

3.3V CMOS 16-BIT EDGE-TRIGGERED D-TYPE FLIP-FLOP WITH 3-STATE OUTPUTS, 5 VOLT TOLERANT I/O

IDT74LVC16374A

FEATURES:

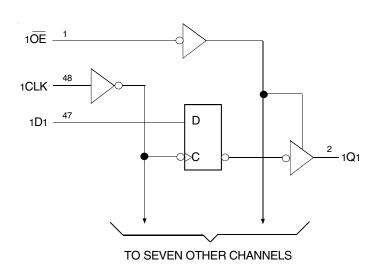
- Typical tsk(o) (Output Skew) < 250ps
- ESD > 2000V per MIL-STD-883, Method 3015; > 200V using machine model (C = 200pF, R = 0)
- Vcc = 3.3V ± 0.3V, Normal Range
- Vcc = 2.7V to 3.6V, Extended Range
- CMOS power levels (0.4 w typ. static)
- · All inputs, outputs, and I/O are 5V tolerant
- · Supports hot insertion
- · Available in TSSOP package

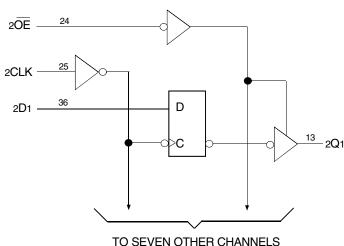
DRIVE FEATURES:

- · High Output Drivers: ±24mA
- · Reduced system switching noise

APPLICATIONS:

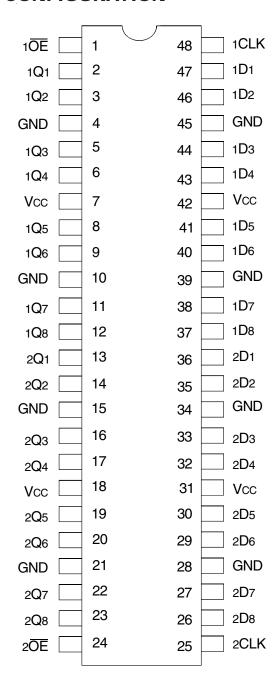
- · 5V and 3.3V mixed voltage systems
- · Data communication and telecommunication systems


DESCRIPTION:


The LVC16374A 16-bit edge-triggered D-type flip-flop is built using advanced dual metal CMOS technology. This high-speed, low-power register is ideal for use as a buffer register for data synchronization and storage. The Output Enable (\overline{OE}) and clock (CLK) controls are organized to operate this device as two 8-bit registers or one 16-bit register with common clock. Flow-through organization of signal pins simplifies layout. All inputs are designed with hysteresis for improved noise margin.

All pins of the LVC16374A can be driven from either 3.3V or 5V devices. This feature allows the use of this device as a translator in a mixed 3.3V/5V supply system.

The LVC16374A has been designed with a ± 24 mA output driver. This driver is capable of driving a moderate to heavy load while maintaining speed performance.


FUNCTIONAL BLOCK DIAGRAM

 $IDT and the \, IDT \, logo \, are \, registered \, trademarks \, of \, Integrated \, Device \, Technology, \, Inc. \, and \, the \, IDT \, logo \, are \, registered \, trademarks \, of \, Integrated \, Device \, Technology, \, Inc. \, and \, the \, IDT \, logo \, are \, registered \, trademarks \, of \, Integrated \, Device \, Technology, \, Inc. \, and \, the \, IDT \, logo \, are \, registered \, trademarks \, of \, Integrated \, Device \, Technology, \, Inc. \, and \, the \, IDT \, logo \, are \, registered \, trademarks \, of \, Integrated \, Device \, Technology, \, Inc. \, and \, the \, IDT \, logo \, are \, registered \, trademarks \, of \, Integrated \, Device \, Technology, \, Inc. \, and \, the \, IDT \, logo \, are \, registered \, trademarks \, of \, Integrated \, Device \, Technology, \, Inc. \, and \, the \, IDT \, logo \, are \, registered \, trademarks \, of \, Integrated \, Device \, Technology, \, Inc. \, and \, the \, IDT \, logo \, are \, registered \, trademarks \, of \, Integrated \, Device \, Technology, \, Inc. \, and \, the \, IDT \, logo \, are \, registered \, trademarks \, and \, the \, IDT \, logo \, are \, registered \, trademarks \, and \, the \, IDT \, logo \, are \, registered \, trademarks \, and \, the \, IDT \, logo \, are \, registered \, trademarks \, and \, the \, IDT \, logo \, are \, registered \, trademarks \, and \, the \, IDT \, logo \, are \, registered \, trademarks \, and \, the \, IDT \, logo \, are \, registered \, trademarks \, and \, the \, IDT \, logo \, are \, registered \, trademarks \, and \, the \, IDT \, logo \, are \, registered \, trademarks \, and \, the \, IDT \, logo \, are \, registered \, trademarks \, and \, the \, IDT \, logo \, are \, registered \, trademarks \, and \, the \, IDT \, logo \, are \, registered \, trademarks \, and \, the \, IDT \, logo \, are \, registered \, trademarks \, and \, the \, IDT \, logo \, are \, registered \, trademarks \, and \, the \, IDT \, logo \, are \, registered \, trademarks \, and \, the \, IDT \, logo \, are \, registered \, trademarks \, and \, the \, IDT \, logo \, are \, registered \, trademarks \, and \, the \, IDT \, logo \, are \, registered \, trademarks \, and \, the \, IDT \, logo \, are \, registered \, trademarks \, and \, the \, ID$

PIN CONFIGURATION

TSSOP TOP VIEW

ABSOLUTE MAXIMUM RATINGS(1)

Symbol	Description	Max	Unit
VTERM	Terminal Voltage with Respect to GND	-0.5 to +6.5	٧
Tstg	Storage Temperature	-65 to +150	°C
lout	DC Output Current	-50 to +50	mA
lik lok	Continuous Clamp Current, VI < 0 or Vo < 0	- 50	mA
lcc Iss	Continuous Current through each Vcc or GND	±100	mA

NOTE:

1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

CAPACITANCE (TA = +25°C, F = 1.0MHz)

Symbol	Parameter ⁽¹⁾	Conditions	Тур.	Max.	Unit
CIN	Input Capacitance	VIN = 0V	4.5	6	pF
Соит	Output Capacitance	Vout = 0V	6.5	8	pF
CI/O	I/O Port Capacitance	VIN = 0V	6.5	8	pF

NOTE

As applicable to the device type.

PIN DESCRIPTION

Pin Names	Description	
xDx	Data Inputs	
xCLK	Clock Inputs	
xŌĒ	3-State Output Enable Inputs (Active LOW)	
xQx	3-State Outputs	

FUNCTION TABLE(EACHFLIP-FLOP)(1)

	Outputs		
хDх	xCLK	х <mark>ОЕ</mark>	хQх
Х	L	Н	Z
Х	Н	Н	Z
L	1	L	L
Н	1	L	Н
L	Н	L	Q ⁽²⁾
Н	L	L	Q ⁽²⁾

NOTES:

- 1. H = HIGH Voltage Level
 - X = Don't Care
 - L = LOW Voltage Level
 - Z = High-Impedance
- 2. Output level before the indicated steady-state input conditions were established.

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE

Following Conditions Apply Unless Otherwise Specified:

Operating Condition: TA = -40°C to +85°C

Symbol	Parameter	Test Coi	nditions	Min.	Typ. ⁽¹⁾	Max.	Unit
VIH	Input HIGH Voltage Level	Vcc = 2.3V to 2.7V		1.7	_	_	V
		Vcc = 2.7V to 3.6V		2	_	_	
VIL	Input LOW Voltage Level	Vcc = 2.3V to 2.7V		T -	_	0.7	V
		Vcc = 2.7V to 3.6V		1 -	_	0.8	
Іін	Input Leakage Current	Vcc = 3.6V	Vı = 0 to 5.5V	T -	_	±5	μΑ
lıL							
lozh	High Impedance Output Current	Vcc = 3.6V	Vo = 0 to 5.5V	-	_	±10	μΑ
lozl	(3-State Output pins)						
loff	Input/Output Power Off Leakage	$Vcc = 0V$, $Vin or Vo \le 5.5V$		_	_	±50	μΑ
VIK	Clamp Diode Voltage	Vcc = 2.3V, IIN = -18mA		-	-0.7	-1.2	V
VH	Input Hysteresis	Vcc = 3.3V		T -	100	_	mV
ICCL	Quiescent Power Supply Current	Vcc = 3.6V	VIN = GND or Vcc	T -	_	10	μΑ
ICCH ICCZ			$3.6 \le VIN \le 5.5V^{(2)}$	+		10	
Δlcc	Quiescent Power Supply Current Variation	One input at Vcc - 0.6V, other inputs at Vcc or GND		_	_	500	μΑ

NOTES:

- 1. Typical values are at Vcc = 3.3V, +25°C ambient.
- 2. This applies in the disabled state only.

OUTPUT DRIVE CHARACTERISTICS

Symbol	Parameter	Test Con	ditions ⁽¹⁾	Min.	Max.	Unit
Voн	Output HIGH Voltage	Vcc = 2.3V to 3.6V	Iон = - 0.1mA	Vcc-0.2	_	V
		Vcc = 2.3V	Iон = -6mA	2	_	
		Vcc = 2.3V	Iон = - 12mA	1.7	-	
		Vcc = 2.7V		2.2	_	
		Vcc = 3V		2.4	_	
		Vcc = 3V	Iон = - 24mA	2.2	_	
Vol	Output LOW Voltage	Vcc = 2.3V to 3.6V	IoL = 0.1mA	_	0.2	V
		Vcc = 2.3V	IoL = 6mA	_	0.4	
			IoL = 12mA	_	0.7	
		Vcc = 2.7V	IoL = 12mA	_	0.4	
		Vcc = 3V	IoL = 24mA	_	0.55	

NOTE:

^{1.} VIH and VIL must be within the min. or max. range shown in the DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE table for the appropriate Vcc range.

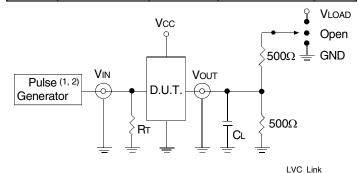
TA = - 40°C to + 85°C.

OPERATING CHARACTERISTICS, $Vcc = 3.3V \pm 0.3V$, Ta = 25°C

Symbol	Parameter	Test Conditions	Typical	Unit
CPD	Power Dissipation Capacitance per Flip-Flop Outputs enabled	CL = 0pF, f = 10Mhz	58	pF
CPD	Power Dissipation Capacitance per Flip-Flop Outputs disabled		24	

SWITCHING CHARACTERISTICS(1)

		Vcc =	: 2.7V	Vcc = 3.3	V ± 0.3V	
Symbol	Parameter	Min.	Max.	Min.	Max.	Unit
fMAX		150	_	150	_	MHz
t PLH	Propagation Delay	_	4.9	1.5	4.5	ns
tPHL	xCLK to xQx					
tpzh	Output Enable Time	_	5.3	1.5	4.6	ns
tpzL	x OE to xQx					
tPHZ	Output Disable Time	_	6.1	1.5	5.5	ns
tPLZ	x OE to xQx					
tsu	Set-up Time HIGH or LOW, xDx to xCLK	1.9	_	1.9	_	ns
tΗ	Hold Time HIGH or LOW, xDx after xCLK	1.1	_	1.1	_	ns
tw	xCLK Pulse Width HIGH or LOW	3.3	_	3.3	_	ns
tsk(o)	Output Skew ⁽²⁾	_	_	_	500	ps


NOTES:

^{1.} See TEST CIRCUITS AND WAVEFORMS. TA = -40° C to + 85° C.

^{2.} Skew between any two outputs of the same package and switching in the same direction.

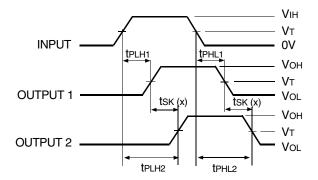
TEST CIRCUITS AND WAVEFORMS TEST CONDITIONS

Symbol	$Vcc^{(1)} = 3.3V \pm 0.3V$	$Vcc^{(1)} = 2.7V$	$Vcc^{(2)} = 2.5V \pm 0.2V$	Unit
VLOAD	6	6	2 x Vcc	V
VIH	2.7	2.7	Vcc	V
VT	1.5	1.5	Vcc/2	V
VLZ	300	300	150	mV
VHZ	300	300	150	mV
CL	50	50	30	pF

Test Circuit for All Outputs

DEFINITIONS:

CL = Load capacitance: includes jig and probe capacitance.

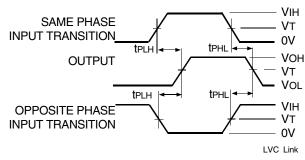

RT = Termination resistance: should be equal to ZouT of the Pulse Generator.

NOTES:

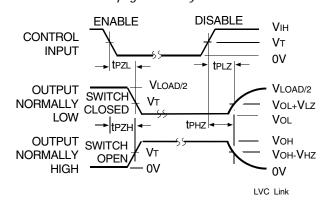
- 1. Pulse Generator for All Pulses: Rate \leq 10MHz; tF \leq 2.5ns; tR \leq 2.5ns.
- 2. Pulse Generator for All Pulses: Rate \leq 10MHz; tF \leq 2ns; tR \leq 2ns.

SWITCH POSITION

Test	Switch
Open Drain Disable Low Enable Low	Vload
Disable High Enable High	GND
All Other Tests	Open

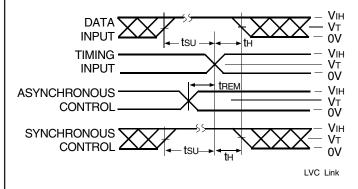


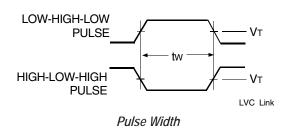
tsk(x) = |tplh2 - tplh1| or |tphl2 - tphl1|


Output Skew - tsk(x)

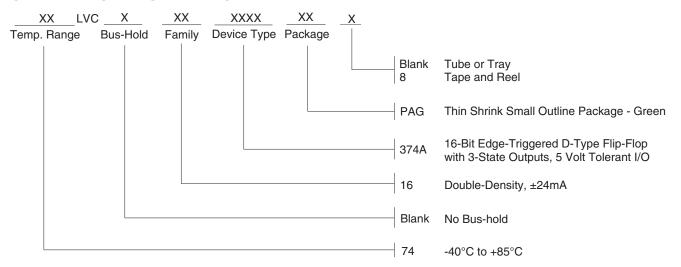
NOTES:

- 1. For tsk(o) OUTPUT1 and OUTPUT2 are any two outputs.
- 2. For tsk(b) OUTPUT1 and OUTPUT2 are in the same bank.


Propagation Delay


Enable and Disable Times

NOTE:


1. Diagram shown for input Control Enable-LOW and input Control Disable-HIGH.

Set-up, Hold, and Release Times

ORDERING INFORMATION

DATASHEET DOCUMENT HISTORY

08/20/2015 Pg. 6 Updated the ordering information by removing SSOP, TVSOP, non RoHS parts and adding Tape and Reel information.

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD-PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers who are designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only to develop an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third-party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising from your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

(Disclaimer Rev.1.01)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit www.renesas.com/contact-us/.