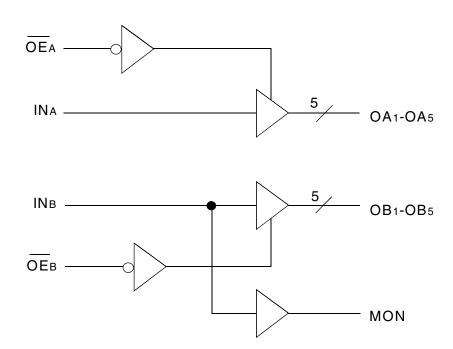


FAST CMOS BUFFER/CLOCK DRIVER

IDT49FCT805BT/CT

FEATURES:

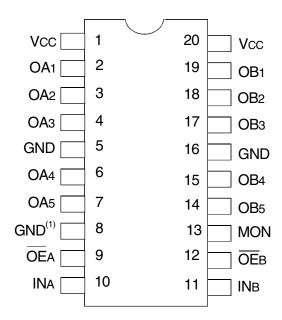

- 0.5 MICRON CMOS Technology
- Guaranteed low skew < 500ps (max.)
- Very low duty cycle distortion < 600ps (max.)
- · Low CMOS power levels
- TTL compatible inputs and outputs
- · TTL level output voltage swings
- High drive: -32mA Іон, +48mA ІоL
- · Two independent output banks with 3-state control
- 1:5 fanout per bank
- · "Heartbeat" monitor output
- ESD > 2000V per MIL-STD-883, Method 3015; > 200V using machine model (C = 200pF, R = 0)
- · Available in the following packages:
 - Commercial: QSOP, SOIC, SSOP
 - Military: CERDIP, LCC

DESCRIPTION:

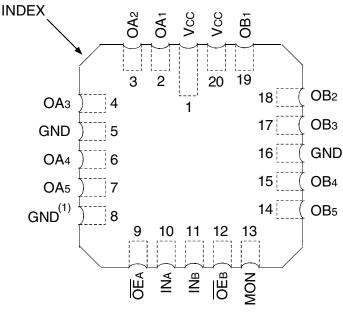
This buffer/clock driver is built using advanced dual metal CMOS technology. The FCT805T is a non-inverting clock driver consisting of two banks of drivers. Each bank drives five output buffers from a standard TTL compatible input. This part has extremely low output skew, pulse skew, and package skew. The device has a "heart-beat" monitor for diagnostics and PLL driving. The monitor output is identical to all other outputs and complies with the output specifications in this document.

The FCT805T is designed for fast, clean edge rates to provide accurate clock distribution in high speed systems.

FUNCTIONAL BLOCK DIAGRAM



The IDT logo is a registered trademark of Integrated Device Technology, Inc.


MILITARY AND COMMERCIAL TEMPERATURE RANGES

MAY 2010

PIN CONFIGURATION

QSOP/ SOIC/ SSOP/ CERDIP TOP VIEW

LCC TOP VIEW

NOTE:

1. Pin 8 is internally connected to GND. To insure compatibility with all products, pin 8 should be connected to GND at the board level.

ABSOLUTE MAXIMUM RATINGS(1)

Symbol	Description	Max	Unit
VTERM	Terminal Voltage with Respect to GND	-0.5 to +7	V
Tstg	Storage Temperature	-65 to +150	°C
lout	DC Output Current	-60 to +120	mA

NOTE:

Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause
permanent damage to the device. This is a stress rating only and functional operation
of the device at these or any other conditions above those indicated in the operational
sections of this specification is not implied. Exposure to absolute maximum rating
conditions for extended periods may affect reliability.

CAPACITANCE (TA = $+25^{\circ}$ C, f = 1.0MHz)

Symbol Parameter ⁽¹⁾		Conditions	Тур.	Max.	Unit
CIN	Input Capacitance	VIN = 0V	4.5	6	pF
Соит	Output Capacitance	Vout = 0V	5.5	8	pF

NOTE:

1. This parameter is measured at characterization but not tested.

PIN DESCRIPTION

Pin Names	Description
OEA, OEB 3-State Output Enable Inputs (Active LOW)	
INA, INB	Clock Inputs
OAx, OBx Clock Outputs	
M O N Monitor Output	

FUNCTION TABLE (1)

Inpi	uts	Outp	outs
OEA, OEB	INA, INB	OAx, OBx	MON
L	L	L	L
L	Н	Н	Н
Н	L	Z	L
Н	Н	Z	Н

NOTE:

1. H = HIGH

L = LOW

Z = High-Impedance

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE

Following Conditions Apply Unless Otherwise Specified:

Commercial: T_A = 0°C to +70°C, Military: T_A = -55°C to +125°C, V_{CC} = 5V \pm 10%

Symbol	Parameter	Test Conditions ⁽¹⁾	Test Conditions ⁽¹⁾		Typ. ⁽²⁾	Max.	Unit
ViH	Input HIGH Level	Guaranteed Logic H	Guaranteed Logic HIGH Level		_	_	V
VIL	Input LOW Level	Guaranteed Logic LC)W Level	-	_	0.8	V
Іін	Input HIGH Current ⁽⁵⁾	Vcc = Max.	VI = 2.7V	_	_	±1	μΑ
lıL	Input LOW Current ⁽⁵⁾	Vcc = Max.	VI = 0.5V	_	_	±1	μΑ
lozн	High Impedance Output Current	Vcc = Max.	Vo = 2.7V	_	_	±1	μΑ
lozl	(3-State Output Pins)		Vo = 0.5V	_	_	±1	
lı .	Input HIGH Current	Vcc = Max., Vi = Vc	cc (Max.)	-	_	±1	μΑ
Vik	Clamp Diode Voltage	Vcc = Min., I₁N = −18	BmA	_	-0.7	-1.2	V
los	Short Circuit Current	Vcc = Max., Vo = G	Vcc = Max., Vo = GND ⁽³⁾		-120	-255	mA
		Vcc = Min.	IOH = -12mA MIL	2.4	3.3	_	V
Vон	Output HIGH Voltage	VIN = VIH or VIL	Iон = -15mA COM'L				
			IOH = -24mA MIL	2	3	–	V
			$IOH = -32mA COM'L^{(4)}$				
Vol	Output LOW Voltage	Vcc = Min.	IOL = 32mA MIL	_	0.3	0.55	V
		VIN = VIH or VIL	IOL = 48mA COM'L				
loff	Input/Output Power Off Leakage ⁽⁵⁾	VCC = 0V, VIN or VC	Vcc = 0V, Vin or Vo ≤4.5V		_	±1	μΑ
VH	Input Hysteresis for all inputs	_		-	150	_	mV
ICCL	Quiescent Power Supply Current	Vcc = Max., Vin = GND or Vcc		_	5	500	μΑ
Іссн							
Iccz							

NOTES:

- 1. For conditions shown as Max. or Min., use appropriate value specified under Electrical Characteristics for the applicable device type.
- 2. Typical values are at Vcc = 5V, +25°C ambient.
- 3. Not more than one output should be shorted at one time. Duration of the test should not exceed one second.
- 4. Duration of the condition should not exceed one second.
- 5. The test limit for this parameter is $\pm 5\mu A$ at TA = -55°C.

POWER SUPPLY CHARACTERISTICS

Symbol	Parameter	Test Cond	ditions ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Unit
Δlcc	Quiescent Power Supply Current	Vcc = Max.		T -	1	2	mA
	TTL Inputs HIGH	$VIN = 3.4V^{(3)}$					
ICCD	Dynamic Power Supply Current ⁽⁴⁾	Vcc = Max.	VIN = VCC	T -	60	100	μA/MHz
		Outputs Open	VIN = GND				
		OEA = OEB = GND					
		50% Duty Cycle					
Ic	Total Power Supply Current ⁽⁶⁾	Vcc = Max.	VIN = VCC	T -	1.5	3	
		Outputs Open	VIN = GND				
		fo = 25MHz					
		50% Duty Cycle	VIN = 3.4V	T -	1.8	4	
		OEA = OEB = VCC	VIN = GND				
		Mon. Output Toggling					
		Vcc = Max.	VIN = VCC	T -	33	55.5 ⁽⁵⁾	mA
		Outputs Open	VIN = GND				
		fo = 50MHz					
		50% Duty Cycle	VIN = 3.4V	_	33.5	57.5 ⁽⁵⁾	
		OEA = OEB = GND	VIN = GND				
		Eleven Outputs Toggling					

NOTES:

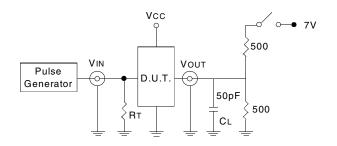
- 1. For conditions shown as Max. or Min., use appropriate value specified under Electrical Characteristics for the applicable device type.
- 2. Typical values are at Vcc = 5V, +25°C ambient.
- 3. Per TTL driven input (VIN = 3.4V); all other inputs at Vcc or GND.
- 4. This parameter is not directly testable, but is derived for use in Total Power Supply calculations.
- 5. Values for these conditions are examples of the Ic formula. These limits are guaranteed but not tested.
- 6. IC = IQUIESCENT + INPUTS + IDYNAMIC
 - $IC = ICC + \Delta ICC DHNT + ICCD (foNo)$
 - Icc = Quiescent Current (IccL, IccH and Iccz)
 - ΔIcc = Power Supply Current for a TTL High Input (VIN = 3.4V)
 - DH = Duty Cycle for TTL Inputs High
 - NT = Number of TTL Inputs at DH
 - ICCD = Dynamic Current Caused by an Input Transition Pair (HLH or LHL)
 - fo = Output Frequency
 - No = Number of Outputs at fo
 - All currents are in milliamps and all frequencies are in megahertz.

SWITCHING CHARACTERISTICS OVER OPERATING RANGE - MILITARY(1,2)

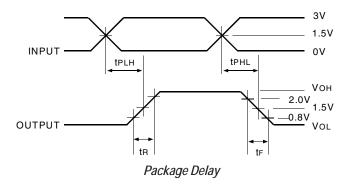
			FCT8	05BT	FCT8	05CT	
Symbol	Parameter	Conditions ⁽³⁾	Min. ⁽⁴⁾	Max.	Min. ⁽⁴⁾	Max.	Unit
tplh	Propagation Delay	CL = 50pF	1.5	5.7	1.5	5.2	ns
tphl	INA to OAx, INB to OBx	$RL = 500\Omega$					
₽	Output Rise Time		_	2	_	2	ns
tF	Output Fall Time		_	1.5	_	1.5	ns
tsk(o)	Output skew: skew between outputs of all banks of		_	0.9	_	0.7	ns
	same package (inputs tied together)						
tsk(P)	Pulse skew: skew between opposite transitions		_	0.9	_	0.8	ns
	of same output (tphltplh)						
tsk(PP)	Part-to-part skew: skew between outputs of different		_	1.5	_	1.2	ns
	packages at same power supply voltage,						
	temperature, package type and speed grade						
tpzl	Output Enable Time		1.5	6.5	1.5	6	ns
tpzh	OEA to OAx, OEB to OBx						
tPLZ	Output Disable Time		1.5	6.5	1.5	6	ns
tphz	OEA to OAx, OEB to OBx						

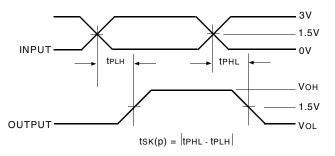
NOTES:

- 1. tplh, tphl, and tsk(pp) are production tested. All other parameters are guaranteed but not production tested.
- 2. Propagation delay range indicated by Min. and Max. limit is dues to Vcc, operating temperature, and process parameters. These propagation delay limits do not imply skew.
- 3. See Test Circuits and Waveforms.
- 4. Minimum limits are guaranteed but not tested on Propagation Delays.

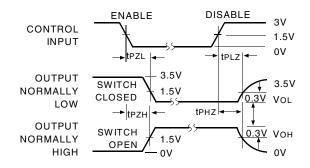

SWITCHING CHARACTERISTICS OVER OPERATING RANGE - COMMERCIAL (1,2)

			FCT8	05BT	FCT8	05CT	
Symbol	Parameter	Conditions ⁽³⁾	Min. ⁽⁴⁾	Max.	Min. ⁽⁴⁾	Max.	Unit
tplh	Propagation Delay	CL = 50pF	1.5	5	1.5	4.5	ns
tphl	INA to OAx, INB to OBx	$RL = 500\Omega$					
tr	Output Rise Time		_	1.5	_	1.5	ns
tF	Output Fall Time		_	1.5	_	1.5	ns
tsk(o)	Output skew: skew between outputs of all banks of		_	0.7	_	0.5	ns
	same package (inputs tied together)						
tsk(p)	Pulse skew: skew between opposite transitions		_	0.7	_	0.6	ns
	of same output (tphltplh)						
tsk(PP)	Part-to-part skew: skew between outputs of different		_	1.2	_	1	ns
	packages at same power supply voltage,						
	temperature, package type and speed grade						
tpzl	Output Enable Time	•	1.5	6	1.5	5	ns
tpzh	OEA to OAx, OEB to OBx						
tplz	Output Disable Time		1.5	6	1.5	5	ns
tphz	OEA to OAx, OEB to OBx						


NOTES:


- 1. tplh, tphL, and tsk(pp) are production tested. All other parameters are guaranteed but not production tested.
- 2. Propagation delay range indicated by Min. and Max. limit is dues to Vcc, operating temperature, and process parameters. These propagation delay limits do not imply skew.
- 3. See Test Circuits and Waveforms.
- 4. Minimum limits are guaranteed but not tested on Propagation Delays.

TEST CIRCUITS AND WAVEFORMS

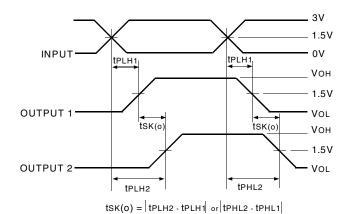


Test Circuits for All Outputs

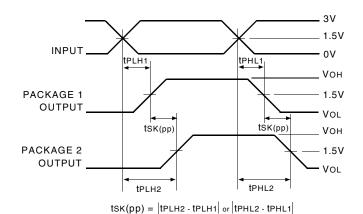
Pulse Skew - tsk(P)

Enable and Disable Times

NOTES:


- 1. Diagram shown for input Control Enable-LOW and input Control Disable-HIGH
- 2. Pulse Generator for All Pulses: Rate ≤1.0MHz; tF ≤2.5ns; tR ≤2.5ns

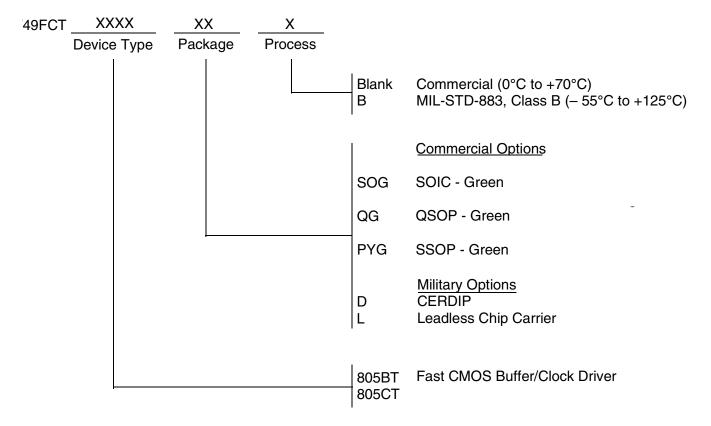
SWITCH POSITION


Test	Switch
Disable LOW Enable LOW	Closed
Disable HIGH Enable HIGH	GND

DEFINITIONS:

- CL = Load capacitance: includes jig and probe capacitance.
- RT = Termination resistance: should be equal to ZouT of the Pulse Generator.

Output Skew



Part-to-Part Skew - tsk(PP)

NOTE:

1. Package 1 and Package 2 are same device type and speed grade.

ORDERING INFORMATION

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD-PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers who are designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only to develop an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third-party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising from your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

(Disclaimer Rev.1.01)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit www.renesas.com/contact-us/.