone the demo project from GitHub (iot-reference-rx: FreeRTOS reference repository). This document
describes the cloning procedure when Git for Windows is used.

Start GitBush, and then execute the following command:

cd c:\workspace
git clone https://github.com/renesas/iot-reference-rx --recursive

Figure 4-4 Cloning the Demo Project
Note: 1. Make sure that the length of the path name (including the folder name) of the cloning destination

does not exceed 35 characters. This is due to restrictions in e2 studio. Specifying a path name
longer than 35 characters causes an error when building a project.
In the above example, a clone is created in “C:\workspace”.

After starting Git Bash, change the current directory to
“C:\workspace” so that a clone will be created in it.*1

A clone of the master branch is created.

https://github.com/renesas/iot-reference-rx
https://gitforwindows.org/

RX Family
OTA Update in FreeRTOS by Implementing TLS Communication Using the TSIP Driver

R20AN0749EJ0100 Rev.1.00 Page 25 of 102
Jun.14.24

(2) Folder structure

The demo project downloaded from GitHub has the folder structure shown below.
The shown structure covers only important folders.

The items indicated in red font are either files and folders that have been added to the standard project or
files and folders that have been modified in the standard project for use with the TSIP driver. To check the
differences from the standard project in details, use a Diff tool.

iot-reference-rx
|--Common
| |--common_api/r_common_api_tsip.c/h
|--Demos
| |--key_flash_wr_with_tsip
|--IDT_config
|--Middleware
| |--mbedtls_config/aws_mbedtls_config_with_tsip.h
| |--mbedtls_with_TSIP
| |--network_transport/using_mbedtls_pkcs11_with_tsip
|--Project
| |--aws_ether_tsip_ck_rx65n
| |--aws_ryz014a_tsip_ck_rx65n
| | |--e2studio_ccrx
| | | |--src
| | | |--application_code/main.c
| | | |--frtos_startup/freertos_start.c
| | | |--userdata_tsip
| | |--flash_project
| | |--key_crt_sig_generator
|--boot_loader_ck_rx65n
| |--e2studio_ccrx
| | |--src
|--Test
|--Tools
|--Getting_Started_Guide.md
|--README.md

Figure 4-5 Folder Structure of the Demo Project
Major changes made to the standard project (so that the project can be used with the TSIP driver) are as
follows:

• The processing of FreeRTOS and Mbed TLS was partially replaced by API functions for the TSIP driver.
Also, code necessary for this replacement was added.

• Exclusive access control was added to prevent an access contention for the TSIP driver in a multi-task
environment.

• The files and folders in which to save certificates and their signatures were added.
• Processing to write added key data to data flash memory was added.
• A folder was added to store the settings files for user keys and certificates used for connection to the

TSIP driver.

RX Family
OTA Update in FreeRTOS by Implementing TLS Communication Using the TSIP Driver

R20AN0749EJ0100 Rev.1.00 Page 26 of 102
Jun.14.24

The downloaded folders store not only the source code of the demo project, but also tools for configuring the
demo project. The following table outlines these folders.

Table 4-1 Content of the demo Project

Folder name Description
Common
Demos
IDT_config
Middleware
Test
Tool

These folders store common code used in each project and
modules such as libraries.
Links to these folders are created in each project as needed.

aws_ryz014a_tsip_ck_rx65n This folder stores the cellular connection version of project that
is compatible with the TSIP used in this application note.
This folder is imported by using the procedure described
below.

aws_ether_tsip_ck_rx65n This folder stores the Ethernet connection version of project
that is compatible with the TSIP.
This project can be used using the same procedure as the
cellular version of project.

boot_loader_ck_rx65n This folder stores the bootloader project for the CK-RX65N v1
board used in this application note.
This folder is imported by using the procedure described
below.

flash_project This folder stores the project files for Renesas Flash
Programmer that is used to write executable files to the CK-
RX65N when performing an OTA update.

key_crt_sig_generator This folder stores the tools for generating keys and certificates
used for encryption. This folder also stores the work folders for
those tools.

RX Family
OTA Update in FreeRTOS by Implementing TLS Communication Using the TSIP Driver

R20AN0749EJ0100 Rev.1.00 Page 27 of 102
Jun.14.24

4.3 Importing a Project
After you have downloaded a project, import it by using the following procedure.

(1) Start e2 studio.

(2) From the File menu, select Import to open the Import dialog box.

Figure 4-6 Opening the Import Dialog Box
(3) Select Existing Projects into Workspace, and then click the Next button.

Figure 4-7 Importing an Existing Project into a Workspace

RX Family
OTA Update in FreeRTOS by Implementing TLS Communication Using the TSIP Driver

R20AN0749EJ0100 Rev.1.00 Page 28 of 102
Jun.14.24

(4) Select the Select root directory radio button, select the folder in which you created a clone in section
4.2(1), select the two projects as shown in the following figure, and then click the Finish button.

• aws_ryz014a_tsip_ck_rx65
• boot_loader_ck_rx65n

Figure 4-8 Importing the Projects of the Bootloader and Application

RX Family
OTA Update in FreeRTOS by Implementing TLS Communication Using the TSIP Driver

R20AN0749EJ0100 Rev.1.00 Page 29 of 102
Jun.14.24

(5) When the projects are imported successfully, “aws_ryz014a_tsip_ck_rx65” and “boot_loader_ck_rx65n”,
which are imported projects, are added to the Project Explorer view as shown below.
If the Project Explorer view is not displayed, click the C/C++ perspective at the top right of the window,
and then select Window > Show View > Project Explorer.

Figure 4-9 Window after the Projects Are Imported

RX Family
OTA Update in FreeRTOS by Implementing TLS Communication Using the TSIP Driver

R20AN0749EJ0100 Rev.1.00 Page 30 of 102
Jun.14.24

(6) Checking the project environment settings

For the imported two projects, confirm that “Renesas CC-RX” is set as the toolchain. To do so, in the menu,
select Project > Properties > C/C++Build > Settings, and then click the Toolchain tab.

Figure 4-10 Checking the Toolchain

Next, click the Tool Settings tab, select Converter > Output, and then confirm that the Motorola S format
file check box is selected.

Figure 4-11 Checking the Output Format

RX Family
OTA Update in FreeRTOS by Implementing TLS Communication Using the TSIP Driver

R20AN0749EJ0100 Rev.1.00 Page 31 of 102
Jun.14.24

5. Creating Keys and Certificates
For the project described in this document, you must create multiple keys and certificates in order to
establish a TLS connection by using the TSIP and execute an OTA update.

After you have created the data of keys and certificates, register the data in the project that you imported into
e2 studio in Chapter 4, Preparing for the Demo Project. The procedure for creating the data of keys and
certificates is described below.

5.1 Preparing the Keys and Certificates for the TSIP
To perform TLS communication by using the TSIP in this sample program, you must register the information
about the keys and certificates listed in Table 5-1.
This section describes how to obtain these keys and certificates. This section also describes the procedure
for converting them for use with the TSIP and the procedure for registering them in the sample application
project.
Generate these keys and certificates and register them in the sample application project as instructed in this
section.
The table below provides brief explanations on the necessary items and how to obtain them. For the flows of
creating the keys and certificates listed in Table 5-1, refer to Figure 5-1, Flows of Creating Keys and
Certificates for Use with the TSIP.

Table 5-1 Keys and Certificates Used in the Sample Application Project and How to Obtain Them

Key/certificate How to obtain the item How to install the
item

Root CA certificate The user downloads this item from AWS. Use CLI.*1, *2
Root CA certificate signature data The user creates this item by using

OpenSSL or a similar tool.*6
Place the file in the
appropriate folder in
the project.

Root CA certificate public key The user creates this item by using
OpenSSL or a similar tool.*6
The user then wraps the created data.*4
The wrapped data is used as the root CA
certificate signature verification public key.

Place the file in the
appropriate folder in
the project.

Client certificate The user downloads this item from AWS
when registering the device.*5

Use CLI.*1, *3

Client certificate public key The user downloads this item from AWS
when registering the device.*5
The user then wraps the downloaded
data.*4

Place the file in the
appropriate folder in
the project.

Client certificate private key The user downloads this item from AWS
when registering the device.*5
The user then wraps the downloaded
data.*4

Place the file in the
appropriate folder in
the project.

Notes: 1. “CLI” here is the name of the command line interface provided by this project.
For details, refer to section 6.1.5.

 2. For details on how to install the item from CLI, refer to section 6.1.5(3).
 3. For details on how to install the item from CLI, refer to section 6.1.5(2).
 4. For the wrapping procedure, refer to section 5.1.5 and subsequent sections.
 5. For the download procedure, refer to section 3.1.
 6. For details on how to create this item by using OpenSSL, refer to section 5.1.4.

RX Family
OTA Update in FreeRTOS by Implementing TLS Communication Using the TSIP Driver

R20AN0749EJ0100 Rev.1.00 Page 32 of 102
Jun.14.24

5.1.1 Flows of Creating Certificates and Keys
This section describes the flows of the tasks for obtaining certificates and keys to be performed in this
application note. These flows are excerpts from the flows shown in Figure 1-1, Flow of TLS Communication
Using the TSIP.

The following figure shows the flows of creating the certificates and keys that are listed in Table 5-1 and used
in the procedures described in this application note.

Figure 5-1 Flows of Creating Keys and Certificates for Use with the TSIP

Note: 1. The root CA certificate signature verification public key, client certificate public key, or client
certificate private key is equivalent to an encrypted key in Table 1-1. However, each of these items
is created as a single file consisting of key information and W-UFPK information, and then
registered in the code flash memory.

*1

*1

*1

RX Family
OTA Update in FreeRTOS by Implementing TLS Communication Using the TSIP Driver

R20AN0749EJ0100 Rev.1.00 Page 33 of 102
Jun.14.24

The following figure shows the flow of creating a UFPK and W-UFPK shown in Figure 5-1.

Figure 5-2 Flow of Creating a UFPK and W-UFPK

The procedures for obtaining or creating the necessary certificates and keys are described below.

RX Family
OTA Update in FreeRTOS by Implementing TLS Communication Using the TSIP Driver

R20AN0749EJ0100 Rev.1.00 Page 34 of 102
Jun.14.24

5.1.2 Obtaining a Root CA Certificate
This section describes how to obtain a root CA certificate. The task performed in this section corresponds to
the range enclosed in the red frame of the flow shown in Figure 5-1.

Figure 5-3 Obtaining a Root CA Certificate
Obtain the root CA certificate used for connection to AWS. Download the root CA certificate from the
following URL:

https://docs.aws.amazon.com/iot/latest/developerguide/server-authentication.html#server-authentication-
certs

Because an RSA certificate is used in this project, download “Amazon Root CA 1”. If the web browser you
are using is Edge, you can download it by right-clicking the link and selecting Save link as.

Figure 5-4 Downloading the Root CA Certificate

https://docs.aws.amazon.com/iot/latest/developerguide/server-authentication.html#server-authentication-certs
https://docs.aws.amazon.com/iot/latest/developerguide/server-authentication.html#server-authentication-certs

RX Family
OTA Update in FreeRTOS by Implementing TLS Communication Using the TSIP Driver

R20AN0749EJ0100 Rev.1.00 Page 35 of 102
Jun.14.24

Confirm that the following file is downloaded:

• AmazonRootCA1.pem

After downloading the certificate, place it in the location indicated in red font in the following figure. Note that
the key_crt_sig_generator folder exists in the aws_ryz014a_tsip_ck_rx65n folder in the project.

key_crt_sig_generator
|-- ca
| |-- AmazonRootCA1.pem
|-- ca-sign-keypair-rsa2048
|-- client-rsa2048
|-- output
|-- 1_rsa2048_convertCrt.sh
|-- convertCrt.sh

5.1.3 Obtaining a Key Pair and Client Certificate for RSA
This section describes how to obtain a key pair (client certificate public and private keys) and certificate for
RSA. The task performed in this section corresponds to the range enclosed in the red frame of the flow
shown in Figure 5-1.

Figure 5-5 Obtaining a Client Certificate/Client Certificate Public and Private Keys
The client certificate and the client certificate public and private keys are automatically generated on the
AWS server. Register a device (thing) at the AWS IoT Core website. You can download the key pair and
client certificate when registering the thing.

RX Family
OTA Update in FreeRTOS by Implementing TLS Communication Using the TSIP Driver

R20AN0749EJ0100 Rev.1.00 Page 36 of 102
Jun.14.24

Download these items when you perform the procedures described in section 3.1, Signing in to the AWS
Console to section 3.3, Registering your device in AWS in the following application note: “RX Family How to
implement FreeRTOS OTA using Amazon Web Services in RX65N (for v202210.01-LTS-rx-1.1.3 or later)”
(R01AN7037).

Figure 5-6 Downloading Keys and a Certificate

1. Client certificate

2. Client certificate public key

3. Client certificate private key

https://www.renesas.com/search?keywords=r01an7037

RX Family
OTA Update in FreeRTOS by Implementing TLS Communication Using the TSIP Driver

R20AN0749EJ0100 Rev.1.00 Page 37 of 102
Jun.14.24

You can download three files described in the following table.

Table 5-2 List of Files to Be Downloaded

No. Name File name Name in this application note
1 Device certificate xxx-certificate.pem.crt Client certificate
2 Public key file xxx-public.pem.key Client certificate public key
3 Private key file xxx-private.pem.key Client certificate private key

Notes: 1. You can download key pair files only when creating a thing from AWS Console.
 2. In the above, xxx is an arbitrary character string.

After downloading the certificate and keys, place them in the locations indicated in red font in the following
figure under the key_crt_sig_generator folder in the project.

key_crt_sig_generator
|-- ca
| |-- AmazonRootCA1.pem
|-- ca-sign-keypair-rsa2048
|-- client-rsa2048
| |-- xxx-certificate.pem.crt
| |-- xxx-public.pem.key
| |-- xxx-private.pem.key
|-- output
|-- 1_rsa2048_convertCrt.sh
|-- convertCrt.sh

RX Family
OTA Update in FreeRTOS by Implementing TLS Communication Using the TSIP Driver

R20AN0749EJ0100 Rev.1.00 Page 38 of 102
Jun.14.24

5.1.4 Generating a Signature of the Root CA Certificate
This section describes how to perform registration in the project (source code) by using the downloaded root
CA certificate. The task performed in this section corresponds to the range enclosed in the red frame of the
flow shown in Figure 5-1.

Figure 5-7 Creating a Signature of the Root CA Certificate
Convert the certificate by using the procedure described later.
When performing this conversion, execute the script file provided in the key_crt_sig_generator project
folder. Note that the script file contains a Bash shell script.
This application note shows an example in which Cygwin is used to provide a Unix-like interface. Prepare an
environment in which Cygwin can operate by referring to section 2.3.

Before executing the script, place the key files in the appropriate folders by using the procedures described
in section 5.1.2 and section 5.1.3.

[Note] When executing the script, be sure to refer to section 6.1.5(6) and delete the data flash when
executing the program.
Also, please perform the series of operations from section 5.1.4 to section 5.1.5 consecutively.
Partial steps can produce inconsistent data.

(1) Converting the Root CA Certificate for RSA

Execute the script provided by this project. In this script, the root CA certificate for RSA is converted into the
DER format.
Next, a signature of the root CA certificate and a key pair used for signature verification (root CA certificate
public and private keys) in RSA-2048 format are generated. Then, the generated root CA certificate private
key is used to generate the root CA certificate signature data.
The signature data after conversion has been converted in the array format in C language so that it can be
registered in the source code of the project.

Activate Cygwin, and then move to the key_crt_sig_generator folder in the project by entering the following
command:

cd /cygdrive/c/workspace/key_crt_sig_generator
Note: The above command line applies when the script file is placed in the

workspace/key_crt_sig_generator folder.

RX Family
OTA Update in FreeRTOS by Implementing TLS Communication Using the TSIP Driver

R20AN0749EJ0100 Rev.1.00 Page 39 of 102
Jun.14.24

Execute the script by entering the following command:

./1_rsa2048_convertCrt.sh

Figure 5-8 Executing the Script

(2) Registering the converted files in the project

After executing the script, six files (indicated in blue or red font in the following figure) are generated in the
key_crt_sig_generator/output folder.

key_crt_sig_generator
|-- ca
|-- ca-sign-keypair-rsa2048
| |-- rsa2048-private.pem
| |-- rsa2048-public.pem
|-- client-rsa2048
|-- output
| |-- AmazonRootCA1_crt.der
| |-- AmazonRootCA1_crt_array.txt
| |-- AmazonRootCA1_sig.sig
| |-- AmazonRootCA1_sig_array.txt
|--1_rsa2048_convertCrt.sh
|--convertCrt.sh

The six generated files are described in the following table.

Table 5-3 Description of the Converted Files

Name File name
Root CA certificate private key (in PEM format) rsa2048-private.pem

Root CA certificate public key (in PEM format) rsa2048-public.pem

Root CA certificate data (in DER format) AmazonRootCA1_crt.der

Root CA certificate data
(coded as an array of type uint8_t in C language)

AmazonRootCA1_crt_array.txt

Root CA certificate signature data signed by the private key AmazonRootCA1_sig.sig

Root CA certificate signature data signed by the private key
(coded as an array of type uint8_t in C language)

AmazonRootCA1_sig_array.txt

Of the above output files, AmazonRootCA1_sig_array.txt is the root CA certificate signature data signed by
the private key.
This file contains generated binary data coded as an array of type uint8_t in C language. When
AmazonRootCA1_sig_array.txt is generated, copy it to the following folder in the project, overwriting the
file with the same name:

\iot-reference-rx\
Projects\aws_ryz014a_tsip_ck_rx65n\e2studio_ccrx\src\userdata_tsip

RX Family
OTA Update in FreeRTOS by Implementing TLS Communication Using the TSIP Driver

R20AN0749EJ0100 Rev.1.00 Page 40 of 102
Jun.14.24

Also, the root CA certificate public key file (rsa2048-public.pem) and the root CA certificate private key file
(rsa2048-private.pem) are generated in the key_crt_sig_generator/ca-sign-keypair-rsa2048 folder.
The public key file will later be used when the root CA certificate signature verification public key is
generated in section 5.1.5.

5.1.5 Wrapping Keys and Registering Them in the Project
Wrap the root CA certificate public key, client certificate public key, and client certificate private key that you
generated, and then register them in the project (source code).
These three keys are user keys.

In this section, you use the following keys: the root CA certificate public key generated in section 5.1.4; and
the client certificate public and private keys downloaded from AWS in section 5.1.3.

5.1.5.1 Overview of Wrapping Keys
Because the TSIP driver does not accept a plaintext user key as an input, the user key must be wrapped in a
format that can be accepted by the TSIP driver.

Keys used for TLS communication are generally provided in PEM format in the same way as certificates. For
a key to be used for the TSIP driver, extract the data of the key from the PEM-formatted key file. Then, wrap
the key by using the Renesas Key Wrap service (Renesas DLM server) and Security Key Management Tool.
Note that to exchange key data by using the Renesas Key Wrap service, the data must be encrypted by
OpenPGP.

An overview of the procedure is as follows. The detailed steps are given later.

1. Use Security Key Management Tool to create a plaintext UFPK.
2. Use Kleopatra to encrypt the UFPK by PGP (so that it can be handled by Key Wrap).
3. Send the PGP-encrypted UFPK to Renesas by using the Renesas Key Wrap service.
4. Re-encrypt the PGP-encrypted UFPK on the Renesas DLM server (a hardware root key (HRK) is used

internally in Renesas).
5. Receive the Renesas-encrypted UFPK (UFPK encrypted by PGP for transmission).
6. Use Kleopatra to decrypt the PGP encryption and obtain an encrypted UFPK (W-UFPK).

Figure 5-9 Procedure for Generating a UFPK/W-UFPK

1 2

3

4

5

6

https://dlm.renesas.com/

RX Family
OTA Update in FreeRTOS by Implementing TLS Communication Using the TSIP Driver

R20AN0749EJ0100 Rev.1.00 Page 41 of 102
Jun.14.24

7. Use Security Key Management Tool to wrap the user keys (root CA certificate public key, client certificate
public key, and client certificate private key) by using the UFPK (generate an encrypted key). Combine
the encrypted key with a W-UFPK into a key that will be used after wrapping.

8. Register the wrapped encrypted key files in the source code.

Figure 5-10 Procedure for Wrapping Key Information
Three encrypted keys (root CA certificate signature verification public key, client certificate public key, and
client certificate private key) are generated as wrapped keys, which are encrypted chip-specific keys, inside
the TSIP by using an HRK and HUK.
The wrapped keys are decrypted by the processing inside the TSIP and the decrypted keys are used for
connection to AWS.

7

7

ｍ

8

8

8

RX Family
OTA Update in FreeRTOS by Implementing TLS Communication Using the TSIP Driver

R20AN0749EJ0100 Rev.1.00 Page 42 of 102
Jun.14.24

5.1.5.2 Generating a UFPK and W-UFPK
This section describes how to generate a UFPK (user factory programming key) and W-UFPK (a UFPK
wrapped by the Renesas Key Wrapping service), which are used to wrap keys. The task performed in this
section corresponds to the flows shown in Figure 5-2.

Generate your own UFPK, and then upload it to the DLM server to generate a W-UFPK. A UFPK is a key
used to wrap a public key for verifying a signature.
You can use Security Key Management Tool to create a UFPK in a format that can be accepted by the DLM
server.*1

Once you create a UFPK and W-UFPK, you do not need to create them again.

Note: 1. This section describes the procedure for generating a UFPK that is to be used for key wrapping
and an encrypted UFPK (W-UFPK).
The key information generated by this procedure is sample information. Therefore, it cannot be
used for actual operation.
To use keys for mass production, you must generate your own keys. Details on how to do so are
described in another application note provided by Renesas.
If you have already used Renesas MCUs or you plan to adopt Renesas MCUs, Renesas provides
that application note. If you want to reference it, contact the relevant Renesas sales office.
https://www.renesas.com/contact/

https://www.renesas.com/contact/

RX Family
OTA Update in FreeRTOS by Implementing TLS Communication Using the TSIP Driver

R20AN0749EJ0100 Rev.1.00 Page 43 of 102
Jun.14.24

(1) Preparing tools

The following tools are used to wrap a key. Make sure that these tools are ready for use by performing the
relevant setup procedure for each tool described in this document.

• Gpg4win (Kleopatra): Refer to section 2.1.
• Renesas Key Wrap service: Refer to section 2.2.
• Security Management Tool: Refer to section 2.4.

(2) Setting up Security Key Management Tool (SKMT)

Start Security Key Management Tool that you installed, click the Overview tab, and then, from the Select
MCU/MPU and security engine drop-down list, select RX Family, TSIP.

Figure 5-11 Selecting the MCU and Security Engine

RX Family
OTA Update in FreeRTOS by Implementing TLS Communication Using the TSIP Driver

R20AN0749EJ0100 Rev.1.00 Page 44 of 102
Jun.14.24

(3) Creating a plaintext UFPK

This section describes how to create a UFPK. The task performed in this section corresponds to the range
enclosed in the red frame of the flow shown in Figure 5-2.

Figure 5-12 Generating a Plaintext UFPK
In the Security Key Management Tool application, click the Generate UFPK tab, and then specify the
following settings:

• User Factory Programming Key Select Generate random value.

• Output file Set the file to which the generated UFPK is to be output. You
can specify a file in any folder of your choice. In this example,
the file is named “sample.key”.

RX Family
OTA Update in FreeRTOS by Implementing TLS Communication Using the TSIP Driver

R20AN0749EJ0100 Rev.1.00 Page 45 of 102
Jun.14.24

When you have completed the settings, click the Generate UFPK key file button. A UFPK is output to the
specified folder.

Figure 5-13 Generating a UFPK by Using the Security Key Management Tool

RX Family
OTA Update in FreeRTOS by Implementing TLS Communication Using the TSIP Driver

R20AN0749EJ0100 Rev.1.00 Page 46 of 102
Jun.14.24

When the following message is displayed at the bottom of the window, the file has been successfully
generated. Confirm that the sample.key file has been output to the specified folder.

Figure 5-14 Output Result Message
(4) Encrypting the UFPK by PGP

This section describes how to encrypt the sample.key UFPK file (created in section 5.1.5.2(3)) by using an
OpenPGP key pair created with Kleopatra and a PGP public key that you received from Renesas in return
for your own key. The task performed in this section corresponds to the range enclosed in the red frame of
the flow shown in Figure 5-2.

Figure 5-15 PGP Encryption of a UFPK

In the Kleopatra window, click the Sign/Encrypt button. When the dialog box for selecting a file appears,
specify sample.key.

Figure 5-16 Encrypting the “sample.key” file

RX Family
OTA Update in FreeRTOS by Implementing TLS Communication Using the TSIP Driver

R20AN0749EJ0100 Rev.1.00 Page 47 of 102
Jun.14.24

The Sign/Encrypt Files dialog box for the selected file appears. This dialog box asks you whether to
perform signature and encryption. In this dialog box, specify the key pair and key that you created as follows:

• Sign as: Specify your own OpenPGP public key that you created in section 2.2(2).
• Encrypt for me: Specify your own OpenPGP public key that you created in section 2.2(2).
• Encrypt for others: Specify the Renesas PGP public key (keywrap) that you registered in section 2.2(4).

Set the output destination folder in Output files/folder, and then click the Sign/Encrypt button. A file named
sample.key.gpg is created in the specified folder. This file is a UFPK encrypted by PGP (W-UFPK).

Figure 5-17 Encrypting the “sample.key” File by PGP

(5) Encrypting the PGP-encrypted UFPK on the DLM server

This section describes how to encrypt the PGP-encrypted UFPK by using the Renesas Key Wrap service.
The task performed in this section corresponds to the range enclosed in the red frame of the flow shown in
Figure 5-2. Within the DLM server, a hardware root key (HRK) is used for encryption.

Figure 5-18 Uploading the UFPK for Encryption

https://dlm.renesas.com/keywrap/menu/select/

RX Family
OTA Update in FreeRTOS by Implementing TLS Communication Using the TSIP Driver

R20AN0749EJ0100 Rev.1.00 Page 48 of 102
Jun.14.24

Log in to the Renesas Key Wrap service website, and then click RENESAS RX on the top page.

Figure 5-19 Selecting the Type (Family) of the Encryption-Target MCU
When the following device selection screen appears, click RX65N/RX651 Encryption of customer’s data.

Figure 5-20 Selecting the Device Group

Click the Encryption service for products link.

Figure 5-21 Selecting the Encryption Service

RX Family
OTA Update in FreeRTOS by Implementing TLS Communication Using the TSIP Driver

R20AN0749EJ0100 Rev.1.00 Page 49 of 102
Jun.14.24

When the following upload screen appears, click the Reference button. Then, specify the sample.key.pgp
file that you created in section 5.1.5.2(4), and click the Settle button.

Figure 5-22 Uploading a UFPK
When an upload finishes, the following screen appears, and encryption starts on the Renesas DLM server.
When encryption finishes, the sample.key_enc.key.pgp file is sent from Renesas to you by email. Save the
file in any folder of your choice.

Figure 5-23 Screen Appearing When an Upload to the DLM Server Finishes
(6) Decrypting “sample.key_enc.key.pgp” by OpenPGP

The sample.key_enc.key.pgp file sent from Renesas is a PGP-encrypted W-UFPK. Decrypt it by using your
own OpenPGP key to create a normal W-UFPK (encrypted UFPK). The task performed in this section
corresponds to the range enclosed in the red frame of the flow shown in Figure 5-2.

Figure 5-24 Creating a W-UFPK

RX Family
OTA Update in FreeRTOS by Implementing TLS Communication Using the TSIP Driver

R20AN0749EJ0100 Rev.1.00 Page 50 of 102
Jun.14.24

In Kleopatra, click the Decrypt/Verify button, and then, in the file selection screen, select
sample.key_enc.key.pgp. Decryption starts.
When decryption finishes and a message to that effect appears, click the Save All button to save the
decrypted key. The decrypted file (sample.key_enc.key) is output to the folder that stores the file before
decryption (sample.key_enc.key.pgp).
Encryption of sample.key is now complete. The sample.key_enc.key file is a W-UFPK.

↓

Figure 5-25 Creating a W-UFPK by PGP Decryption

RX Family
OTA Update in FreeRTOS by Implementing TLS Communication Using the TSIP Driver

R20AN0749EJ0100 Rev.1.00 Page 51 of 102
Jun.14.24

5.1.5.3 Wrapping Key Data
This section describes how to convert the data of the root CA certificate public key (root CA certificate
signature verification public key), client certificate public key, and client certificate private key into data to be
registered in the project. This conversion requires sample.key (as a UFPK) and sample.key_enc.key (as a
W-UFPK) that you created in section 5.1.5.2, Generating a UFPK and W-UFPK.
The conversion wraps the three keys by using the UFPK, and then combines them with the W-UFPK.

(1) Key data used

From the root CA certificate public key you generated (in section 5.1.4, Generating a Signature of the Root
CA Certificate) and the PEM-formatted client certificate public and private keys you obtained from AWS (in
section 5.1.3, Obtaining a Key Pair and Client Certificate for RSA), extract the root CA certificate public key,
client certificate public key, and client certificate private key. The files of these three keys are as follows:

• Root CA certificate public key file (PEM)
/key_crt_sig_generator /ca-sign-keypair-rsa2048 /rsa2048-public.pem

• Client certificate public key file (PEM)
/key_crt_sig_generator /client-rsa2048 /xxxx-public.pem.key
Note: In the above, xxxx is an arbitrary character string.

• Client certificate private key file (PEM)
/key_crt_sig_generator /client-rsa2048 /xxxx-private.pem.key
Note: In the above, xxxx is an arbitrary character string.

Note: Wrap the above three keys by using the following two keys, which were created in section 5.1.5.2:
• UFPK (sample.key)
• W-UFPK (sample.key_enc.key)
The keys used in this section are enclosed in red frames in the following figure.
The same UFPK and W-UFPK are used to wrap the root CA certificate signature verification public key,
client certificate public key, and client certificate private key.

Figure 5-26 Key Data Used in This Section

RX Family
OTA Update in FreeRTOS by Implementing TLS Communication Using the TSIP Driver

R20AN0749EJ0100 Rev.1.00 Page 52 of 102
Jun.14.24

Enter the file names of these keys in Security Key Management Tool to generate wrapped key files.
The key files generated here are keys (encrypted keys) wrapped by using a UFPK and combined with a W-
UFPK. The generated key files are source code that can be installed in the project.
The W-UFPK is used to remove the wraps by the processing inside the TSIP.

The above key files are specific to the device (thing) created on AWS. You must re-wrap the key files each
time you connect to a different device.

The following shows the procedure for wrapping key files.

(2) Generating a root CA certificate signature verification public key

Generate a root CA certificate signature verification public key. The task performed in this section
corresponds to the range enclosed in the red frame of the flow shown in Figure 5-1.

Figure 5-27 Generating a Root CA Certificate Signature Verification Public Key
Create a root CA certificate signature verification public key to be installed in the project, by wrapping the
following root CA certificate public key file:

/key_crt_sig_generator /ca-sign-keypair-rsa2048 /rsa2048-public.pem

RX Family
OTA Update in FreeRTOS by Implementing TLS Communication Using the TSIP Driver

R20AN0749EJ0100 Rev.1.00 Page 53 of 102
Jun.14.24

1. In the Security Key Management Tool application, open the Wrap key tab. Then, in the Key Type tab,
select the RSA radio button, and select “2048bits, public” from the drop-down list.

Figure 5-28 Wrapping a Public key by Using Security Key Management Tool

RX Family
OTA Update in FreeRTOS by Implementing TLS Communication Using the TSIP Driver

R20AN0749EJ0100 Rev.1.00 Page 54 of 102
Jun.14.24

2. Register the UFPK and W-UFPK. In the Wrapping Key area, select the UFPK radio button, and then
perform the following operations:
You have a UFPK named sample.key and a W-UFPK named sample.key_enc.key created in section
5.1.5.2. Specify the UFPK in the UFPK File field and the W-UFPK in the W-UFPK File field by clicking
the Browse button for each field.
In the IV area, select the Generate random value radio button.

Figure 5-29 Specifying the UFPK and W-UFPK

RX Family
OTA Update in FreeRTOS by Implementing TLS Communication Using the TSIP Driver

R20AN0749EJ0100 Rev.1.00 Page 55 of 102
Jun.14.24

3. Click the Key Data tab.
Select the File radio button, and then click the Browse button.

Figure 5-30 Selecting the Root CA Certificate Public Key

When the dialog box for selecting the key data file opens, select PEM key data (*.pem) as the file type. This
allows you to find the root CA certificate public key file (in PEM format) easily. Select the following file, and
then click the Open button:
key_crt_sig_generator/ca-sign-keypair-rsa2048/rsa2048-public.pem

Figure 5-31 File Selection Dialog Box

RX Family
OTA Update in FreeRTOS by Implementing TLS Communication Using the TSIP Driver

R20AN0749EJ0100 Rev.1.00 Page 56 of 102
Jun.14.24

4. In the Output area, from the Format drop-down list, select C Source.
In the File text box, select any folder of your choice, and then enter the following file name:
encrypted_user_rsa2048_ne_key.c
In the Key name text box, enter the following string:
encrypted_user_rsa2048_ne_key
When entry is complete, click the Generate file button to generate the root CA certificate signature
verification public key.
Note: Always enter the indicated strings without change because they are strings that are hard-coded in

the source code.

Figure 5-32 Generating the Data of the Root CA Certificate Signature Verification Public Key

When the following message is displayed at the bottom of the window, the file has been successfully
generated. Confirm that the following file has been output to the specified folder:
encrypted_user_rsa2048_ne_key.c/h

The root CA certificate public key generated here will be used as the root CA certificate signature verification
public key in the project.

Figure 5-33 Output Result Message

RX Family
OTA Update in FreeRTOS by Implementing TLS Communication Using the TSIP Driver

R20AN0749EJ0100 Rev.1.00 Page 57 of 102
Jun.14.24

(3) Generating a client certificate public key

This section describes how to generate a client certificate public key. The task performed in this section
corresponds to the range enclosed in the red frame of the flow shown in Figure 5-1.

Figure 5-34 Generating a Client Certificate Public Key
Wrap the following key file to create a client certificate public key to be installed in the project:

/key_crt_sig_generator / client-rsa2048 / xxxx-public.pem.key

Note: This is a file that was downloaded from AWS. The xxxx portion is an arbitrary character string.

1. Generate a client certificate public key.
First, rename xxxx-public.pem.key to xxxx-public.pem.
Then, open the Key Type tab, and make sure that the RSA radio button and 2048bits, public are
selected in the same way as in (2). For the Wrapping Key and IV areas, specify the same settings that
were specified in (2).

Figure 5-35 Confirming the Settings in the “Key Type” Tab

RX Family
OTA Update in FreeRTOS by Implementing TLS Communication Using the TSIP Driver

R20AN0749EJ0100 Rev.1.00 Page 58 of 102
Jun.14.24

2. Open the Key Data tab again.
Click the Key Data tab.
Select the File radio button, and then click the Browse button.
When the dialog box for selecting the key data file opens, select PEM key data (*.pem) as the file type.
This allows you to find the client certificate public key file (in PEM format) easily. Select the following file,
and then click the Open button:
key_crt_sig_generator / client-rsa2048 / xxxx-public.pem

Figure 5-36 File Selection Dialog Box

RX Family
OTA Update in FreeRTOS by Implementing TLS Communication Using the TSIP Driver

R20AN0749EJ0100 Rev.1.00 Page 59 of 102
Jun.14.24

3. In the Output area, from the Format drop-down list, select C Source.
In the File text box, select any folder of your choice, and then enter the following file name:
encrypted_user_rsa2048_ne_key2.c
In the Key name text box, enter the following string:
encrypted_user_rsa2048_ne_key2
When entry is complete, click the Generate file button to generate client certificate public key data.
Note: Always enter the indicated strings without change because they are strings that are hard-coded in

the source code.

Figure 5-37 Generating the Data of a Client Certificate Public Key
When the following message is displayed at the bottom of the window, the file has been successfully
generated. Confirm that the following file has been output to the specified folder:
encrypted_user_rsa2048_ne_key2.c/h

Figure 5-38 Output Result Message

RX Family
OTA Update in FreeRTOS by Implementing TLS Communication Using the TSIP Driver

R20AN0749EJ0100 Rev.1.00 Page 60 of 102
Jun.14.24

(4) Generating a client certificate private key

This section describes how to generate a client certificate private key. The task performed in this section
corresponds to the range enclosed in the red frame of the flow shown in Figure 5-1.

Figure 5-39 Generating a Client Certificate Private Key
Wrap the following key file to create a client certificate private key to be installed in the project:

/key_crt_sig_generator / client-rsa2048 / xxxx-private.pem.key

Note: This is a file that was downloaded from AWS. The xxxx portion is an arbitrary character string.

1. Generate a client certificate private key.
First, rename xxxx-private.pem.key to xxxx-private.pem.
Open the Key Type tab, and then select the RSA radio button and 2048 bits, private.
For the Wrapping Key and IV areas, specify the same settings that were specified in (2).

Figure 5-40 Confirming the Settings in the “Key Type” Tab

RX Family
OTA Update in FreeRTOS by Implementing TLS Communication Using the TSIP Driver

R20AN0749EJ0100 Rev.1.00 Page 61 of 102
Jun.14.24

2. Open the Key Data tab again.
Click the Key Data tab.
Select the File radio button, and then click the Browse button.
When the dialog box for selecting the key data file opens, select PEM key data (*.pem) as the file type.
This allows you to find the client certificate private key file (in PEM format) easily. Select the following file,
and then click the Open button:
/key_crt_sig_generator/client-rsa2048/xxxx-private.pem

Figure 5-41 File Selection Dialog Box

RX Family
OTA Update in FreeRTOS by Implementing TLS Communication Using the TSIP Driver

R20AN0749EJ0100 Rev.1.00 Page 62 of 102
Jun.14.24

3. In the Output area, from the Format drop-down list, select C Source.
In the File text box, select any folder of your choice, and then enter the following file name:
encrypted_user_rsa2048_nd_key.c
In the Key name text box, enter the following string:
encrypted_user_rsa2048_nd_key
When entry is complete, click the Generate file button to generate client certificate private key data.

Note: Always enter the indicated strings without change because they are strings that are hard-coded in

the source code.

Figure 5-42 Generating the Data of a Client Certificate Private Key
When the following message is displayed at the bottom of the window, the file has been successfully
generated. Confirm that the following file has been output to the specified folder:
encrypted_user_rsa2048_nd_key.c/h

Figure 5-43 Output Result Message

RX Family
OTA Update in FreeRTOS by Implementing TLS Communication Using the TSIP Driver

R20AN0749EJ0100 Rev.1.00 Page 63 of 102
Jun.14.24

Use the procedures shown in (2) to (4) to register the following wrapped key files in the source code. The
task performed in this section corresponds to the range enclosed in the red frame of the flow shown in Figure
5-1.

Figure 5-44 Registering Generated Key Data in the Source Code

The following table lists the files of generated keys.

Table 5-4 List of Wrapped Key Files

Name File name
Root CA certificate signature verification public key - encrypted_user_rsa2048_ne_key.c

- encrypted_user_rsa2048_ne_key.h
Client certificate public key - encrypted_user_rsa2048_ne_key2.c

- encrypted_user_rsa2048_ne_key2.h
Client certificate private key - encrypted_user_rsa2048_nd_key.c

- encrypted_user_rsa2048_nd_key.h

Copy the above six files to the following user data folder in the project, overwriting the existing files with the
same names:

\iot-reference-
rx\Projects\aws_ryz014a_tsip_ck_rx65n\e2studio_ccrx\src\userdata_tsip

RX Family
OTA Update in FreeRTOS by Implementing TLS Communication Using the TSIP Driver

R20AN0749EJ0100 Rev.1.00 Page 64 of 102
Jun.14.24

5.2 Generating a Key Pair and Certificates for an OTA Update
In an OTA firmware update, certificates and a key pair are used to verify whether the firmware used has not
been subject to tampering.

Generate ECDSA certificates and keys by performing the procedure described in section 4.1, Generating
Key pairs and certificates in the following application note: “RX Family How to implement FreeRTOS OTA
using Amazon Web Services in RX65N (for v202210.01-LTS-rx-1.1.3 or later)” (R01AN7037).

The following ECDSA certificates, public key, and private key are generated. These items will be used in the
settings when building a project and creating an OTA job for AWS.

• ECDSA public key: secp256r1.publickey

• ECDSA private key: secp256r1.privatekey

• ECDSA certificate (key pair certificate): secp256r1.crt

• ECDSA certificate chain: ca.crt

https://www.renesas.com/search?keywords=r01an7037

RX Family
OTA Update in FreeRTOS by Implementing TLS Communication Using the TSIP Driver

R20AN0749EJ0100 Rev.1.00 Page 65 of 102
Jun.14.24

6. Building a Project
You created projects in Chapter 4, Preparing for the Demo Project, and certificates and keys in Chapter 5,
Creating Keys and Certificates. Next, you use these items to create a project that demonstrates OTA update
using the TSIP.

The following two kinds of firmware are required to demonstrate OTA update. In this chapter, you create the
two kinds of firmware from the project.

• Initial firmware
• Update firmware

6.1 Building and Executing the Initial Version of Firmware
Build the initial version of firmware.

6.1.1 Importing Projects
Import the following two projects into e2 studio and specify the initial settings by referring to Chapter 4,
Preparing for the Demo Project:

• Bootloader: boot_loader_ck_rx65n
• Demo application (cellular version): aws_ryz014a_tsip_ck_rx65n

Also, prepare the following seven certificate and key files that were created in Chapter 5, Creating Keys and
Certificates, and store them in the user data folder:

1. AmazonRootCA1_sig_array.txt: Root CA certificate signature data
2. encrypted_user_rsa2048_ne_key.c: Root CA certificate signature verification public key (source file)
3. encrypted_user_rsa2048_ne_key.h: Same as above (header file)
4. encrypted_user_rsa2048_ne_key2.c: Client certificate public key (source file)
5. encrypted_user_rsa2048_ne_key2.h: Same as above (header file)
6. encrypted_user_rsa2048_nd_key.c: Client certificate private key (source file)
7. encrypted_user_rsa2048_nd_key.h: Same as above (header file)

User data folder:

\iot-reference-
rx\Projects\aws_ryz014a_tsip_ck_rx65n\e2studio_ccrx\src\userdata_tsip

The data of these certificates and keys is installed in the program when the demo application is built.

The key files 2 through 7 are converted into index data that is to be used to inject keys during program
execution. These files are written to the data flash memory only when the program is executed for the first
time.

Note: 1. When the program is executed again, these key files are no longer written to the data flash memory
and the key index information saved in the data flash memory is fetched for use from the data
flash memory.
If the data flash memory is cleared, the key index information is rewritten when the program is
executed again.

Note: 2. If you changed the key file, be sure to refer to section 6.1.5(6) and delete the data flash when
executing the program.

RX Family
OTA Update in FreeRTOS by Implementing TLS Communication Using the TSIP Driver

R20AN0749EJ0100 Rev.1.00 Page 66 of 102
Jun.14.24

6.1.2 Setting Up and Building the Projects
Specify the settings for executing OTA update in the imported projects, and then build the projects.

(1) Setting a public key in the Bootloader

Prepare the secp256r1.publickey file (an ECDSA public key created in section 5.2). Open the file with a text
editor, copy the content, and then paste it under the CODE_SIGNER_PUBLIC_KEY_PEM entry in the
following file of the bootloader:

boot_loader_ck_rx65n\src¥key¥code_signer_public_key.h

Figure 6-1 Setting a Public Key in the Bootloader

Caution: Enclose each line in double quotation marks ("..."). Add a backslash (\) at
the end of each line. Do not fail to do this.
Do not add a backslash (\) to the last line (-----END PUBLIC KEY-----).
Format: "xxx ... xxx" \

RX Family
OTA Update in FreeRTOS by Implementing TLS Communication Using the TSIP Driver

R20AN0749EJ0100 Rev.1.00 Page 67 of 102
Jun.14.24

(2) Enabling the OTA update demonstration definition of the demo application

In the aws_ryz014a_tsip_ck_rx65n\src\frtos_confit\demo_config.h file, set the
ENABLE_OTA_UPDATE_DEMO definition to 1 (enabled). (By default, this definition is set to 0.)

Figure 6-2 OTA Update Demonstration Definition
(3) Confirming that the initial version of the Demo application is 0.92

Confirm that the version definitions in the aws_ryz014a_tsip _ck_rx65n\src\frtos_config\ demo_config.h
file are as follows:

• APP_VERSION_MAJOR 0
• APP_VERSION_MINOR 9
• APP_VERSION_BUILD 2

Figure 6-3 Version Settings

RX Family
OTA Update in FreeRTOS by Implementing TLS Communication Using the TSIP Driver

R20AN0749EJ0100 Rev.1.00 Page 68 of 102
Jun.14.24

(4) Setting up the “r_cellular” module (FIT module that controls the RYZ014A cellular module)

Open Smart Configurator (aws_ryz014a_tsip_ck_rx65n.scfg), and then select the Components tab.
In the “r_cellular” module, set the Access point name, Access point login ID, Access point password,
and Authentication protocol type configurations according to the SIM card. Also, set the Debug log
output level configuration to 3.

Figure 6-4 Setting Up the “r_cellular” Module
After you have changed the settings as described above, click the Generate Code button at the top right of
the window. The changes (made in Smart Configurator) are applied to the relevant code.

Figure 6-5 Generating Code
If you use the SIM card bundled with the CK-RX65N, activate it by referring to section 4.1.5, Activating SIM
card in the following application note:

SIM activation, Creating the trial account and using Dashboard with RYZ014A or Ethernet Application for
AWS - Getting Started Guide (R01QS0064)

https://www.renesas.com/document/qsg/sim-activation-creating-trial-account-and-using-dashboard-ryz014a-or-ethernet-application-aws?r=1611756
https://www.renesas.com/document/qsg/sim-activation-creating-trial-account-and-using-dashboard-ryz014a-or-ethernet-application-aws?r=1611756

RX Family
OTA Update in FreeRTOS by Implementing TLS Communication Using the TSIP Driver

R20AN0749EJ0100 Rev.1.00 Page 69 of 102
Jun.14.24

(5) Setting the device in the firmware

1. Open Smart Configurator (aws_ryz014a_tsip_ck_rx65n.scfg), select the Board tab, and then check
whether “R5F565NEHxFB DUAL” is set in Device.

Figure 6-6 Confirming the Device Setting
If another device (“R5F565NEHxFB” in this example) has been set, perform the following steps to change
the setting.

2. Click the ... button to the right of the Board drop-down list.

Figure 6-7 Changing the Device Setting (1)

RX Family
OTA Update in FreeRTOS by Implementing TLS Communication Using the TSIP Driver

R20AN0749EJ0100 Rev.1.00 Page 70 of 102
Jun.14.24

3. The Change Device dialog box appears.
From the Target Board drop-down list, select “CK-RX65N(DUAL)”, and then click the Next button.

-

Figure 6-8 Change Device Dialog Box

RX Family
OTA Update in FreeRTOS by Implementing TLS Communication Using the TSIP Driver

R20AN0749EJ0100 Rev.1.00 Page 71 of 102
Jun.14.24

4. If the device is changed, the following dialog box (Found problems) appears. In this dialog box, click
Next.

Figure 6-9 “Found problems” Dialog Box

5. When the following dialog box (Change to be performed) appears, select the following check boxes:
Build Settings > HardwareDebug > Toolchain Settings. Then, clear the ROM to RAM mapped
section (-rom) and Sections (-start) check boxes. Then, click Finish.

Figure 6-10 “Change to be performed” Dialog Box

RX Family
OTA Update in FreeRTOS by Implementing TLS Communication Using the TSIP Driver

R20AN0749EJ0100 Rev.1.00 Page 72 of 102
Jun.14.24

If you change the device, the following dialog box may appear, asking you whether to retain the current
target board (“CK-RX65N (V1.02)”). If this dialog box, appears, click the Yes button.

Figure 6-11 Dialog Box Asking Whether to Retain the Target Board

6. The device setting is changed to “R5F565NEHxFB DUAL”.

Figure 6-12 Changed Device Setting

(6) Confirming the device setting in the bootloader

Open boot_loader_ck_rx65n.scfg, and then select the Board tab. In the same way as in (5), confirm that
“R5F565NEHxFB DUAL” is set in Device.

Figure 6-13 Device Setting in the Bootloader

RX Family
OTA Update in FreeRTOS by Implementing TLS Communication Using the TSIP Driver

R20AN0749EJ0100 Rev.1.00 Page 73 of 102
Jun.14.24

(7) Changing the address of the vector table in the firmware (aws_ryz014a_tsip_ck_rx65n)

In the “aws_ryz014a_tsip_ck_rx65n” project, select Project > Properties. In the properties window that
appears, select C/C++Build > Settings, and then click the Tool Settings tab.

Figure 6-14 Tool Settings Tab
In the Settings tree view, select Linker > Section, and then click ... on the right of Sections to open Section
Viewer.

Figure 6-15 Settings Tree View

RX Family
OTA Update in FreeRTOS by Implementing TLS Communication Using the TSIP Driver

R20AN0749EJ0100 Rev.1.00 Page 74 of 102
Jun.14.24

In the Section Viewer window, change the settings as follows:

• EXCEPTVECT: 0xFFFFFF80 → 0xFFFEFF80
• RESETVECT: 0xFFFFFFFC → 0xFFFEFFFC
When you have completed the settings, click the OK button.

Figure 6-16 Section Viewer

RX Family
OTA Update in FreeRTOS by Implementing TLS Communication Using the TSIP Driver

R20AN0749EJ0100 Rev.1.00 Page 75 of 102
Jun.14.24

(8) Building the projects

When you have completed all necessary settings, build the bootloader and demo application projects, and
then confirm that no errors occur. The build results are stored in the following folders: In these folders, .mot
files are generated as built projects.

• Bootloader
\iot-reference-rx\Projects\boot_loader_ck_rx65n\e2studio_ccrx HardwareDebug
.mot file: boot_loader_ck_rx65n.mot

• Demo application
\iot-reference-
rx\Projects\aws_ryz014a_tsip_ck_rx65n\e2studio_ccrx\HardwareDebug
.mot file: aws_ryz014a_tsip_ck_rx65n.mot

RX Family
OTA Update in FreeRTOS by Implementing TLS Communication Using the TSIP Driver

R20AN0749EJ0100 Rev.1.00 Page 76 of 102
Jun.14.24

6.1.3 Creating the Initial Firmware
In this section, you create the initial firmware by combining a bootloader (boot_loader_ck_rx65n) and
firmware (aws_ryz014a_tsip_ck_rx65n).

Renesas Image Generator is necessary when you create firmware. Install Python and Renesas Image
Generator by referring to sections 2.2 and 2.4 in the following application note:
“RX Family How to implement FreeRTOS OTA using Amazon Web Services in RX65N (for v202210.01-LTS-
rx-1.1.3 or later)” (R01AN7037).

Also, Renesas Flash Programmer is necessary when you write firmware to the target board.

(1) Using Renesas Image Generator to generate the initial firmware

Store the following files in the Renesas Image Generator installation folder:

• Build result of the demo application created in section 6.1.2: aws_ryz014a_tsip_ck_rx65n.mot
• Build result of the bootloader created in section 6.1.2: boot_loader_ck_rx65n.mot
• ECDSA private key created in section 5.2: secp256r1.privatekey

Open the Command Prompt window, change the current directory to the RenesasImageGenerator
directory, and then generate the userprog.mot file by executing the following command:

python image-gen.py -iup aws_ryz014a_tsip_ck_rx65n.mot -ip
RX65N_DualBank_ImageGenerator_PRM.csv -o userprog -ibp
boot_loader_ck_rx65n.mot -key secp256r1.privatekey -vt ecdsa -ff RTOS

Generation of the file takes some time.

Figure 6-17 Generating the Initial Firmware
Generation is complete when the following message is displayed on the command line: “Successfully
generated the userprog.mot file.”

The initial firmware is created with the following file name:

• userprog.mot

https://www.renesas.com/search?keywords=r01an7037

RX Family
OTA Update in FreeRTOS by Implementing TLS Communication Using the TSIP Driver

R20AN0749EJ0100 Rev.1.00 Page 77 of 102
Jun.14.24

(2) Using Renesas Flash Programmer to write the initial firmware to the target board (CK-RX65N)

1. Install the flash memory programming tool (Renesas Flash Programmer).
Download “Renesas Flash Programmer V3.14.00 Windows” from the download website of the flash
memory programming tool, and then install the tool.

2. Connect the CK-RX65N v1 to a PC by referring to section 2.5 in the following application note: “RX
Family How to implement FreeRTOS OTA using Amazon Web Services in RX65N (for v202210.01-LTS-
rx-1.1.3 or later)” (R01AN7037).

3. Start Renesas Flash Programmer, and then open the device erase project (erase.rpj).
The erase.rpj project is stored in the following folder of the sample program:
\Projects\aws_ryz014a_tsip_ck_rx65n\flash_project\erase_from_bank1

Figure 6-18 Procedure for Opening “erase.rpj”

https://www.renesas.com/software-tool/renesas-flash-programmer-programming-gui#download
https://www.renesas.com/software-tool/renesas-flash-programmer-programming-gui#download
https://www.renesas.com/search?keywords=r01an7037

RX Family
OTA Update in FreeRTOS by Implementing TLS Communication Using the TSIP Driver

R20AN0749EJ0100 Rev.1.00 Page 78 of 102
Jun.14.24

4. Click the Start button to start erasure for the device.

Figure 6-19 Starting Erasure for the Device

If the E3000107 error message, which states that the device conflicts with the connection information, is
output, go to step 5.

5. Open the flash memory programming project (flash_project.rpj).
The flash_project.rpj project is stored in the following folder of the sample program:
\Projects\aws_ryz014a_tsip_ck_rx65n\flash_project\

Figure 6-20 Procedure for Opening “flash_project.rpj”

RX Family
OTA Update in FreeRTOS by Implementing TLS Communication Using the TSIP Driver

R20AN0749EJ0100 Rev.1.00 Page 79 of 102
Jun.14.24

6. Select the firmware to be written.
Click the Add/Remove Files button, and then Add Files button. In the dialog box that appears, select
userprog.mot, which is the initial firmware created in section 6.1.3(1).

Figure 6-21 Selecting the Initial Firmware

RX Family
OTA Update in FreeRTOS by Implementing TLS Communication Using the TSIP Driver

R20AN0749EJ0100 Rev.1.00 Page 80 of 102
Jun.14.24

7. Click the Start button to start writing the firmware.

Figure 6-22 Button to Start Writing the Firmware

If the Authentication dialog box (shown below) appears when you start a write, enter the preset ID code,
and then click the OK button.

If no ID code has been preset, use the initial value as is.

Figure 6-23 Authorization by an ID Code

RX Family
OTA Update in FreeRTOS by Implementing TLS Communication Using the TSIP Driver

R20AN0749EJ0100 Rev.1.00 Page 81 of 102
Jun.14.24

Writing the firmware starts. The write is completed successfully when the “Operation completed” message is
displayed at the bottom of the screen as shown in the following figure.

Figure 6-24 Message Appearing When Writing Firmware Is Completed

When you write the firmware, a communication error, such as the one shown in the following figure, may
occur at the time of connection to the target board. If such an error occurs, try again by clicking the Start
button. If connection fails again, detach and re-attach the USB cable of the target board, and then try again.

Figure 6-25 Example of a Communication Error (Framing Error)

After you perform demonstration by setting the J16 for RUN mode on the target board (CK-RX65N), you may
want to write the initial firmware again from Renesas Flash Programmer. In this case, if you fail to set the J16
for DEBUG mode, the error shown in the following figure occurs.
When you use Renesas Flash Programmer to write firmware, make sure that the J16 is set for DEBUG
mode.

Figure 6-26 Example of a Connection Error

RX Family
OTA Update in FreeRTOS by Implementing TLS Communication Using the TSIP Driver

R20AN0749EJ0100 Rev.1.00 Page 82 of 102
Jun.14.24

6.1.4 Executing the Initial Firmware
The following explains how to set AWS IoT information in the Tera Term terminal software by running
aws_ryz014a_tsip_ck_rx65n. The information set by this process is written to data flash memory. Install Tera
Term by referring to section 2.1 in the following application note: “RX Family How to implement FreeRTOS
OTA using Amazon Web Services in RX65N (for v202210.01-LTS-rx-1.1.3 or later)” (R01AN7037).

(1) Start Tera Term, and then, from the File menu, select New Connection. In the dialog box that opens,
select the Serial radio button, and then click OK.

Figure 6-27 Selecting “Serial”
(2) From the Setup menu, select Terminal. In the New-line area of the dialog box that appears, select

AUTO for Receive and CR+LF for Transmit.

Figure 6-28 Settings in the Terminal Software

https://www.renesas.com/search?keywords=r01an7037

RX Family
OTA Update in FreeRTOS by Implementing TLS Communication Using the TSIP Driver

R20AN0749EJ0100 Rev.1.00 Page 83 of 102
Jun.14.24

(3) From the Setup menu, select Serial port. In the dialog box that appears, set Speed to 115200, and
then click New setting. For the other settings, do not change their initial values.

Figure 6-29 Communication Speed Settings
(4) On the CK-RX65N, set the J16 for RUN mode, and then press the RESET switch. After a hardware

reset occurs, the program starts.
After the program starts, the operating status is displayed in the Tera Term window.

Figure 6-30 Setting RUN Mode and Performing a Hardware Reset

RX Family
OTA Update in FreeRTOS by Implementing TLS Communication Using the TSIP Driver

R20AN0749EJ0100 Rev.1.00 Page 84 of 102
Jun.14.24

(5) The bootloader starts, and then, after verification finishes, the demo application starts.
When the demo application starts, a menu is displayed. When this menu is displayed, enter “CLI” within
10 seconds, and then press the Enter key. The application enters CLI mode. In CLI mode, you can
register various kinds of information in the program by using commands.
If you do not enter “CLI” for 10 seconds or more, a sequence for connection to AWS starts.

Figure 6-31 Screen for Executing the Demo Application

6.1.5 Registering the AWS IoT Information
This section describes how to register various information necessary to establish a connection to AWS via
TLS communication using the TSIP. After starting the initial firmware, enter CLI mode, and specify the
necessary settings.
In CLI mode, you can use commands to set values and check set values.
The values set in CLI mode are saved in data flash memory. Therefore, the settings are maintained even
when the power to the target board is turned off.

(1) Setting the AWS connection information

Register the name and endpoint of the device (thing) set in Chapter 3, AWS Setup in CLI mode.

Use Tera Term to enter CLI mode, and then execute the following commands:

conf set thingname thing-name [Enter]
conf set endpoint endpoint-name [Enter]

Figure 6-32 Inputting AWS Connection Information from CLI

A bootloader started and
performed verification of the demo
application.

The demo application menu is
displayed.

The mode changed to
CLI.

RX Family
OTA Update in FreeRTOS by Implementing TLS Communication Using the TSIP Driver

R20AN0749EJ0100 Rev.1.00 Page 85 of 102
Jun.14.24

(2) Registering the client certificate

In CLI mode, register the client certificate that was downloaded from AWS in section 5.1.3, Obtaining a Key
Pair and Client Certificate for RSA.

In Tera Term, enter “conf set cert ”, and then transmit the client certificate file (xxxx-certificate.pem.crt) by
dragging it to Tera Term. (Note: Place a halfwidth space after “cert”.)

After dragging the file, move the focus to Tera Term, and then press the Enter key.

Figure 6-33 Inputting the Client Certificate

Enter “conf set cert ”, and then drag the certificate
file to Tera Term.
Then, press the Enter key.

RX Family
OTA Update in FreeRTOS by Implementing TLS Communication Using the TSIP Driver

R20AN0749EJ0100 Rev.1.00 Page 86 of 102
Jun.14.24

(3) Registering the root CA certificate

In CLI mode, register the root CA certificate that was downloaded from AWS in section 5.1.2, Obtaining a
Root CA Certificate.

In Tera Term, enter “conf set rootca ”, and then transmit the root CA certificate file (AmazonRootCA1.pem)
by dragging it to Tera Term. (Note: Place a halfwidth space after “rootca”.)

After dragging the file, move the focus to Tera Term, and then press the Enter key.

Figure 6-34 Inputting the Root CA Certificate

Enter “conf set rootca ”, and then drag the
certificate file to Tera Term.
Then, press the Enter key.

RX Family
OTA Update in FreeRTOS by Implementing TLS Communication Using the TSIP Driver

R20AN0749EJ0100 Rev.1.00 Page 87 of 102
Jun.14.24

(4) Registering the key pair certificate (ECDSA certificate) for an OTA update

In CLI mode, register the key pair certificate that was generated in section 5.2, Generating a Key Pair and
Certificates for an OTA Update.

In Tera Term, enter “conf set codesigncert ”, and then transmit the key pair certificate file (secp256r1.crt) by
dragging it to Tera Term. (Note: Place a halfwidth space after “codesigncert”.)

After dragging the file, move the focus to Tera Term, and then press the Enter key.

Note: Before transmitting the file, make sure that the line break code in the certificate file is LF. If the
line break code is not LF, convert it by using a text editor.

Figure 6-35 Inputting the Key Pair Certificate for OTA Update

Enter “conf set codesigncert ”, and drag the
certificate file to Tera Term.
Then, press the Enter key.

RX Family
OTA Update in FreeRTOS by Implementing TLS Communication Using the TSIP Driver

R20AN0749EJ0100 Rev.1.00 Page 88 of 102
Jun.14.24

(5) Committing the AWS IoT settings (writing the settings to data flash memory)

After the settings are input from CLI, write them to data flash memory. The input settings are not saved until
“commit” is executed. Always execute “commit” the settings before turning off the power to the board.

Once you commit the settings, they are retained even after turning power off.

In Tera Term, execute the following command:

conf commit[enter]
When you execute “commit”, the following text is displayed:

Figure 6-36 Writing the Settings to Data Flash by Executing “commit”

(6) Deleting the written settings from the data flash memory

After data is written to the data flash memory by executing “commit”, you can delete the data.
When you input new settings and execute “commit” again, the existing settings are replaced by the new
settings. Therefore, you do not need to delete the written data ordinarily. Perform deletion when you want to
clear the data flash memory.

Note that the three keys used for the TSIP (root CA certificate signature verification public key, client
certificate public key, and client certificate private key) are written to the data flash memory when the
program is executed for the first time.
These keys cannot be accessed from CLI. Therefore, if you want to change them, perform deletion to clear
the data flash memory.

Note: If you re-execute the script in section 5.1.4 or regenerate the three types of keys in section 5.1.5, be
sure to clear the data flash with this operation.
Also, after clearing the data flash, execute steps (1) to (4) again.
As a result, when the program runs, three new recreated keys are written to the data flash.

In Tera Term, execute the following command:

format[enter]

When you perform deletion, the following text is displayed. Because all settings in the data flash memory are
cleared, specify new settings.

Figure 6-37 Deleting the Settings in the Data Flash Memory

RX Family
OTA Update in FreeRTOS by Implementing TLS Communication Using the TSIP Driver

R20AN0749EJ0100 Rev.1.00 Page 89 of 102
Jun.14.24

(7) Resetting the program and executing the initial firmware

After the settings are input completely, when you reset the program, connection to AWS starts.

In Tera Term, execute the following command: A software reset occurs, and the program restarts from the
beginning.

reset[enter]

When “reset” is executed, Tera Term displays the communication log data as shown in the following figure.

After TLS communication using the TSIP starts, PubSub Demo and OTA Demo tasks are performed.
PubSub Demo demonstrates verification of MQTT communication, and OTA Demo demonstrates a firmware
update.

In the log, confirm that the program already executed PubSub Demo and is waiting for the OTA update job to
start.

Figure 6-38 Executing the Initial Firmware

Keys for the TSIP were written to the data flash
memory.
Note: This process is performed only when no keys

are written.

The TSIP driver started.

Connection to the AWS server
succeeded.

The version of the initial firmware
is 0.9.2.

The program is
waiting for the OTA
update job to start.

PubSub (MQTT) Demo was executed.

RX Family
OTA Update in FreeRTOS by Implementing TLS Communication Using the TSIP Driver

R20AN0749EJ0100 Rev.1.00 Page 90 of 102
Jun.14.24

6.1.6 Verifying the Status of MQTT Communication
This section describes how to verify the status of MQTT communication.

The status of MQTT communication can be verified in AWS. Before executing the program, specify the AWS
monitor settings by using the procedures described below.

(1) Signing in to AWS Management Console

Sign in to AWS Management Console (https://aws.amazon.com/console/), and then open the IoT Core
window by using the AWS menu. To do this, in the menu to the left of IoT Core, under Test, select MQTT
test client to open the MQTT test client.

Figure 6-39 AWS IoT Menu

https://aws.amazon.com/console/

RX Family
OTA Update in FreeRTOS by Implementing TLS Communication Using the TSIP Driver

R20AN0749EJ0100 Rev.1.00 Page 91 of 102
Jun.14.24

(2) Subscribing to a topic

Click the Subscribe to a topic tab, enter a hashmark (#) as a wildcard in Topic filter, and then click
Subscribe.

Figure 6-40 Specifying the MQTT Test Client Settings
(3) Confirming that a blank console appears

Confirm that a blank console is displayed at the bottom of the window as shown in the following figure.

Figure 6-41 Confirming That a Blank Console Is Displayed

RX Family
OTA Update in FreeRTOS by Implementing TLS Communication Using the TSIP Driver

R20AN0749EJ0100 Rev.1.00 Page 92 of 102
Jun.14.24

(4) Executing the program

Press the reset switch on the target board to reset and restart the program by referring to section 6.1.4(4).
When the program starts, the progress of executing PubSub Demo (MQTT communication tasks) is
displayed as shown in the following figure.
PubSub Demo performs two MQTT communication tasks, Task 0 and Task 1.
Each PubSub task sends 10 messages (messages 0 to 9).

Figure 6-42 Progress of Executing PubSub Demo

Task 0 sent message 0.

Task 1 sent message 0.

RX Family
OTA Update in FreeRTOS by Implementing TLS Communication Using the TSIP Driver

R20AN0749EJ0100 Rev.1.00 Page 93 of 102
Jun.14.24

(5) Viewing the communication log in the MQTT test client window

If you open the MQTT test client window of AWS during execution of PubSub Demo, you can view the
communication log.
When PubSub Demo successfully connects to AWS, a message to that effect is output to the communication
log on the MQTT client.
The following figure shows an example of a message output when message 5 is received from Task 0.

Figure 6-43 Viewing the MQTT Communication Log

RX Family
OTA Update in FreeRTOS by Implementing TLS Communication Using the TSIP Driver

R20AN0749EJ0100 Rev.1.00 Page 94 of 102
Jun.14.24

6.2 Building and Executing Update Firmware
This section describes how to create update firmware to be used in an OTA update. In this application note,
you create update firmware by only changing the version number of the project for the initial firmware
“aws_ryz014a_tsip_ck_rx65n” created in section 6.1.

6.2.1 Creating Update Firmware
(1) Changing the firmware version to 0.9.3

The following figure shows the section to be changed in the “aws_ryz014a_tsip_ck_rx65n” project.
In the aws_ryz014a_tsip_ck_rx65n\src\frtos_config\demo_config.h file, change the value of the
APP_VERSION_BUILD definition to 3 so that the version number changes to 0.9.3. When the change is
completed, rebuild the project.

Figure 6-44 Changing the Version Number of the Update Firmware

(2) Using Renesas Image Generator to generate update firmware

Confirm that you have update firmware that was rebuilt in section 6.2.1(1)
(aws_ryz014a_tsip_ck_rx65n.mot). Then, copy it to the Renesas Image Generator folder, overwriting the
existing file with the same name, and then execute the following command in the Command Prompt window:

python image-gen.py -iup aws_ryz014a_tsip_ck_rx65n.mot -ip
RX65N_DualBank_ImageGenerator_PRM.csv -o user_093 -key secp256r1.privatekey -
vt ecdsa -ff RTOS

Figure 6-45 Creating Update Firmware
Generation is complete when the following message is displayed on the command line: “Successfully
generated the user_093.rsu file.”

The update firmware is created with the following file name:

• user_093.rsu

RX Family
OTA Update in FreeRTOS by Implementing TLS Communication Using the TSIP Driver

R20AN0749EJ0100 Rev.1.00 Page 95 of 102
Jun.14.24

6.2.2 Updating the Firmware
This section describes how to create an OTA update job that updates firmware. You create this job in AWS.

Before you create the job, execute the initial firmware on the target board and make sure that the program is
waiting for the OTA update job to start by using the procedure described in section 6.1.5(7).

(1) Creating a firmware update job in AWS IoT Core

Before creating a firmware update job, register the update firmware in AWS. For details on the procedure,
refer to “5.2 Updating the firmware” in the following application note: “RX Family How to implement
FreeRTOS OTA using Amazon Web Services in RX65N (for v202210.01-LTS-rx-1.1.3 or later)”
(R01AN7037).

Note that creation of an OTA update job requires the ECDSA certificates and keys created in section 5.2,
Generating a Key Pair and Certificates for an OTA Update. Be sure to use the same data that was generated
and used when the initial firmware was created.
When the OTA update job is created, OTA update is executed to update the firmware.

Figure 6-46 Executing the OTA Update Job

https://www.renesas.com/search?keywords=r01AN7037

RX Family
OTA Update in FreeRTOS by Implementing TLS Communication Using the TSIP Driver

R20AN0749EJ0100 Rev.1.00 Page 96 of 102
Jun.14.24

(2) Receiving firmware

When the OTA update job starts, processing to receive firmware starts on the target board.

The firmware is received in units of blocks. The value of “Received” is incremented each time a block is
received. When the value of “Number of blocks remaining” becomes 0, reception is complete.

Figure 6-47 Log Data Displayed During Firmware Reception
(3) Completion of firmware reception

When all the firmware data is received and the firmware is successfully verified, the firmware is written, the
banks are swapped, and then the update firmware is executed.
When the update firmware is executed normally, the initial menu is displayed.

Figure 6-48 Completion of Firmware Reception

When reception starts, the
“Received” value increases.

After a restart, the menu is
displayed.

Firmware reception
finished and banks were
swapped.

The number of remaining blocks
to be received is displayed.

RX Family
OTA Update in FreeRTOS by Implementing TLS Communication Using the TSIP Driver

R20AN0749EJ0100 Rev.1.00 Page 97 of 102
Jun.14.24

(4) Confirming the firmware version

Confirm that the version number of the firmware is 0.9.3, which is the version number of the update firmware.
If the PubSub Demo and OTA Demo operate in the same way as the initial firmware, the firmware update is
complete.

Figure 6-49 Confirming the Firmware Version

Firmware version is 0.9.3.

RX Family
OTA Update in FreeRTOS by Implementing TLS Communication Using the TSIP Driver

R20AN0749EJ0100 Rev.1.00 Page 98 of 102
Jun.14.24

7. Appendix
7.1 Notes on Executing the Sample Program on Multiple Devices Concurrently in

the Same LAN Environment
The sample code (ethernet version) includes MAC addresses assigned to vendor IDs of Renesas
Electronics.
If you execute the sample program on multiple devices concurrently in the same LAN environment, make
sure that the MAC addresses of each instance of the sample program are unique.
If multiple instances of the sample program having the same MAC addresses are executed on multiple
devices concurrently, they may not operate correctly.
The following shows the procedure for changing the MAC addresses.

Open Smart Configurator (aws_ether_tsip_ck_rx65n.scfg), and then select the Components tab.
In the tree view, select RTOS > RTOS Kernel > FreeRTOS_Kernel. Then, in the list box that appears in the
right pane, change the value of the “MAC address 0” to “MAC address 5” properties to any hexadecimal
values of your choice.
Specify “0x” followed by a two-digit hexadecimal number for each property.

Customers who create their own products from the sample program must use MAC addresses that the
customers themselves obtained from IEEE.

Figure 7-1 MAC Address Settings

After you have changed the settings as described above, click the Generate Code button at the top right of
the window. The changes (made in Smart Configurator) are applied to the relevant code.

RX Family
OTA Update in FreeRTOS by Implementing TLS Communication Using the TSIP Driver

R20AN0749EJ0100 Rev.1.00 Page 99 of 102
Jun.14.24

Figure 7-2 Generating Code

RX Family
OTA Update in FreeRTOS by Implementing TLS Communication Using the TSIP Driver

R20AN0749EJ0100 Rev.1.00 Page 100 of 102
Jun.14.24

8. Troubleshooting
The following table shows problems that may occur when the sample program is executed and their
solutions.

Table 8-1 Troubleshooting (1)

No. Problem Cause Solution Reference
1 The command

that creates the
initial firmware
fails.

The path to Python
is unknown.

Re-install Python.
At this time, make sure that the Add
python.exe to PATH check box is
selected. *2

*1

2 No cryptographic
library is installed.

Install a cryptographic library. *2

3 The initial
firmware
cannot be
written.

The CK-RX65N is
not set in DEBUG
mode.

On the CK-RX65N, make sure that J16 pins
1 and 2 are closed to set DEBUG mode.

*3

4 The initial
firmware
cannot be
started.

The CK-RX65N is
not set in RUN
mode.

On the CK-RX65N, make sure that J16 pins
2 and 3 are closed (RUN mode).

6.1.4(4)

5 Cellular
communication
cannot be
started.

The RYZ014A
PMOD expansion
board is not
connected
correctly.

Review the connection of the RYZ014A
PMOD expansion board.

*3

6 No SIM card is
inserted.

Insert a SIM card. *3

7 The SIM card
settings are not
specified correctly.

Review the configuration settings of the
“r_cellular” module.

6.1.2(4)

8 The SIM card
bundled with the
CK-RX65N is used
and is not
activated.

Activate the SIM card. 6.1.2(4)

9 An error occurs
during cellular
communication.

The communication
environment is
poor.

Connect an antenna and power supply to
the RYZ014A PMOD expansion board.
Also make sure that the antenna is placed
at a window or another location where
communication quality is good.

*3

Notes: 1. Section 2.2 in the following application note: “RX Family How to implement FreeRTOS OTA using
Amazon Web Services in RX65N (for v202210.01-LTS-rx-1.1.3 or later)” (R01AN7037)

 2. Section 2.2(5) in the following application note: “RX Family How to implement FreeRTOS OTA
using Amazon Web Services in RX65N (for v202210.01-LTS-rx-1.1.3 or later)” (R01AN7037)

 3. Section 2.5 in the following application note: “RX Family How to implement FreeRTOS OTA using
Amazon Web Services in RX65N (for v202210.01-LTS-rx-1.1.3 or later)” (R01AN7037)

https://www.renesas.com/search?keywords=r01an7037
https://www.renesas.com/search?keywords=r01an7037
https://www.renesas.com/search?keywords=r01an7037

RX Family
OTA Update in FreeRTOS by Implementing TLS Communication Using the TSIP Driver

R20AN0749EJ0100 Rev.1.00 Page 101 of 102
Jun.14.24

Table 8-2 Troubleshooting (2)

No. Problem Cause Solution Reference
10 Connection to

AWS fails.
AWS IoT information is
not set or incorrect AWS
IoT information is set.

Set the AWS IoT information
again.

6.1.4

11 The data of certificates
and keys is not created
or registered normally.

Create the data of certificates and
keys again by using the correct
procedures.

5.1

12 Firmware does
not start after the
bootloader is
started.

A public key is not
correctly set in the
bootloader.

Review the public key settings in
the bootloader.

6.1.2(1)

13 Firmware does
not start after
OTA update is
performed.

A public key is not
correctly set in the
firmware.

Review the public key settings in
the firmware.

6.2.1(2)

14 The device selection
settings are not correctly
specified.

Review the device settings in the
firmware and bootloader.

6.1.5

RX Family
OTA Update in FreeRTOS by Implementing TLS Communication Using the TSIP Driver

R20AN0749EJ0100 Rev.1.00 Page 102 of 102
Jun.14.24

Revision History

Rev. Date
Description
Page Summary

1.00 June 14, 2024 — First edition issued

General Precautions in the Handling of Microprocessing Unit and Microcontroller
Unit Products
The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the
products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Precaution against Electrostatic Discharge (ESD)

A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps

must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be

adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity.

Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and

measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor

devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.
2. Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of

register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset

pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins

in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power reaches the

level at which resetting is specified.
3. Input of signal during power-off state

Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O

pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal

elements. Follow the guideline for input signal during power-off state as described in your product documentation.
4. Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are

generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of

the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal

become possible.
5. Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program

execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator

during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal

produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.
6. Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL

(Max.) and VIH (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the

input level is fixed, and also in the transition period when the input level passes through the area between VIL (Max.) and VIH (Min.).
7. Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these

addresses as the correct operation of the LSI is not guaranteed.
8. Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems.

The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms

of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values,

operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-

evaluation test for the given product.

© 2024 Renesas Electronics Corporation. All rights reserved.

Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products

and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your
product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use
of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights,
or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this
document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics
or others.

4. You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export,
manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.

5. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any
and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.

6. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for
each Renesas Electronics product depends on the product’s quality grade, as indicated below.
 "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home

electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key

financial terminal systems; safety control equipment; etc.
Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas
Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to
human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space
system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics
disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product
that is inconsistent with any Renesas Electronics data sheet, user’s manual or other Renesas Electronics document.

7. No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics
hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but
not limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS
ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING
RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE,
HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION (“Vulnerability Issues”). RENESAS ELECTRONICS DISCLAIMS ANY AND
ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT
PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH
RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO
THE IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.

8. When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General Notes for
Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by
Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas
Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such
specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific
characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability
product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics
products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily
injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as
safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for
aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are
responsible for evaluating the safety of the final products or systems manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas
Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of
controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these
applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance
with applicable laws and regulations.

11. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is
prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations
promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.

12. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or
transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

13. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
14. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas

Electronics products.

(Note1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled
subsidiaries.

(Note2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.
(Rev.5.0-1 October 2020)

Corporate Headquarters Contact information
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

 For further information on a product, technology, the most up-to-date
version of a document, or your nearest sales office, please visit:
www.renesas.com/contact/.

Trademarks
Renesas and the Renesas logo are trademarks of Renesas Electronics
Corporation. All trademarks and registered trademarks are the property
of their respective owners.

https://www.renesas.com/
https://www.renesas.com/contact/

	1. Overview
	1.1 Advantages of TLS Communication Using the TSIP
	1.2 Flow of TLS Communication Using the TSIP
	1.3 Cipher Suites Supported by the TSIP Driver
	1.4 Definition of Terms
	1.5 Environment in Which Operation Was Verified (Hardware)
	1.6 Environment in Which Operation Was Verified (Software)

	2. Preparation
	2.1 Installing Gpg4win (Kleopatra)
	2.2 Initial Setup of the Renesas Key Wrap Service and Kleopatra
	2.3 Installing Cygwin
	2.4 Installing Security Key Management Tool

	3. AWS Setup
	3.1 Settings That Must Be Specified from the AWS Console

	4. Preparing for the Demo Project
	4.1 Creating a Workspace
	4.2 Downloading the Demo Project
	4.3 Importing a Project

	5. Creating Keys and Certificates
	5.1 Preparing the Keys and Certificates for the TSIP
	5.1.1 Flows of Creating Certificates and Keys
	5.1.2 Obtaining a Root CA Certificate
	5.1.3 Obtaining a Key Pair and Client Certificate for RSA
	5.1.4 Generating a Signature of the Root CA Certificate
	5.1.5 Wrapping Keys and Registering Them in the Project
	5.1.5.1 Overview of Wrapping Keys
	5.1.5.2 Generating a UFPK and W-UFPK
	5.1.5.3 Wrapping Key Data

	5.2 Generating a Key Pair and Certificates for an OTA Update

	6. Building a Project
	6.1 Building and Executing the Initial Version of Firmware
	6.1.1 Importing Projects
	6.1.2 Setting Up and Building the Projects
	6.1.3 Creating the Initial Firmware
	6.1.4 Executing the Initial Firmware
	6.1.5 Registering the AWS IoT Information
	6.1.6 Verifying the Status of MQTT Communication

	6.2 Building and Executing Update Firmware
	6.2.1 Creating Update Firmware
	6.2.2 Updating the Firmware

	7. Appendix
	7.1 Notes on Executing the Sample Program on Multiple Devices Concurrently in the Same LAN Environment

	8. Troubleshooting

