Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010 Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
 of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
 No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
 of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

Regarding the change of names mentioned in the document, such as Mitsubishi Electric and Mitsubishi XX, to Renesas Technology Corp.

The semiconductor operations of Hitachi and Mitsubishi Electric were transferred to Renesas Technology Corporation on April 1st 2003. These operations include microcomputer, logic, analog and discrete devices, and memory chips other than DRAMs (flash memory, SRAMs etc.) Accordingly, although Mitsubishi Electric, Mitsubishi Electric Corporation, Mitsubishi Semiconductors, and other Mitsubishi brand names are mentioned in the document, these names have in fact all been changed to Renesas Technology Corp. Thank you for your understanding. Except for our corporate trademark, logo and corporate statement, no changes whatsoever have been made to the contents of the document, and these changes do not constitute any alteration to the contents of the document itself.

Note: Mitsubishi Electric will continue the business operations of high frequency & optical devices and power devices.

Renesas Technology Corp. Customer Support Dept. April 1, 2003

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

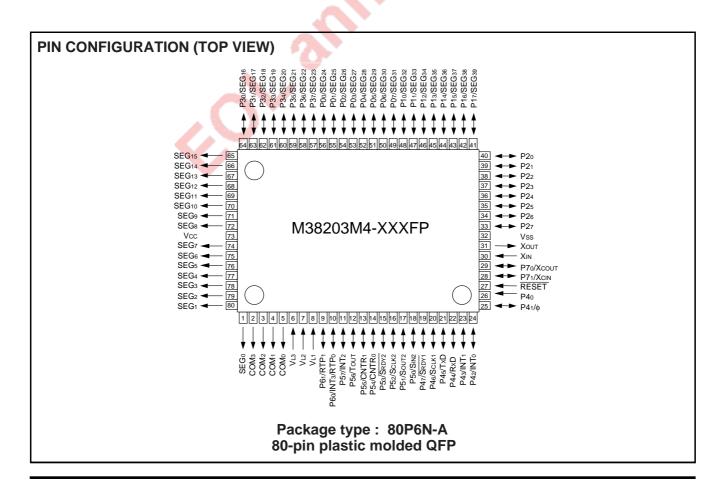
DESCRIPTION

The 3820 group is the 8-bit microcomputer based on the 740 family core technology.

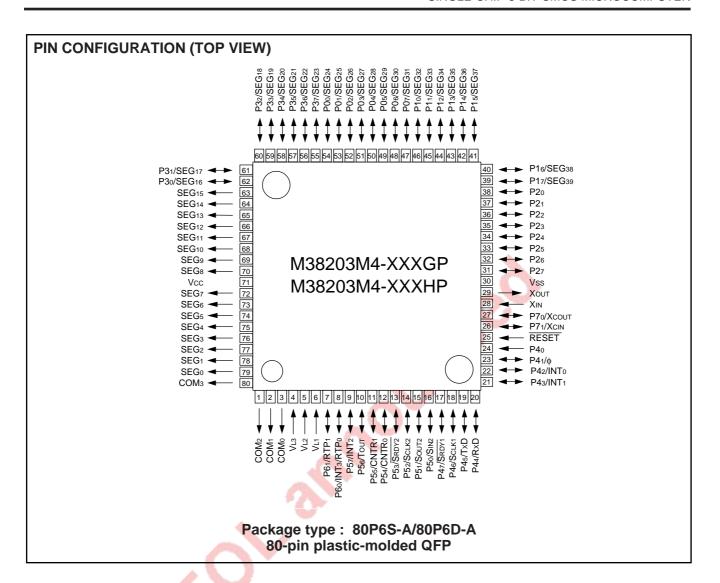
The 3820 group has the LCD drive control circuit and the serial I/O as additional functions.

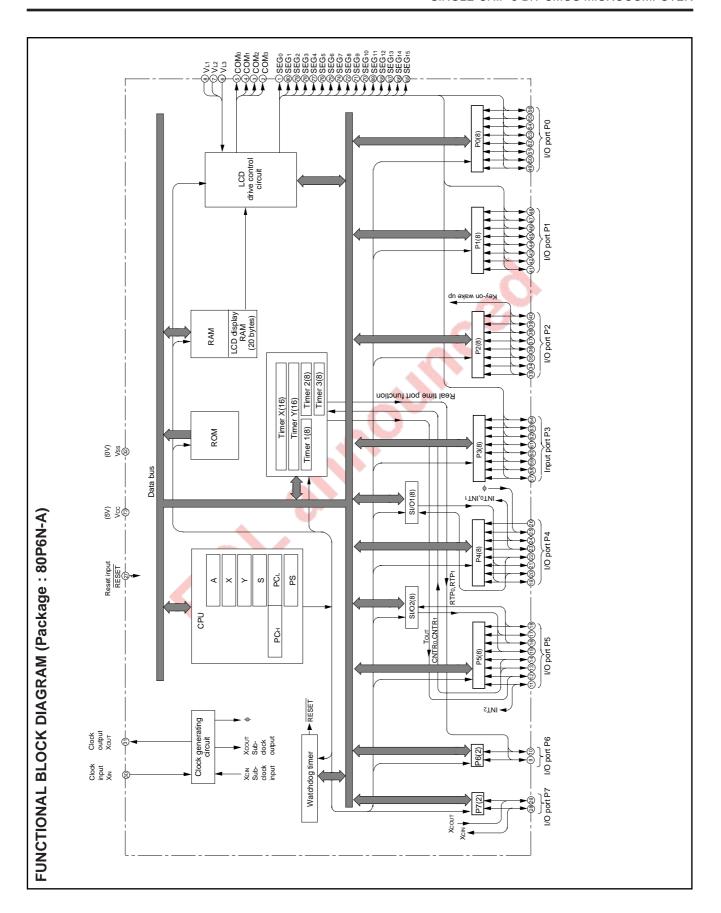
The various microcomputers in the 3820 group include variations of internal memory size and packaging. For details, refer to the section on part numbering.

For details on availability of microcomputers in the 3820 group, refer to the section on group expansion.


FEATURES

,
Basic machine-language instructions
\bullet The minimum instruction execution time 0.5 μs
(at 8MHz oscillation frequency)
●Memory size
ROM 4 K to 32 K bytes
RAM 192 to 1024 bytes
• Programmable input/output ports
● Software pull-up/pull-down resistors (Ports P0-P7 except Port P40)
●Interrupts
(includes key input interrupt)
●Timers
• Serial I/O1 8-bit X 1 (UART or Clock-synchronized)
• Serial I/O2

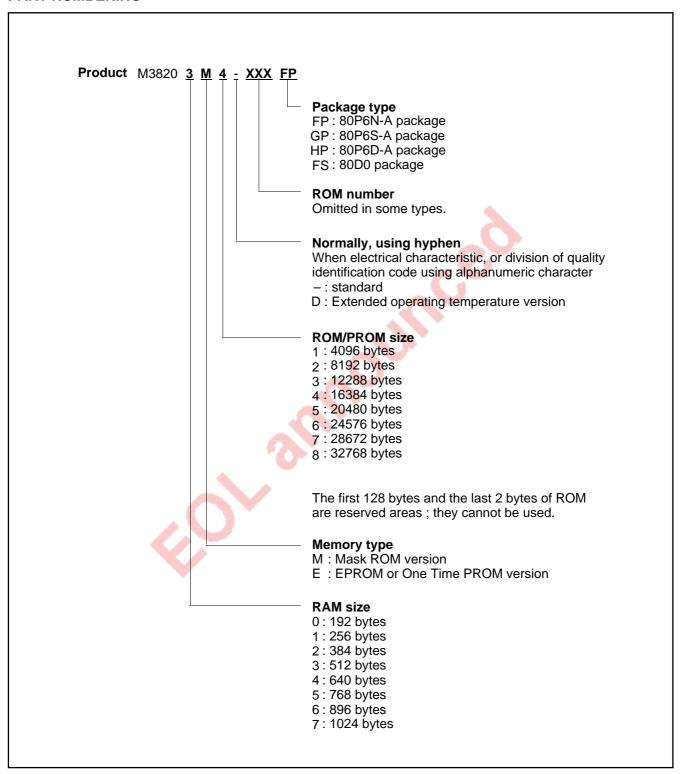

●LCD drive control circuit
Bias
Duty
Common output
Segment output
•2 Clock generating circuit
Clock (XIN-XOUT) Internal feedback resistor
Sub-clock (XCIN-XCOUT) Without internal feedback resistor
(connect to external ceramic resonator or quartz-crystal oscillator)
• Watchdog timer
Power source voltage
In high-speed mode4.0 to 5.5 V
(at 8MHz oscillation frequency and high-speed selected)
In middle-speed mode
(at 8MHz oscillation frequency and middle-speed selected)
In low-speed mode
(Extended operating temperature version: 3.0 V to 5.5 V)
Power dissipation
In high-speed mode
(at 8 MHz oscillation frequency)
In low-speed mode45 μW
(at 32 kHz oscillation frequency, at 3 V power source voltage)
● Operating temperature range – 20 to 85°C
(Extended operating temperature version: –40 to 85°C)


APPLICATIONS

Household appliances, consumer electronics, etc.

PIN DESCRIPTION

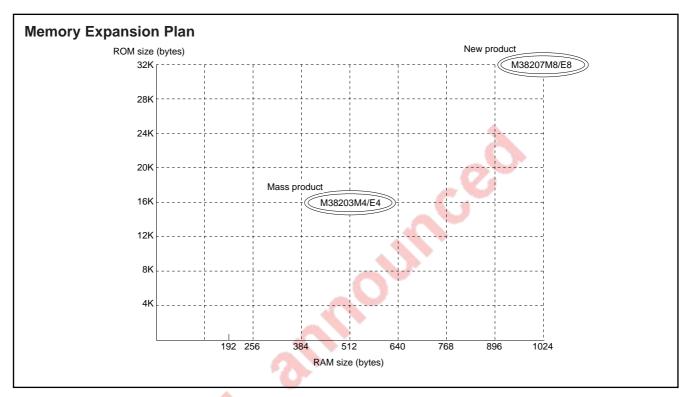
Pin	Name	Function	Function except a port function				
Vcc	Power source	Apply voltage of 2.5 V to 5.5 V to Vcc, and 0 V to Vss.	T unction except a port function				
Vss		(Extended operating temperature version : 3.0 V to 5.5 V)					
RESET	Reset input	Reset input pin for active "L"					
XIN	Clock input	Input and output pins for the main clock generating circuit.					
		 Feedback resistor is built in between XIN pin and XOUT pin. Connect a ceramic resonator or a quartz-crystal oscillator between the XIN and XOUT pins to s 					
Xout	Clock output	the oscillation frequency. If an external clock is used, connect the clock source to the This clock is used as the oscillating source of system cloc	e XIN pin and leave the XOUT pin open.				
VL1 – VL3	LCD power source	Input 0 ≤ VL1 ≤ VL2 ≤ VL3 ≤ VCC voltage Input 0 − VL3 voltage to LCD	A				
COM0 - COM3	Common output	LCD common output pins COM2 and COM3 are not used at 1/2 duty ratio. COM3 is not used at 1/3 duty ratio.	S				
SEG0 – SEG15	Segment output	LCD segment output pins					
P00/SEG24 — P07/SEG31	I/O port P0	8-bit I/O port CMOS compatible input level CMOS 3-state output structure I/O direction register allows each port to be individually programmed as either input or output. Pull-down control is enabled.	LCD segment pins				
P10/SEG32 – P17/SEG39	I/O port P1	8-bit I/O port CMOS compatible input level CMOS 3-state output structure I/O direction register allows each port to be individually programmed as either input or output. Pull-down control is enabled.					
P20 - P27	I/O port P2	8-bit I/O port CMOS compatible input level CMOS 3-state output structure I/O direction register allows each pin to be individually programmed as either input or output. Pull-up control is enabled.	Key input (key-on wake up) interrupt input pins				
P30/SEG16 – P37/SEG23	Input port P3	8-bit Input port CMOS compatible input level Pull-down control is enabled.	LCD segment pins				
P40	Input port P4	1-bit input pin CMOS compatible input level					
P41/ ф	I/O port P4	• 7-bit I/O port	• φ clock output pin				
P42/INT0, P43/INT1		CMOS compatible input level CMOS 3-state output structure I/O direction register allows each pin to be individually programmed as either input or output.	Interrupt input pins				
P44/RxD, P45/TxD, P46/Sclk1, P47/SRDY1		Pull-up control is enabled.	Serial I/O1 function pins				


SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

PIN DESCRIPTION

Pin	Name	Function	For effect and an end for effect
			Function except a port function
P50/SIN2, P51/SOUT2, P52/SCLK2, P53/SRDY2	I/O port P5	8-bit I/O port CMOS compatible input level CMOS 3-state output structure I/O direction register allows each pin to be individually	Serial I/O2 function pins
P54/CNTR0, P55/CNTR1		programmed as either input or output. • Pull-up control is enabled.	Timer function pins
P56/Tout			Timer output pin
P57/INT2			Interrupt input pin
P60/INT3/RTP0	I/O port P6	2-bit I/O port CMOS compatible input level	Interrupt input pins(P60)
P61/RTP1		CMOS companion input rever CMOS 3-state output structure I/O direction register allows each pin to be individually programmed as either input or output. Pull-up control is enabled.	Real time port function pin
P70/XCOUT, P71/XCIN	I/O port P7	2-bit I/O port CMOS compatible input level CMOS 3-state output structure I/O direction register allows each pin to be individually programmed as either input or output. Pull-up control is enabled.	Sub-clock generating circuit input pins (Connect a resonator. External clock cannot be used.)

PART NUMBERING


SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

GROUP EXPANSION

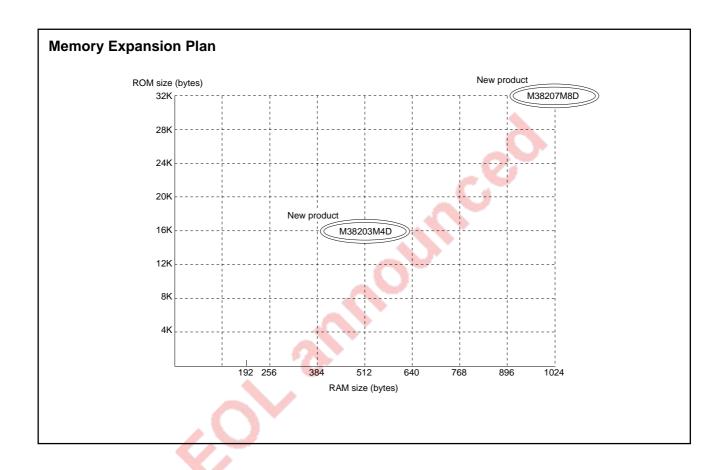
Mitsubishi plans to expand the 3820 group as follows:

- Support for mask ROM, One Time PROM, and EPROM versions

Currently supported products are listed below.

As of May 1996

Currently supported products are listed below.					
Product	(P) ROM size (bytes) ROM size for User in (RAM size (bytes)	Package	Remarks	
M38203M4-XXXFP				Mask ROM version	
M38203E4-XXXFP			80P6N-A	One Time PROM version	
M38203E4FP				One Time PROM version (blank)	
M38203M4-XXXGP				Mask ROM version	
M38203E4-XXXGP	16384 (16254)	512	80P6S-A	One Time PROM version	
M38203E4GP	(10254)			One Time PROM version (blank)	
M38203M4-XXXHP				Mask ROM version	
M38203E4-XXXHP			80P6D-A	One Time PROM version	
M38203E4HP				One Time PROM version (blank)	
M38203E4FS			80D0	EPROM version	
M38207M8-XXXFP			80P6N-A	Mask ROM version	
M38207E8-XXXFP				One Time PROM version	
M38207E8FP				One Time PROM version (blank)	
M38207M8-XXXGP				Mask ROM version	
M38207E8-XXXGP	32768	1024	80P6S-A	One Time PROM version	
M38207E8GP	(32638)	1024		One Time PROM version (blank)	
M38207M8-XXXHP				Mask ROM version	
M38207E8-XXXHP			80P6D-A	One Time PROM version	
M38207E8HP				One Time PROM version (blank)	
M38207E8FS			80D0	EPROM version	


SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

GROUP EXPANSION (EXTENDED OPERATING TEMPERATURE VERSION)

Mitsubishi plans to expand the 3820 group (extended operating temperature version) as follows:

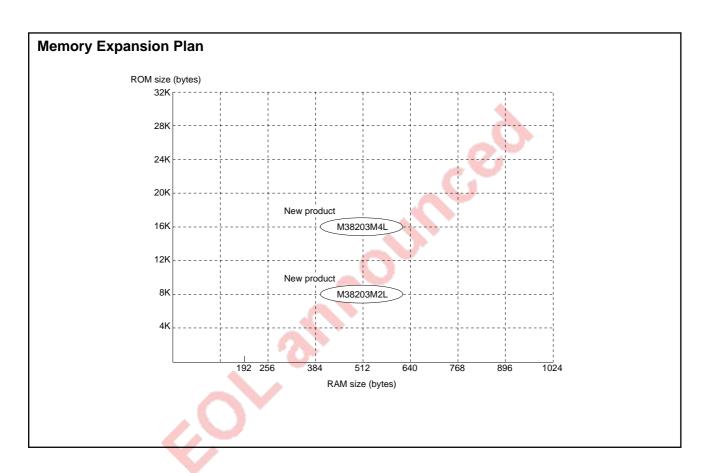
Support for mask ROM, One Time PROM, and EPROM versions

(2)	ROM size	16 K to 32 K bytes
	RAM size	512 to 1024 bytes
(3)	Packages	
	80P6N-A	
	80P6S-A	0.65 mm-pitch plastic molded QFP

Currently supported products are listed below.

As of May 1996

Product	ROM size (bytes) ROM size for User in ()	RAM size (bytes)	Package	Remarks			
M38203M4DXXXFP	16384(16254)	512	80P6N-A	Mask ROM version			
M38207M8DXXXFP	32768(32638)	1024	80P6N-A	Mask ROM version			
M38207M8DXXXGP	32768(32638)	1024	80P6S-A	Mask ROM version			



SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

GROUP EXPANSION (LOW POWER SOURCE VOLTAGE VERSION)

Mitsubishi plans to expand the 3820 group (low power source voltage version) as follows:

- (1) Support for mask ROM version

Currently supported products are listed below.

As of May 1996

Product	ROM size (bytes) ROM size for User in ()	RAM size (bytes)	Package	Remarks
M38203M2LXXXFP	0400		80P6N-A	Mask ROM version
M38203M2LXXXGP	8192 (8062)	512	80P6S-A	Mask ROM version
M38203M2LXXXHP	(0002)		80P6D-A	Mask ROM version
M38203M4LXXXFP	16384	312	80P6N-A	Mask ROM version
M38203M4LXXXGP	(16254)		80P6S-A	Mask ROM version
M38203M4LXXXHP			80P6D-A	Mask ROM version

FUNCTIONAL DESCRIPTION Central Processing Unit (CPU)

The 3820 group uses the standard 740 family instruction set. Refer to the table of 740 family addressing modes and machine instructions or the SERIES 740 <Software> User's Manual for details on the instruction set.

Machine-resident 740 family instructions are as follows:

The FST and SLW instruction cannot be used.

The STP, WIT, MUL, and DIV instruction can be used.

CPU Mode Register

The CPU mode register is allocated at address 003B16.

The CPU mode register contains the stack page selection bit and the internal system clock selection bit.

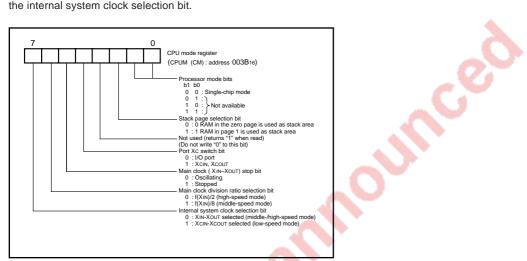


Fig. 1 Structure of CPU mode register

MEMORY Special Function Register (SFR) Area

The Special Function Register area in the zero page contains control registers such as I/O ports and timers.

RAM

RAM is used for data storage and for stack area of subroutine calls and interrupts.

ROM

The first 128 bytes and the last 2 bytes of ROM are reserved for device testing and the rest is user area for storing programs.

Interrupt Vector Area

The interrupt vector area contains reset and interrupt vectors.

Zero Page

The 256 bytes from addresses 000016 to 00FF16 are called the zero page area. The internal RAM and the special function registers (SFR) are allocated to this area.

The zero page addressing mode can be used to specify memory and register addresses in the zero page area. Access to this area with only 2 bytes is possible in the zero page addressing mode.

Special Page

The 256 bytes from addresses FF0016 to FFFF16 are called the special page area. The special page addressing mode can be used to specify memory addresses in the special page area. Access to this area with only 2 bytes is possible in the special page addressing mode.



Fig. 2 Memory map diagram

000016	Port P0 (P0)	002016	Timer X (low-order) (TXL)	
000116	Port P0 direction register (P0D)	002116	Timer X (high-order) (TXH)	
000216	Port P1 (P1)	002216	Timer Y (low-order) (TYL)	
000316	Port P1 direction register (P1D)	002316		
000416	Port P2 (P2)	002416		
000516	Port P2 direction register (P2D)	002516	Timer 2 (T2)	
000616	Port P3 (P3)	002616	Timer 3 (T3)	
000716		002716		
000816	Port P4 (P4)	002816		
000916	Port P4 direction register (P4D)	002916	Timer 123 mode register (T123M)	
000A16	Port P5 (P5)	002A16	φ output control register (CKOUT)	
000B ₁₆	Port P5 direction register (P5D)	002B16		
000C16	Port P6 (P6)	002C16		
000D16	Port P6 direction register (P6D)	002D16		
000E16	Port P7 (P7)	002E16		
000F16	Port P7 direction register (P7D)	002F ₁₆		
001016		003016		
001116		003116		
001216		003216		
001316		003316		
001416		003416		
001516		003516		
001616	PULL register A (PULLA)	003616		
001716	PULL register B (PULLB)	003716	Watchdog timer control register (WDTCON)	
001816	Transmit/Receive buffer register (TB/RB)	003816	Segment output enable register (SEG)	
001916	Serial I/O1 status register (SIO1STS)	003916	LCD mode register (LM)	
001A ₁₆	Serial I/O1 control register (SIO1CON)	003A16	Interrupt edge selection register (INTEDGE)	
001B ₁₆	UART control register (UARTCON)	003B ₁₆	CPU mode register (CPUM)	
001C ₁₆	Baud rate generator (BRG)	003C16	Interrupt request register 1(IREQ1)	
001D ₁₆	Serial I/O2 control register (SIO2CON)	003D16	Interrupt request register 2(IREQ2)	
001E ₁₆		003E16	Interrupt control register 1(ICON1)	
001F ₁₆	Serial I/O2 register (SIO2)	003F ₁₆	Interrupt control register 2(ICON2)	

Fig.3 Memory map of special function register (SFR)

I/O PORTS Direction Registers (ports P2, P41–P47, and P5–P7)

The 3820 group has 43 programmable I/O pins arranged in seven I/O ports (ports P0–P2 and P4–P7). The I/O ports P2, P41–P47, and P5–P7 have direction registers which determine the input/output direction of each individual pin. Each bit in a direction register corresponds to one pin, each pin can be set to be input port or output port.

When "0" is written to the bit corresponding to a pin, that pin becomes an input pin. When "1" is written to that bit, that pin becomes an output pin.

If data is read from a pin set to output, the value of the port output latch is read, not the value of the pin itself. Pins set to input are floating. If a pin set to input is written to, only the port output latch is written to and the pin remains floating.

Direction Registers (ports P0 and P1)

Ports P0 and P1 have direction registers which determine the input /output direction of each individual port.

Each port in a direction register corresponds to one port, each port can be set to be input or output.

When "0" is written to the bit 0 of a direction register, that port becomes an input port. When "1" is written to that port, that port becomes an output port.

Bits 1 to 7 of ports P0 and P1 direction registers are not used.

Ports P3 and P40

These ports are only for input.

Pull-up/Pull-down Control

By setting the PULL register A (address 001616) or the PULL register B (address 001716), ports except for port P40 can control either pull-down or pull-up (pins that are shared with the segment output pins for LCD are pull-down; all other pins are pull-up) with a program.

However, the contents of PULL register A and PULL register B do not affect ports programmed as the output ports.

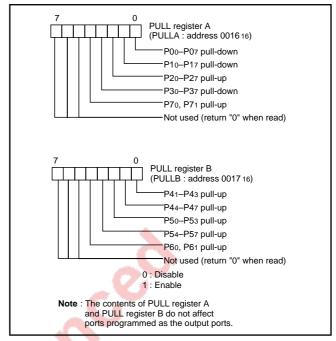


Fig. 4 Structure of PULL register A and PULL register B

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

Pin	Name	Input/Output	I/O Format	Non-Port Function	Related SFRs	Diagram No.
PIN	iname	input/Output		Non-Port Function		Diagram No.
P00/SEG24-	Port PO I	Input/output,	CMOS compatible		PULL register A	
P07/SEG31		individual ports	input level	LCD segment output	Segment output	
		·	CMOS 3-state output		enable register	(1)
P10/SEG32-		Input/output,	CMOS compatible		PULL register A	
P17/SEG39	Port P1	individual ports	input level	LCD segment output	Segment output	
1 11702 000		marviada porto	CMOS 3-state output		enable register	
		Input/output,	CMOS compatible	Key input(Key-on	PULL register A	
P20 - P27	Port P2	individual bits	input level	wake up) interrupt	Interrupt control	(2)
		individual bits	CMOS 3-state output	input	register 2	
D20/CEC40			CMOC compatible		PULL register A	
P30/SEG16-	Port P3	Input	CMOS compatible	LCD segment output	Segment output	(3)
P37/SEG23			input level		enable register	
			CMOS compatible			
P40		Input	input level			(4)
			1	4	PULL register B	
P41/ ф				φ clock output	φ output control	(5)
Ι , ψ				φ σισσικ σατρατ	register	(0)
					PULL register B	
P42/INTo,	Port P4	Input/output,	CMOS compatible	External interrupt input	Interrupt edge selection	(2)
P43/INT1		individual bits	input level	External interrupt input		(2)
D4 (/D)/D		individual bits	CMOS 3-state output		register	(0)
P44/RXD				Serial I/O1 function I/O	PULL register B	(6)
P45/TxD			(Serial I/O1 control register	(7)
P46/SCLK1					Serial I/O1 status register	
P47/SRDY1					UART control register	(9)
P50/SIN2				Serial I/O2 function I/O	PULL register B	(10)
P51/SOUT2					Serial I/O2 control register	(11)
P52/SCLK2						(12)
P53/SRDY2						(13)
P54/CNTR0			CMOS compatible	Timer I/O	PULL register B	(14)
1 34/011110	Port P5	Input/output,	input level		Timer X mode register	(14)
P55/CNTR1	1 011 1 3	individual bits	CMOS 3-state output	Timer I/O	PULL register B	(10)
F 35/CIVITAL			CIVIOS 3-State output		Timer Y mode register	
DE a/Tour		. 5. 3		T'es an autout	PULL register B	(15)
P56/Tout				Timer output	Timer 123 mode register	
					PULL register B	
P57/INT2				External interrupt input	Interrupt edge	(2)
					selection register	\
					PULL register B	
				External interrupt input	Timer X mode register	
P60/INT3/RTP0		Input/output,	CMOS compatible	Real time port	Interrupt edge	
	Port P6	individual bits	input level	function output	selection register	(16)
		arriadar bita	CMOS 3-state output	Real time port	PULL register B	1
P61/RTP1				function output	Timer X mode register	
				ταποιιόπ σαιραί	Timer A mode register	
P70/XCOUT		lament to t	CMOS compatible	Sub-clock	DIII I rogiotor A	(17)
	Port P7	Input/output,	input level	generating circuit	PULL register A	
P71/XCIN		individual bits	CMOS 3-state output	I/O	CPU mode register	(18)
		 			100	
		LOUITOUT	L L (1) common output	1	L L (1) mode register	. (40)
COM ₀ -COM ₃ SEG ₀ -SEG ₁₅	Common Segment	output output	LCD common output LCD segment output		LCD mode register	(19) (20)

Note: Make sure that the input level at each pin is either 0 V or Vcc during execution of the STP instruction.

When an input level is at an intermediate potential, a current will flow from Vcc to Vss through the input-stage gate.

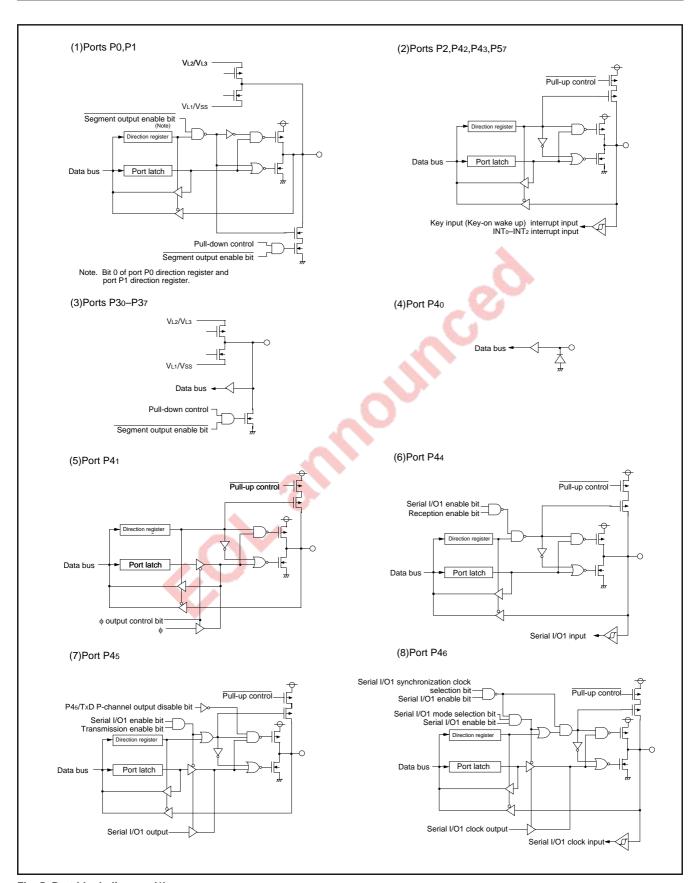


Fig. 5 Port block diagram (1)

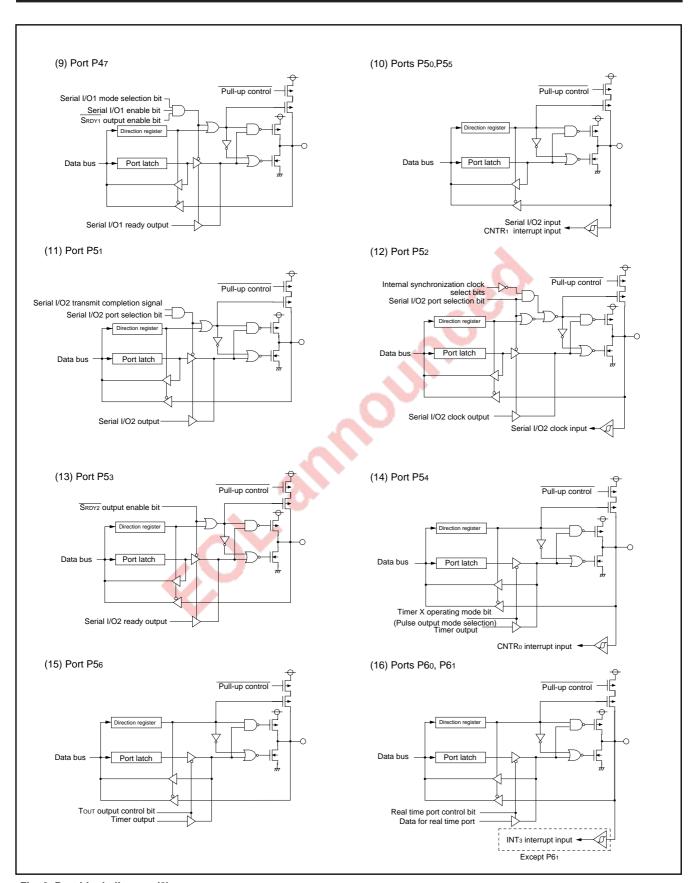


Fig. 6 Port block diagram (2)

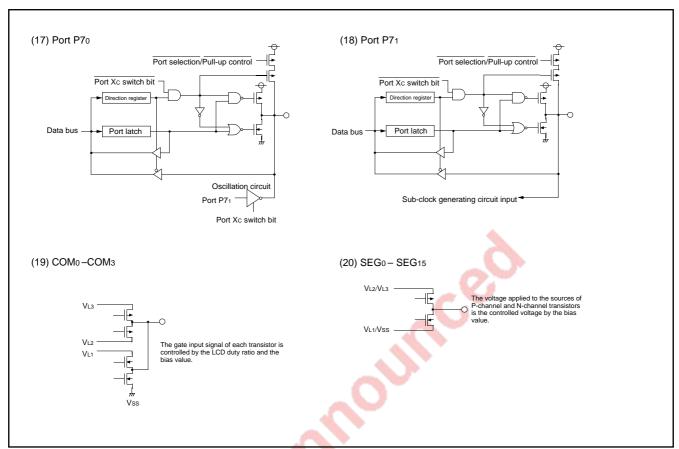


Fig. 7 Port block diagram (3)

INTERRUPTS

Interrupts occur by sixteen sources: seven external, eight internal, and one software.

Interrupt Control

Each interrupt is controlled by an interrupt request bit, an interrupt enable bit, and the interrupt disable flag except for the software interrupt set by the BRK instruction. An interrupt occurs if the corresponding interrupt request and enable bits are "1" and the interrupt disable flag is "0".

Interrupt enable bits can be set or cleared by software.

Interrupt request bits can be cleared by software, but cannot be set by software.

The BRK instruction cannot be disabled with any flag or bit. The I (interrupt disable) flag disables all interrupts except the BRK instruction interrupt.

Interrupt Operation

When an interrupt is received, the contents of the program counter and processor status register are automatically stored into the stack. The interrupt disable flag is set to inhibit other interrupts from interfering. The corresponding interrupt request bit is cleared and the interrupt jump destination address is read from the vector table into the program counter.

Notes on Use

When the active edge of an external interrupt (INTo-INT3, CNTR0, or CNTR1) is changed, the corresponding interrupt request bit may also be set. Therefore, please take following sequence;

- (1) Disable the external interrupt which is selected.
- (2) Change the active edge selection.
- (3) Clear the interrupt request bit which is selected to "0".
- (4) Enable the external interrupt which is selected.

Table 1. Interrupt vector addresses and priority

Interrupt Source	Priority Vector Addresses (Note 1)		Interrupt Request	Remarks	
interrupt Source	Filolity	High	Low	Generating Conditions	Remarks
Reset (Note 2)	1	FFFD16	FFFC16	At reset	Non-maskable
INT ₀	INTO 2 FFFB16 FFFA16		At detection of either rising or	External interrupt	
INTO	2	FFFD16	FFFA16	falling edge of INTo input	(active edge selectable)
INT1	3	FFF916	FFF816	At detection of either rising or	External interrupt
INT	3	111916	111016	falling edge of INT1 input	(active edge selectable)
Serial I/O1	4	FFF716	FFF616	At completion of serial I/O1	Valid when serial I/O1 is selected
receive	4	FFF/16	FFF016	data reception	valid when serial 1/O1 is selected
Serial I/O1				At completion of serial I/O1	
transmit	5	FFF516	FFF416	transmit shift or when transmit	Valid when serial I/O1 is selected
transmit				buffer register is empty	
Timer X	6	FFF316	FFF216	At timer X underflow	
Timer Y	7	FFF116	FFF016	At timer Y underflow	
Timer 2	8	FFEF16	FFEE16	At timer 2 underflow	
Timer 3	9	FFED16	FFEC16	At timer 3 underflow	
CNTR ₀	10	FFEB16	FFEA16	At detection of either rising or	External interrupt
CNTRO	10	FLDIO	FFEATO	falling edge of CNTRo input	(active edge selectable)
CNTR ₁	11	FFE916	FFE816	At detection of either rising or	External interrupt
CNTKT	11	1112916	FFLOID	falling edge of CNTR1 input	(active edge selectable)
Timer 1	12	FFE716	FFE616	At timer 1 underflow	
INT2	13	FFE516	FFE416	At detection of either rising or	External interrupt
IIN I Z	13	FFLST6	112416	falling edge of INT2 input	(active edge selectable)
INT3	14	FFE316	FFE216	At detection of either rising or	External interrupt
IIN I 3	14	FFE316	FFE216	falling edge of INT3 input	(active edge selectable)
Key input	15	FFE116	FFE016	At falling of conjunction of input	External interrupt
(Key-on wake up)	15	FFE 116	FFE016	level for port P2 (at input mode)	(valid when an "L" level is applied)
Serial I/O2	16	FFDF16	FFDE16	At completion of serial I/O2	Valid when serial I/O2 is selected
Serial I/OZ	10		FFDE16	data transmission or reception	valid writeri seriai i/OZ is selected
BRK instruction	17	FFDD16	FFDC16	At BRK instruction execution	Non-maskable software interrupt

Notes 1: Vector addresses contain interrupt jump destination addresses.

2: Reset function in the same way as an interrupt with the highest priority.

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

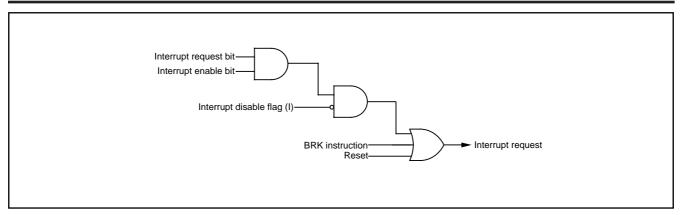


Fig. 8 Interrupt control

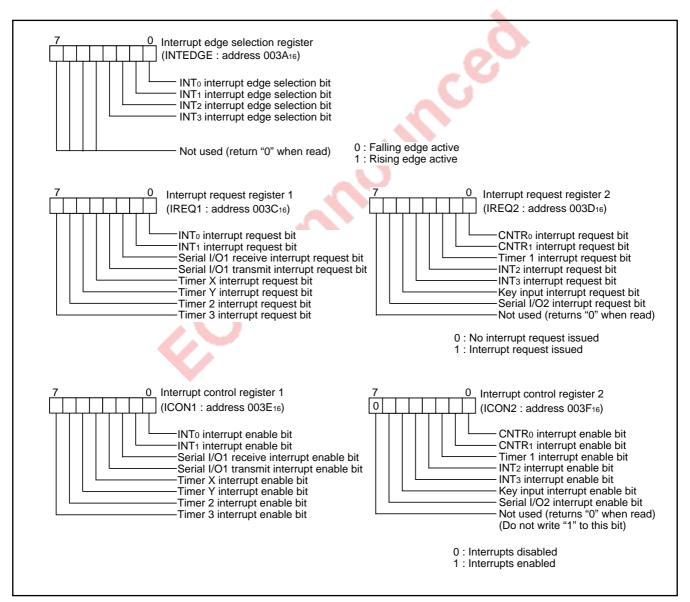


Fig. 9 Structure of interrupt-related registers

Key Input Interrupt (Key-on Wake Up)

A key input interrupt request is generated by applying "L" level to any pin of port P3 that have been set to input mode. In other words, it is generated when AND of input level goes from "1" to "0".

An example of using a key input interrupt is shown in Figure 9, where an interrupt request is generated by pressing one of the keys consisted as an active-low key matrix which inputs to ports P20–P23.

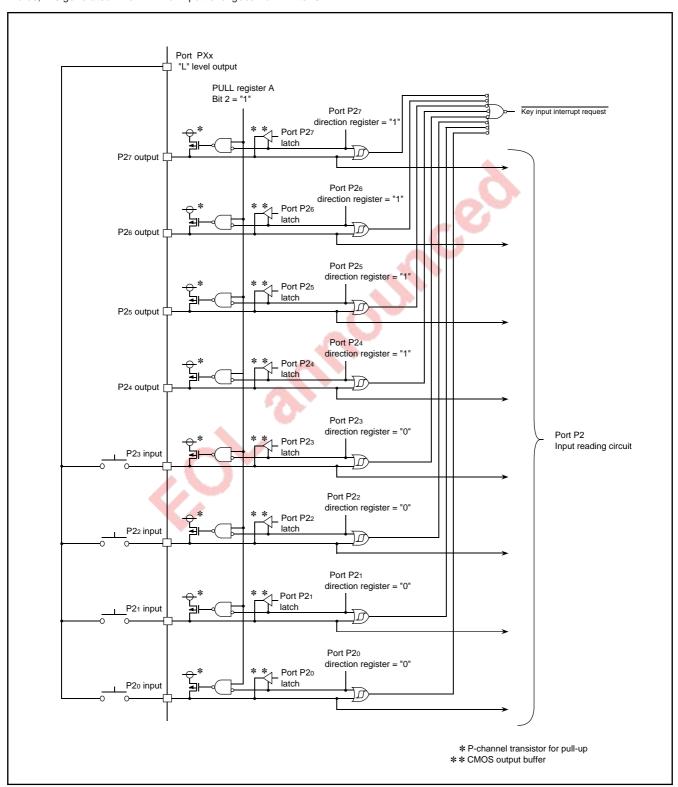


Fig. 10 Connection example when using key input interrupt and port P2 block diagram

TIMERS

The 3820 group has five timers: timer X, timer Y, timer 1, timer 2, and timer 3. Timer X and timer Y are 16-bit timers, and timer 1, timer 2, and timer 3 are 8-bit timers.

All timers are down count timers. When the timer reaches "0016", an underflow occurs at the next count pulse and the corresponding timer latch is reloaded into the timer and the count is continued. When a timer underflows, the interrupt request bit corresponding to that timer is set to "1".

Read and write operation on 16-bit timer must be performed for both high and low-order bytes. When reading a 16-bit timer, read the high-order byte first. When writing to a 16-bit timer, write the low-order byte first. The 16-bit timer cannot perform the correct operation when reading during the write operation, or when writing during the read operation.

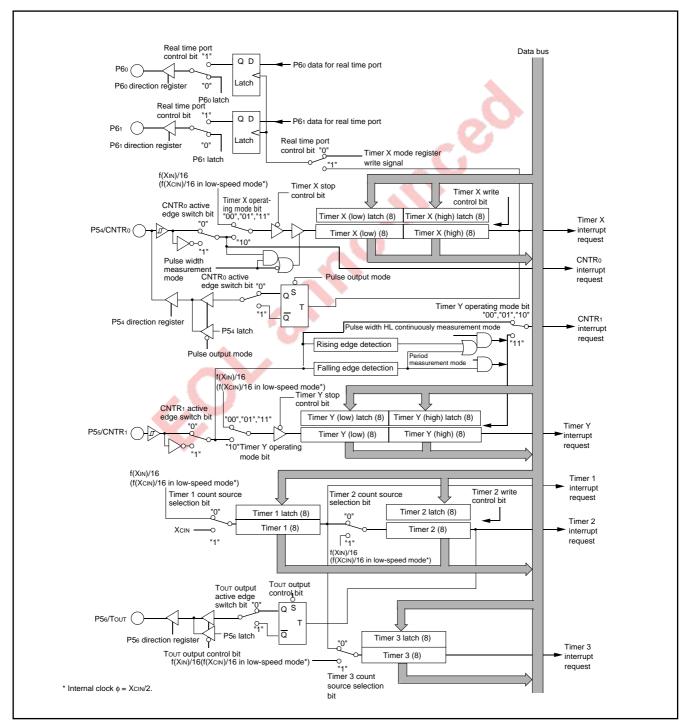


Fig. 11 Timer block diagram

Timer X

Timer X is a 16-bit timer that can be selected in one of four modes and can be controlled the timer X write and the real time port by setting the timer X mode register.

Timer mode

The timer counts f(XIN)/16 (or f(XCIN)/16 in low-speed mode).

Pulse output mode

Each time the timer underflows, a signal output from the CNTR0 pin is inverted. Except for this, the operation in pulse output mode is the same as in timer mode. When using a timer in this mode, set the corresponding port P54 direction register to output mode.

Event counter mode

The timer counts signals input through the CNTR₀ pin. Except for this, the operation in event counter mode is the same as in timer mode. When using a timer in this mode, set the corresponding port P54 direction register to input mode.

Pulse width measurement mode

The count source is f(XIN)/16 (or f(XCIN)/16 in low-speed mode. If CNTR0 active edge switch bit is "0", the timer counts while the input signal of CNTR0 pin is at "H". If it is "1", the timer counts while the input signal of CNTR0 pin is at "L". When using a timer in this mode, set the corresponding port P54 direction register to input mode.

Timer X Write Control

If the timer X write control bit is "0", when the value is written in the address of timer X, the value is loaded in the timer X and the latch at the same time.

If the timer X write control bit is "1", when the value is written in the address of timer X, the value is loaded only in the latch. The value in the latch is loaded in timer X after timer X underflows.

If the value is written in latch only, unexpected value may be set in the high-order counter when the writing in high-order latch and the underflow of timer X are performed at the same timing.

Note on CNTR₀ Interrupt Active Edge Selection

CNTR₀ interrupt active edge depends on the CNTR₀ active edge switch bit

Real Time Port Control

While the real time port function is valid, data for the real time port are output from ports P60 and P61 each time the timer X underflows. (However, after rewriting a data for real time port, if the real time port control bit is changed from "0" to "1", data is output without the timer X.) If the data for the real time port is changed while the real time port function is valid, the changed data are output at the next underflow of timer X.

Before using this function, set the corresponding port direction registers to output mode.

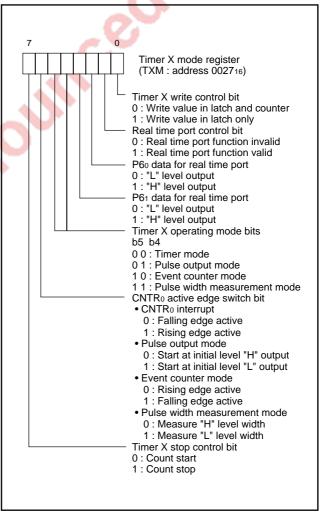


Fig. 12 Structure of timer X mode register

Timer Y

Timer Y is a 16-bit timer that can be selected in one of four modes.

Timer mode

The timer counts f(XIN)/16 (or f(XCIN)/16 in low-speed mode).

Period measurement mode

CNTR1 interrupt request is generated at rising/falling edge of CNTR1 pin input signal. Simultaneously, the value in timer Y latch is reloaded in timer Y and timer Y continues counting down. /Except for the above-mentioned, the operation in period measurement mode is the same as in timer mode.

The timer value just before the reloading at rising/falling of CNTR1 pin input signal is retained until the timer Y is read once after the reload.

The rising/falling timing of CNTR1 pin input signal is found by CNTR1 interrupt. When using a timer in this mode, set the corresponding port P55 direction register to input mode.

Event counter mode

The timer counts signals input through the CNTR1 pin.

Except for this, the operation in event counter mode is the same as in timer mode. When using a timer in this mode, set the corresponding port P55 direction register to input mode.

Pulse width HL continuously measurement mode

CNTR1 interrupt request is generated at both rising and falling edges of CNTR1 pin input signal. Except for this, the operation in pulse width HL continuously measurement mode is the same as in period measurement mode. When using a timer in this mode, set the corresponding port P55 direction register to input mode.

Note on CNTR1 Interrupt Active Edge Selection

CNTR1 interrupt active edge depends on the CNTR1 active edge switch bit. However, in pulse width HL continuously measurement mode, CNTR1 interrupt request is generated at both rising and falling edges of CNTR1 pin input signal regardless of the setting of CNTR1 active edge switch bit.

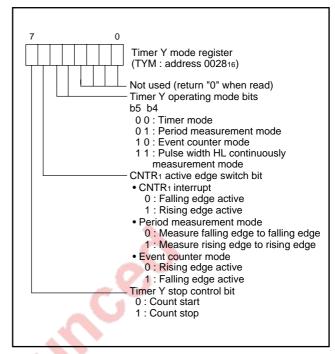


Fig. 13 Structure of timer Y mode register

Timer 1, Timer 2, Timer 3

Timer 1, timer 2, and timer 3 are 8-bit timers. The count source for each timer can be selected by timer 123 mode register. The timer latch value is not affected by a change of the count source. However, because changing the count source may cause an inadvertent count down of the timer. Therefore, rewrite the value of timer whenever the count source is changed.

Timer 2 Write Control

If the timer 2 write control bit is "0", when the value is written in the address of timer 2, the value is loaded in the timer 2 and the latch at the same time.

If the timer 2 write control bit is "1", when the value is written in the address of timer 2, the value is loaded only in the latch. The value in the latch is loaded in timer 2 after timer 2 underflows.

Timer 2 Output Control

When the timer 2 (Tout) is output enabled, an inversion signal from pin Tout is output each time timer 2 underflows.

In this case, set the port P5 ϵ shared with the port ToUT to the output mode.

Note on Timer 1 to Timer 3

When the count source of timer 1 to 3 is changed, the timer counting value may be changed large because a thin pulse is generated in count input of timer. If timer 1 output is selected as the count source of timer 2 or timer 3, when timer 1 is written, the counting value of timer 2 or timer 3 may be changed large because a thin pulse is generated in timer 1 output.

Therefore, set the value of timer in the order of timer 1, timer 2 and timer 3 after the count source selection of timer 1 to 3.

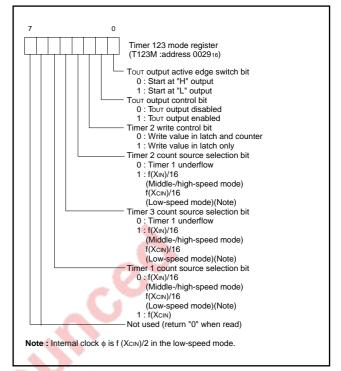


Fig. 14 Structure of timer 123 mode register

SERIAL I/01

Serial I/O1 can be used as either clock synchronous or asynchronous (UART) serial I/O1. A dedicated timer (baud rate generator) is also provided for baud rate generation.

Clock Synchronous Serial I/O1 Mode

Clock synchronous serial I/O1 mode can be selected by setting the mode selection bit of the serial I/O1 control register to "1". For clock synchronous serial I/O1, the transmitter and the receiver must use the same clock. If an internal clock is used, transfer is started by a write signal to the TB/RB (address 001816).

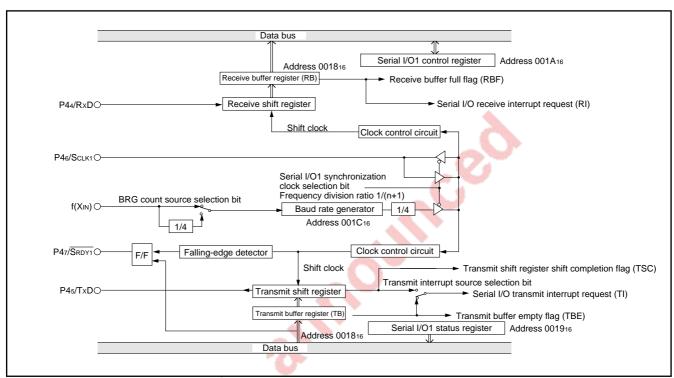


Fig. 15 Block diagram of clock synchronous serial I/O1

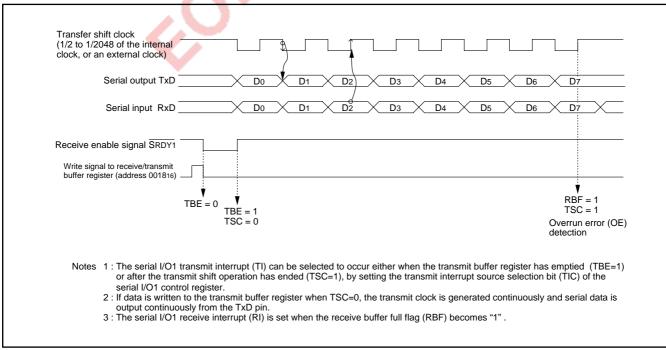


Fig. 16 Operation of clock synchronous serial I/O1 function

Asynchronous Serial I/O1 (UART) Mode

Clock asynchronous serial I/O1 mode (UART) can be selected by clearing the serial I/O1 mode selection bit of the serial I/O1 control register to "0".

Eight serial data transfer formats can be selected, and the transfer formats used by a transmitter and receiver must be identical.

The transmit and receive shift registers each have a buffer regis-

ter, but the two buffers have the same address in memory. Since the shift register cannot be written to or read from directly, transmit data is written to the transmit buffer register, and receive data is read from the receive buffer register.

The transmit buffer register can also hold the next data to be transmitted, and the receive buffer register can hold a character while the next character is being received.

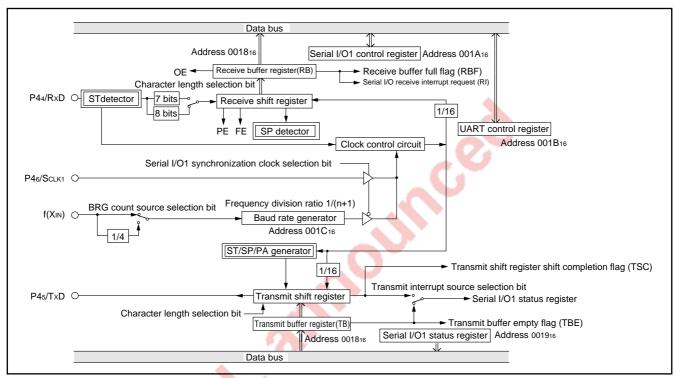


Fig. 17 Block diagram of UART serial I/O1

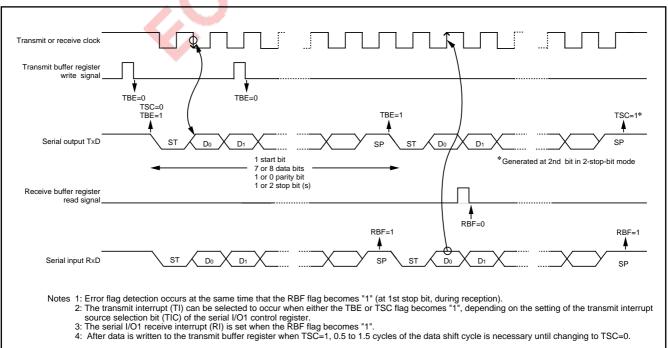


Fig. 18 Operation of UART serial I/O1 function

Serial I/O1 Control Register (SIO1CON) 001A16

The serial I/O1 control register contains eight control bits for the serial I/O1 function.

UART Control Register (UARTCON) 001B₁₆

The UART control register consists of four control bits (bits 0 to 3) which are valid when asynchronous serial I/O is selected and set the data format of an data transfer. One bit in this register (bit 4) is always valid and sets the output structure of the P4s/TxD pin.

Serial I/O1 Status Register (SIO1STS) 001916

The read-only serial I/O1 status register consists of seven flags (bits 0 to 6) which indicate the operating status of the serial I/O function and various errors.

Three of the flags (bits 4 to 6) are valid only in UART mode.

The receive buffer full flag (bit 1) is cleared to "0" when the receive buffer is read.

If there is an error, it is detected at the same time that data is transferred from the receive shift register to the receive buffer register, and the receive buffer full flag is set. A write to the serial I/O status register clears all the error flags OE, PE, FE, and SE (bit 3 to bit 6, respectively). Writing "0" to the serial I/O enable bit SIOE (bit 7 of the Serial I/O Control Register) also clears all the status flags, including the error flags.

All bits of the serial I/O1 status register are initialized to "0" at reset, but if the transmit enable bit (bit 4) of the serial I/O control register has been set to "1", the transmit shift register shift completion flag (bit 2) and the transmit buffer empty flag (bit 0) become "1".

Transmit Buffer/Receive Buffer Register (TB/RB) 001816

The transmit buffer register and the receive buffer register are located at the same address. The transmit buffer register is write-only and the receive buffer register is read-only. If a character bit length is 7 bits, the MSB of data stored in the receive buffer register is "0".

Baud Rate Generator (BRG) 001C16

The baud rate generator determines the baud rate for serial transfer.

The baud rate generator divides the frequency of the count source by 1/(n+1), where n is the value written to the baud rate generator.

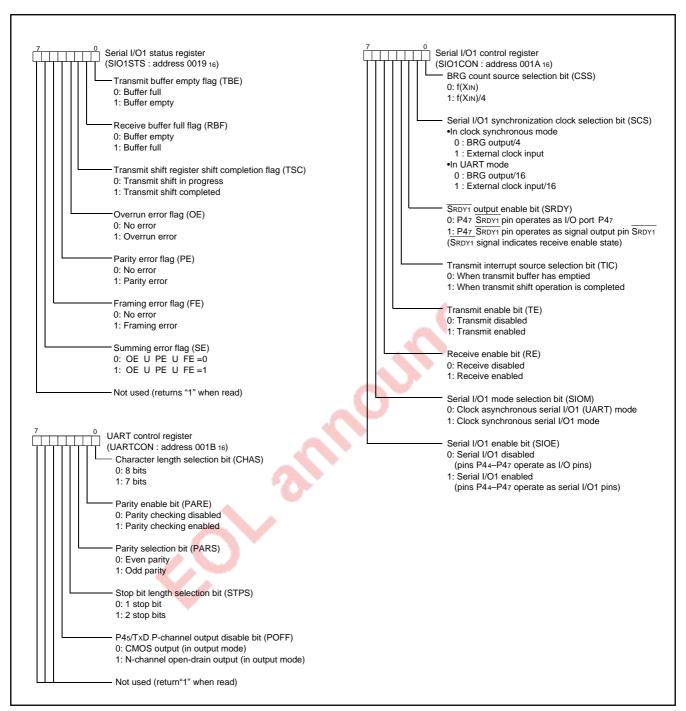


Fig. 19 Structure of serial I/O1 control registers

SERIAL I/O2

The serial I/O2 function can be used only for clock synchronous serial I/O

For clock synchronous serial I/O2 the transmitter and the receiver must use the same clock. If the internal clock is used, transfer is started by a write signal to the serial I/O2 register.

Serial I/O2 Control Register (SIO2CON) 001D16

The serial I/O2 control register contains 7 bits which control various serial I/O functions.

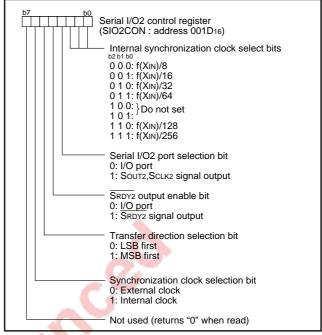


Fig. 20 Structure of serial I/O2 control register

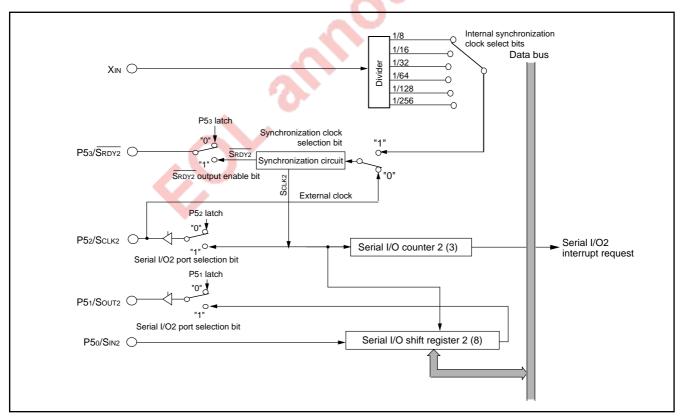


Fig. 21 Block diagram of serial I/O2 function

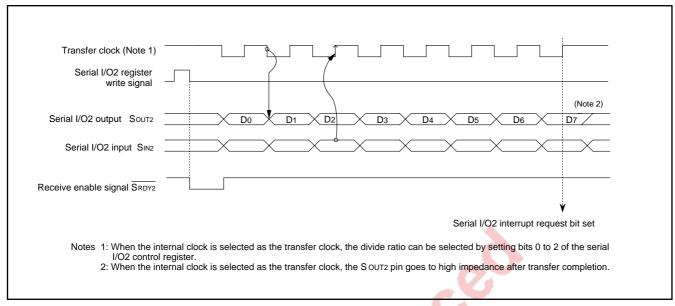


Fig. 22 Timing of serial I/O2 function

LCD DRIVE CONTROL CIRCUIT

The 3820 group has the built-in Liquid Crystal Display (LCD) drive control circuit consisting of the following.

- LCD display RAM
- Segment output enable register
- LCD mode register
- Selector
- Timing controller
- Common driver
- Segment driver
- Bias control circuit

A maximum of 40 segment output pins and 4 common output pins can be used.

Up to 160 pixels can be controlled for LCD display. When the LCD enable bit is set to "1" after data is set in the LCD mode register,

the segment output enable register and the LCD display RAM, the LCD drive control circuit starts reading the display data automatically, performs the bias control and the duty ratio control, and displays the data on the LCD panel.

Table 2. Maximum number of display pixels at each duty ratio

Duty ratio	Maximum number of display pixel			
2	80 dots			
	or 8 segment LCD 10 digits			
3	120 dots			
	or 8 segment LCD 15 digits			
1	160 dots			
4	or 8 segment LCD 20 digits			

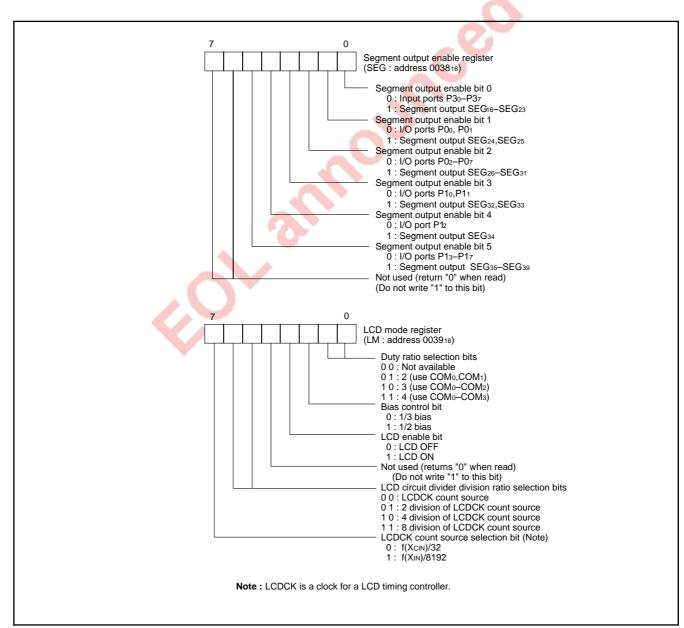
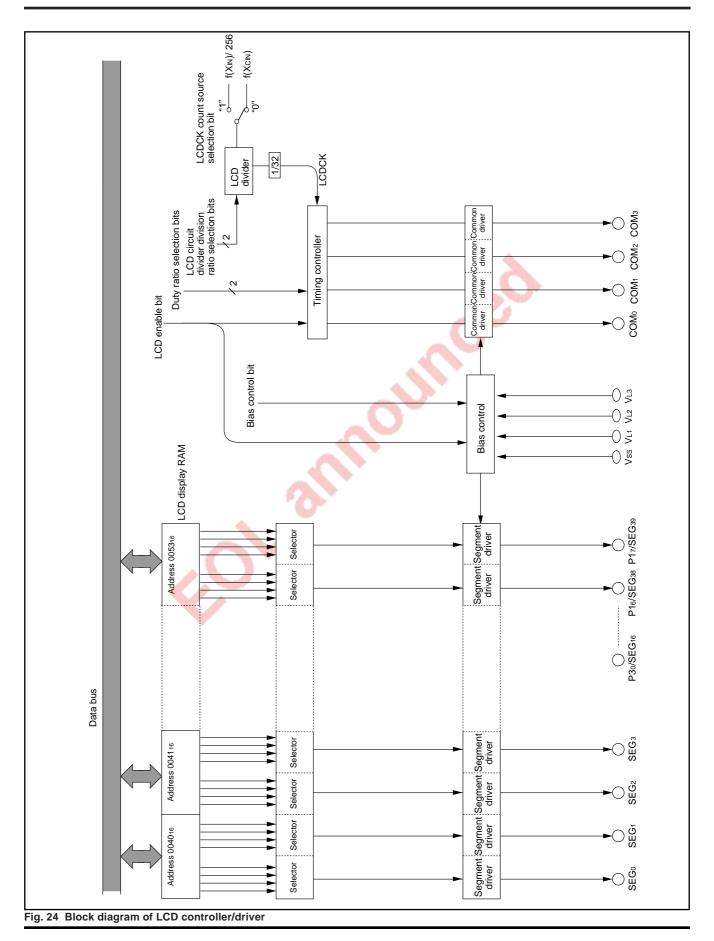



Fig. 23 Structure of segment output enable register and LCD mode register

Bias Control and Applied Voltage to LCD Power Input Pins

To the LCD power input pins (VL1-VL3), apply the voltage shown in Table 3 according to the bias value.

Select a bias value by the bias control bit (bit 2 of the LCD mode register).

Common Pin and Duty Ratio Control

The common pins (COMo-COM3) to be used are determined by duty ratio.

Select duty ratio by the duty ratio selection bits (bits 0 and 1 of the LCD mode register).

Table 3. Bias control and applied voltage to VL1-VL3

	Bias value	Voltage value		
	1/3 bias	VL3=VLCD		
		VL2=2/3 VLCD		
		VL1=1/3 VLCD		
	1/2 bias	VL3=VLCD		
		VL2=VL1=1/2 VLCD		

Note 1 : VLCD is the maximum value of supplied voltage for the LCD panel.

Table 4. Duty ratio control and common pins used

Duty	Duty ratio selection bit		Common pine used
ratio	Bit 1	Bit 0	Common pins used
2	0	1	COM ₀ , COM ₁ (Note 1)
3	1	0	COMo-COM2 (Note 2)
4	1	1	СОМо-СОМз

Notes 1: COM2 and COM3 are open

2: COM3 is open

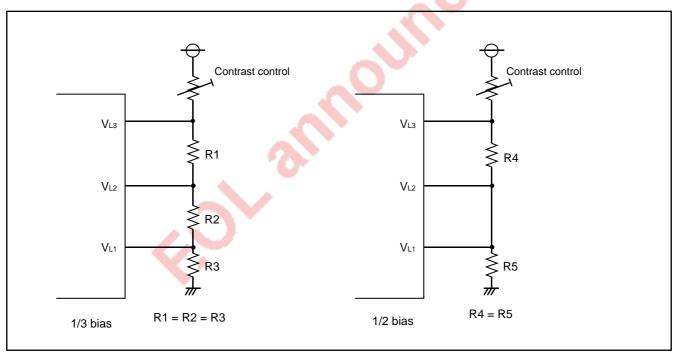


Fig. 25 Example of circuit at each bias

LCD Display RAM

Address 004016 to 005316 is the designated RAM for the LCD display. When "1" are written to these addresses, the corresponding segments of the LCD display panel are turned on.

LCD Drive Timing

The LCDCK timing frequency (LCD drive timing) is generated internally and the frame frequency can be determined with the following equation;

$$f(LCDCK) = \frac{\text{(frequency of count source for LCDCK)}}{\text{(divider division ratio for LCD)}}$$

Frame frequency=
$$\frac{f(LCDCK)}{duty ratio}$$

Bit Address	7	6	5	4	3	2	1	0
	СОМ3	COM2	COM1	COM ₀	СОМ3	COM2	COM1	COM ₀
004016		SE	G ₁			SE	G ₀	
004116		SE	G ₃			SE	G ₂	
004216		SE	G 5			SE	G4	
004316		SE	G7			SE	G ₆	
004416		SE	G ₉			SE	G8	
004516		SE	G11			SE	G10	
004616		SE	G13			SE	G12	
004716		SE	G15		SEG14			
004816		SE	G17		SEG ₁₆			
004916		SE	G19			SE	G18	
004A16		SE	G21			SE	G20	
004B ₁₆		SE	G23			SE	G22	
004C ₁₆		SE	G25			SE	G24	
004D16		SE	G27			SE	G26	
004E ₁₆		SE	G29			SE	G28	
004F16		SE	G 31			SE	G 30	
005016		SEG33			SEG32			
005116		SEG35 SEG3				G34		
005216		SE	G 37			SE	G 36	
005316			G39			SE	G38	-

Fig. 26 LCD display RAM map

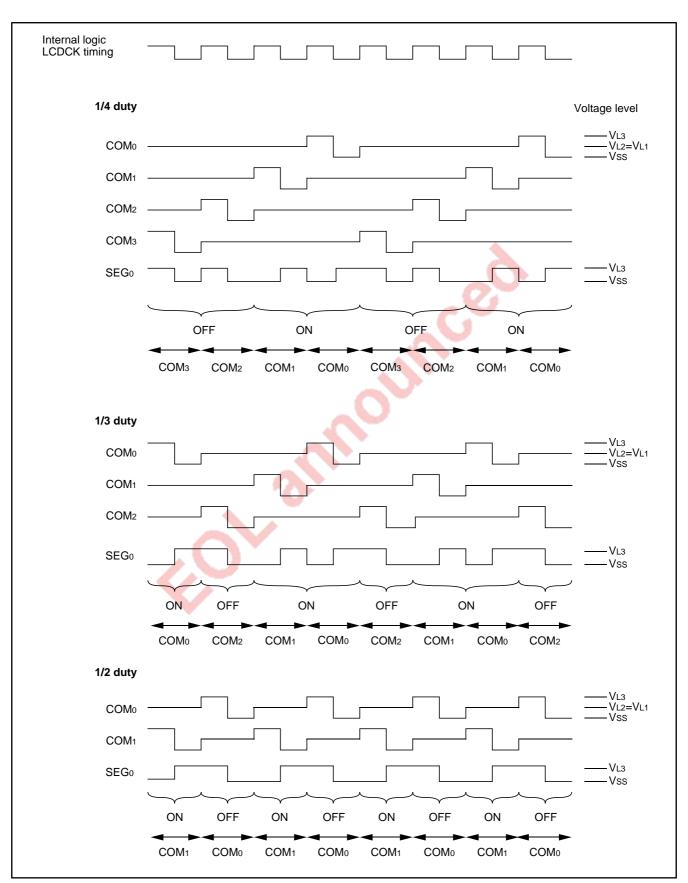


Fig. 27 LCD drive waveform (1/2 bias)

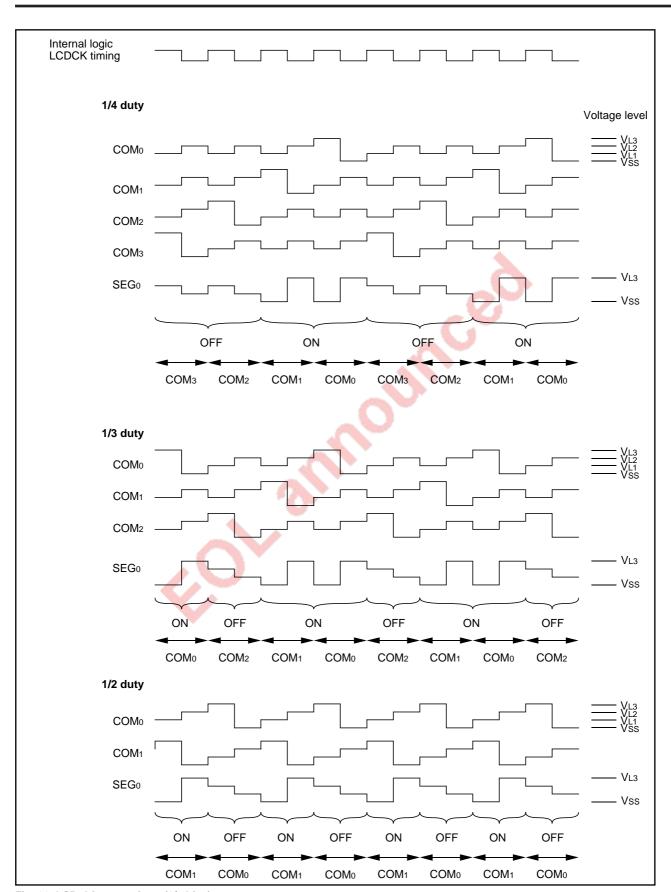


Fig. 28 LCD drive waveform (1/3 bias)

WATCHDOG TIMER

The watchdog timer gives a mean of returning to the reset status when a program cannot run on a normal loop (for example, because of a software run-away).

The watchdog timer consists of an 8-bit watchdog timer L and a 6-bit watchdog timer H.

Initial Value of Watchdog Timer

At reset or when writing data into the watchdog timer control register, the watchdog timer H is set to "3F16" and the watchdog timer L is set to "FF16". As a write instruction, it is possible to use any instruction that can cause a write signal such as STA, LDM and CLB. Write data except bit 7 has no significance and the above value is set independently.

Watchdog Timer Operation

The watchdog timer stops at reset and starts a countdown by writing to the watchdog timer control register. When the watchdog timer H underflows, an internal reset occurs, and the reset status is released after waiting the reset release time.

Then the program executes from the reset vector address.

Usually, a program is designed so that data can be written into the watchdog timer control register before the watchdog timer H underflows. If data is not written once into the watchdog timer control register, the watchdog timer does not function.

At execution of the STP instruction, both clock and watchdog timer stops. At the same time that the stop mode is released, the watchdog timer restarts a count (Note). On the other hand, at execution of the WIT instruction, the watchdog timer does not stop.

The time from execution of writing to the watchdog timer control register until an underflow of the watchdog timer register H is as follows: (When bit 7 of the watchdog timer control register is "0")

- ●Low-speed mode (f(XCIN)=32 kHz) 8.19 s

Note: During the stop release wait time [XIN (or XCIN): about 8200 clock cycles], the watchdog timer counts.

Accordingly, does not underflow the watchdog timer H.

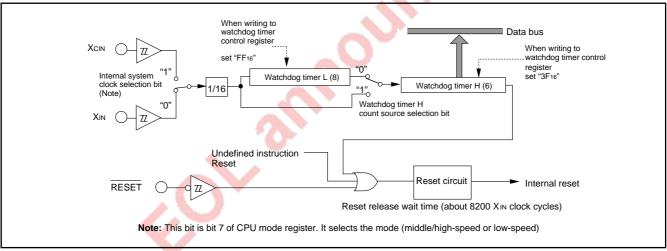


Fig. 29 Watchdog timer block diagram

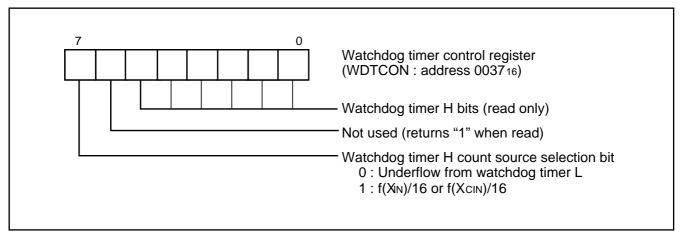


Fig. 30 Structure of watchdog timer control register

ф **CLOCK OUTPUT FUNCTION**

The internal system clock ϕ can be output from port P41 by setting the ϕ output control register. Set bit 1 of the port P4 direction register to when outputting ϕ clock.

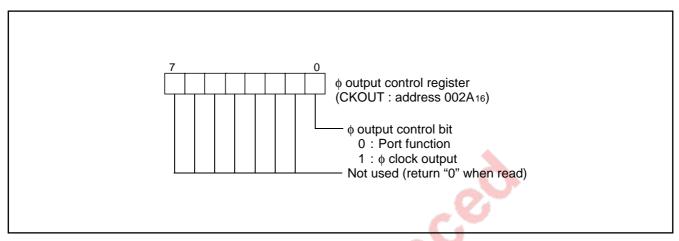


Fig. 31 Structure of ϕ output control register

RESET CIRCUIT

To reset the microcomputer, $\overline{\text{RESET}}$ pin should be held at an "L" level for 2 μs or more. Then the $\overline{\text{RESET}}$ pin is returned to an "H" level (the power source voltage should be between 2.5 V and 5.5 V, and the oscillation should be stable), reset is released. In order to give the XIN clock time to stabilize, internal operation does not begin until after 8200 XIN clock cycles (timer 1 and timer 2 are connected together and 512 cycles of f(XIN)/16) are complete. After the reset is completed, the program starts from the address contained in address FFFD16 (high-order byte) and address FFFC16 (low-order byte).

Make sure that the reset input voltage is less than 0.5 V for Vcc of 2.5 V (Extended operating temperature version: the reset input voltage is less than 0.6V for Vcc of 3.0V).

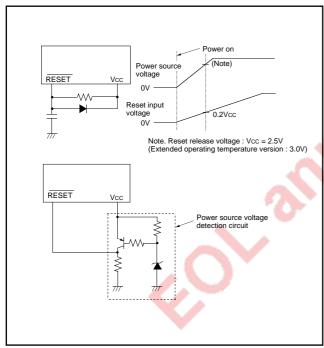


Fig. 32 Example of reset circuit

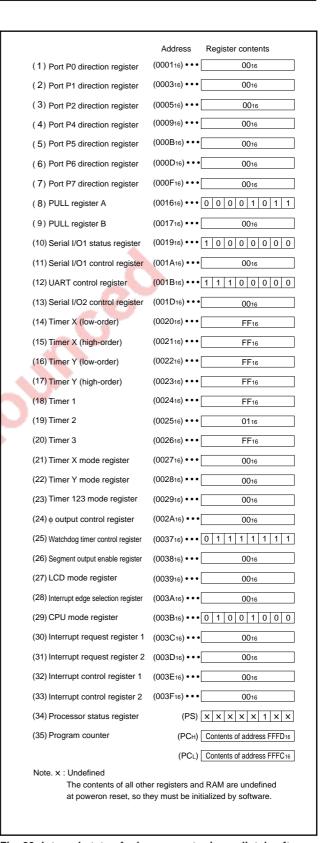


Fig. 33 Internal state of microcomputer immediately after reset

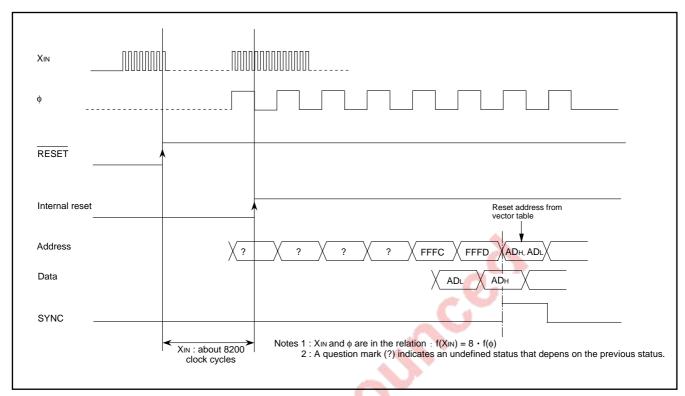


Fig. 34 Reset sequence

CLOCK GENERATING CIRCUIT

The 3820 group has two built-in oscillation circuits. An oscillation circuit can be formed by connecting a resonator between XIN and XOUT (XCIN and XCOUT). Use the circuit constants in accordance with the resonator manufacturer's recommended values. No external resistor is needed between XIN and XOUT since a feed-back resistor exists on-chip. However, an external feed-back resistor is needed between XCIN and XCOUT.

To supply a clock signal externally, input it to the XIN pin and make the XOUT pin open. The sub-clock XCIN-XCOUT oscillation circuit cannot directly input clocks that are externally generated. Accordingly, be sure to cause an external resonator to oscillate.

Immediately after poweron, only the XIN oscillation circuit starts oscillating, and XCIN and XCOUT pins function as I/O ports. The pull-up resistor of XCIN and XCOUT pins must be made invalid to use the sub-clock.

Frequency Control

Middle-speed mode

The internal clock ϕ is the frequency of XIN divided by 8. After reset, this mode is selected.

High-speed mode

The internal clock ϕ is half the frequency of XIN.

Low-speed mode

- •The internal clock ϕ is half the frequency of XCIN.
- A low-power consumption operation can be realized by stopping the main clock XIN in this mode. To stop the main clock, set bit 5 of the CPU mode register to "1".

When the main clock XIN is restarted, set enough time for oscillation to stabilize by programming.

Note: If you switch the mode between middle/high-speed and low-speed, stabilize both XIN and XCIN oscillations. The sufficient time is required for the sub-clock to stabilize, especially immediately after poweron and at returning from stop mode. When switching the mode between middle/high-speed and low-speed, set the frequency on condition that f(XIN)>3f(XCIN).

Oscillation Control

Stop mode

If the STP instruction is executed, the internal clock ϕ stops at an "H" level, and XIN and XCIN oscillators stop. Timer 1 is set to "FF16" and timer 2 is set to "0116".

Either XIN or XCIN divided by 16 is input to timer 1 as count source, and the output of timer 1 is connected to timer 2.

The bits of the timer 123 mode register except bit 4 are cleared to "0". Set the timer 1 and timer 2 interrupt enable bits to disabled ("0") before executing the STP instruction.

Oscillator restarts at reset or when an external interrupt is received, but the internal clock ϕ is not supplied to the CPU until timer 2 underflows. This allows time for the clock circuit oscillation to stabilize.

Wait mode

If the WIT instruction is executed, the internal clock ϕ stops at an "H" level. The states of XIN and XCIN are the same as the state before the executing the WIT instruction. The internal clock restarts at reset or when an interrupt is received. Since the oscillator does not stop, normal operation can be started immediately after the clock is restarted.

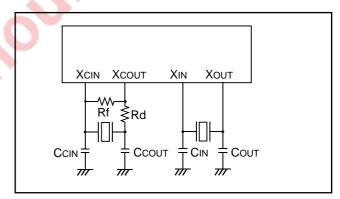


Fig. 35 Ceramic resonator circuit

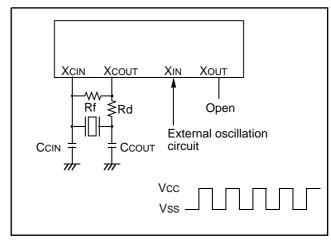


Fig. 36 External clock input circuit

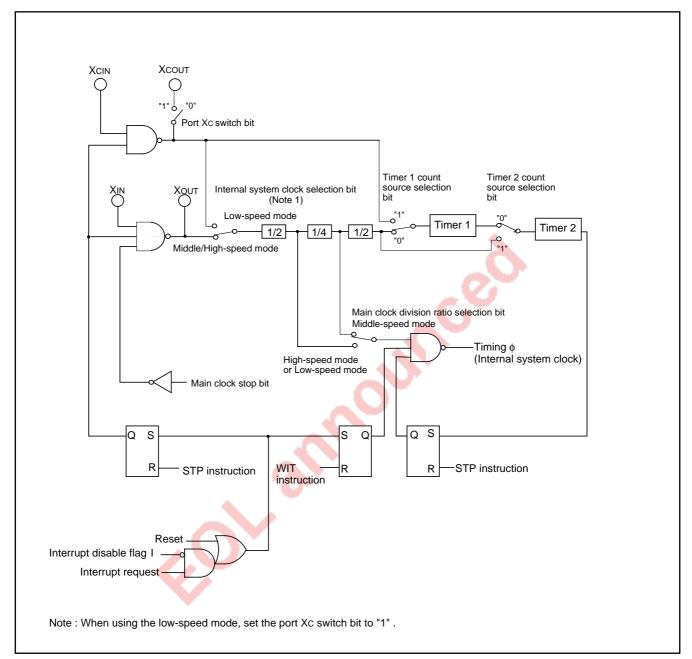


Fig. 37 Clock generating circuit block diagram

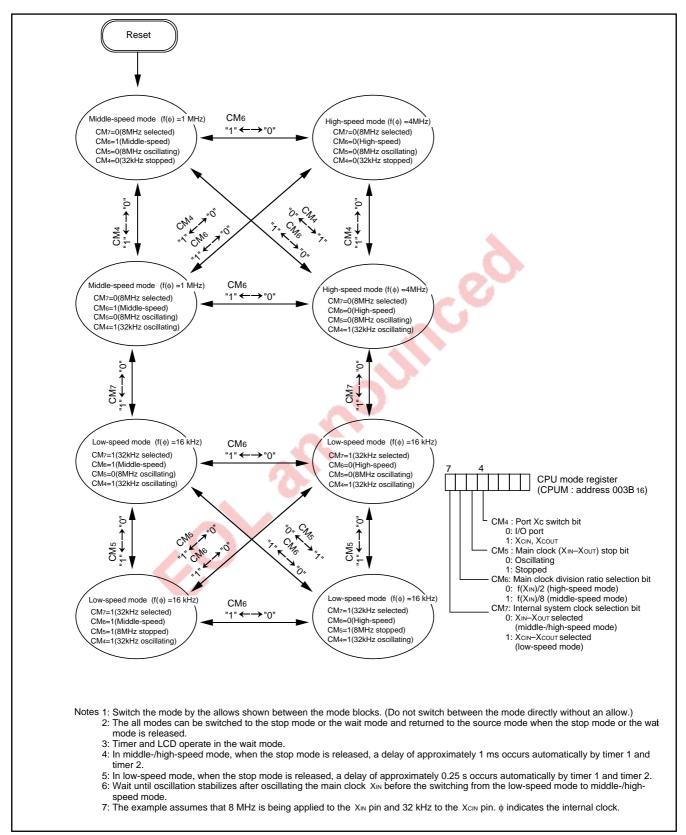


Fig. 38 State transitions of internal clock ϕ

NOTES ON PROGRAMMING Processor Status Register

The contents of the processor status register (PS) after a reset are undefined, except for the interrupt disable flag (I) which is "1". After a reset, initialize flags which affect program execution.

In particular, it is essential to initialize the index X mode (T) and the decimal mode (D) flags because of their effect on calculations.

Interrupts

The contents of the interrupt request bits do not change immediately after they have been written. After writing to an interrupt request register, execute at least one instruction before performing a BBC or BBS instruction.

Decimal Calculations

To calculate in decimal notation, set the decimal mode flag (D) to "1", then execute an ADC or SBC instruction. Only the ADC and SBC instructions yield proper decimal results. After executing an ADC or SBC instruction, execute at least one instruction before executing a SEC, CLC, or CLD instruction.

In decimal mode, the values of the negative (N), overflow (V), and zero (Z) flags are invalid.

The carry flag can be used to indicate whether a carry or borrow has occurred. Initialize the carry flag before each calculation. Clear the carry flag before an ADC and set the flag before an SBC.

Timers

If a value n (between 0 and 255) is written to a timer latch, the frequency division ratio is 1/(n + 1).

Multiplication and Division Instructions

The index mode (T) and the decimal mode (D) flags do not affect the MUI and DIV instruction.

The execution of these instructions does not change the contents of the processor status register.

Ports

The contents of the port direction registers cannot be read.

The following cannot be used:

- The data transfer instruction (LDA, etc.)
- The operation instruction when the index X mode flag (T) is "1"
- The addressing mode which uses the value of a direction register as an index
- The bit-test instruction (BBC or BBS, etc.) to a direction register
- The read-modify-write instruction (ROR, CLB, or SEB, etc.) to a direction register

Use instructions such as LDM and STA, etc., to set the port direction registers.

Serial I/O

In clock synchronous serial I/O, if the receive side is using an external clock and it is to output the $\overline{\texttt{SRDY}}$ signal, set the transmit enable bit, the receive enable bit, and the $\overline{\texttt{SRDY}}$ output enable bit to "4"

Serial I/O1 continues to output the final bit from the TxD pin after transmission is completed. The Sout2 pin from serial I/O2 goes to high impedance after transmission is completed.

Instruction Execution Time

The instruction execution time is obtained by multiplying the frequency of the internal clock ϕ by the number of cycles needed to execute an instruction.

The number of cycles required to execute an instruction is shown in the list of machine instructions.

The frequency of the internal clock ϕ is half of the XIN frequency.

DATA REQUIRED FOR MASK ORDERS

The following are necessary when ordering a mask ROM production:

- (1) Mask ROM Order Confirmation Form
- (2) Mark Specification Form
- (3) Data to be written to ROM, in EPROM form (three identical copies)

ROM PROGRAMMING METHOD

The built-in PROM of the blank One Time PROM version and built-in EPROM version can be read or programmed with a general-purpose PROM programmer using a special programming adapter. Set the address of PROM programmer in the user ROM area.

Package	Name of Programming Adapter
80P6N-A	PCA4738F-80A
80P6S-A	PCA4738G-80
80P6D-A	PCA4738H-80
80D0	PCA4738L-80A

The PROM of the blank One Time PROM version is not tested or screened in the assembly process and following processes. To ensure proper operation after programming, the procedure shown in Figure 39 is recommended to verify programming.

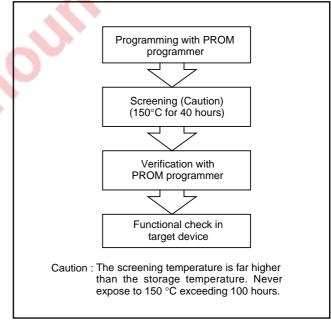


Fig. 39 Programming and testing of One Time PROM version

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Conditions	Ratings	Unit
Vcc	Power source voltage		-0.3 to 7.0	V
Vı	Input voltage P00–P07, P10–P17, P20–P27, P30–P37, P40–P47, P50–P57, P60, P61, P70, P71	All voltages are based on Vss.	-0.3 to Vcc+0.3	V
Vı	Input voltage VL1	Output transistors are cut off.	-0.3 to VL2	V
VI	Input voltage VL2		VL1 to VL3	V
VI	Input voltage VL3		VL2 to VCC +0.3	V
Vı	Input voltage RESET, XIN		-0.3 to Vcc +0.3	V
Vo	Output voltage P00–P07, P10–P17	At output port		V
VO	Output voltage P00=P07, P10=P17	At segment output	-0.3 to VL3 +0.3	V
Vo	Output voltage P30-P37	At segment output	-0.3 to VL3 +0.3	V
Vo	Output voltage P20–P27, P41–P47, P50–P57, P60, P61, P70, P71		-0.3 to Vcc +0.3	V
Vo	Output voltage SEG0-SEG15		-0.3 to VL3 +0.3	V
Vo	Output voltage XouT		-0.3 to Vcc +0.3	V
Pd	Power dissipation	Ta = 25 °C	300	mW
Topr	Operating temperature	025	-20 to 85	°C
Tstg	Storage temperature		-40 to 125	°C

RECOMMENDED OPERATING CONDITIONS (Vcc = 2.5 to 5.5 V, Ta = -20 to 85 °C, unless otherwise noted.)

Symbol		Parameter		Limits		Unit
Symbol	raidifietei			Тур.	Max.	Unit
		High-speed mode f(XIN)=8 MHz	4.0	5.0	5.5	
Vcc	Power source voltage	Middle-speed mode f(XIN)=8 MHz	2.5	5.0	5.5	V
		Low-speed mode	2.5	5.0	5.5	
Vss	Power source voltage			0		V
VIH	"H" input voltage	P00-P07, P10-P17, P30-P37, P41, P45, P47, P51, P53, P56, P61, P70, P71 (CM4=0)	0.7 Vcc		Vcc	V
VIH	"H" input voltage	P20–P27, P42–P44, P46, P50, P52, P54, P55, P57, P60	0.8 Vcc		Vcc	V
VIH	"H" input voltage	RESET	0.8 Vcc		Vcc	V
VIH	"H" input voltage	XIN	0.8 Vcc		Vcc	V
VIL	"L" input voltage	P00-P07, P10-P17, P30-P37, P40, P41, P45, P47, P51, P53, P56, P61, P70, P71 (CM4=0)	0		0.3 Vcc	٧
VIL	"L" input voltage	P20-P27, P42-P44, P46, P50, P52, P54, P55, P57, P60	0		0.2 Vcc	٧
VIL	"L" input voltage	RESET	0		0.2 Vcc	V
VIL	"L" input voltage	XIN	0		0.2 Vcc	V

RECOMMENDED OPERATING CONDITIONS (Vcc = 2.5 to 5.5 V, Ta = -20 to 85 °C, unless otherwise noted.)

Coursels al	Doromotor		Limits			I Imit
Symbol		Parameter	Min.	Тур.	Max.	Unit
ΣIOH(peak)	"H" total peak output current	P00-P07, P10-P17, P20-P27 (Note 1)			-40	mA
ΣIOH(peak)	"H" total peak output current	P41-P47,P50-P57, P60, P61, P70, P71 (Note 1)			-40	mA
ΣIOL(peak)	"L" total peak output current	P00-P07, P10-P17, P20-P27 (Note 1)			40	mA
ΣIOL(peak)	"L" total peak output current	P41-P47,P50-P57, P60, P61, P70, P71 (Note 1)			40	mA
ΣIOH(avg)	"H" total average output current	P00-P07, P10-P17, P20-P27 (Note 1)			-20	mA
ΣIOH(avg)	"H" total average output current	P41-P47,P50-P57, P60, P61, P70, P71 (Note 1)			-20	mA
Σ IOL(avg)	"L" total average output current	P00-P07, P10-P17, P20-P27 (Note 1)			20	mA
Σ IOL(avg)	"L" total average output current	P41-P47,P50-P57, P60, P61, P70, P71 (Note 1)			20	mA
IOH(peak)	"H" peak output current	P00–P07, P10–P17, P20–P27, P41–P47, P50–P57, P60, P61, P70, P71 (Note 2)			-5	mA
IOL(peak)	"L" peak output current	P00-P07, P10-P17 (Note 2)			5	mA
IOL(peak)	"L" peak output current	P20-P27, P41-P47, P50-P57, P60, P61, P70, P71 (Note 2)			10	mA
IOH(avg)	"H" average output current	P00-P07, P10-P17 (Note 3)			-1.0	mA
IOH(avg)	"H" average output current	P20-P27, P41-P47, P50-P57, P60, P61, P70, P71 (Note 3)			-2.5	mA
IOL(avg)	"L" average output current	P00-P07, P10-P17 (Note 3)			2.5	mA
IOL(avg)	"L" average output current	P20–P27, P41–P47, P50–P57, P60, P61, P70, P71 (Note 3)			5.0	mA
((ONTD -)	Clock input frequency	4.0 V ≤ Vcc ≤ 5.5 V			4.0	MHz
f(CNTR ₀)	for timers X and Y	100 2 000 2 010 0				
f(CNTR ₁)	(duty cycle 50 %)	Vcc ≤ 4.0 V			(2XVcc)-4	MHz
		High-speed mode (4.0 V ≤ Vcc ≤ 5.5 V)			8.0	MHz
f(XIN)	Main clock input oscillation	High-speed mode (Vcc ≤ 4.0 V)			(4XVcc)-8	MHz
. ,	frequency (Note 4)	Middle-speed mode			8.0	MHz
f(Xcin)	Sub-clock input oscillation frequency	ency (Note 4, 5)		32.768	50	kHz

Notes 1: The total output current is the sum of all the currents flowing through all the applicable ports. The total average current is an average value measured over 100 ms. The total peak current is the peak value of all the currents.

- 2: The peak output current is the peak current flowing in each port.
- 3: The average output current is an average value measured over 100 ms.
- 4: When the oscillation frequency has a duty cycle of 50 %.
- 5: When using the microcomputer in low-speed mode, make sure that the sub-clock input oscillation frequency f(Xcin) is less than f(Xin)/3.

ELECTRICAL CHARACTERISTICS (Vcc =4.0 to 5.5 V, Ta = -20 to 85 °C, unless otherwise noted.)

Symbol		Parameter	Test conditions		Limits		Unit
Symbol		Farameter	rest conditions	Min.	Тур.	Max.	
			Iон = −0.1 mA	Vcc-2.0			V
Voн	"H" output voltage	P00-P07, P10-P17, P30-P37	IOH = −25 μA	Vcc-1.0			
			Vcc = 2.5 V	VCC-1.0			V
			Iон = −5 mA	Vcc-2.0			V
	"H" output voltage	P20-P27, P41-P47,P50-P57,	IOH = −1.25 mA	Vcc-0.5			V
Vон		P60, P61, P70, P71 (Note 1)	IOH = −1.25 mA	Vcc-1.0			V
			Vcc = 2.5 V	VCC-1.0			\ \
			IOL = 5 mA			2.0	V
	"I " output voltage	'L" output voltage P00-P07, P10-P17, P30-P37	IOL = 1.25 mA			0.5	V
Vol	L output voitage	F00=F07, F10=F17, F30=F37	IOL = 1.25 mA			1.0	V
			Vcc = 2.5 V			1.0	V
			IOL = 10 mA			2.0	V
Vol	"L" output voltage	P20-P27, P41-P47, P50-P57,	IOL = 2.5 mA			0.5	V
VOL		P60, P61, P70, P71 (Note 1)	IOL = 2.5 mA	300		1.0	.,,
			Vcc = 2.5 V			1.0	V
VT+ - VT-	Hysteresis	CNTR ₀ , CNTR ₁ , INT ₀ –INT ₃ , P ₂₀ –P ₂₇			0.5		V
VT+ - VT-	Hysteresis	RXD, SCLK1, SIN2, SCLK2			0.5		V
VT+ - VT-	Hysteresis	RESET	RESET: Vcc=2.5 V to 5.5 V		0.5		V
			VI = VCC			5.0	^
			Pull-downs "off"			5.0	μΑ
1	"H" input current	P00-P07, P10-P17, P30-P37	Vcc= 5.0 V, VI = Vcc	00	70	4.40	μA
IIН	n input current	F00=F07, F10=F17, F30=F37	Pull-downs "on"	30	70	140	μ, τ
			Vcc= 3.0 V, VI = Vcc		0.5		μА
			Pull-downs "on"	6.0	25	45	μπ
IIН	"H" input current	P20–P27, P40–P47, P50–P57, P60, P61, P70, P71	VI = VCC			5.0	μА
Iн	"H" input current	RESET	VI = VCC			5.0	μΑ
IIH	"H" input current	XIN	VI = VCC		4.0		μΑ
lıL	"L" input current	P00–P07, P10–P17, P30–P37, P40, P70				-5.0	μА
		,	VI = VSS			<i></i>	^
			Pull-ups "off"	[-5.0	μΑ
	"L" input current	P20-P27, P41-P47, P50-P57,	VCC= 5.0 V, VI = VSS		70		
lıL		P60, P61, P71	Pull-ups "on"	-30	-7 0	-140	μΑ
			Vcc= 3.0 V, VI = Vss	_		-45	
			Pull-ups "on"	-6	-25	-45	μΑ
lıL	"L" input current	RESET	VI = VSS			-5.0	μА
IIL	"L" input current	XIN	VI = VSS		-4.0		μΑ
VRAM	RAM hold voltage		When clock is stopped	2.0		5.5	V

Note: When "1" is set to port Xc switch bit (bit 4 of address 003B16) of CPU mode register, the drive ability of port P70 is different from the value above mentioned.

3820 Group

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

ELECTRICAL CHARACTERISTICS (Vcc =2.5 to 5.5 V, Ta = -20 to 85 °C, unless otherwise noted.)

Symbol	Parameter	Test conditions		Limits		
Symbol	Falametei	rest conditions	Min.	Тур.	Max.	Unit
		• High-speed mode, Vcc = 5 V $f(XIN) = 8 \text{ MHz}$ $f(XCIN) = 32.768 \text{ kHz}$ Output transistors "off"		6.4	13	mA
		High-speed mode, Vcc = 5 V f(XIN) = 8 MHz (in WIT state) f(XCIN) = 32.768 kHz Output transistors "off"		1.6	3.2	mA
		• Low-speed mode, Vcc = 5V, Ta ≤ 55°(f(XIN) = stopped f(XCIN) = 32.768 kHz Output transistors "off"		25	36	μА
Icc	Power source current	Low-speed mode, Vcc = 5 V, Ta = 25° f(XIN) = stopped f(XCIN) = 32.768 kHz (in WIT state Output transistors "off"		7.0	14.0	μА
		• Low-speed mode, Vcc = 3 V, Ta ≤ 55° f(XIN) = stopped f(XCIN) = 32.768 kHz Output transistors "off"	С	15	22	μА
		 Low-speed mode, Vcc = 3V, Ta = 25° f(XIN) = stopped f(XCIN) = 32.768 kHz (in WIT state Output transistors "off" 		4.5	9.0	μА
		All oscillation stopped (in STP state) Output transistors "off" Ta = 25 °C Ta = 85 °C		0.1	1.0	μА

TIMING REQUIREMENTS 1 (Vcc = 4.0 to 5.5 V, Vss = 0 V, Ta = -20 to 85 °C, unless otherwise noted.)

Symbol	Parameter		Limits		Unit
Symbol	Faldifietei	Min.	Тур.	Max.	Offic
tw(RESET)	Reset input "L" pulse width	2			μs
tc(XIN)	Main clock input cycle time (XIN input)	125			ns
twH(XIN)	Main clock input "H" pulse width	45			ns
twL(XIN)	Main clock input "L" pulse width	40			ns
tc(CNTR)	CNTRo, CNTR1 input cycle time	250			ns
twH(CNTR)	CNTRo, CNTR1 input "H" pulse width	105			ns
twL(CNTR)	CNTRo, CNTR1 input "L" pulse width	105			ns
twH(INT)	INTo to INT3 input "H" pulse width	80			ns
twL(INT)	INTo to INT3 input "L" pulse width	80			ns
tc(Sclk1)	Serial I/O1 clock input cycle time (Note)	800			ns
twH(Sclk1)	Serial I/O1 clock input "H" pulse width (Note)	370			ns
twL(Sclk1)	Serial I/O1 clock input "L" pulse width (Note)	370			ns
tsu(RxD-Sclk1)	Serial I/O1 input set up time	220			ns
th(Sclk1-RxD)	Serial I/O1 input hold time	100			ns
tc(Sclk2)	Serial I/O2 clock input cycle time	1000			ns
twH(Sclk2)	Serial I/O2 clock input "H" pulse width	400			ns
twL(Sclk2)	Serial I/O2 clock input "L" pulse width	400			ns
tsu(SIN2-SCLK2)	Serial I/O2 input set up time	200			ns
th(SCLK2-SIN2)	Serial I/O2 input hold time	200			ns

Note: When f(XIN) = 8 MHz and bit 6 of address 001A16 is "1" (clock synchronous).

Divide this value by four when f(XIN) = 8 MHz and bit 6 of address 001A16 is "0" (UART).

TIMING REQUIREMENTS 2(Vcc = 2.5 to 4.0 V, Vss = 0 V, Ta = -20 to 85 °C, unless otherwise noted.)

Symbol	Davamatar		Limits		Unit
Symbol	Parameter	Min.	Тур.	Max.	Unit
tw(RESET)	Reset input "L" pulse width	2			μs
tc(XIN)	Main clock input cycle time (XIN input)	125			ns
twH(XIN)	Main clock input "H" pulse width	45			ns
twL(XIN)	Main clock input "L" pulse width	40			ns
tc(CNTR)	CNTR ₀ , CNTR ₁ input cycle time	500/ (VCC-2)			ns
twH(CNTR)	CNTRo, CNTR1 input "H" pulse width	250/ (Vcc-2)-20			ns
twL(CNTR)	CNTR0, CNTR1 input "L" pulse width	250/ (Vcc-2)-20			ns
twH(INT)	INTo to INT3 input "H" pulse width	230			ns
twL(INT)	INTo to INT3 input "L" pulse width	230			ns
tc(Sclk1)	Serial I/O1 clock input cycle time (Note)	2000			ns
twH(ScLK1)	Serial I/O1 clock input "H" pulse width (Note)	950			ns
twL(Sclk1)	Serial I/O1 clock input "L" pulse width (Note)	950			ns
tsu(RxD-ScLK1)	Serial I/O1 input set up time	400			ns
th(Sclk1-RxD)	Serial I/O1 input hold time	200			ns
tc(Sclk2)	Serial I/O2 clock input cycle time	2000			ns
twH(Sclk2)	Serial I/O2 clock input "H" pulse width	950			ns
twL(Sclk2)	Serial I/O2 clock input "L" pulse width	950			ns
tsu(SIN2-SCLK2)	Serial I/O2 input set up time	400			ns
th(SCLK2-SIN2)	Serial I/O2 input hold time	300			ns

Note: When f(XIN) = 2 MHz and bit 6 of address 001A16 is "1" (clock synchronous).

Divide this value by four when f(XIN) = 2 MHz and bit 6 of address 001A16 is "0" (UART).

SWITCHING CHARACTERISTICS 1 (Vcc = 4.0 to 5.5 V, Vss = 0 V, Ta = -20 to 85 °C, unless otherwise noted.)

Symbol	Parameter		Limits		Unit
Symbol	Parameter	Min.	Тур.	Max.	Unit
twH(Sclk1)	Serial I/O1 clock output "H" pulse width	tc(SclK1)/2-30			ns
twL(Sclk1)	Serial I/O1 clock output "L" pulse width	tc(SclK1)/2-30			ns
td(Sclk1-TxD)	Serial I/O1 output delay time (Note 1)			140	ns
tv(Sclk1-TxD)	Serial I/O1 output valid time (Note 1)	-30			ns
tr(Sclk1)	Serial I/O1 clock output rising time			30	ns
tf(SCLK1)	Serial I/O1 clock output falling time			30	ns
twH(Sclk2)	Serial I/O2 clock output "H" pulse width	tc(Sclk2)/2-160			ns
twL(Sclk2)	Serial I/O2 clock output "L" pulse width	tc(Sclk2)/2-160			ns
td(SCLK2-SOUT2)	Serial I/O2 output delay time			0.2Xtc(Sclk2)	ns
tv(Sclk2-Sout2)	Serial I/O2 output valid time	0			ns
tf(SCLK2)	Serial I/O2 clock output falling time			40	ns
tr(CMOS)	CMOS output rising time (Note 2)		10	30	ns
tf(CMOS)	CMOS output falling time (Note 2)		10	30	ns

Notes1: When the P45/TxD P-channel output disable bit of the UART control register (bit 4 of address 001B16) is "0".

SWITCHING CHARACTERISTICS 2 (Vcc = 2.5 to 4.0 V, Vss = 0 V, Ta = -20 to 85 °C, unless otherwise noted.)

Symbol	Parameter		Limits		Unit
Symbol	Parameter	Min.	Тур.	Max.	Unit
twH(Sclk1)	Serial I/O1 clock output "H" pulse width	tc(Sclk1)/2-50			ns
twL(Sclk1)	Serial I/O1 clock output "L" pulse width	tc(Sclk1)/2-50			ns
td(Sclk1-TxD)	Serial I/O1 output delay time (Note 1)			350	ns
tv(Sclk1-TxD)	Serial I/O1 output valid time (Note 1)	-30			ns
tr(Sclk1)	Serial I/O1 clock output rising time			50	ns
tf(SCLK1)	Serial I/O1 clock output falling time			50	ns
twH(Sclk2)	Serial I/O2 clock output "H" pulse width	tc(Sclk2)/2-240			ns
twL(Sclk2)	Serial I/O2 clock output "L" pulse width	tc(Sclk2)/2-240			ns
td(SCLK2-SOUT2)	Serial I/O2 output delay time			0.2Xtc(Sclk2)	ns
tv(Sclk2-Sout2)	Serial I/O2 output valid time	0			ns
tf(Sclk2)	Serial I/O2 clock output falling time			50	ns
tr(CMOS)	CMOS output rising time (Note 2)		20	50	ns
tf(CMOS)	CMOS output falling time (Note 2)		20	50	ns

Notes1:When the P45/TxD P-channel output disable bit of the UART control register (bit 4 of address 001B16) is "0".

^{2:} XOUT and XCOUT pins are excluded.

^{2:} XOUT and XCOUT pins are excluded.

ABSOLUTE MAXIMUM RATINGS (Extended Operating Temperature Version)

Symbol	Parameter	Conditions	Ratings	Unit
Vcc	Power source voltage		-0.3 to 7.0	V
VI	Input voltage P00–P07, P10–P17, P20–P27, P30–P37, P40–P47, P50–P57, P60, P61, P70, P71	All voltages are based on Vss.	-0.3 to Vcc+0.3	V
VI	Input voltage VL1	Output transistors are cut off.	-0.3 to VL2	V
VI	Input voltage VL2		VL1 to VL3	V
VI	Input voltage VL3		VL2 to VCC +0.3	V
Vı	Input voltage RESET, XIN		-0.3 to Vcc +0.3	V
1/0	Output voltage DOs DOT D4s D47	At output port	-0.3 to Vcc +0.3	V
Vo	Output voltage P00–P07, P10–P17	At segment output	-0.3 to VL3 +0.3	V
Vo	Output voltage P30–P37	At segment output	-0.3 to VL3 +0.3	V
Vo	Output voltage P20–P27, P41–P47, P50–P57, P60, P61, P70, P71		-0.3 to Vcc +0.3	V
Vo	Output voltage SEG0-SEG15		-0.3 to VL3 +0.3	V
Vo	Output voltage Xout		-0.3 to Vcc +0.3	V
Pd	Power dissipation	Ta = 25 °C	300	mW
Topr	Operating temperature	(7)	-40 to 85	°C
Tstg	Storage temperature		-65 to 150	°C

RECOMMENDED OPERATING CONDITIONS (Extended Operating Temperature Version)

(VCC = 3.0 to 5.5 V, T_a = -40 to -20 °C and VCC = 2.5 to 5.5 V, T_a = -20 to 85 °C, unless otherwise noted.)

Symbol	Parameter			Limits			
Symbol		Falailletei	to the second	Min.	Тур.	Max.	Unit
		High-speed mode f(XIN)=8	MHz	4.0	5.0	5.5	1
		Middle-speed mode	Ta = −20 to 85 °C	2.5	5.0	5.5	
Vcc	Power source voltage	f(XIN)=8 MHz	Ta = -40 to -20 °C	3.0	5.0	5.5	V
		Low-speed mode	Ta = −20 to 85 °C	2.5	5.0	5.5	
		Ta = -40 to -20 °C		3.0	5.0	5.5	
Vss	Power source voltage				0		V
VIH	"H" input voltage		P00-P07, P10-P17, P30-P37, P41, P45, P47, P51, P53, P56, P61, P70, P71 (CM4=0)			Vcc	V
VIH	"H" input voltage	P20-P27, P42-P44, P46, P P60	P20–P27, P42–P44, P46, P50, P52, P54, P55, P57, P60			Vcc	٧
VIH	"H" input voltage	RESET		0.8 Vcc		Vcc	V
VIH	"H" input voltage	Xin		0.8 Vcc		Vcc	V
VIL	"L" input voltage	P00-P07, P10-P17, P30-P P51, P53, P56, P61, P70, P		0		0.3 Vcc	V
VIL	"L" input voltage	P20-P27, P42-P44, P46, P P60	50, P52, P54, P55, P57,	0		0.2 Vcc	V
VIL	"L" input voltage	RESET		0		0.2 Vcc	V
VIL	"L" input voltage	XIN		0		0.2 Vcc	V

RECOMMENDED OPERATING CONDITIONS (Extended Operating Temperature Version)

(Vcc = 3.0 to 5.5 V, $T_a = -40$ to -20 °C and Vcc = 2.5 to 5.5 V, $T_a = -20$ to 85 °C unless otherwise noted.)

Cymhal	Parameter		Limits			Unit
Symbol		Parameter	Min.	Тур.	Max.	Unit
ΣIOH(peak)	"H" total peak output current	P00-P07, P10-P17, P20-P27 (Note 1)			-40	mA
ΣIOH(peak)	"H" total peak output current	P41-P47,P50-P57, P60, P61, P70, P71 (Note 1)			-40	mA
ΣIOL(peak)	"L" total peak output current	P00-P07, P10-P17, P20-P27 (Note 1)			40	mA
ΣIOL(peak)	"L" total peak output current	P41-P47,P50-P57, P60, P61, P70, P71 (Note 1)			40	mA
ΣIOH(avg)	"H" total average output current	P00-P07, P10-P17, P20-P27 (Note 1)			-20	mA
ΣIOH(avg)	"H" total average output current	P41-P47,P50-P57, P60, P61, P70, P71 (Note 1)			-20	mA
ΣIOL(avg)	"L" total average output current	P00-P07, P10-P17, P20-P27 (Note 1)			20	mA
ΣIOL(avg)	"L" total average output current	P41-P47,P50-P57, P60, P61, P70, P71 (Note 1)			20	mA
IOH(peak)	"H" peak output current	P00-P07, P10-P17, P20-P27, P41-P47, P50-P57, P60, P61, P70, P71 (Note 2)			-5	mA
IOL(peak)	"L" peak output current	P00-P07, P10-P17 (Note 2)			5	mA
IOL(peak)	"L" peak output current	P20-P27, P41-P47, P50-P57, P60, P61, P70, P71 (Note 2)			10	mA
IOH(avg)	"H" average output current	P00-P07, P10-P17 (Note 3)			-1.0	mA
IOH(avg)	"H" average output current	P20-P27, P41-P47, P50-P57, P60, P61, P70, P71 (Note 3)			-2.5	mA
IOL(avg)	"L" average output current	P00-P07, P10-P17 (Note 3)			2.5	mA
IOL(avg)	"L" average output current	P20–P27, P41–P47, P50–P57, P60, P61, P70, P71 (Note 3)			5.0	mA
f(CNTR ₀)	Clock input frequency for timers X and Y	4.0 V ≤ Vcc ≤ 5.5 V			4.0	MHz
f(CNTR ₁)	(duty cycle 50 %)	Vcc ≤ 4.0 V			(2XVcc)-4	MHz
		High-speed mode (4.0 V ≤ VCC ≤ 5.5 V)			8.0	MHz
f(XIN)	Main clock input oscillation	High-speed mode (VCC ≤ 4.0 V)			(4XVcc)-8	MHz
,	frequency (Note 4)	Middle-speed mode			8.0	MHz
f(Xcin)	Sub-clock input oscillation frequ	ency (Note 4, 5)		32.768	50	kHz

Notes 1: The total output current is the sum of all the currents flowing through all the applicable ports. The total average current is an average value measured over 100 ms. The total peak current is the peak value of all the currents.

- 2: The peak output current is the peak current flowing in each port.
- 3: The average output current is an average value measured over 100 ms.
- 4: When the oscillation frequency has a duty cycle of 50 %.
- 5: When using the microcomputer in low-speed mode, make sure that the sub-clock input oscillation frequency f(Xcin) is less than f(Xin)/3.

ELECTRICAL CHARACTERISTICS (Extended Operating Temperature Version)

(VCC =2.5 to 5.5 V, T_a = -20 to 85 °C, and VCC =3.0 to 5.5 V, T_a = -40 to -20 °C, unless otherwise noted.)

Symbol		Parameter	Test conditions		Limits		Unit
				Min.	Тур.	Max.	
			IOH = −2.5 mA	Vcc-2.0			V
Vон	"H" output voltage	P00-P07, P10-P17, P30-P37	IOH = -0.6 mA	Vcc-0.9			.,
			Vcc = 3.0 V	VCC 0.5			V
			Iон = −5 mA	Vcc-2.0			V
	"H" output voltage	P20-P27, P41-P47,P50-P57,	IOH = −1.25 mA	Vcc-0.5			V
Vон		P60, P61, P70, P71 (Note)	Iон = −1.25 mA	V/00 0 0			V
			Vcc = 3.0 V	Vcc-0.9			\ \
			IOL = 5 mA			2.0	V
	#1 "tt1t	Do- Do- D4- D4- D0- D0-	IOL = 1.25 mA			0.5	V
VOL	"L" output voltage	P00-P07, P10-P17, P30-P37	IOL = 1.25 mA				
			Vcc = 3.0 V			1.1	V
			IOL = 10 mA			2.0	V
	"L" output voltage	P20-P27, P41-P47, P50-P57,	IOL = 2.5 mA			0.5	V
VOL	_ carpar ranaga	P60, P61, P70, P71 (Note)	IOL = 2.5 mA				
			Vcc = 3.0 V			1.1	V
VT+ - VT-	Hysteresis	CNTR ₀ , CNTR ₁ , INT ₀ –INT ₃ , P2 ₀ –P2 ₇	100 010 1		0.5		V
VT+ - VT-	Hysteresis	RXD, SCLK1, SIN2, SCLK2			0.5		V
VT+ - VT-	Hysteresis	RESET	RESET: Vcc=3.0 V to 5.5 V		0.5		V
V 1 1	,		VI = VCC		0.0		
			Pull-downs "off"			5.0	μΑ
			Vcc= 5.0 V, VI = Vcc				<u> </u>
Іін	"H" input current	P00–P07, P10–P17, P30–P37	Pull-downs "on"	30	70	170	μΑ
			Vcc= 3.0 V, VI = Vcc				<u> </u>
			Pull-downs "on"	6.0	25	55	μΑ
Inc	"H" input current	P20-P27, P40-P47, P50-P57,				5.0	
IIн	ļ	P60, P61, P70, P71	VI = VCC			5.0	μΑ
Іін	"H" input current	RESET	VI = VCC			5.0	μΑ
Іін	"H" input current	XIN	VI = VCC		4.0		μΑ
In	"L" input current	P00-P07, P10-P17, P30-P37,				-5.0	μА
liL		P40, P70	VI = VSS			0.0	μ, ι
						-5.0	μΑ
			Pull-ups "off"				<u> </u>
lıL	"L" input current	P20-P27, P41-P47, P50-P57, P60, P61, P71	Vcc= 5.0 V, VI = Vss	-30	-70	-140	μΑ
		100,101,171	Pull-ups "on"				<u> </u>
			Vcc= 3.0 V, VI = Vss	-6	-25	-45	μΑ
			Pull-ups "on"				<u> </u>
liL	"L" input current	RESET	VI = VSS			-5.0	μΑ
liL	"L" input current	XIN	VI = VSS		-4.0		μΑ
VRAM	RAM hold voltage		When clock is stopped	2.0		5.5	V

Note: When "1" is set to port Xc switch bit (bit 4 of address 003B16) of CPU mode register, the drive ability of port P70 is different from the value above mentioned.

ELECTRICAL CHARACTERISTICS (Extended Operating Temperature Version) (Vcc = 3.0 to 5.5 V, $T_a = -40$ to -20 °C and Vcc = 2.5 to 5.5 V, $T_a = -20$ to 85 °C, unless otherwise noted.)

Parameter ource current	 High-speed mode, VCC = 5 V f(XIN) = 8 MHz f(XCIN) = 32.768 kHz Output transistors "off" High-speed mode, VCC = 5 V f(XIN) = 8 MHz (in WIT state) f(XCIN) = 32.768 kHz Output transistors "off" Low-speed mode, VCC = 5V, Ta ≤ 55°C f(XIN) = stopped f(XCIN) = 32.768 kHz Output transistors "off" Low-speed mode, VCC = 5 V, Ta = 25°C f(XIN) = stopped f(XCIN) = 32.768 kHz (in WIT state) 	4 13 6 3.2 5 36	mA mA
ource current	f(XIN) = 8 MHz f(XCIN) = 32.768 kHz Output transistors "off" • High-speed mode, VCC = 5 V f(XIN) = 8 MHz (in WIT state) f(XCIN) = 32.768 kHz Output transistors "off" • Low-speed mode, VCC = 5V, Ta ≤ 55°C f(XIN) = stopped f(XCIN) = 32.768 kHz Output transistors "off" • Low-speed mode, VCC = 5 V, Ta = 25°C f(XIN) = stopped f(XCIN) = 32.768 kHz Output transistors "off" • Low-speed mode, VCC = 5 V, Ta = 25°C f(XIN) = stopped f(XCIN) = 32.768 kHz (in WIT state)	6 3.2 5 36	mA μA
ource current	f(XCIN) = 32.768 kHz Output transistors "off" • High-speed mode, Vcc = 5 V f(XIN) = 8 MHz (in WIT state) f(XCIN) = 32.768 kHz Output transistors "off" • Low-speed mode, Vcc = 5V, Ta ≤ 55°C f(XIN) = stopped f(XCIN) = 32.768 kHz Output transistors "off" • Low-speed mode, Vcc = 5 V, Ta = 25°C f(XIN) = stopped f(XCIN) = stopped f(XCIN) = 32.768 kHz (in WIT state)	6 3.2 5 36	mA
ource current	f(XCIN) = 32.768 kHz Output transistors "off" • High-speed mode, Vcc = 5 V f(XIN) = 8 MHz (in WIT state) f(XCIN) = 32.768 kHz Output transistors "off" • Low-speed mode, Vcc = 5V, Ta ≤ 55°C f(XIN) = stopped f(XCIN) = 32.768 kHz Output transistors "off" • Low-speed mode, Vcc = 5 V, Ta = 25°C f(XIN) = stopped f(XCIN) = stopped f(XCIN) = 32.768 kHz (in WIT state)	p. Max. 4 13 6 3.2 5 36 0 14.0 5 22 5 9.0	mA μA
ource current	 High-speed mode, VCC = 5 V	μА	
ource current	f(XIN) = 8 MHz (in WIT state) f(XCIN) = 32.768 kHz Output transistors "off" • Low-speed mode, Vcc = 5V, Ta ≤ 55°C f(XIN) = stopped f(XCIN) = 32.768 kHz Output transistors "off" • Low-speed mode, Vcc = 5 V, Ta = 25°C f(XIN) = stopped f(XCIN) = 32.768 kHz (in WIT state)	/p. Max. 6.4 13 6.6 3.2 25 36 7.0 14.0 15 22 6.5 9.0 0.1 1.0	μА
ource current	f(XCIN) = 32.768 kHz Output transistors "off" • Low-speed mode, Vcc = 5V, Ta ≤ 55°C f(XIN) = stopped f(XCIN) = 32.768 kHz Output transistors "off" • Low-speed mode, Vcc = 5 V, Ta = 25°C f(XIN) = stopped f(XCIN) = 32.768 kHz (in WIT state)		μА
ource current	f(XCIN) = 32.768 kHz Output transistors "off" • Low-speed mode, Vcc = 5V, Ta ≤ 55°C f(XIN) = stopped f(XCIN) = 32.768 kHz Output transistors "off" • Low-speed mode, Vcc = 5 V, Ta = 25°C f(XIN) = stopped f(XCIN) = 32.768 kHz (in WIT state)	5 36	μΑ
ource current	• Low-speed mode, Vcc = 5V, Ta ≤ 55°C f(XIN) = stopped f(XCIN) = 32.768 kHz Output transistors "off" • Low-speed mode, Vcc = 5 V, Ta = 25°C f(XIN) = stopped f(XCIN) = 32.768 kHz (in WIT state)		
ource current	f(XIN) = stopped f(XCIN) = 32.768 kHz Output transistors "off" • Low-speed mode, Vcc = 5 V, Ta = 25°C f(XIN) = stopped f(XCIN) = 32.768 kHz (in WIT state)		
ource current	f(XCIN) = 32.768 kHz Output transistors "off" • Low-speed mode, Vcc = 5 V, Ta = 25°C f(XIN) = stopped f(XCIN) = 32.768 kHz (in WIT state)		
ource current	f(XCIN) = 32.768 kHz Output transistors "off" • Low-speed mode, Vcc = 5 V, Ta = 25°C f(XIN) = stopped f(XCIN) = 32.768 kHz (in WIT state)		
ource current	• Low-speed mode, Vcc = 5 V, Ta = 25°C f(XIN) = stopped f(XCIN) = 32.768 kHz (in WIT state) 7	0 14 0	
ource current	f(XIN) = stopped f(XCIN) = 32.768 kHz (in WIT state)	0 14.0	
	f(XCIN) = 32.768 kHz (in WIT state)	0 14.0	
	f(XCIN) = 32.768 kHz (in WIT state)		μΑ
		14.0	"
	Output transistors "off"		
	• Low-speed mode, Vcc = 3 V, Ta ≤ 55°C		
	f(XIN) = stopped	5 22	
	f(XCIN) = 32.768 kHz	5 22	μΑ
	Output transistors "off"		
	• Low-speed mode, Vcc = 3V, Ta = 25°C		
	f(XIN) = stopped	5 00	μА
	f(XCIN) = 32.768 kHz (in WIT state)	3 9.0	"
	Output transistors "off"		
		1 1.0	
	(in STP state)	10	μА
	,0	f(XCIN) = 32.768 kHz Output transistors "off" • Low-speed mode, Vcc = 3V, Ta = 25°C f(XIN) = stopped f(XCIN) = 32.768 kHz (in WIT state) Output transistors "off" All oscillation stopped (in STP state) Ta = 25 °C 0.	$f(XCIN) = 32.768 \text{ kHz}$ Output transistors "off" • Low-speed mode, $VCC = 3V$, $Ta = 25^{\circ}C$ $f(XIN) = \text{stopped}$ $f(XCIN) = 32.768 \text{ kHz (in WIT state)}$ Output transistors "off" All oscillation stopped (in STP state)

TIMING REQUIREMENTS 1 (Extended Operating Temperature Version)

(VCC = 4.0 to 5.5 V, VSS = 0 V, Ta = -40 to 85 °C, unless otherwise noted.)

Cymphal	Doromotor	Limits			Unit
Symbol	Parameter	Min.	Тур.	Max.	Unit
tw(RESET)	Reset input "L" pulse width	2			μs
tc(XIN)	Main clock input cycle time (XIN input)	125			ns
twH(XIN)	Main clock input "H" pulse width	45			ns
twL(XIN)	Main clock input "L" pulse width	40			ns
tc(CNTR)	CNTR ₀ , CNTR ₁ input cycle time	250			ns
twH(CNTR)	CNTRo, CNTR1 input "H" pulse width	105			ns
twL(CNTR)	CNTRo, CNTR1 input "L" pulse width	105			ns
twH(INT)	INTo to INT3 input "H" pulse width	80			ns
twL(INT)	INTo to INT3 input "L" pulse width	80			ns
tc(Sclk1)	Serial I/O1 clock input cycle time (Note)	800			ns
twH(Sclk1)	Serial I/O1 clock input "H" pulse width (Note)	370			ns
twL(Sclk1)	Serial I/O1 clock input "L" pulse width (Note)	370			ns
tsu(RxD-Sclk1)	Serial I/O1 input set up time	220			ns
th(Sclk1-RxD)	Serial I/O1 input hold time	100			ns
tc(Sclk2)	Serial I/O2 clock input cycle time	1000			ns
twH(Sclk2)	Serial I/O2 clock input "H" pulse width	400			ns
twL(Sclk2)	Serial I/O2 clock input "L" pulse width	400			ns
tsu(SIN2-SCLK2)	Serial I/O2 input set up time	200			ns
th(Sclk2-SiN2)	Serial I/O2 input hold time	200			ns

Note: When f(XIN) = 8 MHz and bit 6 of address 001A16 is "1" (clock synchronous).

Divide this value by four when f(XIN) = 8 MHz and bit 6 of address 001A₁₆ is "0" (UART).

TIMING REQUIREMENTS 2 (Extended Operating Temperature Version)

(Vcc = 2.5 to 4.0 V, Vss = 0 V, Ta = -20 to 85 °C, and Vcc = 3.0 to 4.0 V, Vss = 0 V, Ta = -40 to -20 °C, unless otherwise noted.)

Cumbal	Determeter		Limits		Unit
Symbol	Parameter	Min.	Тур.	Max.	Uniii
tw(RESET)	Reset input "L" pulse width	2			μs
tc(XIN)	Main clock input cycle time (XIN input)	125			ns
twH(XIN)	Main clock input "H" pulse width	45			ns
twL(XIN)	Main clock input "L" pulse width	40			ns
tc(CNTR)	CNTR ₀ , CNTR ₁ input cycle time	500/ (VCC-2)			ns
twH(CNTR)	CNTR ₀ , CNTR ₁ input "H" pulse width	250/ (Vcc-2)-20			ns
twL(CNTR)	CNTR ₀ , CNTR ₁ input "L" pulse width	250/ (Vcc-2)-20			ns
twH(INT)	INTo to INT3 input "H" pulse width	230			ns
twL(INT)	INTo to INT3 input "L" pulse width	230			ns
tc(Sclk1)	Serial I/O1 clock input cycle time (Note)	2000			ns
twH(Sclk1)	Serial I/O1 clock input "H" pulse width (Note)	950			ns
twL(Sclk1)	Serial I/O1 clock input "L" pulse width (Note)	950			ns
tsu(RxD-Sclk1)	Serial I/O1 input set up time	400			ns
th(Sclk1-RxD)	Serial I/O1 input hold time	200			ns
tc(Sclk2)	Serial I/O2 clock input cycle time	2000			ns
twH(Sclk2)	Serial I/O2 clock input "H" pulse width	950			ns
twL(Sclk2)	Serial I/O2 clock input "L" pulse width	950			ns
tsu(SIN2-SCLK2)	Serial I/O2 input set up time	400			ns
th(SCLK2-SIN2)	Serial I/O2 input hold time	300			ns

Note: When f(XIN) = 2 MHz and bit 6 of address 001A16 is "1" (clock synchronous).

Divide this value by four when f(XIN) = 2 MHz and bit 6 of address 001A16 is "0" (UART).

SWITCHING CHARACTERISTICS 1 (Extended Operating Temperature Version)

(VCC = 4.0 to 5.5 V, VSS = 0 V, Ta = -40 to 85 °C, unless otherwise noted.)

Cumbal	Doromotor			Unit	
Symbol	Parameter	Min.	Тур.	Max.	Unit
twH(Sclk1)	Serial I/O1 clock output "H" pulse width	tc(Sclk1)/2-30			ns
twL(Sclk1)	Serial I/O1 clock output "L" pulse width	tc(SclK1)/2-30			ns
td(Sclk1-TxD)	Serial I/O1 output delay time (Note 1)			140	ns
tv(Sclk1-TxD)	Serial I/O1 output valid time (Note 1)	-30			ns
tr(Sclk1)	Serial I/O1 clock output rising time			30	ns
tf(Sclk1)	Serial I/O1 clock output falling time			30	ns
twH(Sclk2)	Serial I/O2 clock output "H" pulse width	tc(Sclk2)/2-160			ns
twL(Sclk2)	Serial I/O2 clock output "L" pulse width	tc(Sclk2)/2-160			ns
td(SCLK2-SOUT2)	Serial I/O2 output delay time			0.2Xtc(Sclk2)	ns
tv(Sclк2-Souт2)	Serial I/O2 output valid time	0			ns
tf(Sclk2)	Serial I/O2 clock output falling time			40	ns
tr(CMOS)	CMOS output rising time (Note 2)		10	30	ns
tf(CMOS)	CMOS output falling time (Note 2)	& P	10	30	ns

Notes1: When the P45/TxD P-channel output disable bit of the UART control register (bit 4 of address 001B16) is "0".

SWITCHING CHARACTERISTICS 2 (Extended Operating Temperature Version) (VCC = 2.5 to 4.0 V, VSS = 0 V, $Ta = -20 \text{ to } 85 ^{\circ}\text{C}$, and VCC = 3.0 to 4.0 V, $Ta = -40 \text{ to } -20 ^{\circ}\text{C}$, unless otherwise noted.)

Comple al	Deservator		Limits		I India
Symbol	Parameter	Min.	Тур.	Max.	Unit
twH(ScLK1)	Serial I/O1 clock output "H" pulse width	tc(Sclk1)/2-50			ns
twL(Sclk1)	Serial I/O1 clock output "L" pulse width	tc(Sclk1)/2-50			ns
td(Sclk1-TxD)	Serial I/O1 output delay time (Note 1)			350	ns
tv(Sclk1-TxD)	Serial I/O1 output valid time (Note 1)	-30			ns
tr(ScLK1)	Serial I/O1 clock output rising time			50	ns
tf(Sclk1)	Serial I/O1 clock output falling time			50	ns
twH(Sclk2)	Serial I/O2 clock output "H" pulse width	tc(Sclk2)/2-240			ns
twL(Sclk2)	Serial I/O2 clock output "L" pulse width	tc(Sclk2)/2-240			ns
td(Sclk2-Sout2)	Serial I/O2 output delay time			0.2Xtc(Sclk2)	ns
tv(Sclk2-Sout2)	Serial I/O2 output valid time	0			ns
tf(Sclk2)	Serial I/O2 clock output falling time			50	ns
tr(CMOS)	CMOS output rising time (Note 2)		20	50	ns
tf(CMOS)	CMOS output falling time (Note 2)		20	50	ns

Notes1: When the P45/TxD P-channel output disable bit of the UART control register (bit 4 of address 001B16) is "0".

^{2:} XOUT and XCOUT pins are excluded.

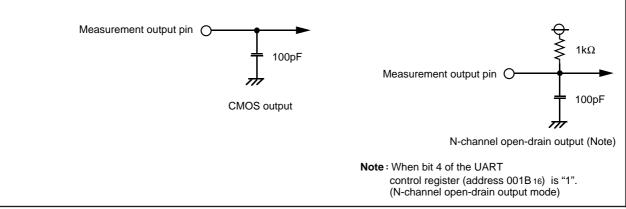


Fig.40 Circuit for measuring output switching characteristics

^{2:} XOUT and XCOUT pins are excluded.

ABSOLUTE MAXIMUM RATINGS (Low Power Source Voltage Version)

Symbol	Parameter	Conditions	Ratings	Unit
Vcc	Power source voltage		-0.3 to 7.0	V
VI	Input voltage P00–P07, P10–P17, P20–P27, P30–P37, P40–P47, P50–P57, P60, P61, P70, P71	All voltages are based on Vss.	-0.3 to Vcc+0.3	V
Vı	Input voltage VL1	Output transistors are cut off.	-0.3 to VL2	V
Vı	Input voltage VL2		VL1 to VL3	V
Vı	Input voltage VL3		VL2 to VCC +0.3	V
Vı	Input voltage RESET, XIN		-0.3 to Vcc +0.3	V
Vo	Output voltage DOs DOZ DAS DAZ	At output port	-0.3 to Vcc +0.3	V
VO	Output voltage P00–P07, P10–P17	At segment output	-0.3 to VL3 +0.3	V
Vo	Output voltage P30-P37	At segment output	-0.3 to VL3 +0.3	V
Vo	Output voltage P20–P27, P41–P47, P50–P57, P60, P61, P70, P71		-0.3 to Vcc +0.3	V
Vo	Output voltage SEG0-SEG15		-0.3 to VL3 +0.3	V
Vo	Output voltage Xout	~	-0.3 to Vcc +0.3	V
Pd	Power dissipation	Ta = 25 °C	300	mW
Topr	Operating temperature		-20 to 85	°C
Tstg	Storage temperature		-40 to 150	°C

RECOMMENDED OPERATING CONDITIONS (Low Power Source Voltage Version)

(VCC = 2.2 to 5.5 V, Ta = -20 to 85 °C, unless otherwise noted.)

Symbol		Parameter		Limits		
Symbol		Farameter	Min.	Тур.	Max.	Unit
		High-speed mode f(XIN)=8 MHz	4.0	5.0	5.5	
Vcc	Power source voltage	Middle-speed mode f(XIN)=8 MHz	2.2	5.0	5.5	V
		Low-speed mode	2.2	5.0	5.5	
Vss	Power source voltage			0		V
VIH	"H" input voltage	P00-P07, P10-P17, P30-P37, P41, P45, P47, P51, P53, P56, P61, P70, P71 (CM4=0)	0.7 Vcc		Vcc	>
VIH	"H" input voltage	P20–P27, P42–P44, P46, P50, P52, P54, P55, P57, P60	0.8 Vcc		Vcc	>
VIH	"H" input voltage	RESET	0.8 Vcc		Vcc	V
VIH	"H" input voltage	Xin	0.8 Vcc		Vcc	V
VIL	"L" input voltage	P00–P07, P10–P17, P30–P37, P40, P41, P45, P47, P51, P53, P56, P61, P70, P71 (CM4=0)	0		0.3 Vcc	>
VIL	"L" input voltage	P20–P27, P42–P44, P46, P50, P52, P54, P55, P57, P60	0		0.2 Vcc	V
VIL	"L" input voltage	RESET	0		0.2 Vcc	٧
VIL	"L" input voltage	XIN	0		0.2 Vcc	V

RECOMMENDED OPERATING CONDITIONS (Low Power Source Voltage Version)

(VCC = 2.2 to 5.5 V, Ta = -20 to 85 °C, unless otherwise noted.)

Comple al		Deventer		Limits		I lait
Symbol		Parameter	Min.	Тур.	Max.	Unit
ΣIOH(peak)	"H" total peak output current	P00-P07, P10-P17, P20-P27 (Note 1)			-40	mA
ΣIOH(peak)	"H" total peak output current	P41-P47,P50-P57, P60, P61, P70, P71 (Note 1)			-40	mA
ΣIOL(peak)	"L" total peak output current	P00-P07, P10-P17, P20-P27 (Note 1)			40	mA
ΣIOL(peak)	"L" total peak output current	P41-P47,P50-P57, P60, P61, P70, P71 (Note 1)			40	mA
ΣIOH(avg)	"H" total average output current	P00-P07, P10-P17, P20-P27 (Note 1)			-20	mA
ΣIOH(avg)	"H" total average output current	P41-P47,P50-P57, P60, P61, P70, P71 (Note 1)			-20	mA
ΣIOL(avg)	"L" total average output current	P00-P07, P10-P17, P20-P27 (Note 1)			20	mA
ΣIOL(avg)	"L" total average output current	P41-P47,P50-P57, P60, P61, P70, P71 (Note 1)			20	mA
IOH(peak)	"H" peak output current	P00-P07, P10-P17, P20-P27, P41-P47, P50-P57, P60, P61, P70, P71 (Note 2)			-5	mA
IOL(peak)	"L" peak output current	P00-P07, P10-P17 (Note 2)			5	mA
IOL(peak)	"L" peak output current	P20–P27, P41–P47, P50–P57, P60, P61, P70, P71 (Note 2)			10	mA
IOH(avg)	"H" average output current	P00–P07, P10–P17 (Note 3)	30		-1.0	mA
IOH(avg)	"H" average output current	P20-P27, P41-P47, P50-P57, P60, P61, P70, P71 (Note 3)			-2.5	mA
IOL(avg)	"L" average output current	P00-P07, P10-P17 (Note 3)			2.5	mA
IOL(avg)	"L" average output current	P20–P27, P41–P47, P50–P57, P60, P61, P70, P71 (Note 3)			5.0	mA
f(CNTR ₀)	Clock input frequency for timers X and Y	4.0 V ≤ Vcc ≤ 5.5 V			4.0	MHz
f(CNTR1)	(duty cycle 50 %)	Vcc ≤ 4.0 V			(10XVcc-4) 9	MHz
		High-speed mode (4.0 V ≤ VCC ≤ 5.5 V)			8.0	MHz
f(XIN)	Main clock input oscillation frequency (Note 4)	High-speed mode (Vcc ≤ 4.0 V)			(20XVcc-8) 9	MHz
		Middle-speed mode			8.0	MHz
f(XCIN)	Sub-clock input oscillation frequ	ency (Note 4, 5)		32.768	50	kHz

- Notes 1: The total output current is the sum of all the currents flowing through all the applicable ports. The total average current is an av erage value measured over 100 ms. The total peak current is the peak value of all the currents.
 - 2: The peak output current is the peak current flowing in each port.
 - 3: The average output current is an average value measured over 100 ms.
 - 4: When the oscillation frequency has a duty cycle of 50 %.
 - 5: When using the microcomputer in low-speed mode, make sure that the sub-clock input oscillation frequency f(Xcin) is less than f(XIN)/3.

ELECTRICAL CHARACTERISTICS (Low Power Source Voltage Version) (VCC =4.0 to 5.5 V, $T_a = -20$ to 85 °C, unless otherwise noted.)

Symbol		Parameter	Test conditions	L	Limits		Unit
				Min.	Тур.	Max.	
			IOH = -0.1 mA	Vcc-2.0			V
Voн	"H" output voltage	P00–P07, P10–P17, P30–P37	IOH = -25 μA	Vcc-1.0			.,
			VCC = 2.2 V				V
			IOH = -5 mA	Vcc-2.0			V
	"H" output voltage	P20-P27, P41-P47, P50-P57,	ЮН = −1.25 mA	Vcc-0.5			V
Voн		P60, P61, P70, P71 (Note)	ЮН = −1.25 mA	Vcc-1.0			V
			Vcc = 2.2 V	VCC-1.0			\ \
			IOL = 5 mA			2.0	V
	"I " output voltogo	D00 D07 D40 D47 D20 D27	IOL = 1.25 mA			0.5	V
VOL	L output voltage	P00-P07, P10-P17, P30-P37	IOL = 1.25 mA				.,
			Vcc = 2.2 V			1.1	V
			IOL = 10 mA			2.0	V
1/	"L" output voltage	P20-P27, P41-P47, P50-P57,	IOL = 2.5 mA			0.5	V
VOL		P60, P61, P70, P71 (Note)	IOL = 2.5 mA	100			
			Vcc = 2.2 V			1.0	V
VT+ - VT-	Hysteresis	CNTR0, CNTR1, INT0-INT3, P20-P27			0.5		V
VT+ - VT-	Hysteresis	RXD, SCLK1, SIN2, SCLK2			0.5		V
VT+ - VT-	Hysteresis	RESET	RESET: Vcc=2.2 V to 5.5 V		0.5		V
			VI = VCC				
			Pull-downs "off"			5.0	μΑ
			Vcc= 5.0 V, VI = Vcc				
Іін	"H" input current	P00-P07, P10-P17, P30-P37	Pull-downs "on"	30	70	170	μΑ
			VCC= 3.0 V, VI = VCC				
			Pull-downs "on"	6.0	25	55	μΑ
Іін	"H" input current	P20-P27, P40-P47, P50-P57,				5.0	μА
шп	·	P60, P61, P70, P71	VI = VCC			5.0	μΛ
IIН	"H" input current	RESET	VI = VCC		8.0	5.0	μΑ
Іін	"H" input current	XIN	VI = VCC		4.0		μΑ
liL	"L" input current	P00-P07, P10-P17, P30-P37, P40, P70				-5.0	μА
			VI = VSS			T	
			Pull-ups "off"			-5.0	μΑ
To.	"L" input current	P20-P27, P41-P47, P50-P57,	VCC= 5.0 V, VI = VSS				
lıL	,	P60, P61, P71	Pull-ups "on"	-30	-7 0	-140	μΑ
			Vcc= 3.0 V, VI = Vss				
			Pull-ups "on"	-6	-25	-45	μΑ
liL	"L" input current	RESET	VI = VSS			-5.0	μА
IIL	"L" input current	XIN	VI = VSS		-8.0	-5.0	μΑ

Note: When "1" is set to port Xc switch bit (bit 4 of address 003B16) of CPU mode register, the drive ability of port P70 is different from the value above mentioned.

ELECTRICAL CHARACTERISTICS (Low Power Source Voltage Version) (Vcc = 2.2 to 5.5 V, $T_a = -20$ to 85 °C, unless otherwise noted.)

Symbol	Parameter	Test conditions		Limits		
Зуппоот	Falanielei	rest conditions	Min.	Тур.	Max.	Uni
VRAM	RAM hold voltage	When clock is stopped	2.0		5.5	V
		• High-speed mode, Vcc = 5 V				
		f(XIN) = 8 MHz		6.4	13	mA
		f(XCIN) = 32.768 kHz			13	""
		Output transistors "off"				
		• High-speed mode, VCC = 5 V				
		f(XIN) = 8 MHz (in WIT state)		1.6	3.2	m/
		f(XCIN) = 32.768 kHz		1.0	3.2	111/4
		Output transistors "off"				
		• Low-speed mode, VCC = 5V, Ta \leq 55°C				
	Power source current	f(XIN) = stopped		7.0		μΑ
		f(XCIN) = 32.768 kHz				
		Output transistors "off"				
Icc		• Low-speed mode, Vcc = 5 V, Ta = 25°	C			
		f(XIN) = stopped				
		f(XCIN) = 32.768 kHz (in WIT state)		14.0	
		Output transistors "off"				
		 Low-speed mode, Vcc = 3 V, Ta ≤ 55° 				
		f(XIN) = stopped		15	22	μА
		f(XCIN) = 32.768 kHz				
		Output transistors "off"				
		• Low-speed mode, Vcc = 3V, Ta = 25°0		4.5		μА
		f(XIN) = stopped				
		f(XCIN) = 32.768 kHz (in WIT state			9.0	
		Output transistors "off"	+	0.2		+
		All oscillation stopped Ta = 25 °C (in STP state)	;			
		Output transistors "off" Ta = 85 °C	;		20	μΑ

TIMING REQUIREMENTS 1 (Low Power Source Voltage Version)

(VCC = 4.0 to 5.5 V, VSS = 0 V, Ta = -20 to 85 °C, unless otherwise noted.)

Symbol	Parameter	Limits Min. Typ. Max.		Unit	
Syllibol	raidifietei			Max.	Onn
tw(RESET)	Reset input "L" pulse width	2			μs
tc(XIN)	Main clock input cycle time (XIN input)	125			ns
twH(XIN)	Main clock input "H" pulse width	45			ns
twL(XIN)	Main clock input "L" pulse width	40			ns
tc(CNTR)	CNTRo, CNTR1 input cycle time	250			ns
twH(CNTR)	CNTRo, CNTR1 input "H" pulse width	105			ns
twL(CNTR)	CNTRo, CNTR1 input "L" pulse width	105			ns
twH(INT)	INTo to INT3 input "H" pulse width	80			ns
twL(INT)	INTo to INT3 input "L" pulse width	80			ns
tc(Sclk1)	Serial I/O1 clock input cycle time (Note)	800			ns
twH(Sclk1)	Serial I/O1 clock input "H" pulse width (Note)	370			ns
twL(Sclk1)	Serial I/O1 clock input "L" pulse width (Note)	370			ns
tsu(RxD-Sclk1)	Serial I/O1 input set up time	220			ns
th(Sclk1-RxD)	Serial I/O1 input hold time	100			ns
tc(Sclk2)	Serial I/O2 clock input cycle time	1000			ns
twH(Sclk2)	Serial I/O2 clock input "H" pulse width	400			ns
twL(Sclk2)	Serial I/O2 clock input "L" pulse width	400			ns
tsu(SIN2-SCLK2)	Serial I/O2 input set up time	200			ns
th(Sclk2-SIN2)	Serial I/O2 input hold time	200			ns

Note: When f(XIN) = 8 MHz and bit 6 of address 001A₁₆ is "1" (clock synchronous).

Divide this value by four when f(XIN) = 8 MHz and bit 6 of address 001A16 is "0" (UART).

TIMING REQUIREMENTS 2 (Low Power Source Voltage Version)

(VCC = 2.5 to 4.0 V, VSS = 0 V, Ta = -20 to 85 °C, unless otherwise noted.)

Symbol	Devementer	Limits		Unit
Symbol	Par <mark>amet</mark> er	Min.	Min. Typ. Max.	
tw(RESET)	Reset input "L" pulse width	2		μs
tc(XIN)	Main clock iuput cycle time (XIN input)	125		ns
twH(XIN)	Main clock input "H" pulse width	45		ns
twL(XIN)	Main clock input "L" pulse width	40		ns
tc(CNTR)	CNTR ₀ , CNTR ₁ input cycle time	900/ (VCC-0.4)		ns
twH(CNTR)	CNTR ₀ , CNTR ₁ input "H" pulse width	450/ (Vcc-0.4)-20		ns
twL(CNTR)	CNTR ₀ , CNTR ₁ input "L" pulse width	450/ (Vcc-0.4)-20		ns
twH(INT)	INTo to INT3 input "H" pulse width	230		ns
twL(INT)	INTo to INT3 input "L" pulse width	230		ns
tc(Sclk1)	Serial I/O1 clock input cycle time (Note)	2000		ns
twH(Sclk1)	Serial I/O1 clock input "H" pulse width (Note)	950		ns
twL(Sclk1)	Serial I/O1 clock input "L" pulse width (Note)	950		ns
tsu(RxD-ScLK1)	Serial I/O1 input set up time	400		ns
th(Sclk1-RxD)	Serial I/O1 input hold time	200		ns
tc(Sclk2)	Serial I/O2 clock input cycle time	2000		ns
twH(Sclk2)	Serial I/O2 clock input "H" pulse width	950		ns
twL(Sclk2)	Serial I/O2 clock input "L" pulse width	950		ns
tsu(SIN2-SCLK2)	Serial I/O2 input set up time	400		ns
th(Sclk2-SIN2)	Serial I/O2 input hold time	300		ns

Note: When f(XIN) = 2 MHz and bit 6 of address 001A16 is "1" (clock synchronous).

Divide this value by four when f(XIN) = 2 MHz and bit 6 of address 001A16 is "0" (UART).

SWITCHING CHARACTERISTICS 1 (Low Power Source Voltage Version)

(VCC = 4.0 to 5.5 V, VSS = 0 V, Ta = -20 to 85 °C, unless otherwise noted.)

Symbol	Parameter	I	Limits	Limits		
	Parameter	Min.	Тур.	Max.	Unit	
twH(ScLK1)	Serial I/O1 clock output "H" pulse width	tc(ScLK1)/2-30			ns	
twL(Sclk1)	Serial I/O1 clock output "L" pulse width	tc(ScLK1)/2-30			ns	
td(Sclk1-TxD)	Serial I/O1 output delay time (Note 1)			140	ns	
tv(Sclk1-TxD)	Serial I/O1 output valid time (Note 1)	-30			ns	
tr(Sclk1)	Serial I/O1 clock output rising time			30	ns	
tf(SCLK1)	Serial I/O1 clock output falling time			30	ns	
twH(ScLK2)	Serial I/O2 clock output "H" pulse width	tc(ScLK2)/2-160			ns	
twL(Sclk2)	Serial I/O2 clock output "L" pulse width	tc(ScLK2)/2-160			ns	
td(Sclk2-Sout2)	Serial I/O2 output delay time			0.2Xtc(Sclk2)	ns	
tv(Sclk2-Sout2)	Serial I/O2 output valid time	0			ns	
tf(Sclk2)	Serial I/O2 clock output falling time			40	ns	
tr(CMOS)	CMOS output rising time (Note 2)		10	30	ns	
tf(CMOS)	CMOS output falling time (Note 2)		10	30	ns	

Notes 1: When the P45/TxD P-channel output disable bit of the UART control register (bit 4 of address 001B16) is "0".

SWITCHING CHARACTERISTICS 2 (Low Power Source Voltage Version)

(VCC = 2.2 to 4.0 V, VSS = 0 V, Ta = -20 to 85 °C, unless otherwise noted.)

Symbol	Parameter		l lait		
		Min.	Тур.	Max.	Unit
twH(Sclk1)	Serial I/O1 clock output "H" pulse width	tc(SclK1)/2-50			ns
twL(Sclk1)	Serial I/O1 clock output "L" pulse width	tc(SclK1)/2-50			ns
td(Sclk1-TxD)	Serial I/O1 output delay time (Note 1)			350	ns
tv(Sclk1-TxD)	Serial I/O1 output valid time (Note 1)	-30			ns
tr(ScLK1)	Serial I/O1 clock output rising time			50	ns
tf(Sclk1)	Serial I/O1 clock output falling time			50	ns
twH(Sclk2)	Serial I/O2 clock output "H" pulse width	tc(Sclk2)/2-240			ns
twL(Sclk2)	Serial I/O2 clock output "L" pulse width	tc(Sclk2)/2-240			ns
td(Sclk2-Sout2)	Serial I/O2 output delay time			0.2Xtc(Sclk2)	ns
tv(Sclk2-Sout2)	Serial I/O2 output valid time	0			ns
tf(Sclk2)	Serial I/O2 clock output falling time			50	ns
tr(CMOS)	CMOS output rising time (Note 2)		20	50	ns
tf(CMOS)	CMOS output falling time (Note 2)		20	50	ns

Notes 1: When the P45/TxD P-channel output disable bit of the UART control register (bit 4 of address 001B16) is "0".

^{2:} XOUT and XCOUT pins are excluded.

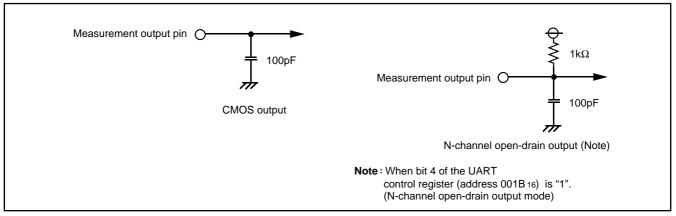
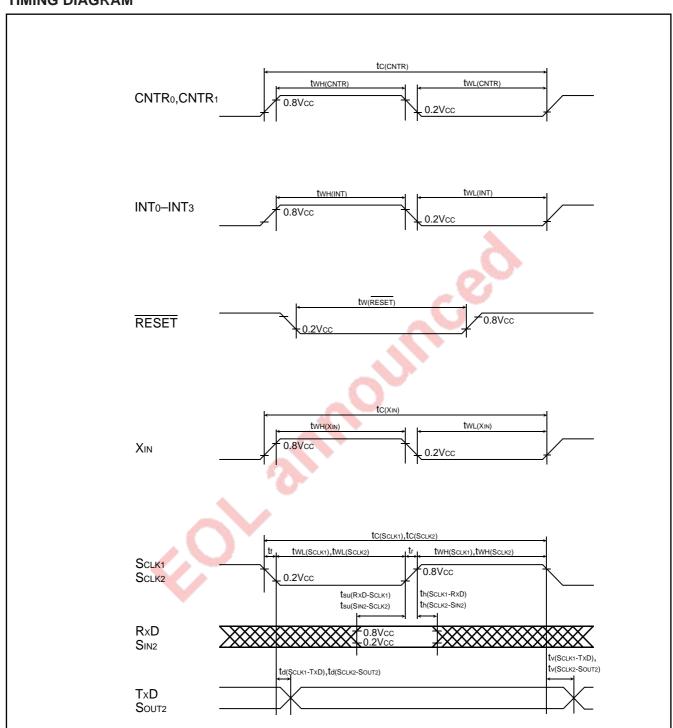



Fig.41 Circuit for measuring output switching characteristics

^{2:} XOUT and XCOUT pins are excluded.

TIMING DIAGRAM

Renesas Technology Corp.

Nippon Bldg.,6-2,Otemachi 2-chome,Chiyoda-ku,Tokyo,100-0004 Japan

Keep safety first in your circuit designs!

Mitsubishi Electric Corporation puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of non-flammable material or (iii) prevention against any malfunction or mishap.

- These materials are intended as a reference to assist our customers in the selection of the Mitsubishi semiconductor product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Mitsubishi Electric Corporation or a third party.

 Mitsubishi Electric Corporation assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts or circuit application examples contained in these materials.

 All information contained in these materials, including product data, diagrams and charts, represent information on products at the time of publication of these materials, and are subject to change by Mitsubishi

- Electric Corporation without notice due to product improvements or other reasons. It is therefore recommended that customers contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor for the latest product information before purchasing a product listed herein.

 Mitsubishi Electric Corporation semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.

 The prior written approval of Mitsubishi Electric Corporation is necessary to reprint or reproduce in whole or in part these materials.

 If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the exposured destination.
- approved destination.
- Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited.

 Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor for further details on these materials or the products contained therein.

REVISION DESCRIPTION LIST	3820GROUP DATA SHEET
	1

Rev.	Revision Description	Rev.
No.	Revision Description	date
1.0	First Edition	971128
	EOL announced	