ReNESAS

3.3V MULTI-QUEUE FLOW-CONTROL DEVICES	
(16 QUEUES) 18 BIT WIDE CONFIGURATION	
589,824 bits	IDT72V51433
$1,179,648 \mathrm{bits}$	IDT72V51443
$2,359,296$ bits	IDT72V51453

FEATURES:

- Choose from among the following memory density options:

IDT72V51433 - Total Available Memory $=589,824$ bits
IDT72V51443 - Total Available Memory $=1,179,648$ bits
IDT72V51453 - Total Available Memory $=2,359,296$ bits

- Configurable from 1 to 16 Queues
- 166 MHz High speed operation (6ns cycle time)
- 3.7ns access time
- Queues may be configured at master reset from the pool of Total Available Memory in blocks of 512×18 or $1,024 \times 9$
- Independent Read and Write access per queue
- User programmable via serial port
- Default multi-queue device configurations
-IDT72V51433: $2,048 \times 18 \times 16 Q$ or $4,096 \times 9 \times 16 Q$
-IDT72V51443: $4,096 \times 18 \times 16 \mathrm{Q}$ or $8,192 \times 9 \times 16 Q$
-IDT72V51453: 8, $192 \times 18 \times 16 Q$ or $16,384 \times 9 \times 16 Q$
- 100% Bus Utilization, Read and Write on every clock cycle
- Individual, Active queue flags ($\overline{\mathrm{OV}}, \overline{\mathrm{FF}}, \overline{\mathrm{PAE}}, \overline{\mathrm{PAF}}$)
- 8 bit parallel flag status on both read and write ports
- Shows $\overline{P A E}$ and $\overline{P A F}$ status of 8 Queues
- Direct or polled operation of flag status bus
- Global Bus Matching - (All Queues have same Input Bus Width and Output Bus Width)
- User Selectable Bus Matching Options:
- x18in to x180ut
- x9in to x180ut
- x18in to x9out
- x9in to x9out
- FWFT mode of operation on read port
- Partial Reset, clears data in single Queue
- Expansion of up to 8 multi-queue devices in parallel is available
- JTAG Functionality (Boundary Scan)
- Available in a 256 -pin PBGA, 1 mm pitch, $17 \mathrm{~mm} \times 17 \mathrm{~mm}$
- HIGH Performance submicron CMOS technology
- Industrial temperature range $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$ is available

FUNCTIONAL BLOCK DIAGRAM

MULTI-QUEUE FLOW-CONTROL DEVICE

DESCRIPTION:

The IDT72V51433/72V51443/72V51453 multi-queue flow-control devices are single chip within which anywhere between 1 and 16 discrete FIFO queues can be setup. All queues within the device have a common datainput bus, (write port) and a common data outputbus, (read port). Data written into the write port is directed to a respective queue via an internal de-multiplex operation, addressed by the user. Data read from the read port is accessed from a respective queue via an internal multiplex operation, addressed by the user. Data writes and reads can be performed at high speeds up to 166 MHz , with access times of 3.7 ns . Data write and read operations are totally independent of each other, a queue maybe selected on the write port and a different queue on the read port or both ports may select the same queue simultaneously.

The device provides Full flag and Output Valid flag status for the queue selected for write and read operations respectively. Also a Programmable AlmostFull and Programmable AlmostEmpty flagforeachqueue is provided. Two 8bitprogrammableflag busses are available, providing status of queues notselectedforwrite or readoperations. When8orlessqueues areconfigured in the device these flag busses provide an individual flag per queue, when more than 8queues are used, either a Polled or Direct mode of bus operation provides the flag busses with all queues status.

Bus Matching is available on this device, either port can be 9 bits or 18 bits wide. When Bus Matching is used the device ensures the logical transfer of data throughputina Little Endian manner.
The user has full flexibility configuring queues within the device, being able to program the total number of queues between 1 and 16 , the individual queue depths being independent of each other. The programmable flag positions are also user programmable. All programming is done via a dedicated serial port. If the user does not wish to program the multi-queue device, a default option is available that configures the device in a predetermined manner.

BothMasterResetand Partial Resetpins are provided onthis device.AMaster Reset latches in all configuration setup pins and must be performed before programming of the device cantake place. A Partial Reset will resetthe readand write pointers of an individual queue, provided that the queue is selected on both the write port and read port at the time of partial reset.
AJTAG test port is provided, here the multi-queue flow-control device has a fully functional Boundary Scan feature, compliant with IEEE 1149.1 Standard Test Access Port and Boundary Scan Architecture.

SeeFigure 1, Multi-Queue Flow-Control Device Block Diagramfor an outline of the functional blocks within the device.

Figure 1. Multi-Queue Flow-Control Device Block Diagram

PIN CONFIGURATION

NOTE:

1. DNC - Do Not Connect.

DETAILED DESCRIPTION

MULTI-QUEUE STRUCTURE

The IDT multi-queue flow-control device has a single data input port and single data output port with up to 16 FIFO queues in parallel buffering between the two ports. The user can setup between 1 and 16 Queues withinthe device. Thesequeues can be configuredto utilize the total available memory, providing the userwithfullflexibility and ability to configure the queues to be various depths, independent of one another.

MEMORY ORGANIZATION/ALLOCATION

The memory is organized into what is known as "blocks", each block being 512×18 or $1,024 \times 9$ bits. When the user is configuring the number of queues and individual queue sizes the user must allocate the memory to respective queues, in units of blocks, that is, a single queue can be made up from 0 to m blocks, where mis the total number of blocks available within a device. Alsothe total size of any given queue must be in increments of 512×18 or $1,024 \times 9$. For the IDT72V51433, IDT72V51443 and IDT72V51453 the Total Available Memory is 64, 128 and 256 blocks respectively (ablockbeing 512×18 or 1,024 $x 9$). If any port is configured for $x 18$ bus width, ablock size is 512×18. If both the write and read ports are configured for $x 9$ bus width, a block size is 1,024 x9. Queues can be built fromtheseblocks to make any size queue desired and any number of queues desired.

BUS WIDTHS

The inputport is commonto all queues within the device, as is the output port. The device providestheuserwith BusMatching options such thatthe inputport and output port can be either x9 orx18bits wide, the read and write port widths being set independently of one another. Because the ports are common to all queues the width of the queues is not individually set, so that the input width of all queues are equal and the output width of all queues are equal.

WRITING TO \& READING FROM THE MULTI-QUEUE

Data being written into the device via the input port is directed to a discrete queue viathe write queue selectaddress inputs. Conversely, databeing read fromthe device read portis read from aqueue selected viathe readqueue select address inputs. Data can be simultaneously written into and read fromthe same queue or different queues. Once a queue is selected for data writes or reads, the writing and reading operation is performed in the same manner as a conventional IDT synchronous FIFO, utilizing clocks and enables, there is a single clock and enable per port. When a specific queue is addressed on the write port, data placed on the data inputs is written to that queue sequentially based on the rising edge of a write clock provided setup and hold times are met. Conversely, data is read on to the output portafter an access time from a rising edge on a read clock.

Theoperation ofthe write port is comparable tothe function of a conventional FIFO operating in standard IDT mode. Write operations can be performed on the write portprovidedthatthequeue currently selected is notfull, afullflag output provides status of the selected queue. The operation of the read port is comparable to the function of a conventional FIFO operating in FWFT mode. When a queue is selected on the output port, the next word in that queue will automatically fall through to the output register. All subsequent words from that queue require an enabled read cycle. Data cannot be read from a selected queue ifthatqueue is empty, the read portprovides anOutputValidflagindicating when data read out is valid. If the user switches to a queue that is empty, the last word from the previous queue will remain on the output register.

As mentioned, the write porthas a full flag, providing full status of the selected queue. Along with the full flaga dedicatedalmostfullflagis provided, this almost full flag is similar to the almostfull flag of a conventional IDT FIFO. The device provides a user programmable almost full flag for all 16 queues and when a respectivequeue is selected onthe write port, thealmostfullflag providesstatus for that queue. Conversely, the read port has an output valid flag, providing status of the data being read from the queue selected on the read port. As well as the output valid flag the device provides a dedicated almostempty flag. This almostempty flag is similartothe almostempty flag of a conventional IDTFIFO. The device provides auser programmable almostempty flag for all 16 queues and when a respective queue is selected on the read port, the almostempty flag provides status for that queue.

PROGRAMMABLE FLAG BUSSES

Inadditiontothesededicatedflags, full\& almostfull onthe write portand output valid \&almostempty onthe read port, there aretwo flag status busses. Analmost fullflag status bus is provided, this bus is 8 bits wide. Also, an almostempty flag status bus is provided, again this bus is 8 bits wide. The purpose of these flag busses is to provide the user with a means by which to monitor the data levels within queues that may notbe selected on the write or read port. As mentioned, the device provides almostfull and almostempty registers (programmable by the user) for each of the 16 queues in the device.
In the IDT72V51433/72V51443/72V51453 multi-queue flow-control devices the user has the option of utilizing anywhere between 1 and 16 queues, therefore the 8 bitflag status busses are multiplexed between the 16 queues, a flag bus can only provide status for 8 of the 16 queues at any moment, this is referredto as a "Sector", such that whenthe bus is providing status of queues 1 through 8 , this is sector 1 , when it is queues 9 through 16 , this is sector 2 . If less than 16 queues are setup in the device, there are still 2 sectors, such that in "Polled" mode of operation the flag bus will still cycle through 2 sectors. Iffor exampleonly 14 queues are setup, sector 1 will reflectstatus of queues 1 through 8 . Sector 2 will reflect the status of queues 9 through 14 on the least significant 6 bits, the most significant 2 bits of the flag bus are don't care.
The flag busses are available in two user selectable modes of operation, "Polled" or "Direct". When operating in polled mode a flag bus provides status of each sector sequentially, that is, on each rising edge of a clock the flag bus is updated to show the status of each sector in order. The rising edge of the write clock will updatethealmostfull bus and arising edge onthe read clock will update the almost empty bus. The mode of operation is always the same for both the almostfull and almostempty flag busses. When operating in direct mode, the sector on the flag bus is selected by the user. Sothe user can actually address the sector to be placed on the flag status busses, these flag busses operate independently of one another. Addressing of the almost full flag bus is donevia the write port and addressing of the almost empty flag bus is done via the read port.

EXPANSION

Expansion of multi-queue devices is also possible, up to 8 devices can be connected in a parallelfashion providing the possibility of both depth expansion or queue expansion. Depth Expansion means expanding the depths of individual queues. Queue expansion means increasing the total number of queues available. Depth expansion is possible by virtue of the fact that more memory blocks within a multi-queue device can be allocated to increase the depth of a queue. For example, depth expansion of 8 devices provides the possibility of 8queues of $32 \mathrm{~K} x 18$ deep withinthe IDT72V51433,64Kx18deep within the IDT72V51443, and 128K x 18 deep within the IDT72V51453, each
queue being setup within a single device utilizing all memory blocks available to produce a single queue. This is the deepest queue that can setup within a device.

For queue expansion a maximum number of $128(8 \times 16)$ queues may be setup. If less queues are setup, then more memory blocks will be available to
increase queue depths if desired. When connecting multi-queue devices in expansion mode all respective inputpins (data \& control) and outputpins (data \& flags), should be "connected" together between individual devices.

PIN DESCRIPTIONS

Symbol	Name	I/OTYPE	Description
$\begin{aligned} & \mathrm{D}[17: 0] \\ & \text { Din } \end{aligned}$	DatalnputBus	LVTTL INPUT	These are the 18 data input pins. Data is written into the device via these input pins on the rising edge of WCLK provided that $\overline{W E N}$ is LOW. Due to bus matching notall inputs may be used, any unused inputs should betiedLOW.
DF ${ }^{(1)}$	DefaultFlag	$\begin{aligned} & \text { LVTTL } \\ & \text { INPUT } \end{aligned}$	If the user requires defaultprogramming of the multi-queue device, this pin must be setup before Master Reset and mustnottoggle during any device operation. The state of this inputat master reset determines the value of the $\overline{\mathrm{PAE}} / \overline{\mathrm{PAF}}$ flag offsets. If $D F$ is LOW the value is 8 , if DF is HIGH the value is 128 .
DFM ${ }^{(1)}$	DefaultMode	LVTTL INPUT	The multi-queue device requires programming after master reset. The user can do this serially via the serial port, or the user can use the defaultmethod. IfDFM is LOW at master reset then serial mode will be selected, if HIGHthen defaultmode is selected.
ESTR	$\overline{\text { PAEn Flag Bus }}$ Strobe	LVTTL INPUT	If directoperation of the $\overline{\mathrm{PAE}}$ n bus has been selected, the ESTR input is used in conjunction with RCLK and the RDADD bus to select a sector of queues to be placed on to the $\overline{\text { PAE }}$ bus outputs. A sector addressed via the RDADD bus is selected on the rising edge of RCLK provided that ESTR is HIGH. If Polled operations has been selected, ESTR should be tied inactive, LOW. Note, that a $\overline{\text { PAEn flag bus }}$ selection cannotbe made, (ESTR mustNOT goactive) until programming of the parthas been completed and $\overline{\text { SENO }}$ has gone LOW.
ESYNC	$\overline{\text { PAEn Bus Sync }}$	LVTTL OUTPUT	ESYNC is an output from the multi-queue device that provides a synchronizing pulse for the $\overline{\mathrm{PAE}}$ n bus during Polledoperation ofthe $\overline{\text { PAE }}$ bus. During Polled operationeach sector of queue statusflags is loaded on to the $\overline{\text { PAE }}$ bus outputs sequentially based on RCLK. The first RCLK rising edge loads sector 1 on to $\overline{\mathrm{PAE}}$, the second RCLK rising edge loads sector 2 . The third RCLK rising edge will again load sector 1. During the RCLK cyclethatsector 1 of a selected device is placed ontothe $\overline{\text { PAEn }}$ bus, the ESYNC output will be HIGH. For sector 2 of that device, the ESYNC output will be LOW.
EXI	PAEnBus Expansion In	LVTTL INPUT	The EXI input is used when multi-queue devices are connected in expansion mode and Polled $\overline{\mathrm{PAE}}$ n bus operation has been selected. EXI of device ' N ' connects directly to EXO of device ' $\mathrm{N}-1$ '. The EXI receives a token from the previous device in a chain. In single device mode the EXI input must be tied LOW ifthe $\overline{\text { PAEn }}$ bus is operated in direct mode. Ifthe $\overline{\text { PAEn bus is operated in polled mode the EXI input }}$ must be connected to the EXO output of the same device. In expansion mode the EXI of the first device should be tied LOW, when direct mode is selected.
EXO	$\overline{\text { PAEn Bus }}$ ExpansionOut	LVTTL OUTPUT	EXO is an output that is used when multi-queue devices are connected in expansion mode and Polled pin pulses when device N has placed its 2nd sector on to the $\overline{\text { PAE }}$ bus with respect to RCLK. This pulse (token) is then passed on to the next device in the chain ' $\mathrm{N}+1$ ' and on the next RCLK rising edge the first sector of device $\mathrm{N}+1$ will be loaded on to the $\overline{\text { PAEn bus. This continues through the chain and EXO of the }}$ last device is then looped back to EXI of the first device. The ESYNC output of each device in the chain provides synchronization to the user of this looping event.
$\overline{\mathrm{F}} \overline{\mathrm{F}}$	Full Flag	LVTTL OUTPUT	This pin provides the full flag output for the active queue, that is, the queue selected on the input port for write operations, (selected via WCLK, WRADD bus and WADEN). On the WCLK cycle after a queue selection, this flag will show the status of the newly selected queue. Data can be written to this queue on the next cycle provided $\overline{\mathrm{FF}}$ is HIGH. This flag has High-Impedance capability, this is important during expansion of devices, when the $\overline{F F}$ flag output of upto 8 devices may be connected together ona common line. The device with a queue selected takes control of the $\overline{F F}$ bus, all other devices place their $\overline{F F}$ output into High-Impedance. When a queue selection is made on the write portthis output will switch from High-Impedance control on the next WCLK cycle. This flag is synchronized to WCLK.
FM ${ }^{(1)}$	Flag Mode	LVTTL INPUT	This pin is setup before a master reset and must not toggle during any device operation. The state of the FM pinduringMaster Resetwill determine whetherthe $\overline{\text { PAF }}$ nand $\overline{\mathrm{PAE}}$ flagbusses operate in either Polled or Direct mode. If this pin is HIGH the mode is Polled, if LOW then it will be Direct.
FSTR	$\overline{\text { PAFn Flag Bus }}$ Strobe	LVTTL INPUT	If direct operation of the $\overline{\mathrm{PAF}}$ n bus has been selected, the FSTR input is used in conjunction with WCLK and the WRADD bus to select a sector of queues to be placed on to the $\overline{\text { PAF }}$ n bus outputs. A sector addressed via the WRADD bus is selected on the rising edge of WCLK provided that FSTR is HIGH. If Polled operations has been selected, FSTR should be tied inactive, LOW. Note, that a $\overline{\text { PAF }}$ n flag bus selection cannotbe made, (FSTR mustNOT go active) until programming of the parthas been completed and $\overline{\text { SENO }}$ has gone LOW.

PIN DESCRIPTIONS (CONTINUED)

Symbol	Name	I/O TYPE	Description
FSYNC	$\overline{\text { PAF }}$ Bus Sync	LVTTL OUTPUT	FSYNC is an output from the multi-queue device that provides a synchronizing pulse for the $\overline{\text { PAF }}$ n bus during Polled operation of the $\overline{\text { PAF }}$ nbus. During Polled operationeach sector of queue status flags is loaded on to the $\overline{\mathrm{PAF}}$ n bus outputs sequentially based onWCLK. The firstWCLK rising edge loads sector 1 on to $\overline{\text { PAF }}$ n, the second WCLK rising edge loads sector 2. The third WCLK rising edge will again load sector 1 . During the WCLK cycle that sector 1 of a selected device is placed on to the $\overline{\mathrm{PAF}}$ n bus, the FSYNC output will be HIGH. For sector 2 of that device, the FSYNC output will be LOW.
FXI	$\overline{\text { PAFn Bus }}$ Expansion In	LVTTL INPUT	The FXI input is used when multi-queue devices are connected in expansion mode and Polled $\overline{\mathrm{PAF}} \mathrm{n}$ bus operation has been selected. FXI of device ' N ' connects directly to FXO of device ' $\mathrm{N}-1$ '. The FXI receives a token from the previous device in a chain. In single device mode the FXI input must be tied LOW ifthe $\overline{\mathrm{PAF}}$ nbus is operated indirectmode. Ifthe $\overline{\mathrm{PAF}}$ nbus is operated in polled mode the FXI input must be connected to the FXO output of the same device. In expansion mode the FXI of the first device should be tied LOW, when direct mode is selected.
FXO	$\overline{\text { PAFn Bus }}$ ExpansionOut	LVTTL OUTPUT	FXO is an output that is used when multi-queue devices are connected in expansion mode and Polled $\overline{\text { PAF }}$ n bus operation has been selected. FXO of device ' N ' connects directly to FXI of device ' $\mathrm{N}+1$ '. This pin pulses when device N has placed its 2nd sector on to the $\overline{\text { PAF }}$ b bus with respectto WCLK. This pulse (token) is then passed on to the next device in the chain ' $\mathrm{N}+1$ ' and on the next WCLK rising edge the first sector of device $\mathrm{N}+1$ will be loaded on to the $\overline{\mathrm{PAF}}$ nbus. This continues throughthe chain and FXO of the last device is then looped back to FXI of the first device. The FSYNC output of each device in the chain provides synchronization to the user of this looping event.
ID[2:0] ${ }^{(1)}$	Device ID Pins	LVTTL INPUT	Forthe 16Qmulti-queue device theWRADD and RDADD address busses are 8 bits wide. When aqueue selection takes place the 3 MSb's of this 8 bit address bus are used to address the specific device (the 5 LSb's are used to address the queue within that device). During write/read operations the 3 MSb 's of the address are compared to the device ID pins. The firstdevice in a chain of multi-queue's (connected in expansion mode), may be setup as ' 000 ', the second as ' 001 ' and so on through to device 8 which is'111', howeverthe ID does nothave to match the device order. In single device modethese pins should be setup as ' 000 ' and the 3 MSb's of the WRADD and RDADD address busses should betied LOW. The ID[2:0] inputs setup a respective devices ID during master reset. These ID pins mustnottoggle during any device operation. Note, the device selected as the 'Master' does not have to have the ID of ' 000 '.
IW ${ }^{(1)}$	InputWidth	LVTTL INPUT	IW selects the bus width for the data input bus. If IW is LOW during a Master Reset then the bus width is $x 18$, if HIGH then it is $x 9$.
MAST $^{(1)}$	MasterDevice	LVTTL INPUT	The state of this inputat Master Reset determines whether a given device (withinachain of devices), is the Masterdevice oraSlave. Ifthis pinisHIGH, the device is the masterifitis LOW thenitis a Slave. Themaster device is the firstto take control of all outputs after a master reset, all slave devices go to High-Impedance, preventing bus contention. If a multi-queue device is being used in single device mode, this pin must be set HIGH.
$\overline{\mathrm{MRS}}$	Master Reset	LVTTL INPUT	A master reset is performed bytaking $\overline{\mathrm{MRS}}$ from HIGH toLOW, to HIGH. Device programming is required aftermaster reset.
$\overline{\mathrm{OE}}$	OutputEnable	LVTTL INPUT	The Outputenable signal is an Asynchronous signal used to provide three-state control of the multi-queue data output bus, Qout. If a device has been configured as a "Master" device, the Qout data outputs will be in a Low Impedance condition if the $\overline{\mathrm{OE}}$ inputis LOW. If $\overline{\mathrm{OE}}$ is HIGH then the Qout data outputs will be in High Impedance. If a device is configured a "Slave" device, then the Qout data outputs will always be in High Impedance until that device has been selected on the Read Port, at which point $\overline{\text { OE }}$ provides threestate of that respective device.
$\overline{\mathrm{OV}}$	Output Valid Flag	LVTTL OUTPUT	This outputflag provides outputvalidstatusfor the data word present onthe multi-queueflow-control device data output port, Qout. This flag is therefore, 2-stage delayed to match the data output path delay. That is, there is a 2 RCLK cycle delay from the time agiven queue is selected for reads, to the time the $\overline{\mathrm{OV}}$ flag represents the data in that respective queue. When a selected queue on the read port is read to empty, the $\overline{\mathrm{OV}}$ flag will go HIGH, indicating that data on the output bus is not valid. The $\overline{\mathrm{OV}}$ flag also has HighImpedance capability, required when multiple devices are used and the $\overline{\mathrm{OV}}$ flags are tied together.
OW ${ }^{(1)}$	OutputWidth	LVTTL INPUT	OW selects the bus width forthe data output bus. If OW is LOW during a Master Reset then the bus width is $x 18$, if HIGH then it is $x 9$.

PIN DESCRIPTIONS (CONTINUED)

Symbol	Name	I/OTYPE	Description
$\overline{\text { PAE }}$	Programmable Almost-Empty Flag	LVTTL OUTPUT	This pin provides the Almost-Empty flag status for the queue that has been selected on the output port for read operations, (selected via RCLK, RDADD and RADEN). This pin is LOW when the selected queue is almost-empty. This flag output may be duplicated on one of the $\overline{\mathrm{PAE}}$ n bus lines. This flag is synchronized to RCLK.
$\overline{\text { PAEn }}$	Programmable Almost-Empty FlagBus	LVTTL OUTPUT	On the 16Q device the $\overline{\text { PAE }}$ nbus is 8 bits wide. This outputbus provides $\overline{\text { PAE }}$ status of 8 queues (1 sector), within a selected device, having a total of 2 sectors. During queue read/write operations these outputs provide programmable empty flag status, in either direct or polled mode. The mode of flag operation is determined during master resetviathe state of the FM input. This flag bus is capable of High-Impedance state, this is important during expansion of multi-queue devices. During direct operationthe $\overline{\mathrm{PAE}}$ bus is updated to show the $\overline{\mathrm{PAE}}$ status of a sector of queues within a selected device. Selection is made using RCLK, ESTR and RDADD. During Polled operation the $\overline{\text { PAE }} n$ bus is loaded with the $\overline{\text { PAE }}$ status of multi-queue flow-control sectors sequentially based on the rising edge of RCLK.
$\overline{\text { PAF }}$	Programmable Almost-Full Flag	LVTTL OUTPUT	This pin provides the Almost-Fullflag status for the queue that has been selected on the inputportforwrite operations, (selected via WCLK, WRADD and WADEN). This pin is LOW when the selected queue is almost-full. Thisflagoutputmaybeduplicatedononeofthe $\overline{\text { PAF }}$ nbuslines. ThisflagissynchronizedtoWCLK.
$\overline{\text { PAF }}$	Programmable Almost-FullFlagBus	LVTTL OUTPUT	On the 16Q device the $\overline{\text { PAF }}$ bus is 8 bits wide. At any one time this output bus provides $\overline{\mathrm{PAF}}$ status of 8 queues (1 sector), within a selected device, having a total of 2 sectors. During queue read/write operations these outputs provide programmable full flag status, in eitherdirectorpolledmode. The mode of flag operation is determined during master reset via the state of the FM input. This flag bus is capable of High-Impedancestate, thisis importantduring expansion of multi-queuedevices. Duringdirectoperation the $\overline{\text { PAF }}$ n bus is updated to show the $\overline{\mathrm{PAF}}$ status of a sector of queues within a selected device. Selection is made using WCLK, FSTR, WRADD and WADEN. During Polled operation the PAFn bus is loaded with the $\overline{\text { PAF }}$ status of multi-queue flow-control sectors sequentially based on the rising edge of WCLK.
$\overline{\text { PRS }}$	Partial Reset	LVTTL INPUT	APartial Resetcanbeperformedonasinglequeueselected withinthemulti-queuedevice. BeforeaPartial Reset can be performed on a queue, that queue must be selected on both the write port and read port 2 clock cycles before the reset is performed. A Partial Reset is then performed by taking $\overline{\text { PRS }}$ LOW for one WCLK cycle and one RCLK cycle. The Partial Reset will only reset the read and write pointers to the first memory location, none of the devices configuration will be changed.
Q[17:0] Qout	Data OutputBus	LVTTL OUTPUT	These are the 18 data output pins. Data is read out of the device via these output pins on the rising edge of RCLK provided that $\overline{\mathrm{REN}}$ is LOW, $\overline{\mathrm{OE}}$ is LOW and the queue is selected. Due to bus matching not all outputs may be used, any unused outputs should not be connected.
RADEN	Read Address Enable	LVTTL INPUT	The RADEN input is used in conjunction with RCLK and the RDADD address bus to select a queue to be read from. A queue addressed via the RDADD bus is selected on the rising edge of RCLK provided that RADEN is HIGH. RADEN should be asserted (HIGH) only during a queue change cycle(s). RADEN should notbe permanently tied HIGH. RADEN cannotbe HIGH for the same RCLK cycle asESTR. Note, that a read queue selection cannotbe made, (RADEN mustNOT go active) until programming of the part has been completed and $\overline{\text { SENO }}$ has gone LOW.
RCLK	Read Clock	LVTTL INPUT	When enabled by $\overline{R E N}$, the rising edge of RCLK reads data from the selected queue via the output bus Qout. The queue to be read is selected via the RDADD address bus and a rising edge of RCLK while RADEN is HIGH. A rising edge of RCLK in conjunction with ESTR and RDADD will also select the $\overline{\text { PAE }}$ flag sector to be placed onthe $\overline{\text { PAE }}$ b bus during directflag operation. During polled flag operation and $\overline{\mathrm{OV}}$ outputs are all synchronized to RCLK. During device expansion the EXO and EXI signals are based on RCLK. RCLK must be continuous and free-running.
RDADD [7:0]	Read Address Bus	LVTTL INPUT	For the 16Q device the RDADD bus is 8 bits. The RDADD bus is a dual purpose address bus. The first function of RDADD is to selectaqueue to be read from. Theleastsignificant 4bits of the bus, RDADD[3:0] are used toaddress 1 of 16 possiblequeues within a multi-queue device. Address pin, RDADD[4]provides the user with a Null-Q address. If the user does not wish to address one of the 16 queues, a Null-Q can be addressedusing this pin. The Null-Qoperation is discussed in more detail later. The mostsignificant 3 bits, RDADD[7:5] are used to select 1 of 8 possible multi-queue devices that may be connected in expansion mode. These 3 MSb's will address a device with the matching ID code. The address present on the RDADD bus will be selected on a rising edge of RCLK provided that RADEN is HIGH, (note, that

PIN DESCRIPTIONS (CONTINUED)

Symbol	Name	I/OTYPE	Description
RDADD [7:0] (Continued)	Read Address Bus	LVTTL INPUT	data can be placed ontothe Qoutbus, read from the previously selected queue on this RCLKedge). On the next rising RCLK edge aftera read queue select, a data word from the previous queue will be placed ontothe outputs, Qout, regardless of the $\overline{R E N}$ input. Two RCLK rising edges after read queue select, data will be placed on to the Qout outputs from the newly selected queue, regardless of $\overline{R E N}$ due to the first word fall through effect. The second function of the RDADD bus is to select the sector of queues to be loaded on to the $\overline{\text { PAEn }}$ bus during strobed flag mode. The least significant bit, RDADD[0] is used to select the sector of a device to possible multi-queue devices that may be connected in expansion mode. Address bits RDADD[4:2] are don't care during sector selection. The sector address presentonthe RDADD bus will be selected on the rising edge of RCLK provided that ESTR is HIGH, (note, that data can be placed on to the Qoutbus, read fromthe previously selectedqueue onthis RCLKedge). Please referto Table2fordetails on RDADD bus.
$\overline{\mathrm{REN}}$	Read Enable	LVTTL INPUT	The $\overline{R E N}$ input enables read operations from a selected queue based on a rising edge of RCLK. A queue to be read from can be selected via RCLK, RADEN and the RDADD address bus regardless of the state of $\overline{R E N}$. Datafrom anewly selected queue will be availableonthe Qoutoutputbus onthe second RCLK cycle after queue selection regardless of $\overline{\text { REN }}$ due to the FWFT operation. A read enable is not required to cycle the $\overline{\mathrm{PAE}}$ bus (in polled mode) or to select the $\overline{\mathrm{PAE}}$ n sector, (in direct mode).
SCLK	Serial Clock	LVTTL INPUT	If serial programming of the multi-queue device has been selected during master reset, the SCLK input clocks the serial datathrough the multi-queue device. Data setup on the SI inputisloaded into the device on the rising edge of SCLK provided that $\overline{\text { SENI }}$ is enabled, LOW. When expansion of devices is performed the SCLK of all devices should be connected to the same source.
$\overline{\text { SEN }}$	Serial InputEnable	LVTTL INPUT	During serial programming of a multi-queue device, dataloaded onto the SI input will be clocked into the part (via a rising edge of SCLK), provided the $\overline{\text { SENI }}$ input of that device is LOW. If multiple devices are cascaded, the $\overline{\mathrm{SENN}}$ input should be connected to the $\overline{\mathrm{SENO}}$ output of the previous device. So when serial loading of a given device is complete, its $\overline{\text { SENO }}$ output goes LOW, allowing the next device in the chain to be programmed ($\overline{\mathrm{SENO}}$ will follow $\overline{\mathrm{SENI}}$ of a given device once that device is programmed). The $\overline{\mathrm{SENI}}$ input of the master device (or single device), should be controlled by the user.
$\overline{\text { SENO }}$	Serial OutputEnable	LVTTL OUTPUT	This output is used to indicate that serial programming or default programming of the multi-queue device has been completed. $\overline{\text { SENO follows } \overline{S E N I}}$ once programming of a device is complete. Therefore, $\overline{\mathrm{SENO}}$ will go LOW after programming provided $\overline{\text { SENI }}$ is LOW, once $\overline{\mathrm{SENN}}$ is taken HIGH again, $\overline{\mathrm{SENO}}$ will also go HIGH. When the SENO output goes LOW, the device is ready to begin normal read/write operations. If multiple devices are cascaded and serial programming of the devices will be used, the $\overline{\text { SENO }}$ output should be connected to the $\overline{\text { SENI }}$ input of the next device in the chain. When serial programming of the first device is complete, $\overline{\text { SENO }}$ will go LOW, thereby taking the $\overline{\text { SEN }}$ input of the next device LOW and so on throughout the chain. When a given device in the chain is fully programmed the $\overline{\mathrm{SENO}}$ output essentiallyfollowsthe $\overline{S E N I}$ input. The usershouldmonitorthe $\overline{\mathrm{SENO}}$ output ofthe final device inthechain. When this output goes LOW, serial loading of all devices has been completed.
SI	Serial In	LVTTL INPUT	During serial programming this pin is loaded withthe serial datathat will configure the multi-queue devices. Data present on SI will be loaded on a rising edge of SCLK provided that SENI is LOW. In expansion mode the serial datainputisloaded into the firstdevice in achain. Whenthat device is loaded and its $\overline{S E N O}$ has gone LOW, the data presentonSI will be directly outputtotheSO output. TheSO pin of the first device connects to the SI pin of the second and so on. The multi-queue device setup registers are shift registers.
SO	Serial Out	LVTTL OUTPUT	This output is used in expansion mode and allows serial data to be passed through devices in the chain to complete programming of all devices. The Sl of a device connects to SO of the previous device inthe chain. The SO of the final device in a chain should not be connected.
TCK ${ }^{(2)}$	JTAG Clock	LVTTL INPUT	Clock input for JTAG function. One of four terminals required by IEEE Standard 1149.1-1990. Test operations of the device are synchronousto TCK. Datafrom TMS and TDI are sampled onthe rising edge of TCK and outputs change on the falling edge of TCK. If the JTAG function is not used this signal needs to be tied to GND.
TDI ${ }^{(2)}$	JTAG Test Data Input	LVTTL INPUT	One of four terminals required by IEEE Standard 1149.1-1990. During the JTAG boundary scan operation, test data serially loaded viathe TDI on the rising edge of TCK to either the Instruction Register, ID Register and Bypass Register. An internal pull-up resistor forces TDI HIGH if left unconnected.

PIN DESCRIPTIONS (CONTINUED)

Symbol	Name	I/OTYPE	Description
TDO ${ }^{(2)}$	JTAG TestData Output	LVTTL OUTPUT	One of four terminals required by IEEE Standard 1149.1-1990. During the JTAG boundary scan operation, test data serially loaded outputviatheTDO on the falling edge of TCK from eitherthe Instruction Register, ID Register and Bypass Register. This output is high impedance except when shifting, while in SHIFT-DR and SHIFT-IR controller states.
TMS ${ }^{(2)}$	JTAGModeSelect	LVTTL INPUT	TMS is a serial inputpin. One offourterminals required by IEEE Standard 1149.1-1990. TMS directs the device through its TAP controller states. An internal pull-up resistorforces TMSHIGH ifleft unconnected.
$\overline{\mathrm{TRST}^{(2)}}$	JTAGReset	LVTTL INPUT	TRST is anasynchronous resetpinfortheJTAG controller. TheJTAG TAP controllerdoes notautomatically resetupon power-up, thusitmustbe resetby eitherthissignal orby setting TMS=HIGHforfiveTCK cycles. If the TAP controller is not properly reset then the outputs will always be in high-impedance. If the JTAG function is used but the user does not want to use $\overline{T R S T}$, then $\overline{\text { TRST }}$ can be tied with $\overline{M R S}$ to ensure proper queue operation. If the JTAG function is not used then this signal needs to be tied to GND. An internal pull-up resistorforces TRSTHIGH ifleft unconnected.
WADEN	Write Address Enable	LVTTL INPUT	The WADEN input is used in conjunction with WCLK and the WRADD address bus to select a queue to be written into. Aqueue addressed viatheWRADD bus is selected on the rising edge of WCLK provided that WADEN is HIGH. WADEN should be asserted (HIGH) only during aqueue changecycle(s). WADEN should notbe permanently tiedHIGH.WADEN cannotbeHIGHforthe sameWCLKcycle asFSTR. Note, that a write queue selection cannotbe made, (WADEN mustNOT go active) until programming of the part has been completed and $\overline{\text { SENO }}$ has gone LOW.
WCLK	WriteClock	LVTTL INPUT	When enabled by $\overline{W E N}$, the rising edge of WCLK writes data into the selected queue via the input bus, Din. The queue to be writtento is selected viatheWRADD address bus and a rising edge of WCLK while WADEN is HIGH. A rising edge of WCLK in conjunction with FSTR andWRADD will also select the flag sector to be placed on the $\overline{\mathrm{PAF}}$ n bus during direct flag operation. During polledflag operation the $\overline{\mathrm{PAF}} n$ bus is cycled with respectto WCLK and the FSYNC signal is synchronized to WCLK. The $\overline{\mathrm{PAF}} n, \overline{\mathrm{PAF}}$ and $\overline{F F}$ outputs are all synchronized to WCLK. During device expansionthe FXO and FXI signals are based on WCLK. The WCLK must be continuous and free-running.
$\overline{W E N}$	Write Enable	LVTTL INPUT	The $\overline{W E N}$ inputenables write operations to a selected queue based on a rising edge of WCLK. A queue to be written to can be selected viaWCLK, WADEN and the WRADD address bus regardless of the state of WEN. Data present on Din can be written to a newly selected queue on the second WCLK cycle after queue selection provided that $\overline{W E N}$ is LOW. A write enable is not required to cycle the $\overline{\mathrm{PAF}}$ nbus (in polled mode) or to select the $\overline{\text { PAF }}$ n sector, (in direct mode).
WRADD [6:0]	Write Address Bus	LVTTL INPUT	For the 16Q device the WRADD bus is 7 bits. The WRADD bus is a dual purpose address bus. The first function ofWRADD is to selecta queue to be writtento. The leastsignificant 4 bits of the bus, WRADD[3:0] are used to address 1 of 16 possible queues within a multi-queue device. The most significant 3 bits, WRADD[6:4] are used to select 1 of 8 possible multi-queue devices that may be connected in expansion mode. These 3 MSb's will address a device with the matching ID code. The address present on the WRADD bus will be selected on a rising edge of WCLK provided that WADEN is HIGH, (note, that data present on the Din bus can be written into the previously selected queue on this WCLK edge and on the next rising WCLK also, providing that $\overline{W E N}$ is LOW). Two WCLK rising edges after write queue select, data can be written into the newly selected queue. The second function of the WRADD bus is to select the sector of queues to be loaded on to the $\overline{\text { PAF }} n$ bus during strobed flag mode. The least significantbit, WRADD[0] is used to select the sector of a device tobeplaced onthe $\overline{\text { PAFnbus. The mostsignificant3bits, WRADD[6:4]areagain usedtoselect } 1 \text { of } 8 \text { possible }}$ multi-queue devices that may be connected in expansion mode. Address bitsWRADD[3:1]are don'tcare during sector selection. The sector address presentontheWRADD bus will be selected onthe rising edge of WCLK provided that FSTR is HIGH, (note, that data can be written into the previously selected queue on this WCLK edge). Please refer to Table 1 for details on the WRADD bus.
Vcc	+3.3V Supply	Power	These are Vcc power supply pins and must all be connected to a +3.3 V supply rail.
GND	Ground Pin	Ground	These are Ground pins and must all be connected to the GND supply rail.

NOTES:

1. Inputs should not change after Master Reset.
2. These pins are for the JTAG port. Please refer to pages 45-49 and Figures 29-31.

ABSOLUTE MAXIMUM RATINGS

Symbol	Rating	Com'I \& Ind'I	Unit
VTERM	TerminalVoltage with respect to GND	-0.5 to +4.5	V
TSTG	Storage Temperature	-55 to +125	${ }^{\circ} \mathrm{C}$
IOUT	DCOutputCurrent	-50 to +50	mA

NOTE:

1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

RECOMMENDED DC OPERATING CONDITIONS

Symbol	Parameter	Min.	Typ.	Max.	Unit
Vcc ${ }^{(1)}$	Supply Voltage (Com'//Ind')	3.15	3.3	3.45	V
GND	Supply Voltage (Com'//Ind'I)	0	0	0	V
VIH	InputHigh Voltage (Com'//Ind'I)	2.0	-	Vcc+0.3	V
VIL	InputLow Voltage (Com'//Ind'I)	-	-	0.8	V
TA	OperatingTemperatureCommercial	0	-	+70	${ }^{\circ} \mathrm{C}$
TA	OperatingTemperature Industrial	-40	-	+85	${ }^{\circ} \mathrm{C}$

NOTE:

1. $\mathrm{Vcc}=3.3 \mathrm{~V} \pm 0.15 \mathrm{~V}$, JEDEC JESD8-A compliant.

DC ELECTRICALCHARACTERISTICS

(Commercial: $\mathrm{VCC}=3.3 \mathrm{~V} \pm 0.15 \mathrm{~V}, \mathrm{TA}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$;Industrial: $\mathrm{VCC}=3.3 \mathrm{~V} \pm 0.15 \mathrm{~V}, \mathrm{TA}=40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$; JEDEC JESD8-A compliant)

Symbol	Parameter	Min.	Max.	Unit
$\mathrm{ILI}^{(1)}$	InputLeakageCurrent	-10	10	$\mu \mathrm{~A}$
$\mathrm{ILO}(2)$	OutputLeakageCurrent	-10	10	$\mu \mathrm{~A}$
VOH	Output Logic "1" Voltage, $\mathrm{IOH}=-8 \mathrm{~mA}$	2.4	-	V
VOL	Output Logic "0" Voltage, $\mathrm{IOL}=8 \mathrm{~mA}$	-	0.4	V
$\mathrm{ICC1} 1^{(3,4,5)}$	Active Power Supply Current	-	100	mA
$\mathrm{ICC2}^{(3,6)}$	Standby Current	-	25	mA

NOTES:

1. Measurements with $0.4 \leq \mathrm{VIN} \leq \mathrm{Vcc}$.
2. $\overline{\mathrm{OE}} \geq \mathrm{VIH}, 0.4 \leq$ Vout $\leq \mathrm{VCC}$.
3. Tested with outputs open (lout $=0$).
4. RCLK and WCLK toggle at 20 MHz and data inputs switch at 10 MHz .
5. Typical $\operatorname{IcC1}=16+3.14^{*} f s+0.02^{*} \mathrm{CL}^{*} \mathrm{fs}$ (in mA) with $\mathrm{VCC}=3.3 \mathrm{~V}, \mathrm{tA}=25^{\circ} \mathrm{C}$, fs $=$ WCLK frequency $=$ RCLK frequency (in MHz , using TTL levels), data switching at fs/2, $C L=$ capacitive load (in pF).
6. RCLK and WCLK, toggle at 20 MHz .

The following inputs should be pulled to GND: WRADD, RDADD, WADEN, RADEN, FSTR, ESTR, SCLK, SI, EXI, FXI and all Data Inputs.
The following inputs should be pulled to Vcc: $\overline{\mathrm{WEN}}, \overline{\mathrm{REN}}, \overline{\mathrm{SENI}}, \overline{\mathrm{PRS}}, \overline{\mathrm{MRS}}$, TDI, TMS and $\overline{\text { TRST. }}$
All other inputs are don't care, and should be pulled HIGH or LOW.

CAPACITANCE $\left(\mathrm{TA}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}\right)$

Symbol	Parameter ${ }^{(1)}$	Conditions	Max.	Unit
$\mathrm{CIN}^{(2)}$	Input Capacitance	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$	10	pF
CouT $^{(1,2)}$	Output Capacitance	Vout $=0 \mathrm{~V}$	10	pF

NOTES:

1. With output deselected, ($\overline{\mathrm{OE}} \geq \mathrm{V} \mathrm{IH}$).
2. Characterized values, not currently tested.

AC TEST LOADS

Figure 2a. AC Test Load

Figure 2b. Lumped Capacitive Load, Typical Derating

AC TEST CONDITIONS

Input Pulse Levels	GND to 3.0V
InputRise/FallTimes	1.5 ns
InputTimingReferenceLevels	1.5 V
OutputReferenceLevels	1.5 V
OutputLoad	See Figure 2a \& 2b

OUTPUT ENABLE \& DISABLE TIMING

AC ELECTRICAL CHARACTERISTICS

(Commercial: $\mathrm{VCC}=3.3 \mathrm{~V} \pm 0.15 \mathrm{~V}, \mathrm{TA}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$; Industrial: $\mathrm{VcC}=3.3 \mathrm{~V} \pm 0.15 \mathrm{~V}, \mathrm{TA}=40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$; JEDEC JESD8-A compliant)

Symbol	Parameter	CommercialIDT72V51433L6IDT72V51443L6IDT72V51453L6		Com'I \& Ind'\|(1)IDT72V51433L7-5IDT72V51443L7-5IDT72V51453L7-5		Unit
		Min.	Max.	Min.	Max.	
fs	Clock Cycle Frequency (WCLK \& RCLK)	-	166	-	133	MHz
tA	Data Access Time	0.6	3.7	0.6	4	ns
tCLK	Clock Cycle Time	6	-	7.5	-	ns
tCLKH	Clock High Time	2.7	-	3.5	-	ns
tCLKL	Clock Low Time	2.7	-	3.5	-	ns
tos	DataSetup Time	2	-	2.0	-	ns
DH	DataHold Time	0.5	-	0.5	-	ns
tens	EnableSetup Time	2	-	2.0	-	ns
EENH	Enable Hold Time	0.5	-	0.5	-	ns
trs	ResetPulse Width	10	-	10	-	ns
tRSS	ResetSetup Time	15	-	15	-	ns
tRSR	Reset Recovery Time	10	-	10	-	ns
tPRSS	Partial ResetSetup	2.0	-	2.5	-	ns
tPRSH	Partial Reset Hold	0.5	-	0.5	-	ns
tolz ($\overline{\mathrm{E}}$-Qn) ${ }^{(2)}$	OutputEnableto Outputin Low-Impedance	0.6	3.7	0.6	4	ns
tohz ${ }^{(2)}$	OutputEnableto OutputinHigh-Impedance	0.6	3.7	0.6	4	ns
toe	OutputEnableto Data Output Valid	0.6	3.7	0.6	4	ns
fc	Clock Cycle Frequency (SCLK)	-	10	-	10	MHz
tsclk	Serial Clock Cycle	100	-	100	-	ns
tSCKH	Serial Clock High	45	-	45	-	ns
tsckL	Serial Clock Low	45	-	45	-	ns
tsDS	Serial Data In Setup	20	-	20	-	ns
tSDH	Serial Data In Hold	1.2	-	1.2	-	ns
tsens	Serial Enable Setup	20	-	20	-	ns
tSENH	Serial Enable Hold	1.2	-	1.2	-	ns
tsDO	SCLK to Serial Data Out	-	20	-	20	ns
tseno	SCLK to Serial Enable Out	-	20	-	20	ns
tSDOP	Serial Data Out Propagation Delay	1.5	3.7	1.5	4	ns
tSENOP	Serial Enable Propagation Delay	1.5	3.7	1.5	4	ns
tPCWQ	Programming Complete to Write Queue Selection	20	-	20	-	ns
tPCRQ	Programming Completeto Read Queue Selection	20	-	20	-	ns
tAS	Address Setup	2.5	-	3.0	-	ns
taH	Address Hold	1	-	1	-	ns
twFF	Write Clock to Full Flag	-	3.7	-	5	ns
trov	Read Clock to Output Valid	-	3.7	-	5	ns
tsTS	StrobeSetup	2	-	2	-	ns
tsth	Strobe Hold	0.5	-	0.5	-	ns
tos	QueueSetup	2	-	2.5	-	ns
tor	Queue Hold	0.5	-	0.5	-	ns
twaf	WCLK to $\overline{\text { PAF }}$ flag	0.6	3.7	0.6	4	ns
trae	RCLK to $\overline{\text { PAE }}$ flag	0.6	3.7	0.6	4	ns
tPAF	Write Clock to Synchronous Almost-Full Flag Bus	0.6	3.7	0.6	4	ns
tPAE	Read Clock to Synchronous Almost-Empty Flag Bus	0.6	3.7	0.6	4	ns

NOTES:

1. Industrial temperature range product for the $7-5$ ns is available as a standard device. All other speed grades available by special order.
2. Values guaranteed by design, not currently tested.

AC ELECTRICAL CHARACTERISTICS (CONTINUED)

(Commercial: $\mathrm{VCC}=3.3 \mathrm{~V} \pm 0.15 \mathrm{~V}, \mathrm{TA}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$; Industrial: $\mathrm{VCC}=3.3 \mathrm{~V} \pm 0.15 \mathrm{~V}, \mathrm{TA}=40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$; JEDEC JESD8-A compliant)

Symbol	Parameter	CommercialIDT72V51433L6IDT72V51443L6IDT72V51453L6		Com'l \& Ind'\|(1)IDT72V51433L7-5IDT72V51443L7-5IDT72V51453L7-5		Unit
		Min.	Max.	Min.	Max.	
tPAELZ ${ }^{(2)}$	RCLK to $\overline{\text { PAE Flag Bus to Low-Impedance }}$	0.6	3.7	0.6	4	ns
tPAEHZ ${ }^{(2)}$	RCLK to $\overline{\text { PAE }}$ Flag Bus to High-Impedance	0.6	3.7	0.6	4	ns
tPAFLZ ${ }^{(2)}$	WCLK to $\overline{\text { PAF }}$ Flag Bus to Low-Impedance	0.6	3.7	0.6	4	ns
tPAFHZ ${ }^{(2)}$	WCLK to $\overline{\text { PAF Flag Bus to High-Impedance }}$	0.6	3.7	0.6	4	ns
tFFHZ ${ }^{(2)}$	WCLK to Full Flag to High-Impedance	0.6	3.7	0.6	4	ns
tFFLZ ${ }^{(2)}$	WCLK to Full Flag to Low-Impedance	0.6	3.7	0.6	4	ns
tovLZ ${ }^{(2)}$	RCLK to Output Valid Flag to Low-Impedance	0.6	3.7	0.6	4	ns
toviz ${ }^{(2)}$	RCLK to Output Valid Flag to High-Impedance	0.6	3.7	0.6	4	ns
tFSYMC	WCLK to $\overline{\text { PAF }}$ Bus Sync to Output	0.6	3.7	0.6	4	ns
tFXO	WCLK to $\overline{\text { PAF }}$ Bus Expansion to Output	0.6	3.7	0.6	4	ns
tESYMC	RCLK to $\overline{\text { PAE }}$ Bus Sync to Output	0.6	3.7	0.6	4	ns
texo	RCLK to $\overline{\text { PAE }}$ Bus Expansion to Output	0.6	3.7	0.6	4	ns
tSKEW1	SKEW time between RCLK and WCLK for $\overline{\mathrm{FF}}$ and $\overline{\mathrm{OV}}$	4.5	-	5.75	-	ns
tSkEW2	SKEW time between RCLK and WCLK for $\overline{\overline{P A F}}$ and $\overline{\text { PAE }}$	6	-	7.5	-	ns
tSkEW3	SKEW time between RCLK and WCLK for $\overline{\text { PAF }}[0: 7]$ and $\overline{\text { PAE }}[0: 7]$	6	-	7.5	-	ns
tSkEW4	SKEW time between RCLK and WCLK for $\overline{\mathrm{OV}}$	6	-	7.5	-	ns
txIS	Expansion InputSetup	1.0	-	1.3	-	ns
txIH	Expansion InputHold	0.5	-	0.5	-	ns

NOTES:

1. Industrial temperature range product for the $7-5$ ns is available as a standard device. All other speed grades available by special order.
2. Values guaranteed by design, not currently tested.

FUNCTIONAL DESCRIPTION

MASTERRESET

A Master Reset is performed by toggling the $\overline{M R S}$ inputfrom HIGH to LOW toHIGH. During a master resetall internal multi-queue device setup and control registers are initialized and require programming either serially by the uservia the serial port, or using the default settings. During a master reset the state of the following inputs determine the functionality of the part, these pins should be held HIGH or LOW.

FM - Flag bus Mode
IW, OW-Bus Matching options
MAST - Master Device
ID0, 1, 2 - Device ID
DFM - Programming mode, serial or default
DF - Offset value for $\overline{\text { PAE }}$ and $\overline{\text { PAF }}$
Oncea master resethastaken place, the device mustbe programmed either serially or via the defaultmethod before any read/write operations can begin.

See Figure 4, Master Resetfor relevant timing.

PARTIALRESET

APartial Resetis a means by which the usercan resetboththe read and write pointers of a single queue that has been setup within a multi-queue device. Before a partial resetcantake place on a queue, the respective queue mustbe selected onboththe read portand write portaminimum of 2RCLK and2WCLK cyclesbeforethe $\overline{\mathrm{PRS}}$ goes LOW. The partial reset is then performed bytoggling the $\overline{P R S}$ inputfromHIGHtoLOW toHIGH, maintaining the LOW stateforatleast oneWCLKandoneRCLKcycle. Onceapartial resethastakenplaceaminimum of 3WCLK and3RCLK cycles mustoccurbeforeenabled writes or reads can occur.

A Partial Reset only resets the read and write pointers of a given queue, a partial resetwill not effect the overall configuration and setup of the multi-queue device and its queues.

See Figure 5, Partial Resetfor relevant timing.

SERIAL PROGRAMMING

The multi-queue flow-control device is a fully programmable device, providing the user withflexibility in how queues are configured interms of the number of queues, depth of each queue and position of the $\overline{\mathrm{PAF}} / \overline{\mathrm{PAE}}$ flags within respectivequeues. Alluserprogramming is doneviathe serial portafteramaster reset has taken place. Internally the multi-queue device has setup registers which must be serially loaded, these registers contain values for every queue within the device, such as the depth and $\overline{\mathrm{PAE}} / \overline{\mathrm{PAF}}$ offset values. The IDT72V51433/72V51443/72V51453 devices are capable of up to 16 queues and therefore contain 16 sets of registers for the setup of each queue.

DuringaMasterResetiftheDFM (DefaultMode)inputisLOW, thenthedevice will require serial programming by the user. It is recommended that the user utilize a 'C' program provided by IDT, this program will prompt the user for all information regarding the multi-queue setup. The program will then generate a serial bitstream which should be serially loaded into the device via the serial port. For the IDT72V51433/72V51443/72V51453 devices the serial programming requires a total number of serially loaded bits per device, (SCLK cycles with $\overline{\text { SENI }}$ enabled), calculated by: 19+(Qx72) whereQis the number of queues the user wishes to setup within the device. Please refer to the separate Application Note, AN-303for recommended control of the serial programming port.

Once the master reset is complete and $\overline{\mathrm{MRS}}$ is HIGH, the device can be serially loaded. Data present on the SI (serial in), input is loaded intothe serial port on a rising edge of SCLK (serial clock), provided that SENI (serial in
enable), is LOW. Once serial programming of the device has been successfully completed the device will indicatethis viathe $\overline{\mathrm{SENO}}$ (serial outputenable) going active, LOW. Upon detection of completion of programming, the user should ceaseall programming andtake $\overline{\mathrm{SEN}}$ inactive, HIGH. Note, $\overline{\mathrm{SENO}}$ follows $\overline{\mathrm{SENI}}$ once programming of a device is complete. Therefore, $\overline{\text { SENO }}$ will goLOW after programming provided $\overline{\mathrm{SEN}}$ is LOW, once $\overline{\mathrm{SENN}}$ is taken HIGH again, $\overline{\mathrm{SENO}}$ will also goHIGH. The operation of the SO outputis similar, when programming of a given device is complete, the SO output will follow the SI input.
Ifdevices arebeingused in expansion modethe serial ports of devices should be cascaded. The usercan load all devices via the serial input portcontrol pins, $\mathrm{SI} \& \overline{\mathrm{SENI}}$, of the first device in the chain. Again, the user may utilize the ' C ' programto generate the serial bitstream, the program prompting the userfor the number of devices to be programmed. The $\overline{\mathrm{SENO}}$ and SO (serial out) of the first device should be connected to the $\overline{\mathrm{SENI}}$ and SI inputs of the second device respectively and soon, with the $\overline{\mathrm{SENO}} \& \mathrm{SO}$ outputs connecting to the $\overline{\text { SENI }} \&$ S I inputs of all devices throughthe chain. All devices in the chain should beconnectedtoacommonSCLK. The serial outputportofthefinal device should be monitored by the user. When $\overline{\text { SENO }}$ of the final device goes LOW, this indicates that serial programming of all devices has been successfully completed. Upon detection of completion of programming, the user should cease all programming and take $\overline{\text { SENI }}$ of the first device in the chain inactive, HIGH.
As mentioned, the first device in the chain has its serial input port controlled by the user, this is the first device to have its internal registers serially loaded by the serial bitstream. When programming of this device is complete it will take its $\overline{\text { SENO }}$ output LOW and bypass the serial data loaded on the SI input to its SO output. The serial input of the second device in the chain is now loaded with the data from the SO of the first device, while the second device has its $\overline{\text { SENI }}$ input LOW. This process continues through the chain until all devices are programmed and the $\overline{\text { SENO }}$ of the final device goes LOW.
Once all serial programming has been successfully completed, normal operations, (queue selections on the read and write ports) may begin. When connected in expansion mode, the IDT72V51433/72V51443/72V51453devices require a total number of serially loaded bits per device to complete serial programming, (SCLK cycles with $\overline{S E N I}$ enabled), calculated by: n[19+(Qx72)] where Q is the number of queues the user wishes to setup within the device, where n is the number of devices in the chain.

See Figure6, Serial Port Connectionand Figure 7, Serial Programmingfor connection and timing information.

DEFAULTPROGRAMMING

During a Master Reset if the DFM (Default Mode) input is HIGH the multiqueue device will be configured for default programming, (serial programming is not permitted). Default programming provides the user with a simpler, however limited means by which to setup the multi-queueflow-control device, rather than using the serial programming method. The default mode will configure a multi-queue device such that the maximum number of queues possibleare setup, with all of the parts available memory blocks being allocated equally between the queues. The values of the $\overline{\mathrm{PAE}} / \overline{\mathrm{PAF}}$ offsets is determined by the state of the $D F$ (default) pin during a master reset.

For the IDT72V51433/72V51443/72V51453 devices the default mode will setup 16 queues, each queue configuredasfollows: For the IDT72V51433 with $x 9$ input and $x 9$ output ports, depth is 4,096 , if one orboth ports is $x 18$, then the depth is 2,048 . Forthe IDT72V51443 with $x 9$ input and $x 9$ outputports, depth is 8,192 , ifoneorboth portsis $x 18$, thenthe depthis 4,096 . FortheIDT72V51453 with $x 9$ input and $x 9$ output ports, depth is 16,384 , if one or both ports is $x 18$, then the depth is 8,192 . For both devices the value of the $\overline{\mathrm{PAE}} / \overline{\mathrm{PAF}}$ offsets is determined at master reset by the state of the $D F$ input. If DF is LOW then both the $\overline{\mathrm{PAE}} \& \overline{\mathrm{PAF}}$ offset will be 8 , if HIGH then the value is 128.

When configuringthe IDT72V51433/72V51443/72V51453 devices indefault mode the usersimply has to apply WCLK cycles after a master reset, until SENO goes LOW,thissignals thatdefaultprogrammingis complete. Theseclock cycles are required for the device to load its internal setup registers. When a single multi-queue device is used, the completion of device programming is signaled by the $\overline{\text { SENO }}$ output of a device going from HIGH to LOW. Note, that SENI mustbeheldLOW when adevice is setupfordefault programming mode.
When multi-queue devices are connected in expansion mode, the SENI of thefirstdeviceinachaincanbeheld LOW. The $\overline{\text { SENO }}$ ofadevice should connect tothe $\overline{\operatorname{SEN}}$ of the nextdevice in the chain. The $\overline{\operatorname{SENO}}$ of the final device is used toindicate that default programming of all devices is complete. When the final $\overline{\text { SENO }}$ goes LOW normal operations may begin. Again, all devices will be programmed with their maximum number of queues and the memory divided equally between them. Please refer to Figure 8, Default Programming.

WRITE QUEUE SELECTION \& WRITE OPERATION

The IDT72V51433/72V51443/72V51453 multi-queueflow-control devices have up to 16 queues that data can be written into via acommon write portusing the data inputs, Din, write clock, WCLK and write enable, $\overline{W E N}$. The queue address present on the write address bus, WRADD during a rising edge on WCLK while write address enable, WADEN is HIGH, is the queue selected for write operations. The state of $\overline{W E N}$ is don'tcare during the write queue selection cycle. The queue selection only has to be made on a single WCLK cycle, this will remain the selected queue until another queue is selected, the selected queue is always the last queue selected.

The write port is designed such that 100% bus utilization can be obtained. This means that data can be written into the device on every WCLK rising edge including the cycle that a new queue is being addressed. When a new queue is selected for write operations the address for that queue mustbe present on
theWRADD bus during a rising edge ofWCLK provided thatWADENisHIGH. A queue to be written to need only be selected on a single rising edge ofWCLK. All subsequent writes will be writtentothat queue until a new queue is selected. Aminimum of 2WCLK cycles mustoccurbetweenqueue selections onthewrite port. On the next WCLK rising edge the write port discrete full flag will update to show the full status of the newly selected queue. On the second rising edge of WCLK, data present on the datainputbus, Din can be written into the newly selected queue provided that $\overline{W E N}$ is LOW and the new queue is not full. The cycle of thequeue selection and the nextcycle will continue to write data present onthe data inputbus, Din into the previous queue provided thatWEN is active LOW.

If $\overline{W E N}$ is HIGH, inactive for these 2 clock cycles, then data will not be written in to the previous queue.
Ifthe newly selected queue isfull atthe pointofits selection, then writes to that queue will be prevented, a full queue cannot be written into.
In the 16 queue multi-queue device theWRADD address bus is 7 bits wide. The least significant 4 bits are used to address one of the 16 available queues within a single multi-queue device. The mostsignificant 3 bits are used when a device is connected in expansion mode, up to 8 devices can be connected in expansion, each device having its own 3 bit address. The selected device is theoneforwhichtheaddress matchesa3bitID code, which is statically setup on the ID pins, ID0, ID1, and ID2 of each individual device.
Note, theWRADD bus is also used in conjunction with FSTR (almostfullflag bus strobe), to address the almost full flag bus sector during direct mode of operation.

Referto Table 1, for Write Address bus arrangement. Also, refer to Figure 9, Write Queue Select, Write Operation and Full flag Operation and Figure 11, Full Flag Timing Expansion Modefor timing diagrams.

TABLE 1 -WRITE ADDRESS BUS, WRADD[6:0]

READ QUEUE SELECTION \& READ OPERATION

The multi-queue flow-control device has up to 16 queues that data is read from via a common read port using the data outputs, Qout, read clock, RCLK and readenable, $\overline{\mathrm{REN}}$. An outputenable, $\overline{\mathrm{OE}}$ control pinis also providedto allow High-Impedance selection of the Qout data outputs. The multi-queue device read portoperates in a mode similarto "FirstWordFall Through" on a traditional IDT FIFO, but with the added feature of data output pipelining. This data pipelining on the output port allows the user to achieve 100% bus utilization, which is the ability to read out a data word on every rising edge of RCLK regardless of whether a new queue is being selected for read operations.

Thequeue address present onthe read address bus, RDADD during a rising edge on RCLK while read address enable, RADEN is HIGH, is the queue selected for read operations. A queue to be read from need only be selected on a single rising edge of RCLK. All subsequent reads will be read from that queue until a new queue is selected. A minimum of 2 RCLK cycles mustoccur between queue selections onthe read port. Datafromthe newly selectedqueue will be present on the Qout outputs after 2 RCLK cycles plus an access time, provided that $\overline{O E}$ is active, LOW. On the same RCLK rising edge that the new queue is selected, data can still be read from the previously selected queue, provided that $\overline{R E N}$ is LOW, active and the previous queue is not empty on the following rising edge of RCLK a word will be read from the previously selected queue regardless of $\overline{R E N}$ due to thefall through operation, (provided the queue is notempty). Rememberthat $\overline{O E}$ allowsthe userto place the Qout, dataoutput bus into High-Impedance and the data can be read onto the output register regardless of $\overline{\mathrm{OE}}$.

When a queue is selected on the read port, the next word available in that queue (provided that the queue is not empty), will fall through to the output register after2RCLK cycles. As mentioned, in the previous2RCLK cycles to the new data being available, data can still be read from the previous queue,
providedthatthequeue is notempty. Atthe point of queue selection, the2-stage internal data pipeline is loaded with the last word from the previous queue and thenextwordfromthenew queue, boththese words willfall throughtotheoutput registerconsecutively upon selection of the new queue. This pipelining effect provides the userwith 100% bus utilization, butbrings about the possibility that a "NULL" queue may be required within a multi-queue device. Null queue operation is discussed in the next section on.
If anempty queue is selectedfor read operations onthe rising edge of RCLK, onthe sameRCLKedgeand thefollowingRCLKedge,2final reads will be made from the previous queue, provided that $\overline{\text { REN }}$ is active, LOW. On the next RCLK rising edge a read from the new queue will not occur, because the queue is empty. The last word inthe data outputregister (from the previous queue), will remainthere, but the outputvalidflag, $\overline{\mathrm{OV}}$ will go HIGH , to indicate that the data present is no longer valid.
The RDADD bus is also used in conjunction with ESTR (almostempty flag bus strobe), to address the almostempty flag bus of a respective device during direct mode of operation. In the 16 queue multi-queue device the RDADD address bus is 8 bits wide. The leastsignificant 4 bits are used to address one of the 16 available queues within a single multi-queue device. The 5 th least significantbit is used to selecta "Null" Queue. During a Null-Qselection the 4 LSB's are don't care. The Null-Q is seen as an empty queue on the read port. Null-Q operation is discussed in more detail in a separate section. The most significant 3 bits are used when a device is connected in expansion mode, up to 8 devices can be connected in expansion, each device having its own 3 bit address. The selected device is the one for which the address matches a 3 bit ID code, which is statically setup on the ID pins, ID0, ID1, and ID2 of each individual device.
Referto Table2, for Read Address bus arrangement. Also, referto Figures 12,14\& 15 for read queue selection and read port operation timing diagrams.

TABLE 2 - READ ADDRESS BUS, RDADD[7:0]

NULL QUEUE OPERATION (OF THE READ PORT)

Pipelining of data to the outputportenables the device to provide 100\% bus utilization in standardmode. Data canbe read out ofthe multi-queueflow-control device on every RCLK cycle regardless of queue switches or other operations. The device architecture is such that the pipeline is constantly filled with the next words in a selected queue to be read out, again providing 100% bus utilization. This type of architecture does assume that the user is constantly switching queues such that during a queue switch, the last data word required from the previous queue will fall through the pipeline to the output.

Note, thatifreads cease atthe empty boundary of aqueue, thenthelastword will automatically flow through the pipeline to the output.

The Null-Q is selected via read port address space RDADD[4]. The RDADD[7:0] bus should be addressed with $x x x 1 x x x x$, this address is the Null-Q. A null queue can be selected when no further reads are required from a previously selected queue. Changing to a null queue will continue to propagate data in the pipeline to the previous queue's output. The Null-Qcan remain selected until a data becomes available in another queue for reading. The Null-Q can be utilized in either standard or packet mode.

Note: Ifthe user switches the read port to the null queue, this queue is seen as and treated as an empty queue, therefore after switching to the null queue the lastword from the previous queue will remain in the output register and the $\overline{\mathrm{OV}}$ flag will go HIGH, indicating data is not valid.

The Null queue operation only has significance to the read port of the multiqueue, it is a means to force data through the pipeline to the output. Null-Q selection and operation has no meaning on the write port of the device. Also, refer to Figure 16, Read Operation and Null Queue Select for diagram.

BUS MATCHING OPERATION

Bus Matching operation between the input port and output port is available. During a master reset of the multi-queuethe state ofthe two setup pins, IW (Input Width) and OW (OutputWidth) determine the input and output portbus widths as per the selections shown in Table 3, "Bus Matching Set-up". 9 bit bytes or 18 bit words can be written into and read from the queues. When writing to or reading from the multi-queue in abus matching mode, the device orders data ina "Little Endian" format. See Figure 3, Bus Matching Byte Arrangementfor details.

The Full flag and Almost Full flag operation is always based on writes and reads of data widths determined by the write port width. For example, ifthe input port is $x 18$ and the output port is $x 9$, then two data reads from a full queue will be required to cause the full flag to go HIGH (queue not full). Conversely, the Output Validflag and AlmostEmptyflag operations are always based on writes and reads of data widths determined by the read port. For example, ifthe input portis x9 and the outputport is $x 18$, two write operations will be required to cause the output valid flag of an empty queue to go LOW, output valid (queue is not empty).

Note, that the inputportserves all queues within a device, as does the output port, thereforethe inputbus width to all queues is equal (determined by the input portsize) and the outputbus width from all queues is equal (determined by the outputportsize).
TABLE 3 - BUS-MATCHING SET-UP

IW	OW	Write Port	Read Port
0	0	x 18	x 18
0	1	x 18	x 9
1	0	x 9	x 18
1	1	x 9	x 9

FULL FLAG OPERATION

The multi-queue flow-control device provides a single Full Flag output, $\overline{F F}$. The $\overline{F F}$ flag output provides a full status of the queue currently selected onthe write port for write operations. Internally the multi-queue flow-control device monitors andmaintainsastatus ofthefull condition of all queues withinit, however only the queue that is selected for write operations has its full status outputto the $\overline{F F}$ flag. This dedicated flag is often referred to as the "active queue full flag".

When queue switches are being made on the write port, the $\overline{F F}$ flag output will switch to the new queue and provide the user with the new queue status, onthe cycle after a new queue selection is made. The userthenhas afull status for the new queue one cycle ahead of the WCLK rising edge that data can be written into the new queue. That is, a new queue can be selected on the write portvia the WRADD bus, WADEN enable and a rising edge of WCLK. On the nextrising edge of WCLK, the $\overline{F F}$ flag output will show the full status of the newly selected queue. On the second rising edge of WCLK following the queue selection, data can be written into the newly selected queue provided that data and enable setup \& hold times are met.

Note, the FF flag will provide status of a newly selected queue one WCLK cycle afterqueue selection, which is one cycle before data can be writtentothat queue. This preventsthe userfrom writing datato a queuethatis full, (assuming that a queue switch has been made to a queue that is actually full).

The $\overline{F F}$ flagis synchronoustotheWCLK and all transitions of the $\overline{\mathrm{FF}}$ flag occur based onarising edge ofWCLK. Internally the multi-queue device monitors and keeps a record of the full status for all queues. It is possible that the status of a $\overline{\text { FF flag maybechanging internally eventhoughthatflag is notthe active queue }}$ flag (selected on the write port). A queue selected on the read port may experience a change of its internal full flag status based on read operations.

See Figure9, Write Queue Select, Write Operation and Full Flag Operation and Figure 11, Full Flag Timing in Expansion Modefor timing information.

EXPANSION MODE-FULL FLAG OPERATION

When multi-queue devices are connected in Expansion mode the $\overline{F F}$ flags of all devices should be connected together, such that a system controller monitoring and managing the multi-queue devices write port only looks at a single $\overline{F F}$ flag (as opposed to a discrete $\overline{F F}$ flag for each device). This $\overline{F F}$ flag is only pertinent to the queue being selected for write operations at that time. Remember, that when in expansion mode only one multi-queue device can be writtento at any moment in time, thus the $\overline{F F}$ flag provides status of the active queue on the write port.
This connection offlag outputs to createasingle flag requires thatthe $\overline{F F}$ flag outputhave a High-Impedance capability, suchthat when a queue selection is made only a single device drives the $\overline{\mathrm{FF}}$ flag bus and all other $\overline{\mathrm{FF}}$ flag outputs connected to the $\overline{F F}$ flag bus are placed into High-Impedance. The user does nothave to select this High-Impedance state, a given multi-queue flow-control device will automatically place its $\overline{F F}$ flagoutputintoHigh-Impedance whennone of its queues are selected for write operations.

When queues within a single device are selected for write operations, the FF flag output of that device will maintain control of the $\overline{F F}$ flag bus. Its $\overline{F F}$ flag will simply update between queue switchestoshow the respective queuefull status.
The multi-queue device places its $\overline{F F}$ flagoutputintoHigh-Impedancebased onthe 3 bitID codefound inthe3 mostsignificantbits of the writequeueaddress bus, WRADD. Ifthe3mostsignificantbits ofWRADD matchthe3bitIDcodesetup on the static inputs, ID0, ID1 and ID2 then the $\overline{F F}$ flag output of the respective device will be in a Low-Impedance state. If they do not match, then the $\overline{F F}$ flag output of the respective device will be in a High-Impedance state. See Figure 11, Full Flag Timing in Expansion Modefor details of flag operation, including when more than one device is connected in expansion.

OUTPUTVALIDFLAG OPERATION

The multi-queue flow-control device provides a single Output Valid flag output, $\overline{\mathrm{OV}}$. The $\overline{\mathrm{OV}}$ provides an empty status or data output valid status for the data word currently available on the output register of the read port. The rising edge of anRCLK cyclethat places new data ontothe output register of the read port, also updates the $\overline{\mathrm{OV}}$ flag to show whether or not that new data word is actually valid. Internally the multi-queue flow-control device monitors and maintains a status of the empty condition of all queues within it, however only the queue that is selectedfor read operations hasits outputvalid (empty) status output to the $\overline{\mathrm{OV}}$ flag, giving a valid status for the word being read at thattime.

The nature of the first word fall through operation means that when the last data word is read from a selected queue, the $\overline{\mathrm{OV}}$ flag will go HIGH on the next enabled read, that is, on the next rising edge of RCLK while $\overline{R E N}$ is LOW.

When queue switches are being made on the read port, the $\overline{\mathrm{OV}}$ flag will switch to show status of the new queue in line withthe data outputfrom the new queue. When a queue selection is made the first data from that queue will appear on the Qout data outputs2RCLK cycles later, the $\overline{\mathrm{OV}}$ will change state to indicate validity of the data from the newly selected queue onthis $2^{\text {nd }}$ RCLK cycle also. The previous cycles will continue to output data from the previous queue and the $\overline{\mathrm{OV}}$ flag will indicate the status of those outputs. Again, the $\overline{\mathrm{OV}}$ flag always indicates status for the data currently present on the output register.

The $\overline{\mathrm{OV}}$ flagissynchronoustothe RCLKandall transitions ofthe $\overline{\mathrm{OV}}$ flagoccur based on a rising edge of RCLK. Internally the multi-queue device monitors and keeps a record ofthe outputvalid (empty) status for all queues. Itis possiblethat the status of an $\overline{\mathrm{OV}}$ flag may bechanging internally eventhoughthat respective flag is not the active queue flag (selected on the read port). A queue selected on the write port may experience a change of its internal $\overline{\mathrm{OV}}$ flag status based on write operations, that is, data may be written into that queue causing it to become"notempty".

See Figure 12, Read Queue Select, Read Operationand Figure 13, Output Valid Flag Timing for details of the timing.

EXPANSION MODE-OUTPUT VALID FLAG OPERATION

When multi-queue devices are connected in Expansion mode, the $\overline{\mathrm{OV}}$ flags of all devices should be connected together, such that a system controller monitoring and managing the multi-queue devices read port only looks at a single $\overline{\mathrm{OV}}$ flag (as opposed to a discrete $\overline{\mathrm{OV}}$ flag for each device). This $\overline{\mathrm{OV}}$ flag is only pertinent to the queue being selected for read operations at that time. Remember, that when in expansion mode only one multi-queue device can be read from at any moment in time, thus the $\overline{\mathrm{OV}}$ flag provides status of the active queue on the read port.

This connection offlag outputs to create asingleflag requires that the $\overline{\mathrm{OV}}$ flag outputhave High-Impedance capability, suchthat when aqueue selection is made only a single device drives the $\overline{\mathrm{OV}}$ flag bus and all other $\overline{\mathrm{OV}}$ flag outputs connected to the $\overline{\mathrm{OV}}$ flag bus are placed into High-Impedance. The user does nothave to selectthis High-Impedance state, a given multi-queue flow-control device will automatically placeits $\overline{\mathrm{OV}}$ flagoutputinto High-Impedance whennone of its queues are selected for read operations.

When queues withinasingle deviceare selectedfor read operations, the $\overline{\mathrm{OV}}$ flag output of that device will maintain control of the $\overline{\mathrm{OV}}$ flag bus. Its $\overline{\mathrm{OV}}$ flag will simply update between queue switches to show the respective queue output validstatus.

Themulti-queuedeviceplacesits $\overline{O V}$ flagoutputintoHigh-Impedancebased onthe 3bitID codefound inthe 3 mostsignificantbits of the read queue address bus, RDADD. Ifthe 3 mostsignificantbits of RDADD matchthe3bitID codesetup on the static inputs, ID0, ID1 and ID2 then the $\overline{\mathrm{OV}}$ flag output of the respective device will be in a Low-Impedance state. If they do not match, then the $\overline{\mathrm{OV}}$ flag output of the respective device will be in aHigh-Impedance state. See Figure

13, Output Valid Flag Timingfor details offlag operation, including when more than one device is connected in expansion.

ALMOST FULL FLAG

As previously mentioned the multi-queue flow-control device provides a single Programmable AlmostFullflagoutput, $\overline{\text { PAF }}$. The $\overline{\text { PAF flagoutputprovides }}$ a status of the almostfull condition forthe active queue currently selected on the write port for write operations. Internally the multi-queue flow-control device monitors and maintains a status of the almostfull condition of all queues within it, howeveronly the queue that is selected for write operations has its full status outputtothe $\widehat{\text { PAF }}$ flag. This dedicatedflagis often referred to as the "activequeue almost full flag". The position of the $\overline{\text { PAF }}$ flag boundary within a queue can be at any point within that queues depth. This location can be user programmed via the serial port or one of the default values (8 or 128) can be selected if the userhas performed default programming.
As mentioned, every queue within a multi-queue device has its own almost full status, when a queue is selected on the write port, this status is outputviathe $\overline{\mathrm{PAF}} f l a g$. The $\overline{\mathrm{PAF}}$ flag value foreachqueue is programmed during multi-queue device programming (along with the number of queues, queue depths and almostempty values). The $\overline{\mathrm{PAF}}$ offset value, m, for a respective queue can be programmed to be anywhere between ' 0 ' and ' D ', where ' D ' is the total memory depth for that queue. The $\overline{\mathrm{PAF}}$ value of different queues within the same device can bedifferentvalues.
When queue switches are being made onthe write port, the $\overline{\text { PAF }}$ flag output will switch to the new queue and provide the user with the new queue status, on the second cycle after a new queue selection is made, on the same WCLK cycle that data can actually be written to the new queue. That is, a new queue can be selected on the write port via the WRADD bus, WADEN enable and a rising edge of WCLK. On the second rising edge of WCLK following a queue selection, the $\overline{\mathrm{PAF}}$ flagoutput will show thefull status of the newly selected queue. The $\overline{\mathrm{PAF}}$ is flag output is double register buffered, so when a write operation occurs atthealmostfull boundary causingthe selected queuestatustogoalmost full the $\overline{\mathrm{PAF}}$ will go LOW2 WCLK cycles after the write. The same is true when a read occurs, there will be a 2 WCLK cycle delay after the read operation.

So the $\overline{\text { PAF }}$ flag delays are:
from a write operation to $\overline{\text { PAF }}$ flag LOW is 2 WCLK + twaF
The delay from a read operation to $\overline{\text { PAF }}$ flag HIGH istSKEW $2+$ WCLK + twAF
Note, if tSKEW is violated there will be one added WCLK cycle delay.
The $\overline{\text { PAF }}$ flag is synchronous to theWCLK and all transitions of the $\overline{\mathrm{PAF}}$ flag occur based on a rising edge of WCLK. Internally the multi-queue device monitors and keeps a record of the almostfull status for all queues. Itis possible that the status of a $\overline{\mathrm{PAF}}$ flag maybe changing internally even thoughthat flag is notthe active queue flag (selected on the write port). A queue selected on the read port may experience a change of its internal almostfull flag status based on read operations. The multi-queue flow-control device also provides a duplicate of the $\overline{\mathrm{PAF}}$ flag on the $\overline{\mathrm{PAF}}[7: 0]$ flag bus, this will be discussed in detail in a later section of the data sheet.

See Figures 18 and 19 for Almost Full flag timing and queue switching.

ALMOSTEMPTYFLAG

As previously mentioned the multi-queue flow-control device provides a single Programmable Almost Empty flag output, $\overline{\mathrm{PAE}}$. The $\overline{\mathrm{PAE}}$ flag output provides a status of the almost empty condition for the active queue currently selected on the read port for read operations. Internally the multi-queue flowcontrol device monitors and maintains a status of the almostempty condition of all queues withinit, however only the queue that is selected for read operations has its empty status output to the $\overline{\text { PAE }}$ flag. This dedicatedflag is often referred toasthe "activequeuealmostempty flag". The position ofthe $\overline{\mathrm{PAE}} \mathrm{flag}$ boundary
within a queue can be at any point within that queues depth. This location can be user programmed via the serial port or one of the default values (8 or 128) can be selected if the user has performed default programming.

As mentioned, every queue within a multi-queue device has its ownalmost empty status, when a queue is selected on the read port, this status is outputvia the $\overline{P A E} f l a g$. The $\overline{P A E} f l a g$ value for each queue is programmed during multiqueue device programming (along with the number of queues, queue depths and almostfull values). The $\overline{\mathrm{PAE}}$ offset value, n, for a respective queue can be programmed to be anywherebetween '0' and ' D ', where ' D ' is the total memory depth forthatqueue. The $\overline{\mathrm{PAE}}$ value of differentqueues withinthe same device canbe different values.

When queue switches are being made on the read port, the $\overline{\text { PAE }}$ flag output will switch to the new queue and provide the user with the new queue status, on the second cycle after a new queue selection is made, on the same RCLK cycle that data actually falls through to the output register from the new queue. That is, a new queue can be selected on the read port via the RDADD bus, RADEN enable and a rising edge of RCLK. Onthe second rising edge of RCLK following aqueue selection, the data word from the new queue will be available at the output register and the $\overline{\text { PAE }}$ flag output will show the empty status of the
newly selected queue. The $\overline{\text { PAE }}$ is flag output is double register buffered, so when a read operation occurs at the almost empty boundary causing the selected queue status to go almostempty the $\overline{\mathrm{PAE}}$ will go LOW2RCLK cycles after the read. The same is true when a write occurs, there will be a 2 RCLK cycle delay after the write operation.

So the $\overline{\text { PAE }}$ flag delays are:
from a read operation to $\overline{\text { PAE }}$ flag LOW is 2 RCLK + tRAE
The delay from a write operation to $\overline{\text { PAE flag HIGH is tSKEW2 }+ \text { RCLK }+ \text { tRAE }}$
Note, if tSKEW is violated there will be one added RCLK cycle delay.
The $\overline{\text { PAE }}$ flag is synchronous to the RCLK and all transitions of the $\overline{\text { PAE }}$ flag occur based on a rising edge of RCLK. Internally the multi-queue device monitors andkeeps arecord ofthealmostempty statusforallqueues. Itis possible thatthe status of $\overline{\text { PAE }}$ flag maybe changing internally eventhoughthatflagis not the active queue flag (selected on the read port). A queue selected on the write portmay experienceachange of its internalalmostemptyflagstatus based on write operations. The multi-queue flow-control device also provides a duplicate ofthe $\overline{\mathrm{PAE}}$ flag onthe $\overline{\mathrm{PAE}}[7: 0]$ flag bus, this will be discussed in detail in a later section of the data sheet.
See Figures 20 and 21 for Almost Empty flag timing and queue switching.

TABLE 4 - FLAG OPERATION BOUNDARIES \& TIMING

Output Valid, $\overline{\mathrm{OV}}$ Flag Boundary	
I/O Set-Up	$\overline{\mathrm{OV}}$ Boundary Condition
In18 to out18 or $\operatorname{In} 9$ to out9 (Both ports selectedfor samequeue when the $1^{\text {st }}$ Word is written in)	$\overline{\mathrm{OV}}$ Goes LOW after $1^{\text {st }}$ Write (seenote belowfortiming)
In18 to out9) (Both ports selectedfor samequeue when the $1^{s t}$ Word is written in)	$\overline{\mathrm{OV}}$ Goes LOW after ${ }^{1{ }^{\text {st }} \text { Write }}$ (seenote belowfortiming)
In9 to out18 (Both ports selectedfor samequeue when the $1^{\text {st }}$ Word is written in)	$\overline{\mathrm{OV}}$ Goes LOW after 2nd Write (seenotebelow fortiming)

Full Flag, FF Boundary	
I/O Set-Up	$\overline{\mathrm{FF}}$ Boundary Condition
In18 to out18 or $\operatorname{In} 9$ to out9 (Both ports selectedfor samequeue when the $1^{\text {st }}$ Word is written in)	$\overline{\text { FF }}$ Goes LOW after D +1 Writes (seenote belowfortiming)
$\operatorname{In} 18$ to out18 or $\operatorname{In} 9$ to out9 (Write portonly selectedforqueue when the $1^{\text {st }}$ Word is written in)	$\overline{F F}$ Goes LOW after D Writes (see note belowfortiming)
In18 to out9 (Both ports selectedfor samequeue when the $1^{\text {st }}$ Word is written in)	FF Goes LOW after D Writes (see note belowfortiming)
In18 to out9 (Write portonly selectedforqueue when the $1^{\text {st }}$ Word is written in)	$\overline{F F}$ Goes LOW after D Writes (see note belowfortiming)
In9 to out18 (Both ports selected for samequeue when the $1^{\text {st }}$ Word is written in)	FF Goes LOW after ([D+1] x 2) Writes (see note belowfortiming)
In9 to out18 (Write portonly selectedforqueue when the $1^{\text {st }}$ Word is written in)	$\overline{\text { FF }}$ Goes LOW after (D x2) Writes (seenote belowfortiming)

NOTE:
D = Queue Depth
$\overline{\mathrm{F}}$ Timing
Assertion:
Write Operation to FF LOW: tWFF
De-assertion:
Read to FF HIGH: tSKEW $1+$ twFF
If tSKEW1 is violated there may be 1 added clock: tSKEW1+WCLK +tWFF

TABLE 4 - FLAG OPERATION BOUNDARIES \& TIMING (CONTINUED)

Programmable Almost Empty Flag, $\overline{\text { PAE }}$ Boundary	
I/O Set-Up	PAE Assertion
In18 to out18 or In9 to out9 (Both ports selected for same queue when the $1^{\text {st }}$ Word is written in until the boundary is reached)	$\overline{\text { PAE Goes HIGH after } n+2}$ Writes (seenote belowfortiming)
In18 to out9 (Both ports selected for same queue when the $1^{\text {st }}$ Word is written in until the boundary is reached)	$\overline{\text { PAE Goes HIGH after n+1 }}$ Writes (seenote belowfortiming)
In9 to out18 (Both ports selected for same queue when the $1^{\text {st }}$ Word is written in until the boundary is reached)	$\overline{\text { PAE Goes HIGH after }}$ ([n+2] x 2) Writes (see note belowfortiming)

NOTE:
$\mathrm{n}=$ Almost Empty Offset value.
Default values: if DF is LOW at Master Reset then $n=8$
if DF is HIGH at Master Reset then $n=128$

$\overline{\text { PAE Timing }}$

Assertion: Read Operation to $\overline{\text { PAE }}$ LOW: 2 RCLK + tRAE
De-assertion: Write to $\overline{\text { PAE }}$ HIGH: tSKEW2 + RCLK + tRAE
If tSKEW2 is violated there may be 1 added clock: tSKEW $2+2$ RCLK + tRAE

Programmable Almost Empty Flag Bus, $\overline{\text { PAEn Boundary }}$	
I/O Set-Up	PAEn Boundary Condition
In18 to out18 or In9 to out9 (Both ports selected for same queue when the $1^{\text {st }}$ Word is written in until the boundary is reached)	$\overline{\text { PAEn Goes HIGH after }}$$n+2$ Writes (seenotebelowfortiming)
In18 to out18 or In9 to out9 (Write port only selected for same queue when the $1^{\text {st }}$ Word is written in until the boundary is reached)	PAEn Goes HIGH after $\mathrm{n}+1$ Writes (see note below fortiming)
In18 to out9	PAEn Goes HIGH after $n+1$ Writes (seebelow fortiming)
In9 to out18 (Both ports selected for same queue whenthe $1^{\text {st }}$ Word is written in until the boundary is reached)	$\begin{array}{\|l\|} \hline \overline{\text { PAEn Goes HIGH after }} \\ \text { ([n+2] x 2) Writes } \\ \text { (seenote belowfortiming) } \\ \hline \end{array}$
In9 to out18 (Write port only selected for same queue when the $1^{\text {st}}$ Word is written in until the boundary is reached)	$\begin{array}{\|l} \hline \overline{\text { PAEn Goes HIGH after }} \\ \text { ([n+1] x 2) Writes } \\ (\text { seenotebelow fortiming }) \\ \hline \end{array}$

NOTE:

$\mathrm{n}=$ Almost Empty Offset value.
Default values: if DF is LOW at Master Reset then $n=8$ if DF is HIGH at Master Reset then $\mathrm{n}=128$

$\overline{\text { PAEE }}$ Timing

Assertion: Read Operation to $\overline{\text { PAEn LOW: } 2 \text { RCLK }}+$ t tPAE
De-assertion: Write to $\overline{\text { PAEn HIGH: tSKEW }}+$ RCLK ${ }^{*}+$ tPAE If tSKEW 3 is violated there may be 1 added clock: tSKEW $3+2$ RCLK* + tPAE

* If a queue switch is occurring on the read port at the point of flag assertion or de-assertion there may be one additional RCLK clock cycle delay.

Programmable Almost Full Flag, $\overline{\text { PAF }}$ \&	Fn Bus Boundary
I/O Set-Up	$\overline{\text { PAF }}$ \& $\overline{\text { PAF }}$ n Boundary
In18 to out18 or $\operatorname{In} 9$ to out9 (Both ports selectedfor same queue whenthe $1^{\text {st }}$ Word is written in until the boundary is reached)	$\overline{\text { PAF/PAFn Goes LOW after }}$ D+1-mWrites (seenote below for timing)
In18 to out18 or $\operatorname{In} 9$ to out9 (Write portonly selected for same queue when the $1^{\text {st }}$ Word is written in until the boundary is reached)	$\overline{\text { PAF } / \overline{P A F n ~}}$ Goes LOW after D-mWrites (seenote below fortiming)
In18 to out9	$\overline{\text { PAF/PAFn }}$ Goes LOW after D-mWrites(seebelowfortiming
In9 to out18	$\overline{\text { PAF }} / \overline{\text { PAFn }}$ Goes LOW atter ([D+1-m] x 2) Writes (seenotebelowfortiming)
NOTE: D = Queue Depth $m=$ Almost Full Offset value.	
$\begin{array}{ll}\text { Default values: } & \text { if DF is LOW at Master Reset then } m=8 \\ \text { if DF is HIGH at Master Reset then } m=128\end{array}$	
$\overline{\text { PAF }}$ Timing	
Assertion: Write Operation to $\overline{\text { PAF }}$ LOW: 2 WCLK + twaF	
De-assertion: Read to PAF HIGH: tSKEW2 + WCLK + twaF	
$\overline{\text { AFP }}$ If tSKEW2 is violated there may be 1 added	d clock: tSkEW2 + 2 WCLK + twAF
$\overline{\text { PAFF }}$ ¢ Timing	
Assertion: Write Operation to $\overline{\text { PAF }}$ LOW: 2 WCLK + tPAF	
De-assertion: Read to PAFn HIGH: tSKEW + WCLK + tPAF	
* If a queue switch is occurring on the write port at the point of flag assertion or de-assertion	

$\overline{\text { PAFn FLAG BUS OPERATION }}$

The IDT72V51433/72V51443/72V51453 multi-queueflow-control devices can be configured for up to 16 queues, each queue having its own almost full status. Anactivequeuehasitsflagstatus outputtothediscreteflags, $\overline{\mathrm{FF}}$ and $\overline{\mathrm{PAF}}$, on the write port. Queues that are not selected for a write operation can have their $\overline{P A F}$ status monitored viathe $\overline{\mathrm{PAF}}$ nbus. The $\overline{\mathrm{PAF}} n f l a g$ bus is 8 bits wide, so that 8 queues at a time can have their status output to the bus. If 9 or more queues are setup within a device then there are 2 methods by whichthe device can share the bus between queues, "Direct" mode and "Polled" mode depending on the state of the FM (Flag Mode) input during a Master Reset. If 8 orless queues are setup within a device then each will have its own dedicated output from the bus. If 8 or less queues are setup in single device mode, it is recommended to configure the $\overline{\text { PAF }}$ bus to polled mode as it does not require using the write address (WRADD).

PAFn - DIRECT BUS

IfFM isLOW atmaster resetthenthe $\overline{\text { PAF }}$ nbus operates in Direct(addressed) mode. In direct mode the user can address the sector of queues they require to be placed on to the $\overline{\text { PAF }}$ bus. For example, consider the operation of the $\overline{\text { PAF }}$ bus when 10 queues have been setup. To outputstatus ofthefirst sector, Queue[0:7] the WRADD bus is used in conjunction with the FSTR ($\overline{\text { PAF flag }}$ strobe) input and WCLK. The address present on the significant bit of the WRADD bus withFSTRHIGH will be selected as the sector address on a rising edge of WCLK. Soto address sector 1, Queue[0:7]the WRADD bus should be loaded with "xxxxxx0", the $\overline{\mathrm{PAF}}$ n bus will change status to show the new sector selected 1 WCLK cycle after sector selection. $\overline{\text { PAFn }}[0: 7]$ gets status of queues, Queue[0:7] respectively.

To address the second sector, Queue[8:15], the WRADD address is "xxxxxx1". $\overline{P A F}[0: 1]$ gets status of queues, Queue[9:10] respectively. Remember, only 10 queues were setup, so when sector2isselected the unused outputs PAF[2:7] will be don't care states.

Note, that if a read or write operation is occurring to a specific queue, say queue ' x ' on the same cycle as a sector switch which will include the queue ' x ', then there may be an extra WCLK cycle delay before that queues status is correctly shown on the respective output of the $\overline{\text { PAF }}$ nbus. However, the active $\overline{\text { PAF }}$ flag will show correct status a all times.

Sectorscanbe selected onconsecutive clockcycles, that is the sectoronthe $\overline{\text { PAFn bus canchange every WCLK cycle. Also, data present on the inputbus, }}$ Din, can be written into a queue on the same WCLK rising edge that a sector is being selected, theonly restrictionbeing that a writequeue selection and $\overline{\mathrm{PAF}}$ n sector selection cannotbe made on the same cycle.

If 8 orless queues are setup then queues, Queue[0:7] have their $\overline{\text { PAF }}$ status outputon $\overline{\mathrm{PAF}}[0: 7]$ constantly.

Whenthe multi-queue devices are connected in expansion of morethan one device the $\overline{\text { PAFn }}$ busses of all devices are connected together, when switching between sectors of different devices the user mustutilize the 3 mostsignificant bits of the WRADD address bus (as well as the 2 LSB's). These 3 MSB's correspond to the device ID inputs, which are the static inputs, ID0, ID1 \& ID2.

Please refer to Figure $23 \overline{P A F} n$ - Direct Mode Sector Selection for timing information. Also refer to Table 1, Write Address Bus, WRADD.

$\overline{\text { PAF }}$ - POLLED BUS

IfFM is HIGH at master reset thenthe $\overline{\mathrm{PAF}}$ nbus operates in Polled (looped) mode. In polled mode the $\overline{\text { PAFn }}$ bus automatically cycles through the 2 sectors withinthe device regardless of how many queues have been setup inthe part. Every rising edge of the WCLKcausesthenextsectortobeloaded onthe $\overline{P A F} n$ bus. The device configured as the master (MAST input tied HIGH), will take control of the $\overline{\text { PAF }}$ n after $\overline{M R S}$ goes LOW. For the whole WCLK cycle that the
firstsector is on $\overline{\text { PAF }}$ nthe FSYNC ($\overline{\text { PAF }}$ b bus sync) output will beHIGH, for the 2nd sector, this FSYNC output will be LOW. This FSYNC output provides the user with a mark with which they can synchronize to the $\overline{\text { PAF }}$ nbus, FSYNC is always HIGH for the WCLK cycle that the first sector of a device is present on the $\overline{\text { PAF }}$ nbus.
When devices are connected in expansion mode, only one device will be setas the Master, MAST inputtied HIGH, all otherdevices will have MAST tied LOW. The master device is the first device to take control of the $\overline{\text { PAF }}$ nbus and will place its first sector on the bus on the rising edge of WCLK after the $\overline{M R S}$ input goes HIGH. For the next 3 WCLK cycles the master device will maintain control of the $\overline{\text { PAF }}$ b bus and cycle its sectors throughit, all other devices hold their $\overline{\text { PAF }}$ noutputs in High-Impedance. Whenthe masterdevice has cycled its sectors it passesatokentothenextdevice inthe chain and that device assumes control of the $\overline{\text { PAF }}$ bus and then cycles its sectors and so on, the $\overline{\text { PAF }}$ bus control token being passed onfrom device to device. Thistoken passing is done viathe FXO outputs and FXI inputs of the devices ("茼F Expansion Out" and "PAF Expansion In"). TheFXO output of the master device connects to the FXI of the seconddeviceinthechain andthe FXO ofthe second connectstothe FXI of the third and soon. The final device in a chain has its FXO connected to the FXI of the first device, sothat once the $\overline{\text { PAF }}$ bus has cycled through all sectors of all devices, control of the $\overline{\mathrm{PAF}}$ n will pass to the master device again and so on. The FSYNC of each respective device will operate independently and simply indicate when that respective device has taken control of the bus and is placing its first sector on to the $\overline{\mathrm{PAF}}$ n bus.
When operating in single device mode the FXI input must be connected to the FXO outputofthe same device. In single device modeatoken isstill required to be passed into the device for accessing the $\overline{\mathrm{PAF}}$ bus.

Please refer to Figure 26, $\overline{P A F}$ Bus - Polled Modefortiming information.

$\overline{\text { PAEn FLAG BUS OPERATION }}$

The IDT72V51433/72V51443/72V51453 multi-queueflow-control devices canbeconfiguredfor up to 16 queues, each queue havingits ownalmostempty status. An activequeuehasitsflagstatus outputtothediscreteflags, $\overline{\mathrm{OV}}$ and $\overline{\mathrm{PAE}}$, on the read port. Queues that are not selected for a read operation can have their $\overline{\text { PAE }}$ status monitored viathe $\overline{\mathrm{PAE}}$ nbus. The $\overline{\mathrm{PAE}}$ nflag bus is 8 bits wide, so that 8 queues at a time can have their status output to the bus. If 9 or more queues are setup within a devicethenthere are 2 methods by whichthe device can share the bus between queues, "Direct" mode and "Polled" mode depending on the state of the FM (Flag Mode) input during a Master Reset. If 8 orless queues are setup within a device then each will have its own dedicated output from the bus. If 8 or less queues are setup in single device mode, it is recommended to configure the $\overline{\mathrm{PAF}}$ nbus to polled mode as it does not require using the write address (WRADD).

PAEn - DIRECT BUS

IfFM is LOW atmasterresetthenthe $\overline{\text { PAEn }}$ bus operates in Direct(addressed) mode. In direct mode the user can address the sector of queues they require to be placed on to the $\overline{\text { PAE }}$ bus. For example, consider the operation of the $\overline{\text { PAE nbus when } 10 \text { queues have been setup. To output status of the first sector, }}$ Queue[0:7] the RDADD bus is used in conjunction with the ESTR ($\overline{\text { PAE }}$ flag strobe) input and RCLK. The address present on the leastsignificant bit of the RDADD bus with ESTRHIGH will be selected as the sector address on a rising edge of RCLK. So to address sector 1, Queue[0:7] the RDADD bus should be loaded with "xxxxxx0", the $\overline{\text { PAEn }}$ bus will changestatusto show the new sector selected 1 RCLK cycle after sector selection. $\overline{\text { PAEn }}[0: 7]$ gets status of queues, Queue[0:7]respectively.
To address the2nd sector, Queue[8:15], the RDADD address is "xxxxxx1". $\overline{\text { PAE }}[0: 1]$ gets status of queues, Queue[9:10] respectively. Remember, only 10
queues were setup, so when sector2 is selected the unused outputs $\overline{\operatorname{PAE}}[2: 7]$ will be don't care states.

Note, that if a read or write operation is occurring to a specific queue, say queue ' x ' on the same cycle as a sector switch which will include the queue ' x ', then there may be an extra RCLK cycle delay before that queues status is correctly shown on the respective output of the $\overline{\text { PAEn bus. }}$

Sectors can be selected on consecutive clockcycles, that is the sector on the $\overline{\text { PAEnbus canchangeevery RCLK cycle. Also, data canbe read out of aqueue }}$ onthe same RCLK rising edgethatasectorisbeing selected, the only restriction being that a read queue selection and $\overline{\text { PAE }}$ nsector selection cannotbe made on the same RCLK cycle.

If 8 orless queues are setup then queues, Queue[0:7] have their $\overline{\text { PAE }}$ status output on $\overline{\text { PAE }}[0: 7]$ constantly.

When the multi-queue devices are connected inexpansion of more thanone device the $\overline{\text { PAEnbusses of all devices are connected together, when switching }}$ between sectors of different devices the user mustutilize the 3 mostsignificant bits of the RDADD address bus (as well as the 2 LSB's). These 3 MSB's correspond to the device ID inputs, which are the static inputs, ID0, ID1 \& ID2.

Please refer to Figure 22, $\overline{P A E} n$-DirectMode Sector Selection for timing information. Also refer to Table 2, Read Address Bus, RDADD.

PAEn - POLLED BUS

If FM is HIGH atmaster resetthenthe $\overline{\text { PAEn bus operates in Polled (looped) }}$ mode. In polled modethe $\overline{\text { PAE }}$ bus automatically cycles through the 2 sectors within the device regardless of how many queues have been setup in the part. Every rising edge of the RCLKcauses the nextsectortobe loaded onthe $\overline{\text { PAEn }}$ bus. The device configured as the master (MAST input tied HIGH), will take control of the $\overline{\mathrm{PAE}}$ after $\overline{\mathrm{MRS}}$ goes LOW. For the whole RCLK cycle that the
first sector is on $\overline{\text { PAE }}$ nthe ESYNC ($\overline{\text { PAE }}$ bus sync) outputwill beHIGH, for the 2nd sector, this ESYNC output will beLOW. This ESYNC output provides the user with a mark with which they can synchronize to the $\overline{\text { PAE }}$ bus, ESYNC is always HIGH for the RCLK cycle that the first sector of a device is present on the $\overline{\text { PAE }}$ bus.

When devices are connected in expansion mode, only one device will be setas the Master, MAST inputtied HIGH, all otherdevices will have MAST tied LOW. The master device is the first device to take control of the $\overline{\text { PAEn }}$ bus and will place its firstsectoronthe bus on the rising edge of RCLK afterthe $\overline{M R S}$ input goes LOW. For the next3RCLK cycles the master device will maintain control ofthe $\overline{\text { PAE }}$ bus and cycle its sectorsthrough it, all otherdevices hold their $\overline{\text { PAEn }}$ outputs in High-Impedance. Whenthe master device has cycled its sectors it passes a tokento the next device in the chain and that device assumes control of the $\overline{\text { PAEn }}$ bus and then cycles its sectors and so on, the $\overline{\text { PAE }}$ bus control token being passed on from device to device. This token passing is done via the EXO outputs and EXI inputs of the devices ("PAE Expansion Out" and "PAE Expansion $\mathrm{In}^{\prime \prime}$. The EXO output of the masterdevice connects to the EXI of the second device in the chain and the EXO of the second connects to the EXI of the third andso on. The final device in achainhas its EXO connected to the EXI of the first device, so that once the $\overline{\text { PAE }}$ bus has cycled through all sectors of all devices, control of the $\overline{\text { PAEn will pass to the master device again and soon. }}$ The ESYNC of each respective device will operate independently and simply indicate when that respective device has taken control of the bus and is placing its first sector on to the $\overline{\text { PAEn }}$ bus.

When operating in single device mode the EXI input must be connected to the EXO output of the same device. Insingle device modeatoken isstill required to be passed into the device for accessing the $\overline{\mathrm{PAE}}$ bus.

Please referto Figure 27, $\overline{P A E n}$ Bus - Polled Modefortiming information.

BYTE ORDER ON INPUT PORT:

BYTE ORDER ON OUTPUT PORT:

$\overline{B E}$	IW	OW
L	L	L

Read from Queue
(a) x18 INPUT to $\times 18$ OUTPUT - BIG ENDIAN

$\overline{B E}$	IW	OW
H	L	L

(b) x18 INPUT to $\times 18$ OUTPUT - LITTLE ENDIAN

$\overline{\mathrm{BE}}$	IW	OW
L	L	H

(c) x18 INPUT to x9 OUTPUT - BIG ENDIAN

$\overline{\mathrm{BE}}$	IW	OW
H	L	H

(d) x18 INPUT to $\times 9$ OUTPUT - LITTLE ENDIAN

BYTE ORDER ON INPUT PORT:

D8-Q0
B
2nd: Write to Queue

BYTE ORDER ON OUTPUT PORT:

$\overline{\mathrm{BE}}$	IW	OW
L	H	L

(a) x9 INPUT to $\times 18$ OUTPUT - BIG ENDIAN

$\overline{\mathrm{BE}}$	IW	OW
H	H	L

(a) x9 INPUT to x18 OUTPUT - LITTLE ENDIAN

NOTES:

1. $\overline{\mathrm{OE}}$ can toggle during this period.
2. $\overline{\text { PRS }}$ should be HIGH during a $\overline{\text { MRS }}$.

Figure 4. Master Reset

NOTES:

1. For a Partial Reset to be performed on a Queue, that Queue must be selected on both the write and read ports.
2. The queue must be selected a minimum of 2 clock cycles before the Partial Reset takes place, on both the write and read ports.
3. The Partial Reset must be LOW for a minimum of 1 WCLK and 1 RCLK cycle.
4. Writing or Reading to the queue (or a queue change) cannot occur until a minimum of 3 clock cycles after the Partial Reset has gone HIGH, on both the write and read ports.
5. The $\overline{\mathrm{PAF}}$ flag output for Qx on the $\overline{\mathrm{PAF}}$ flag bus may update one cycle later than the active $\overline{\mathrm{PAF}}$ flag.
6. The $\overline{\mathrm{PAE}}$ flag output for $Q x$ on the $\overline{\mathrm{PAE}}$ flag bus may update one cycle later than the active $\overline{\mathrm{PAE}}$ flag.

Figure 5. Partial Reset

Figure 6. Serial Port Connection for Serial Programming

Figure 7. Serial Programming

Figure 8. Default Programming

쁭

NOTES:

1. Qy has previously been selected on both the write and read ports.
2. $\overline{O E}$ is LOW.
3. The First Word Latency $=$ tSKEW1 + RCLK + tA. If tSKEW1 is violated an additional RCLK cycle must be added.

Figure 10. Write Operations \& First Word Fall Through

Figure 12 Read Queue Select, Read Operation

Cycle:
${ }^{\star}$ Reads are disabled, Wn-1 remains on the output bus. * The next word available in the new queue, Q_{F}-Wo falls through to the output bus, again this is regardless of $\overline{R E N}$.
${ }^{*} \mathrm{E}^{\star}$ Due to the First Word Fall Through (FWFT) effect, a read from the previous queue Qp will take place, Wn from Qp is placed onto the output bus regardless of $\overline{\text { REN }}$.
${ }^{*} \mathrm{~F}^{*}$.
${ }^{*} \mathbf{H}^{*}$ Word, W_{1} is read from QF. This occurs regardless of REN due to FWFT.
\mathbf{I}^{*} Word W_{2} from Q_{F} remains on the output bus because Q_{g} is empty. The Output Valid Flag, $\overline{\mathrm{OV}}$ goes HIGH to indicate that the current word is not valid, i.e. Qg_{g} is empty.

Cycle:
A Queue 9 of Device 1 is selected for read operations. The $\overline{\mathrm{OV}}$ is currently being driven by Device 2, a queue within device 2 is selected for reads. Device 2 also has control of Qout bus, its Qout outputs are in Low-Impedance. This diagram only shows the Qout outputs of device 1. (Reads are disabled).
B Reads are now enabled. A word from the previously selected queue of Device 2 will be read out.
C The Qout of Device 1 goes to Low-Impedance and word Wd is read from Q9 of D1. This happens to be the last word of Q9. Device 2 places its Qout outputs into High-Impedance, device 1 has control of the Qout bus. The $\overline{\mathrm{OV}}$ flag of Device 2 goes to High-Impedance and Device 1 takes control of $\overline{\mathrm{OV}}$. The $\overline{\mathrm{OV}}$ flag of Device 1 goes LOW to show that Wd of Q9 is valid.
D Queue 15 of device 1 is selected for read operations. The last word of Q9 was read on the previous cycle, therefore $\overline{\mathrm{OV}}$ goes HIGH to indicate that the data on the Qout is not valid (Q9 was read to empty). Word, Wd remains on the output bus.
E The last word of Q9 remains on the Qout bus, $\overline{\mathrm{OV}}$ is HIGH, indicating that this word has been previously read.
F The next word (We-1), available from the newly selected queue, Q15 of device 1 is now read out. This will occur regardless of $\overline{R E N}, 2$ RCLK cycles after queue selection due to the FWFT operation. The $\overline{\mathrm{OV}}$ flag now goes LOW to indicate that this word is valid.

* G^{*} The last word, We is read from Q15, this queue is now empty.
* H^{*} The $\overline{\mathrm{OV}}$ flag goes HIGH to indicate that Q15 was read to empty on the previous cycle.
। Due to a write operation the $\overline{\text { OV }}$ flag goes LOW and data word W0 is read from Q15. The latency is: tskew1 + 1*RCLK + trov.

Figure 13. Output Valid Flag Timing (In Expansion Mode)

Cycle:
A Word $W d+1$ is read from the previously selected queue, Qp.
B Reads are disabled, word $W d+1$ remains on the output bus.
C A new queue, Qn is selected for read port operations.
D Due to FWFT operation Word, Wd+2 of Qp is read out regardless of $\overline{R E N}$.
E The next available word $W x$ of Qn is read out regardless of $\overline{R E N}, 2$ RCLK cycles after queue selection. This is FWFT operation.

* F^{*} The queue, $Q p$ is again selected.
${ }^{*} \mathbf{G}^{*}$ Word $W x+1$ is read from Qn regardless of $\overline{R E N}$, this is due to FWFT.
${ }^{*} \mathbf{H}^{*}$ Word $W d+3$ is read from Qp, this read occurs regardless of $\overline{\text { REN }}$ due to FWFT operation.
। Word Wd+4 is read from Qp.
* J * Reads are disabled on this cycle, therefore no further reads occur.

Figure 14. Read Queue Selection with Reads Disabled

NOTES:

1. The Output Valid flag, $\overline{\mathrm{OV}}$ is HIGH therefore the previously selected queue has been read to empty. The Output Enable input is Asynchronous, therefore the Qout output bus will go to Low-Impedance after time tolz.
The data currently on the output register will be available on the output after time toe. This data is the previous data on the output register, this is the last word read out of the previous queue.
2. In expansion mode the $\overline{\mathrm{OE}}$ inputs of all devices should be connected together. This allows the output busses of all devices to be High-Impedance controlled.

Cycle:
${ }^{*} \mathbf{A}^{*}$ Queue A is selected for reads. No data will fall through on this cycle, the previous queue was read to empty.
B No data will fall through on this cycle, the previous queue was read to empty.
${ }^{*} C^{*}$ Word, W0 from Qa is read out regardless of $\overline{R E N}$ due to FWFT operation. The $\overline{O V}$ flag goes LOW indicating that Word W0 is valid.
D Reads are disabled therefore word, W0 of Qa remains on the output bus.
E Reads are again enabled so word W1 is read from Qa.
F Word W2 is read from Qa.

* \mathbf{G}^{*} Queue, Qb is selected on the read port. This queue is actually empty. Word, W3 is read from Qa.
* ${ }^{*}$ * Word, W4 falls through from Qa.
I Output Valid flag, $\overline{\mathrm{OV}}$ goes HIGH to indicate that Qb is empty. Data on the output port is no longer valid. Output Enable is taken HIGH, this is Asynchronous so the output bus goes to High-Impedance after time, toHz.

Figure 15. Read Queue Select, Read Operation and $\overline{O E}$ Timing

NOTES:

1. The purpose of the Null queue operation is so that the user can stop reading a block (packet) of data from a queue without filling the 2 stage output pipeline with the next words from that queue.
2. Please see Figure 17, Null Queue Flow Diagram.

Cycle:

* ${ }^{*}$ Null Q of device 0 (32nd queue) is selected, when word $\mathrm{Wn}-1$ from previously selected Q 1 is read.
* $\mathbf{B}^{*} \overline{\text { REN }}$ is HIGH and Wn (Last Word of the Packet) of Q 1 is pipelined onto the O / P register. Note: *B* and ${ }^{*} C^{*}$ are a minimum 2 RCLK cycles between Q selects.
C The Null Q is seen as an empty queue on the read side, therefore Wn of Q1 remains in the O/P register and $\overline{\mathrm{OV}}$ goes HIGH .
D A new Q, Q4 is selected and the 1st word of Q4 will fall through present on the O/P register on cycle *F*.

Figure 16. Read Operation and Null Queue Select

Figure 17. Null Queue Flow Diagram

Cycle:
${ }^{*}$ A* Queue 5 of Device 1 is selected on the write port. A queue within Device 2 had previously been selected. The $\overline{\text { PAF }}$ output of device 1 is High-Impedance.
B No write occurs.

D Queue 9 if device 1 is now selected for write operations. This queue is not almost full, therefore the PAF flag will update after a 2 WCLK + twaf latency
E The $\overline{\text { PAF }}$ flag goes LOW based on the write 2 cycles earlier.
F The $\overline{\mathrm{PAF}}$ flag goes HIGH due to the queue switch to Q9.
Figure 18. Almost Full Flag Timing and Queue Switch

NOTE:

1. The waveform here shows the $\overline{\mathrm{PAF}}$ flag operation when no queue switches are occurring and a queue selected on both the write and read ports is being written to then read from at the almost full boundary.
Flag Latencies:
Assertion: 2*WCLK + twaF
De-assertion: tskEW2 + WCLK + twaf
If tSKEW2 is violated there will be one extra WCLK cycle.
Figure 19. Almost Full Flag Timing

Cycle:

${ }^{*}$ A* * Queue 12 of Device 1 is selected on the read port. A queue within Device 2 had previously been selected. The $\overline{\text { PAE }}$ flag output and the data outputs of device 1 are High-Impedance. * ${ }^{*}$ No read occurs.
C The PAE flag output now switches to device 1. Word, Wn is read from Q12 due to the FWFT operation. This read operation from Q12 is at the almost empty boundary, therefore $\overline{\text { PAE will go LOW } 2 \text { RCLK cycles later. }}$
D Q15 of device 1 is selected.
E The PAE flag goes LOW due to the read from Q12 2 RCLK cycles earlier. Word $\mathrm{W} n+1$ is read out due to the FWFT operation.
F Word, W0 is read from Q15 due to the FWFT operation. The PAE flag goes HIGH to show that Q15 is not almost empty.

Figure 20. Almost Empty Flag Timing and Queue Switch

NOTE:

1. The waveform here shows the $\overline{\text { PAE }}$ flag operation when no queue switches are occurring and a queue selected on both the write and read ports is being written to then read from at the almost empty boundary.
Flag Latencies:
Assertion: 2*RCLK + traE
De-assertion: tskew2 + RCLK + traE
If tskewz is violated there will be one extra RCLK cycle.
Figure 21. Almost Empty Flag Timing

NOTES:

1. Sectors can be selected on consecutive cycles.
2. On an RCLK cycle that the ESTR is HIGH, the RADEN input must be LOW.
3. There is a latency of 1 RCLK for the PAEn bus to switch.

Figure 22. $\overline{P A E}$ - Direct Mode - Sector Selection

NOTES:

1. Sectors can be selected on consecutive cycles.
2. On a WCLK cycle that the FSTR is HIGH, the WADEN input must be LOW.
3. There is a latency of 1 WCLK for the $\overline{\text { PAFn }}$ bus to switch.

Figure 23. $\overline{\text { PAFn }}$ - Direct Mode - Sector Selection

Cycle:
A Queue 4 of Device 5 is selected for write operations.
Word, Wp is written into the previously selected queue.
AA Queue 4 of Device 5 is selected for read operations.
A sector from another device has control of the $\overline{\text { PAEn bus. }}$
The discrete $\overline{\text { PAE }}$ output of device 5 is currently in High-Impedance and the $\overline{\text { PAE }}$ active flag is controlled by the previously selected device.

* \mathbf{B}^{*} Word $W p+1$ is written into the previously selected queue.
BB Word, Wa+1 is read from Qn of D5, due to FWFT operation.
C Word, Wn is written into the newly selected queue, Q4 of D5. This write will cause the $\overline{\mathrm{PAE}}$ flag on the read port to go from LOW to HIGH (not almost empty) after time, tskew 3 + RCLK + traE (if tskew3 is violated one extra RCLK cycle will be added.
CC Word, Wy from the newly selected queue, Q4 will be read out due to FWFT operation.
 the $\overline{\text { PAEn }}$ bus changes to the new selection.
D Queue 8 of Device 3 is selected for write operations.
Word $\mathrm{Wn}+1$ is written into Q4 of D5.
DD The $\overline{\text { PAEn }}$ bus changes control to D5, the $\overline{\text { PAEn outputs of } \mathrm{D} 5 \mathrm{go} \text { to Low-Impedance and sector } 2 \text { is placed onto the outputs. The device of the previously selected }}$ sector now places its PAEn outputs into High-Impedance to prevent bus contention. Word, Wy+1 is read from Q4 of D5.
The discrete $\overline{\mathrm{PAE}}$ flag will go HIGH to show that Q4 of D5 is not almost empty. Q4 of device 5 will have its $\overline{\mathrm{PAE}}$ status output on $\overline{\mathrm{PAE}}[0]$.
E No writes occur.
EE Word, Wy+2 is read from Q4 of D5.
F Sector 1 of device 4 is selected on the write port for the $\overline{\text { PAF }}$ n bus.
Word, Wx is written into Q8 of D3.
FF The $\overline{\text { PAE }}$ bus updates to show that Q4 of D5 is almost empty based on the reading out of word, Wy+1.
The discrete $\overline{\text { PAE }}$ flag goes LOW to show that Q4 of D5 is almost empty based on the reading of Wy+1.
Figure 24. $\overline{\text { PAEn }}$ - Direct Mode, Flag Operation

Cycle:
A Queue 16 of device 0 is selected for read operations.
The last word in the output register is available on Qout. $\overline{\mathrm{OE}}$ was previously taken LOW so the output bus is in Low-Impedance.
AA Sector 2 of device 0 is selected for the PAFn bus. The bus is currently providing status of a previously selected sector, Sect Y of device X .

* $\mathbf{B}^{*} \quad$ Word, $W x+1$ is read out from the previous queue due to the FWFT effect.
BB Queue 16 of device 0 is selected on the write port.
The $\overline{\text { PAF }}$ bus is updated with the sector selected on the previous cycle, DO Sect $2 . \overline{\mathrm{PAF}}[7]$ is LOW showing the status of queue 16.
The PAFn outputs of the device previously selected on the PAFn bus go to High-Impedance.
C A new sector, Sect 1 of Device 7 is selected for the PAFn bus.
Word, Wd-m+1 is read from Q16 D0 due to the FWFT operation. This read is at the $\overline{\mathrm{PAF}}$ n boundary of queue D0 Q16. This read will cause the $\overline{\mathrm{PAF}}[7]$ output to go from LOW to HIGH (almost full to not almost full), after a delay tskew + WCLK + tPAF. If tskew is violated add an extra WCLK cycle.
CC PAFn continues to show status of Sect 2 DO .
D No read operations occur, REN is HIGH.
DD $\overline{\text { PAF[7] goes HIGH to show that D0 Q16 is not almost empty due to the read on cycle *C*. }}$
The active queue PAF flag of device 0 goes from High-Impedance to Low-Impedance.
Word, Wy is written into D0 Q16.
E Queue 2 of Device 6 is selected for write operations.
EE Word, Wy+1 is written into D0 Q16.
${ }^{*} \mathrm{~F}^{*} \quad$ Word, $\mathrm{Wd}-\mathrm{m}+2$ is read out due to FWFT operation.

Word, Wy+2 is written into D0 Q16.
* G^{*} Word, W0 is read from Q0 of D6, selected on cycle *E*, due to FWFT.

Figure 25. $\overline{P A F n}$ - Direct Mode, Flag Operation

NOTE:

1. This diagram is based on 3 devices connected in expansion mode.

Figure 26. $\overline{\text { PAFn Bus - Polled Mode }}$

NOTE:

1. This diagram is based on 3 devices connected in expansion mode.

Figure 27. $\overline{\text { PAEn Bus - Polled Mode }}$

NOTES:

1. If devices are configured for Direct operation of the $\overline{\mathrm{PAF}} / \overline{\mathrm{PAE}}$ flag busses the FXI/EXI of the MASTER device should be tied LOW. All other devices tied HIGH. The FXO/EXO outputs are DNC (Do Not Connect).
2. Q outputs must not be mixed between devices, i.e. Q0 of device 1 must connect to Q0 of device 2, etc.

Figure 28. Multi-Queue Expansion Diagram

JTAG INTERFACE

Five additional pins (TDI, TDO, TMS, TCK and TRST) are provided to support the JTAG boundary scan interface. The IDT72V51433/72V51443/ 72V51453incorporates the necessary tap controllerand modified pad cellsto implementtheJTAG facility.

Note thatIDT provides appropriateBoundary ScanDescriptionLanguage program files for these devices.

The Standard JTAG interface consists of four basic elements:

- Test Access Port (TAP)
- TAP controller
- Instruction Register (IR)
- Data Register Port (DR)

The following sections provide abrief description of each element. For a complete description refertothe IEEE Standard TestAccess PortSpecification (IEEE Std. 1149.1-1990).

The Figure below shows the standard Boundary-Scan Architecture

Figure 29. Boundary Scan Architecture

TEST ACCESS PORT (TAP)

The Tap interface is a general-purpose port that provides access to the internal of the processor. Itconsists offour inputports (TCLK, TMS, TDI, $\overline{\text { TRST }}$) and one output port (TDO).

THE TAP CONTROLLER

The Tap controller is a synchronous finite state machine that responds to TMS and TCLKsignals to generateclock and control signals to the Instruction and Data Registers for capture and update of data.

NOTES:

1. Five consecutive TCK cycles with TMS $=1$ will reset the TAP.
2. TAP controller does not automatically reset upon power-up. The user must provide a reset to the TAP controller (either by TRST or TMS).
3. TAP controller must be reset before normal Queue operations can begin.

Figure 30. TAP Controller State Diagram

Refer to the IEEE Standard Test Access Port Specification (IEEE Std. 1149.1) for the full state diagram.

All state transitions within the TAP controller occur at the rising edge of the TCLK pulse. The TMS signal level (0 or 1) determines the state progression that occurs on each TCLK rising edge. The TAP controllertakes precedence over the Queue and must be reset after power up of the device. See TRST description for more details on TAP controller reset.

Test-Logic-Reset All testlogic is disabled inthis controller stateenabling the normal operation of the IC. The TAP controller state machine is designed in such a way that, no matter what the initial state of the controller is, the Test-Logic-Resetstate can beentered by holding TMS athigh and pulsing TCK five times. This is the reason why the Test Reset ($\overline{\mathrm{TRST}}$) pin is optional.

Run-Test-Idle In this controller state, the test logic in the IC is active only if certain instructions are present. Forexample, if an instruction activates the self test, then it will be executed when the controller enters this state. The testlogic in the IC is idles otherwise.

Select-DR-Scan This is a controller state where the decision to enter the Data Path or the Select-IR-Scan state is made.

Select-IR-Scan This is a controller state where the decision to enter the InstructionPathismade. TheControllercan returntotheTest-Logic-Resetstate otherwise.

Capture-IR In this controller state, the shift register bank inthe Instruction Register parallelloads a pattern of fixed values on the rising edge of TCK. The last two significant bits are always required to be "01".
Shift-IR In this controller state, the instruction register gets connected betweenTDIandTDO, and the captured pattern gets shifted oneach rising edge of TCK. The instructionavailableonthe TDI pinisalsoshiftedintotheinstruction register.
Exit1-IRThis is a controllerstate where a decisionto entereitherthePauseIR state or Update-IR state is made.
Pause-IR This state is provided in order to allow the shifting of instruction register to be temporarily halted.
Exit2-DRThis is a controller state where a decision to enter either the ShiftIR state or Update-IR state is made.
Update-IR Inthis controllerstate, the instruction in the instruction register is latched in to the latch bank of the Instruction Register on every falling edge of TCK. This instruction also becomes the current instruction once it is latched.
Capture-DR In this controllerstate, the data is parallel loaded into the data registers selected by the current instruction on the rising edge of TCK.
Shift-DR, Exit1-DR, Pause-DR, Exit2-DR and Update-DR These controller states are similar to the Shift-IR, Exit1-IR, Pause-IR, Exit2-IR and Update-IR states in the Instruction path.

THE INSTRUCTION REGISTER

The Instruction register allows an instruction to be shifted in serially into the processor at the rising edge of TCLK.

The Instruction is used to select the test to be performed, or the test data registertobeaccessed, orboth. The instructionshifted intothe registerislatched atthe completion of the shifting process when the TAP controller is at UpdateIRstate.

The instruction register must contain 4 bitinstruction register-based cells which canhold instruction data. These mandatory cells are located nearestthe serial outputs they are the leastsignificant bits.

TESTDATA REGISTER

The Test Data register contains three test data registers: the Bypass, the Boundary Scan register and Device ID register.

These registers are connected in parallel between a common serial input and a common serial data output.

The following sections provide a brief description of each element. For a complete description, refertothe IEEE Standard TestAccess PortSpecification (IEEE Std. 1149.1-1990).

TEST BYPASS REGISTER

The register is used to allow test data to flow through the device from TDI toTDO. Itcontains asingle stage shiftregisterforaminimumlength inserial path. When the bypass register is selected by an instruction, the shift register stage is set to a logic zero on the rising edge of TCLK when the TAP controller is in the Capture-DR state.

The operation of the bypass register should not have any effect on the operation of the device in response to the BYPASS instruction.

THE BOUNDARY-SCAN REGISTER

The Boundary Scan Register allows serial data TDI be loaded into or read out of the processor input/outputports. The Boundary Scan Register is a part of the IEEE 1149.1-1990 Standard JTAG Implementation.

THE DEVICE IDENTIFICATION REGISTER

The Device Identification Register is a Read Only 32-bit register used to specify the manufacturer, part number and version of the processor to be determined through the TAP in response to the IDCODE instruction.

IDT JEDEC ID number is $0 \times B 3$. This translates to 0×33 when the parity is dropped in the 11 -bit Manufacturer ID field.

For the IDT72V51433/72V51443/72V51453, the Part Number field contains the following values:

Device	Part\# Field (HEX)
IDT72V51433	0×431
IDT72V51443	0×432
IDT72V51453	0×433

31 (MSB) 2827
Version (4 bits) OX0

JTAG DEVICE IDENTIFICATION REGISTER

JTAG INSTRUCTION REGISTER

The Instruction register allows instruction to be serially input into the device when the TAP controller is in the Shift-IR state. The instruction is decoded to perform the following:

- Selecttest data registers that may operate while the instruction is current. The other test data registers should not interfere with chip operation and the selected data register.
- Definethe serialtestdataregisterpaththatisusedto shiftdatabetween TDI and TDO during data register scanning.
The Instruction Register is a 4 bit field (i.e. IR3, IR2, IR1, IR0) to decode 16 different possible instructions. Instructions are decoded as follows.

Hex Value	Instruction	Function
00	EXTEST	SelectBoundary Scan Register
01	SAMPLE/PRELOAD	SelectBoundary Scan Register
02	IDCODE	SelectChipIdentificationdataregister
04	HIGH-IMPEDANCE	JTAG
$0 F$	BYPASS	SelectBypass Register

JTAG INSTRUCTION REGISTER DECODING

Thefollowing sections provide a brief description of each instruction. For acompletedescription refertothe IEEEStandardTestAccessPortSpecification (IEEE Std. 1149.1-1990).

EXTEST

The required EXTEST instruction places the IC into an external boundarytestmode and selectsthe boundary-scan registerto be connected betweenTDI and TDO. During this instruction, the boundary-scan register is accessed to drive test data off-chip via the boundary outputs and receive test data off-chip viathe boundary inputs. As such, the EXTEST instruction is the workhorse of IEEE. Std 1149.1, providing for probe-lesstesting of solder-jointopens/shorts and of logic clusterfunction.

IDCODE

Theoptional IDCODEinstructionallowsthe ICto remaininitsfunctional mode and selects the optional device identification registerto be connected between TDI and TDO. The device identification register is a 32-bit shift register containing information regarding the IC manufacturer, devicetype, and version code. Accessing the device identification register does not interfere with the operation of the IC. Also, access to the device identification register should be immediately available, via a TAP data-scan operation, after power-up of the IC orafter the TAP has been reset using the optional TRST pin or by otherwise moving totheTest-Logic-Resetstate.

SAMPLE/PRELOAD

The required SAMPLE/PRELOAD instruction allows the IC to remain in a normalfunctionalmodeandselectstheboundary-scan registertobeconnected betweenTDI andTDO. During this instruction, the boundary-scan register can be accessed via a date scan operation, to take a sample of the functional data entering and leaving the IC. This instruction is also used to preload test data into the boundary-scan register before loading an EXTEST instruction.

HIGH-IMPEDANCE

Theoptional High-Impedance instruction sets all outputs (including two-state as well as three-statetypes) of an ICto a disabled (high-impedance) state and selects the one-bit bypass register to be connected between TDI and TDO. During this instruction, data can be shifted throughthebypass registerfromTDI to TDO withoutaffecting the condition of the IC outputs.

BYPASS

The required BYPASS instruction allows the IC to remain in a normal functional mode and selects the one-bit bypass register to be connected between TDI and TDO. The BYPASS instruction allows serial data to be transferred through the IC from TDI to TDO without affecting the operation of the IC.

Figure 31. Standard JTAG Timing

SYSTEM INTERFACE PARAMETERS

Parameter	Symbol	Test Conditions	$\begin{aligned} & \text { IDT72V51433 } \\ & \text { IDT72V51443 } \\ & \text { IDT72V51453 } \end{aligned}$		
			Min.	Max.	Units
DataOutput	tDO ${ }^{(1)}$		-	20	ns
DataOutputHold	tDOH ${ }^{(1)}$		0	-	ns
Datalnput	tDS	$\begin{aligned} & \text { trise=3ns } \\ & \text { tfall }=3 \mathrm{~ns} \end{aligned}$	1010	$\stackrel{ }{ }$	ns
	tDH				

NOTE:

1. 50 pf loading on external output signals.

JTAG

AC ELECTRICAL CHARACTERISTICS

($\mathrm{Vcc}=3.3 \mathrm{~V} \pm 5 \%$; Tcase $=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$)

Parameter	Symbol	Test Conditions	Min. Max.		Units
JTAG Clock Input Period	tTCK	-	100	-	ns
JTAG Clock HIGH	tTCKHIGH	-	40	-	ns
JTAG Clock Low	tTCKLOW	-	40	-	ns
JTAG Clock Rise Time	tTCKRISE	-	-	$5^{(1)}$	ns
JTAG Clock Fall Time	tTCKFALL	-	-	$5^{(1)}$	ns
JTAGReset	tRST	-	50	-	ns
JTAG Reset Recovery	tRSR	-	50	-	ns

NOTE:

1. Guaranteed by design.

ORDERING INFORMATION

NOTE:

1. Industrial temperature range product for the $7-5$ ns is available as a standard device. All other speed grades available by special order.

DATASHEET DOCUMENT HISTORY

10/12/2001
11/16/2001
12/19/2001
01/15/2002
04/05/2002
07/01/2002
06/04/2003
pgs. $1,8,10,14,15,16$ and 27.
pgs. 1, 4, 10, 15, 17, 18, 23, 27-30 and 32 .
pgs. 12 and 28.
pg. 47.
pgs. $7,9,11,13$ and 48.
pgs. 2, 27 and 44.
pgs. 1 through 50.

