Renesns

256×256

FEATURES:

- 256×256 channel non-blocking switch
- Automatic signal identification (ST-BUS $\left.{ }^{\circledR}, \mathrm{GCI}\right)$
- 8 RX inputs- 32 channels at $64 \mathrm{Kbit} / \mathrm{s}$ per serial line
- 8 TX outputs- 32 channels at $64 \mathrm{Kbit} / \mathrm{s}$ per serial line
- Three-state serial outputs
- Microprocessor Interface (8-bit data bus)
- Frame Integrity for data applications
- 3.3V Power Supply
- Available in 44-pin Plastic Leaded Chip Carrier (PLCC)
- Operating Temperature Range $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
- 3.3 V I/O with 5 V Tolerant Inputs

DESCRIPTION:

The IDT72V8985is aST-BUS®/GCI compatible digital switch controlled by amicroprocessor. The IDT72V8985 canhandle as many as $256,64 \mathrm{Kbit} /$ sinput and output channels. Those 256 channels are divided into 8 serial inputs and outputs, each of which consists of 32 channels. The IDT72V8985 provides perchannel variableorconstantthroughput delay modes and microprocessor read
and write access to individual channels. As an important function of a digital switch is to maintain sequence integrity and minimize throughput delay, the IDT72V8985 is an ideal solution for most switching needs.

FUNCTIONAL DESCRIPTION

Frame sequence, constant throughput delay, and guaranteed minimum delay arehigh priority requirements intoday's integrated data and multimedia networks. The IDT72V8985 providesthese functions on a per-channel basis using a standardmicroprocessor control interface. Each of the eightserial lines is designed to switch $64 \mathrm{Kbit} / \mathrm{PCM}$ or $\mathrm{Nx} 64 \mathrm{Kbit/s}$ data.

InProcessorMode, the microprocessorcanaccesstheinputand outputtime slots to control other devices such as ISDN transceivers and trunk interfaces. Supporting both GCI andST-BUS ${ }^{\circledR}$ formats, IDT72V8985 has incorporatedan internal circuit to automatically identify the polarity and format of the frame synchronization.

A functional block diagram of the IDT72V8985 device is shown on page 1. The serial streams operate continuously at $2.048 \mathrm{Mb} / \mathrm{s}$ and are arranged in 125μ swideframeseach containing32, 8-bitchannels. Eightinput(RX0-7) and eight output (TX0-7) serial streams are provided in the IDT72V8985 device allowing a complete 256×256 channel non-blocking switch matrix to be constructed. The serial interface clock for the device is 4.096 MHz .

FUNCTIONAL BLOCK DIAGRAM

NOTE:

1. The $\overline{\text { RESET Input is only provided on the SSOP package. }}$

PIN CONFIGURATION

PLCC: 0.05in. pitch, 0.65 in. $\times 0.65$ in
(J44-1, order code: J) TOP VIEW

PQFP: 0.80 mm pitch, $10 \mathrm{~mm} \times 10 \mathrm{~mm}$ (DB44-1, order code: DB) TOP VIEW

Package Type	Reference Identifier	Order Code
SSOP: 0.025in. pitch, 0.625in. $\times 0.295 i n$.	SO48-1	PV

NOTES:

1. DNC - Do Not Connect
2. The $\overline{\text { RESET Input is only provided on the SSOP package. }}$

PIN DESCRIPTIONS

SYMBOL	NAME	1/0	DESCRIPTION
GND	Ground.		Ground Rail.
Vcc	Vcc		+3.3 Volt Power Supply.
$\overline{\text { DTA }}$	Data Acknowledgment (Open Drain)	0	This active LOW output indicates that a data bus transfer is complete. A pull-up resistor is required at this output.
RX0-7	RX Input 0 to 7	1	Serial data input streams. These streams have 32 channels at data rates of $2.048 \mathrm{Mb} / \mathrm{s}$.
$\overline{\mathrm{FO}}$	Frame Pulse	1	This input accepts and automatically identifies frame synchronization signals formatted according to different backplane specifications such as ST-BUS ${ }^{\oplus}$ and GCI.
$\overline{\mathrm{C} 4}$	Clock	1	4.096 MHz serial clock for shifting data in and out of the data streams.
A0-A5	Address 0 to 5	1	These lines provide the address to IDT72V8985 internal registers.
DS	Data Strobe	1	This is the input for the active HIGH data strobe on the microprocessor interface. This input operates with $\overline{\mathrm{CS}}$ to enable the internal read and write generation.
R/W	Read/Write	1	This input controls the direction of the data bus lines (D0-D7) during a microprocessor access.
$\overline{\mathrm{CS}}$	Chip Select	1	Active LOW input enabling a microprocessor read or write of control register or internal memories.
D0-D7	Data Bus 0 to 7	I/O	These pins provide microprocessor access to data in the internal control register. Connection Memory HIGH, Connection Memory LOW and data memory.
TX0-7	TX Outputs 0 to 7 (Three-state Outputs)	0	Serial data output streams. These streams are composed of $32,64 \mathrm{Kbit} / \mathrm{s}$ channels at data rates of $2.048 \mathrm{Mb} / \mathrm{s}$.
ODE	Output Drive Enable	1	This is an output enable for the TXO-7 serial outputs. If this input is LOW, TX0-7 are high-impedance. If this is HIGH, each channel may still be put into high-impedance by software control.
CCO	Control Channel Output	0	This output is a $2.048 \mathrm{Mb} / \mathrm{s}$ line which contains 256 bits per frame. The level of each bit is controlled by the contents of the CCO bit in the Connection Memory HIGH locations.
$\overline{\text { RESET }}$	Device Reset (Schmitt Trigger Input)	1	This input (active LOW) puts the IDT72V8985 in its reset state that clears the device internal counters, registers and brings TX0-7 and microport data outputs to a high-impedance state. The time constant for a power up reset circuit must be a minimum of five times the rise time of the power supply. In normal operation, the RESET pin must be held LOW for a minimum of 100 ns to reset the device.

FUNCTIONAL DESCRIPTION (Cont'd)

The received serial data is internally converted to parallel by the on chip serial-to-parallel converters and stored sequentially in a 256 -position Data Memory. By using aninternal counterthatis resetbythe input8KHzframepulse, $\overline{F 0 i}$, the incoming serial datastreams canbeframed and sequentially addressed.

Depending onthetype of informationtobeswitched, the IDT72V8985device can be programmed to perform time slot interchange functions with different throughput delay capabilities on a per-channel basis. The Variable Delay mode, most commonly used for voice applications, can be selected ensuring minimum throughput delay between input and output data. In ConstantDelay mode, used in multiple orgrouped channel dataapplications, the integrity of the informationthroughthe switch is maintained.

CONNECTIONMEMORY

Data to be output on the serial streams may come from two sources: Data Memory or Connection Memory. The Connection Memory is split into HIGH andLOW parts and is associated with particularTX outputstreams. InProcessor Mode, dataoutputonthe TX streamsistakenfrom theConnectionMemory Low and originates from the microprocessor (Figure 2). Where as in Connection Mode (Figure 1), data is read from Data Memory and originated from the incoming RX streams. Data destinedfor a particularchannel onthe serial output stream is read internally during the previous channel time slot to allow time for memory access and internal parallel-to-serial conversion.

CONNECTION MODE

InConnection Mode, the addresses of input source for all outputchannels are stored in the Connection Memory Low. The Connection Memory Low locations are mappedto corresponding 8-bitx32-channel output. The contents ofthe DataMemory atthe selected address are thentransferred tothe parallel-to-serial convertersbeforebeing output. By havingtheoutputchannel to specify the input channel through the Connection Memory, input channels can be broadcastto several outputchannels.

PROCESSOR MODE

In Processor Mode the CPU writes data to the Connection Memory Low locationswhich correspondtotheoutputlink and channel number. The contents of the Connection Memory Low are transferred to the parallel-to-serial converter one channel before itis to be output and are transmitted each frame to the output until it is changed by the CPU.

CONTROL

The Connection Memory High bits (Table 4) control the per-channel functions available in the IDT72V8985. Output channels are selected into specific modes such as: Processor Mode or Connection mode, Variable or Constant throughput delay modes, Output Drivers Enabled or in three-state condition. There is also one bit to control the state of the CCO output pin.

Figure 1. Connection Mode

OUTPUT DRIVE ENABLE (ODE)

The ODE pin is the master output three-state control pin. If the ODE input is held LOW all TDM (Time Division Multiplexed) outputs will be placed in high impedance regardless Connection Memory High programming. However, if ODE is HIGH, the contents of ConnectionMemory High control the outputstate on a per-channel basis.

SERIAL INTERFACE TIMING

The IDT72V8985 masterclock ($\overline{\mathrm{C} 4 i})$ is 4.096 MHzsignal allowing serial data link configuration at $2.048 \mathrm{Mb} /$ s to be implemented. The IDT72V8985 can automatically detect the presence of an inputframe pulse, identify the type of backplane present onthe serial interface, andformatthe synchronization pulse according to ST-BUS ${ }^{\oplus}$ or ${ }^{\text {GCl }}$ interface specifications (active HIGH in GCl or activeLOW inST-BUS ${ }^{\oplus}$). Upon determining the correct interface Connected to the serial port, the internal timing unit establishes the appropriate serial data bittransmitand samplingedges. InST-BUS ${ }^{\circledR}$ mode, every secondfallingedge of the 4.096 MHz clock marks a boundary and the input data is clocked in by the rising edge, three quarters of the way into the bit cell. In GCI mode every second rising edge of the 4.096 MHz clock marks the bit boundary while data sampling is performed during the falling edge, at three quarters of the bit boundaries.

DELAY THROUGH THE IDT72V8985

The transfer of information from the input serial streams to the output serial streams results in a delay through the device. The delay through the IDT72V8985 device varies according to the mode selected in the $\overline{\mathrm{V}} / \mathrm{C}$ bit of the Connection Memory High.

VARIABLEDELAY MODE

The delay in Variable Delay Mode is dependent only on the combination of source and destination onthe input and outputstreams. The minimum delay achievable in the IDT72V8985 device is three time slots. In the IDT72V8985 device, the information that is to be output in the same channel position as the information is input (position n), relative to frame pulse, will be output in the following frame (channel n, framen+1). The sameoccurs ifthe inputchannels succeeding $(n+1, n+2)$ the channel position as the information is input.

The information switched to the thirdtime slotafter the inputhas entered the device (for instance, inputchannel O to output channel 3 or input channel 30 to output channel 1), is always outputthree channels later.

Any switching configuration that provides three or more time slots between input and outputchannels, will have athroughput delay equal to the difference between the output and input channels; i.e., the throughput delay will be less than one frame. Table 1 shows the possible delays forthe IDT72V8985 device in Variable Delay Mode. An example is shown in Figure 3.

CONSTANT DELAY MODE

Inthis mode frame integrity is maintained in all switching configurations by

Figure 2. Processor Mode
making use of a multiple Data Memory buffertechnique where inputchannels written in any of the buffers during frame N will be read out during frame $\mathrm{N}+2$. In the IDT72V8985, the minimum throughput delay achievable in Constant Delay mode will be 32 time slots; for example, when inputtime slot32 (channel 31) is switched to outputtime slot 1 (channel 0). Likewise, the maximum delay is achieved when the firsttime slot in a frame (channel 0) is switched to the last time slot in the frame (channel 31), resulting in 94 time slots of delay (see Figure 4).

Tosummarize, any inputtime slotfrominputframeN will bealways switched to the destinationtime slot on outputframe $\mathrm{N}+2$. InConstant Delay mode the device throughput delay is calculated according to the following formula:

```
DELAY=[32+(32-IN)+(OUT-1)]
```

$\mathrm{IN}=$ =the number of the input time slot (from 1 to 32)
OUT = the number of the output time slot (from 1 to 32).

MICROPROCESSOR PORT

The IDT72V8985 microprocessor port is a non-multiplexed bus architecture. The parallel portconsists of an8-bit parallel databus (D0-D7), sixaddress inputlines (A0-A5) and four control lines ($\overline{C S}, D S, R \bar{W}$ and $\overline{\mathrm{DTA}})$. This parallel microportallowstheaccesstothe Control Registers, ConnectionMemory Low, ConnectionMemory High, and the DataMemory. All locations are read/written except for the Data Memory, which can be read only.

Accesses from the microport to the Connection Memory and the Data Memory are multiplexed with accesses from the input and output TDM ports. This cancause variable Data Acknowledge delays ($\overline{\mathrm{DTA}})$. Inthe IDT72V8985 device, the $\overline{\text { DTA }}$ outputprovides a maximum acknowledgment delay of 800 ns for read/write operations inthe ConnectionMemory. However, for operations inthe Data Memory (ProcessorMode), the maximum acknowledgment delay can be 1220ns.

SOFTWARE CONTROL

Ifthe A5, A1, A0 address line inputs are LOW then the IDT72V8985 Internal Control Register is addressed (see Table 2). If A5 input line is high, then the remaining address input lines are used to select the 32 possible channels per input or output stream. As explained in the Control Register description, the address input lines and the Stream Address bits (STA) of the Control register give the user the capability of selecting all positions of IDT72V8985 Data and Connect memories. See Figure 5 for accessing internal memories.

The data in the control register consists of Memory Select and Stream Addressbits, SplitMemory and ProcessorEnablebits(Table3). InSplitMemory mode (Bit7 of the Control register) reads are from the DataMemory and writes are to the Connection Memory LOW. The Memory Select bits allow the Connection Memory High or LOW or the Data Memory to be chosen, and the Stream Address bits define internal memory subsections correspondingto input oroutputstreams.

TABLE 1 -VARIABLE DELAY MODE

Input Channel	Output Channel	Throughput Delay
n	$m=n, n+1$ or $n+2$	$m-n+32$ time slot
n	$m>n+2$	$m-n$ time slot
n	$m<n$	$32-(n-m)$ time slot

The Processor Enable bit (bit 6) places every output channel on every outputstream in Processor Mode; i.e., the contents of the Connection Memory LOW (CML, see Table5) are output on the output streams once every frame unless the ODE input pin is LOW. If PE bit is HIGH, then the IDT72V8985 behaves as if bits 2 (Channel Source) and 0 (Output Enable) of every Connection Memory High (CMH, see Table 4) locations were set to HIGH, regardless of the actual value. IfPE is LOW, thenbit2 and 0 of each Connection MemoryHighlocationoperates normally. Inthiscase, ifbit2 oftheCMHisHIGH, the associated TX output channel is in Processor Mode. If bit 2 of the CMH is LOW, then the contents of the CML define the source information (stream and channel) of the time slot that is to be switched to an output.

If the ODE inputpin is LOW, then all the serial outputs are high-impedance. IfODE is HIGH, thenbit0 (Output Enable) of the CMHlocationenables (ifHIGH) or disables (ifLOW) for that particular channel.

The contents of bit 1 (CCO) of eachConnectionMemory High Location(see Table 4) is output on CCO pin once every frame. The CCO pin is a $2.048 \mathrm{Mb} /$ s output, which carries 256 bits. If CCO bit is setHIGH, the corresponding bit onCCO output is transmitted HIGH. IfCCO is LOW, the corresponding bit on theCCO outputistransmittedLOW. The contents ofthe256CCO bits oftheCMH are transmitted sequentially on to the CCO outputpin and are synchronous to the TX streams. Toallow for delay in any external control circuitry the contents of theCCO bit is output one channel before the corresponding channel onthe TX streams. For example, the contents of CCO bit in position 0 (corresponding to TX0, CH0), is transmitted synchronously withthe TX channel31, bit7. Bit 1's of CMH forchannel 1 of streams 0-7 are outputsynchronously with TX channel 0 bits 7-0.

INITIALIZATION

Duringthe microprocessor initialization routine, the microprocessorshould programthe desired active pathsthroughthe matrices, and putall otherchannels intothehighimpedance state. Care should betakenthat no two ConnectedTX outputs drivethe bussimultaneously. WiththeCMH setup, the microprocessor controlling the matrices can bring the ODE signal high to relinquish high impedance state control to theConnectionMemory High bits outputs.

The reset pin is designed to be used with board resetcircuitry. During reset the TX serial streams will be put into high-impedance and the state of internal registers and counters will be reset. As the connection memory can be in any state after a power up, the ODE pin should be used to hold the TX streams in high-impedance until the per-channel output enable control in the connection memory high is appropriately programmed. The main difference betweenODE and reset is, reset alters the state of the registers and counters where as ODE controls only the high-impedance state of the TX streams. $\overline{\text { RESET input is only }}$ provided on the SSOP packages.

TABLE 2—ADDRESS MAPPING

A5	A4	A3	A2	A1	A0	LOCATION
0	X	X	X	0	0	Control Register
1	0	0	0	0	0	Channel 0
1	0	0	0	0	1	Channel 1
1	-	-	-	-	-	-
1	-	-	-	-	-	-
1	-	-	-	-	-	-
1	-	-	-	-	-	-
1
1	1	1	1	1	1	Channel 31

Incoming Now Outgoing Next Outgoing Now

For J: DELAY=3 Slots, 32 Slots, 33 Slots, and 34 Slots For G, H, and $I: D E L A Y=3$ slots

Figure 3. Variable Delay Mode

Figure 4. Constant Delay Mode

The Control Register is only accessed when $A 5=0$. All other address bits have no effect when $\mathrm{A} 5=0$. When A5 $=1$, only 32 bytes are randomly accessable via AO-A4 at any one instant. Which 32 bytes are accessed is determined by the state of CRb0 -CRb4. The 32 bytes correlate to 32 channel of one ST-BUS ${ }^{\circledR}$ stream.

Figure 5. Addressing Internal Memories

TABLE 3 - CONTROL REGISTER

$x=$ don't care

TABLE 4 - CONNECTION MEMORY HIGH

$\mathrm{x}=$ don't care

TABLE 5 - CONNECTION MEMORY LOW

		7	6	5	4	3	2	1	0	
		SAB2	SAB1	SABO	CAB4	CAB3	CAB2	CAB1	CABO	
Bit	Name	Description								
7-5	SAB2-0 ${ }^{(1)}$ (Source Stream Address Bits)	These three bits are used to select eight source streams for the Connection.								
4-0(1)	CAB2-0 (Source Channel Address Bits)	These five bits are used to select 32 different source channels for the Connection (the stream where the channel is present is defined by bits SAB2-0). Bit 4 is the most significant bit.								

NOTE:

1. If bit 2 of the corresponding Connection HIGH location is 1 or bit 6 of the Control Register is 1 , then these entire 8 bits are output on the channel and stream associated with this location. Otherwise, the bits are used as indicated to define the source of the Connection which is output on the channel and stream associated with this location.

ABSOLUTE MAXIMUM RATINGS ${ }^{(1)}$

Symbol	Parameter	Min.	Max.	Unit
Vcc	Symbol Voltage	-0.3	5.0	V
Vi	Voltage on Digital Inputs	GND -0.3	$\mathrm{Vcc}+0.5$	V
Vo	Voltage on Digital Outputs	$\mathrm{GND}-0.3$	$\mathrm{Vcc}+0.3$	V
IO	CurrentatDigital Outputs		20	mA
Ts	StorageTemperature	-55	+125	${ }^{\circ} \mathrm{C}$
PD	Package PowerDissapation		1	W

NOTE:

1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only a functional operation of the device at these or any conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min.	Typ. ${ }^{(1)}$	Max.	Unit
Vcc	Positive Supply	3.0	3.3	3.6	V
V I	InputVoltage	0	-	5.25	V
Top	OperatingTemperature Commercial	-40	25	+85	${ }^{\circ} \mathrm{C}$

NOTE:

1. Typical figures are at $25^{\circ} \mathrm{C}$ and are for design aid only; not guaranteed and not subject to production testing.

DC ELECTRICALCHARACTERISTICS

Symbol	Parameter	Min.	Typ. ${ }^{(1)}$	Max.	Units	Test Conditions
ICC	SupplyCurrent	-	3	5	mA	OutputsUnloaded
VIH	InputHighVoltage	2.0	-	-	V	
VIL	InputLowVoltage	-	-	0.8	V	
IIL	InputLeakage(Inputs)	-	-	15	$\mu \mathrm{~A}$	VI between GND and Vcc
CI	InputCapacitance	-	-	10	pF	
VoH	OutputHighVoltage	2.4	-	-	V	$\mathrm{IOH}=10 \mathrm{~mA}$
IOH	OutputHighCurrent	10	-	-	mA	Sourcing. VoH $=0.8 \mathrm{~V}$
VOL	OutputLowVoltage	-	-	0.4	V	$\mathrm{IOL}=5 \mathrm{~mA}$
IOL	OutputLowCurrent	5	-	-	mA	Sinking. VoL $=0.4 \mathrm{~V}$
IOZ	HighImpedanceLeakage	-	-	5	$\mu \mathrm{~A}$	Vo between GND and VCC
Co	OutputPinCapacitance	-	-	10	pF	

NOTE:

1. Typical figures are at $25^{\circ} \mathrm{C}$ and are for design aid only; not guaranteed and not subject to production testing.

S1 is open circuitexceptwhentesting output levels orhighimpedance states.

S2 is switched to VcC or GND whentesting outputlevels orhighimpedance states.

Figure 6. Output Load

AC ELECTRICAL CHARACTERISTICS ${ }^{(1)}$ — ST-BUS ${ }^{\circledR}$ TIMING

Symbol	Parameter	Min.	Typ. ${ }^{(2)}$	Max.	Units	Test Conditions
tFoiw	Frame Pulse Width	-	244	-	ns	
tFois	Frame Pulse Setup Time	5	20	190	ns	
tFoiH	Frame Pulse Hold Time	5	20	190	ns	
tDAA	TX delay Active to Active	-	40	60	ns	$\mathrm{C}_{\mathrm{L}}=150 \mathrm{pF}$
tsTis	RX Setup Time	10	-	-	ns	
tsTiH	RXHold Time	10	-	-	ns	
tc4i	Clock Period	-	244	-	ns	
tCL	CK Input Low	-	122	-	ns	
tch	CK Input High	-	122	-	ns	
tr,tf	Clock Rise/Fall Time	-	-	10	ns	

NOTE:

1. Timing is over recommended temperature and power supply voltages.
2. Typical figures are at $25^{\circ} \mathrm{C}$ and are for design aid only; not guaranteed and not subject to production testing.

Figure 7. ST-BUS ${ }^{\circledR}$ Timing

AC ELECTRICAL CHARACTERISTICS ${ }^{(1)}$ - GCI TIMING

Symbol	Parameter	Min.	Typ. ${ }^{(2)}$	Max.	Units	Test Conditions
tC4i	Clock Period	-	244	-	ns	
tCL, tCH	PulseWidth	-	122	-	ns	
twFH	FrameWidth High	-	244	-	ns	
tFois	FrameSetup	5	20	190	ns	
troiH	FrameHold	5	20	190	ns	
tDAA	Data Delay/Clock Active to Active	-	40	60	ns	$\mathrm{C}_{\mathrm{L}}=150 \mathrm{pF}$
tSTis	RXInputSetup	10	-	-	ns	
tsTiH	RXInputHold	10	-	-	ns	
tr,tf	ClockRise/FallTime	-	-	10	ns	

NOTE:

1. Timing is over recommended temperature and power supply voltages.
2. Typical figures are at $25^{\circ} \mathrm{C}$ and are for design aid only; not guaranteed and not subject to production testing.

5707 drw11
Figure 8. GCI Timing

AC ELECTRICAL CHARACTERISTICS(1)—_SERIAL STREAM TIMING

Symbol	Characteristics	Min.	Typ. ${ }^{(2)}$	Max.	Unit	Test Conditions
tTAZ	TXO-7 Delay - Active to HighZ	-	30	45	ns	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{~K} \Omega^{(3)}, \mathrm{C}_{\mathrm{L}}=150 \mathrm{pF}$
tTZA	TX0-7 Delay - High Z to Active	-	45	60	ns	$\mathrm{C}_{\mathrm{L}}=150 \mathrm{pF}$
toed	Output Driver Enable Delay	-	45	60	ns	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{~K} \Omega^{(3)}, \mathrm{C}_{\mathrm{L}}=150 \mathrm{pF}$
txCD	CCO Output Delay	0	40	60	ns	$\mathrm{C}_{\mathrm{L}}=150 \mathrm{pF}$
tRSZ	Resetto HighZ	5	30	-	ns	
tZRS	HighZto Reset	0	-	-	ns	
tZDO	HighZ to Valid Data	-	32	-	cycles	$\overline{\mathrm{C} 4 \mathrm{i}}$ cycles
tRPW	ResetPulseWidth	100	-	-	ns	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{~K} \Omega^{(3)}, \mathrm{C}_{\mathrm{L}}=150 \mathrm{pF}$

NOTE:

1. Timing is over recommended temperature and power supply voltages.
2. Typical figures are at $25^{\circ} \mathrm{C}$ and are for design aid only; not guaranteed and not subject to production testing.
3. High Impedance is measured by pulling to the appropriate rail with R_{L}, with timing corrected to cancel time taken to discharge C_{L}.

Figure 9. Serial Outputs and External Control

AC ELECTRICAL CHARACTERISTICS ${ }^{(1)}$ —MICROPROCESSOR TIMING

Symbol	Characteristics	Min.	Typ. ${ }^{(2)}$	Max.	Unit	Test Conditions
tcss	$\overline{\text { CS }}$ Setup from DS Rising	0	-	-	ns	
tRWS	R/W Setup from DS Rising	5	-	-	ns	
tads	Add Setup from DS Rising	5	-	-	ns	
tCSH	$\overline{\text { CS }}$ Hold after DS Falling	0	-	-	ns	
tRWH	R/W Hold after DS Falling	5	-	-	ns	
tadH	Add Hold after DS Falling	5	-	-	ns	
topr	Data Setup from $\overline{\text { DTA }}$ Low on Read	10	-	-	ns	$\mathrm{C}_{\mathrm{L}}=150 \mathrm{pF}$
tDHR	Data Hold on Read	10	50	90	ns	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{~K} \Omega^{(3)}, \mathrm{C}_{\mathrm{L}}=150 \mathrm{pF}$
tDSW	Data Setup on Write (FastWrite)	10	-	-	ns	
tswD	Valid Data Delay on Write (Slow Write)	-	-	122	ns	
tDHW	Data HoldonWrite	5	-	-	ns	
takD	AcknowledgmentDelay: Reading DataMemory Reading/Writing ConnectionMemory Writingto Control Register Reading to Control Register	$\begin{aligned} & - \\ & - \\ & \hline \end{aligned}$	$\begin{gathered} 560 \\ 300 / 370 \\ 45 \\ 45 \\ \hline \end{gathered}$	$\begin{gathered} 1220 \\ 730 / 800 \\ 70 \\ 70 \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \\ & \hline \end{aligned}$	$\mathrm{C}_{\mathrm{L}}=150 \mathrm{pF}$
taKH	AcknowledgmentHold Time	10	20	40	ns	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{~K} \Omega^{(3)}, \mathrm{C}_{\mathrm{L}}=150 \mathrm{pF}$

NOTE:

1. Timing is over recommended temperature and power supply voltages.
2. Typical figures are at $25^{\circ} \mathrm{C}$ and are for design aid only; not guaranteed and not subject to production testing.
3. High Impedance is measured by pulling to the appropriate rail with R_{L}, with timing corrected to cancel time taken to discharge C_{L}.

Figure 12. Motorola Non-Multiplexed Bus Timing

ORDERING INFORMATION

IDT \qquad Device Type

Commercial $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$

Green Plastic Leaded Chip Carrier (PLCC, J44-1)

72V8985
$256 \times 256-3.3 V$ Time Slot Interchange Digital Switch 5707 drw 15

DATASHEET DOCUMENT HISTORY

pgs. 1, 2, 13 and 14.
pgs. 1, 2 and 14 .
pgs. 1 and 9 .
pg. 11.
pg. 13.
pgs. 1,2 , and 14.
pg. 9 .

